xref: /openbmc/linux/net/sunrpc/sched.c (revision b6dcefde)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 
24 #include "sunrpc.h"
25 
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY		RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID	0xf00baa
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static struct kmem_cache	*rpc_task_slabp __read_mostly;
38 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
39 static mempool_t	*rpc_task_mempool __read_mostly;
40 static mempool_t	*rpc_buffer_mempool __read_mostly;
41 
42 static void			rpc_async_schedule(struct work_struct *);
43 static void			 rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45 
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static struct rpc_wait_queue delay_queue;
50 
51 /*
52  * rpciod-related stuff
53  */
54 struct workqueue_struct *rpciod_workqueue;
55 
56 /*
57  * Disable the timer for a given RPC task. Should be called with
58  * queue->lock and bh_disabled in order to avoid races within
59  * rpc_run_timer().
60  */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64 	if (task->tk_timeout == 0)
65 		return;
66 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67 	task->tk_timeout = 0;
68 	list_del(&task->u.tk_wait.timer_list);
69 	if (list_empty(&queue->timer_list.list))
70 		del_timer(&queue->timer_list.timer);
71 }
72 
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76 	queue->timer_list.expires = expires;
77 	mod_timer(&queue->timer_list.timer, expires);
78 }
79 
80 /*
81  * Set up a timer for the current task.
82  */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 	if (!task->tk_timeout)
87 		return;
88 
89 	dprintk("RPC: %5u setting alarm for %lu ms\n",
90 			task->tk_pid, task->tk_timeout * 1000 / HZ);
91 
92 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
93 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97 
98 /*
99  * Add new request to a priority queue.
100  */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 {
103 	struct list_head *q;
104 	struct rpc_task *t;
105 
106 	INIT_LIST_HEAD(&task->u.tk_wait.links);
107 	q = &queue->tasks[task->tk_priority];
108 	if (unlikely(task->tk_priority > queue->maxpriority))
109 		q = &queue->tasks[queue->maxpriority];
110 	list_for_each_entry(t, q, u.tk_wait.list) {
111 		if (t->tk_owner == task->tk_owner) {
112 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
113 			return;
114 		}
115 	}
116 	list_add_tail(&task->u.tk_wait.list, q);
117 }
118 
119 /*
120  * Add new request to wait queue.
121  *
122  * Swapper tasks always get inserted at the head of the queue.
123  * This should avoid many nasty memory deadlocks and hopefully
124  * improve overall performance.
125  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126  */
127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 {
129 	BUG_ON (RPC_IS_QUEUED(task));
130 
131 	if (RPC_IS_PRIORITY(queue))
132 		__rpc_add_wait_queue_priority(queue, task);
133 	else if (RPC_IS_SWAPPER(task))
134 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
135 	else
136 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
137 	task->tk_waitqueue = queue;
138 	queue->qlen++;
139 	rpc_set_queued(task);
140 
141 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
142 			task->tk_pid, queue, rpc_qname(queue));
143 }
144 
145 /*
146  * Remove request from a priority queue.
147  */
148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 {
150 	struct rpc_task *t;
151 
152 	if (!list_empty(&task->u.tk_wait.links)) {
153 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
154 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
155 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
156 	}
157 }
158 
159 /*
160  * Remove request from queue.
161  * Note: must be called with spin lock held.
162  */
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 {
165 	__rpc_disable_timer(queue, task);
166 	if (RPC_IS_PRIORITY(queue))
167 		__rpc_remove_wait_queue_priority(task);
168 	list_del(&task->u.tk_wait.list);
169 	queue->qlen--;
170 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171 			task->tk_pid, queue, rpc_qname(queue));
172 }
173 
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 {
176 	queue->priority = priority;
177 	queue->count = 1 << (priority * 2);
178 }
179 
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 {
182 	queue->owner = pid;
183 	queue->nr = RPC_BATCH_COUNT;
184 }
185 
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 {
188 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
189 	rpc_set_waitqueue_owner(queue, 0);
190 }
191 
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 {
194 	int i;
195 
196 	spin_lock_init(&queue->lock);
197 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198 		INIT_LIST_HEAD(&queue->tasks[i]);
199 	queue->maxpriority = nr_queues - 1;
200 	rpc_reset_waitqueue_priority(queue);
201 	queue->qlen = 0;
202 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
203 	INIT_LIST_HEAD(&queue->timer_list.list);
204 #ifdef RPC_DEBUG
205 	queue->name = qname;
206 #endif
207 }
208 
209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 {
211 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 }
213 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
214 
215 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 {
217 	__rpc_init_priority_wait_queue(queue, qname, 1);
218 }
219 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
220 
221 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
222 {
223 	del_timer_sync(&queue->timer_list.timer);
224 }
225 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
226 
227 static int rpc_wait_bit_killable(void *word)
228 {
229 	if (fatal_signal_pending(current))
230 		return -ERESTARTSYS;
231 	schedule();
232 	return 0;
233 }
234 
235 #ifdef RPC_DEBUG
236 static void rpc_task_set_debuginfo(struct rpc_task *task)
237 {
238 	static atomic_t rpc_pid;
239 
240 	task->tk_magic = RPC_TASK_MAGIC_ID;
241 	task->tk_pid = atomic_inc_return(&rpc_pid);
242 }
243 #else
244 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
245 {
246 }
247 #endif
248 
249 static void rpc_set_active(struct rpc_task *task)
250 {
251 	struct rpc_clnt *clnt;
252 	if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
253 		return;
254 	rpc_task_set_debuginfo(task);
255 	/* Add to global list of all tasks */
256 	clnt = task->tk_client;
257 	if (clnt != NULL) {
258 		spin_lock(&clnt->cl_lock);
259 		list_add_tail(&task->tk_task, &clnt->cl_tasks);
260 		spin_unlock(&clnt->cl_lock);
261 	}
262 }
263 
264 /*
265  * Mark an RPC call as having completed by clearing the 'active' bit
266  */
267 static void rpc_mark_complete_task(struct rpc_task *task)
268 {
269 	smp_mb__before_clear_bit();
270 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
271 	smp_mb__after_clear_bit();
272 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
273 }
274 
275 /*
276  * Allow callers to wait for completion of an RPC call
277  */
278 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
279 {
280 	if (action == NULL)
281 		action = rpc_wait_bit_killable;
282 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
283 			action, TASK_KILLABLE);
284 }
285 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
286 
287 /*
288  * Make an RPC task runnable.
289  *
290  * Note: If the task is ASYNC, this must be called with
291  * the spinlock held to protect the wait queue operation.
292  */
293 static void rpc_make_runnable(struct rpc_task *task)
294 {
295 	rpc_clear_queued(task);
296 	if (rpc_test_and_set_running(task))
297 		return;
298 	if (RPC_IS_ASYNC(task)) {
299 		int status;
300 
301 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
302 		status = queue_work(rpciod_workqueue, &task->u.tk_work);
303 		if (status < 0) {
304 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
305 			task->tk_status = status;
306 			return;
307 		}
308 	} else
309 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
310 }
311 
312 /*
313  * Prepare for sleeping on a wait queue.
314  * By always appending tasks to the list we ensure FIFO behavior.
315  * NB: An RPC task will only receive interrupt-driven events as long
316  * as it's on a wait queue.
317  */
318 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
319 			rpc_action action)
320 {
321 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
322 			task->tk_pid, rpc_qname(q), jiffies);
323 
324 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
325 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
326 		return;
327 	}
328 
329 	__rpc_add_wait_queue(q, task);
330 
331 	BUG_ON(task->tk_callback != NULL);
332 	task->tk_callback = action;
333 	__rpc_add_timer(q, task);
334 }
335 
336 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
337 				rpc_action action)
338 {
339 	/* Mark the task as being activated if so needed */
340 	rpc_set_active(task);
341 
342 	/*
343 	 * Protect the queue operations.
344 	 */
345 	spin_lock_bh(&q->lock);
346 	__rpc_sleep_on(q, task, action);
347 	spin_unlock_bh(&q->lock);
348 }
349 EXPORT_SYMBOL_GPL(rpc_sleep_on);
350 
351 /**
352  * __rpc_do_wake_up_task - wake up a single rpc_task
353  * @queue: wait queue
354  * @task: task to be woken up
355  *
356  * Caller must hold queue->lock, and have cleared the task queued flag.
357  */
358 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
359 {
360 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
361 			task->tk_pid, jiffies);
362 
363 #ifdef RPC_DEBUG
364 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
365 #endif
366 	/* Has the task been executed yet? If not, we cannot wake it up! */
367 	if (!RPC_IS_ACTIVATED(task)) {
368 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
369 		return;
370 	}
371 
372 	__rpc_remove_wait_queue(queue, task);
373 
374 	rpc_make_runnable(task);
375 
376 	dprintk("RPC:       __rpc_wake_up_task done\n");
377 }
378 
379 /*
380  * Wake up a queued task while the queue lock is being held
381  */
382 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
383 {
384 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
385 		__rpc_do_wake_up_task(queue, task);
386 }
387 
388 /*
389  * Tests whether rpc queue is empty
390  */
391 int rpc_queue_empty(struct rpc_wait_queue *queue)
392 {
393 	int res;
394 
395 	spin_lock_bh(&queue->lock);
396 	res = queue->qlen;
397 	spin_unlock_bh(&queue->lock);
398 	return (res == 0);
399 }
400 EXPORT_SYMBOL_GPL(rpc_queue_empty);
401 
402 /*
403  * Wake up a task on a specific queue
404  */
405 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
406 {
407 	spin_lock_bh(&queue->lock);
408 	rpc_wake_up_task_queue_locked(queue, task);
409 	spin_unlock_bh(&queue->lock);
410 }
411 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
412 
413 /*
414  * Wake up the specified task
415  */
416 static void rpc_wake_up_task(struct rpc_task *task)
417 {
418 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
419 }
420 
421 /*
422  * Wake up the next task on a priority queue.
423  */
424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
425 {
426 	struct list_head *q;
427 	struct rpc_task *task;
428 
429 	/*
430 	 * Service a batch of tasks from a single owner.
431 	 */
432 	q = &queue->tasks[queue->priority];
433 	if (!list_empty(q)) {
434 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
435 		if (queue->owner == task->tk_owner) {
436 			if (--queue->nr)
437 				goto out;
438 			list_move_tail(&task->u.tk_wait.list, q);
439 		}
440 		/*
441 		 * Check if we need to switch queues.
442 		 */
443 		if (--queue->count)
444 			goto new_owner;
445 	}
446 
447 	/*
448 	 * Service the next queue.
449 	 */
450 	do {
451 		if (q == &queue->tasks[0])
452 			q = &queue->tasks[queue->maxpriority];
453 		else
454 			q = q - 1;
455 		if (!list_empty(q)) {
456 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457 			goto new_queue;
458 		}
459 	} while (q != &queue->tasks[queue->priority]);
460 
461 	rpc_reset_waitqueue_priority(queue);
462 	return NULL;
463 
464 new_queue:
465 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
466 new_owner:
467 	rpc_set_waitqueue_owner(queue, task->tk_owner);
468 out:
469 	rpc_wake_up_task_queue_locked(queue, task);
470 	return task;
471 }
472 
473 /*
474  * Wake up the next task on the wait queue.
475  */
476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
477 {
478 	struct rpc_task	*task = NULL;
479 
480 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
481 			queue, rpc_qname(queue));
482 	spin_lock_bh(&queue->lock);
483 	if (RPC_IS_PRIORITY(queue))
484 		task = __rpc_wake_up_next_priority(queue);
485 	else {
486 		task_for_first(task, &queue->tasks[0])
487 			rpc_wake_up_task_queue_locked(queue, task);
488 	}
489 	spin_unlock_bh(&queue->lock);
490 
491 	return task;
492 }
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
494 
495 /**
496  * rpc_wake_up - wake up all rpc_tasks
497  * @queue: rpc_wait_queue on which the tasks are sleeping
498  *
499  * Grabs queue->lock
500  */
501 void rpc_wake_up(struct rpc_wait_queue *queue)
502 {
503 	struct rpc_task *task, *next;
504 	struct list_head *head;
505 
506 	spin_lock_bh(&queue->lock);
507 	head = &queue->tasks[queue->maxpriority];
508 	for (;;) {
509 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
510 			rpc_wake_up_task_queue_locked(queue, task);
511 		if (head == &queue->tasks[0])
512 			break;
513 		head--;
514 	}
515 	spin_unlock_bh(&queue->lock);
516 }
517 EXPORT_SYMBOL_GPL(rpc_wake_up);
518 
519 /**
520  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521  * @queue: rpc_wait_queue on which the tasks are sleeping
522  * @status: status value to set
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
527 {
528 	struct rpc_task *task, *next;
529 	struct list_head *head;
530 
531 	spin_lock_bh(&queue->lock);
532 	head = &queue->tasks[queue->maxpriority];
533 	for (;;) {
534 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535 			task->tk_status = status;
536 			rpc_wake_up_task_queue_locked(queue, task);
537 		}
538 		if (head == &queue->tasks[0])
539 			break;
540 		head--;
541 	}
542 	spin_unlock_bh(&queue->lock);
543 }
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
545 
546 static void __rpc_queue_timer_fn(unsigned long ptr)
547 {
548 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
549 	struct rpc_task *task, *n;
550 	unsigned long expires, now, timeo;
551 
552 	spin_lock(&queue->lock);
553 	expires = now = jiffies;
554 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
555 		timeo = task->u.tk_wait.expires;
556 		if (time_after_eq(now, timeo)) {
557 			dprintk("RPC: %5u timeout\n", task->tk_pid);
558 			task->tk_status = -ETIMEDOUT;
559 			rpc_wake_up_task_queue_locked(queue, task);
560 			continue;
561 		}
562 		if (expires == now || time_after(expires, timeo))
563 			expires = timeo;
564 	}
565 	if (!list_empty(&queue->timer_list.list))
566 		rpc_set_queue_timer(queue, expires);
567 	spin_unlock(&queue->lock);
568 }
569 
570 static void __rpc_atrun(struct rpc_task *task)
571 {
572 	task->tk_status = 0;
573 }
574 
575 /*
576  * Run a task at a later time
577  */
578 void rpc_delay(struct rpc_task *task, unsigned long delay)
579 {
580 	task->tk_timeout = delay;
581 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
582 }
583 EXPORT_SYMBOL_GPL(rpc_delay);
584 
585 /*
586  * Helper to call task->tk_ops->rpc_call_prepare
587  */
588 void rpc_prepare_task(struct rpc_task *task)
589 {
590 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
591 }
592 
593 /*
594  * Helper that calls task->tk_ops->rpc_call_done if it exists
595  */
596 void rpc_exit_task(struct rpc_task *task)
597 {
598 	task->tk_action = NULL;
599 	if (task->tk_ops->rpc_call_done != NULL) {
600 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
601 		if (task->tk_action != NULL) {
602 			WARN_ON(RPC_ASSASSINATED(task));
603 			/* Always release the RPC slot and buffer memory */
604 			xprt_release(task);
605 		}
606 	}
607 }
608 EXPORT_SYMBOL_GPL(rpc_exit_task);
609 
610 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
611 {
612 	if (ops->rpc_release != NULL)
613 		ops->rpc_release(calldata);
614 }
615 
616 /*
617  * This is the RPC `scheduler' (or rather, the finite state machine).
618  */
619 static void __rpc_execute(struct rpc_task *task)
620 {
621 	struct rpc_wait_queue *queue;
622 	int task_is_async = RPC_IS_ASYNC(task);
623 	int status = 0;
624 
625 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
626 			task->tk_pid, task->tk_flags);
627 
628 	BUG_ON(RPC_IS_QUEUED(task));
629 
630 	for (;;) {
631 
632 		/*
633 		 * Execute any pending callback.
634 		 */
635 		if (task->tk_callback) {
636 			void (*save_callback)(struct rpc_task *);
637 
638 			/*
639 			 * We set tk_callback to NULL before calling it,
640 			 * in case it sets the tk_callback field itself:
641 			 */
642 			save_callback = task->tk_callback;
643 			task->tk_callback = NULL;
644 			save_callback(task);
645 		}
646 
647 		/*
648 		 * Perform the next FSM step.
649 		 * tk_action may be NULL when the task has been killed
650 		 * by someone else.
651 		 */
652 		if (!RPC_IS_QUEUED(task)) {
653 			if (task->tk_action == NULL)
654 				break;
655 			task->tk_action(task);
656 		}
657 
658 		/*
659 		 * Lockless check for whether task is sleeping or not.
660 		 */
661 		if (!RPC_IS_QUEUED(task))
662 			continue;
663 		/*
664 		 * The queue->lock protects against races with
665 		 * rpc_make_runnable().
666 		 *
667 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
668 		 * rpc_task, rpc_make_runnable() can assign it to a
669 		 * different workqueue. We therefore cannot assume that the
670 		 * rpc_task pointer may still be dereferenced.
671 		 */
672 		queue = task->tk_waitqueue;
673 		spin_lock_bh(&queue->lock);
674 		if (!RPC_IS_QUEUED(task)) {
675 			spin_unlock_bh(&queue->lock);
676 			continue;
677 		}
678 		rpc_clear_running(task);
679 		spin_unlock_bh(&queue->lock);
680 		if (task_is_async)
681 			return;
682 
683 		/* sync task: sleep here */
684 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
685 		status = out_of_line_wait_on_bit(&task->tk_runstate,
686 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
687 				TASK_KILLABLE);
688 		if (status == -ERESTARTSYS) {
689 			/*
690 			 * When a sync task receives a signal, it exits with
691 			 * -ERESTARTSYS. In order to catch any callbacks that
692 			 * clean up after sleeping on some queue, we don't
693 			 * break the loop here, but go around once more.
694 			 */
695 			dprintk("RPC: %5u got signal\n", task->tk_pid);
696 			task->tk_flags |= RPC_TASK_KILLED;
697 			rpc_exit(task, -ERESTARTSYS);
698 			rpc_wake_up_task(task);
699 		}
700 		rpc_set_running(task);
701 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
702 	}
703 
704 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
705 			task->tk_status);
706 	/* Release all resources associated with the task */
707 	rpc_release_task(task);
708 }
709 
710 /*
711  * User-visible entry point to the scheduler.
712  *
713  * This may be called recursively if e.g. an async NFS task updates
714  * the attributes and finds that dirty pages must be flushed.
715  * NOTE: Upon exit of this function the task is guaranteed to be
716  *	 released. In particular note that tk_release() will have
717  *	 been called, so your task memory may have been freed.
718  */
719 void rpc_execute(struct rpc_task *task)
720 {
721 	rpc_set_active(task);
722 	rpc_set_running(task);
723 	__rpc_execute(task);
724 }
725 
726 static void rpc_async_schedule(struct work_struct *work)
727 {
728 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
729 }
730 
731 /**
732  * rpc_malloc - allocate an RPC buffer
733  * @task: RPC task that will use this buffer
734  * @size: requested byte size
735  *
736  * To prevent rpciod from hanging, this allocator never sleeps,
737  * returning NULL if the request cannot be serviced immediately.
738  * The caller can arrange to sleep in a way that is safe for rpciod.
739  *
740  * Most requests are 'small' (under 2KiB) and can be serviced from a
741  * mempool, ensuring that NFS reads and writes can always proceed,
742  * and that there is good locality of reference for these buffers.
743  *
744  * In order to avoid memory starvation triggering more writebacks of
745  * NFS requests, we avoid using GFP_KERNEL.
746  */
747 void *rpc_malloc(struct rpc_task *task, size_t size)
748 {
749 	struct rpc_buffer *buf;
750 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
751 
752 	size += sizeof(struct rpc_buffer);
753 	if (size <= RPC_BUFFER_MAXSIZE)
754 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
755 	else
756 		buf = kmalloc(size, gfp);
757 
758 	if (!buf)
759 		return NULL;
760 
761 	buf->len = size;
762 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
763 			task->tk_pid, size, buf);
764 	return &buf->data;
765 }
766 EXPORT_SYMBOL_GPL(rpc_malloc);
767 
768 /**
769  * rpc_free - free buffer allocated via rpc_malloc
770  * @buffer: buffer to free
771  *
772  */
773 void rpc_free(void *buffer)
774 {
775 	size_t size;
776 	struct rpc_buffer *buf;
777 
778 	if (!buffer)
779 		return;
780 
781 	buf = container_of(buffer, struct rpc_buffer, data);
782 	size = buf->len;
783 
784 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
785 			size, buf);
786 
787 	if (size <= RPC_BUFFER_MAXSIZE)
788 		mempool_free(buf, rpc_buffer_mempool);
789 	else
790 		kfree(buf);
791 }
792 EXPORT_SYMBOL_GPL(rpc_free);
793 
794 /*
795  * Creation and deletion of RPC task structures
796  */
797 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
798 {
799 	memset(task, 0, sizeof(*task));
800 	atomic_set(&task->tk_count, 1);
801 	task->tk_flags  = task_setup_data->flags;
802 	task->tk_ops = task_setup_data->callback_ops;
803 	task->tk_calldata = task_setup_data->callback_data;
804 	INIT_LIST_HEAD(&task->tk_task);
805 
806 	/* Initialize retry counters */
807 	task->tk_garb_retry = 2;
808 	task->tk_cred_retry = 2;
809 
810 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
811 	task->tk_owner = current->tgid;
812 
813 	/* Initialize workqueue for async tasks */
814 	task->tk_workqueue = task_setup_data->workqueue;
815 
816 	task->tk_client = task_setup_data->rpc_client;
817 	if (task->tk_client != NULL) {
818 		kref_get(&task->tk_client->cl_kref);
819 		if (task->tk_client->cl_softrtry)
820 			task->tk_flags |= RPC_TASK_SOFT;
821 	}
822 
823 	if (task->tk_ops->rpc_call_prepare != NULL)
824 		task->tk_action = rpc_prepare_task;
825 
826 	if (task_setup_data->rpc_message != NULL) {
827 		task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
828 		task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
829 		task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
830 		/* Bind the user cred */
831 		rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
832 		if (task->tk_action == NULL)
833 			rpc_call_start(task);
834 	}
835 
836 	/* starting timestamp */
837 	task->tk_start = jiffies;
838 
839 	dprintk("RPC:       new task initialized, procpid %u\n",
840 				task_pid_nr(current));
841 }
842 
843 static struct rpc_task *
844 rpc_alloc_task(void)
845 {
846 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
847 }
848 
849 /*
850  * Create a new task for the specified client.
851  */
852 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
853 {
854 	struct rpc_task	*task = setup_data->task;
855 	unsigned short flags = 0;
856 
857 	if (task == NULL) {
858 		task = rpc_alloc_task();
859 		if (task == NULL)
860 			goto out;
861 		flags = RPC_TASK_DYNAMIC;
862 	}
863 
864 	rpc_init_task(task, setup_data);
865 
866 	task->tk_flags |= flags;
867 	dprintk("RPC:       allocated task %p\n", task);
868 out:
869 	return task;
870 }
871 
872 static void rpc_free_task(struct rpc_task *task)
873 {
874 	const struct rpc_call_ops *tk_ops = task->tk_ops;
875 	void *calldata = task->tk_calldata;
876 
877 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
878 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
879 		mempool_free(task, rpc_task_mempool);
880 	}
881 	rpc_release_calldata(tk_ops, calldata);
882 }
883 
884 static void rpc_async_release(struct work_struct *work)
885 {
886 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
887 }
888 
889 void rpc_put_task(struct rpc_task *task)
890 {
891 	if (!atomic_dec_and_test(&task->tk_count))
892 		return;
893 	/* Release resources */
894 	if (task->tk_rqstp)
895 		xprt_release(task);
896 	if (task->tk_msg.rpc_cred)
897 		rpcauth_unbindcred(task);
898 	if (task->tk_client) {
899 		rpc_release_client(task->tk_client);
900 		task->tk_client = NULL;
901 	}
902 	if (task->tk_workqueue != NULL) {
903 		INIT_WORK(&task->u.tk_work, rpc_async_release);
904 		queue_work(task->tk_workqueue, &task->u.tk_work);
905 	} else
906 		rpc_free_task(task);
907 }
908 EXPORT_SYMBOL_GPL(rpc_put_task);
909 
910 static void rpc_release_task(struct rpc_task *task)
911 {
912 #ifdef RPC_DEBUG
913 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
914 #endif
915 	dprintk("RPC: %5u release task\n", task->tk_pid);
916 
917 	if (!list_empty(&task->tk_task)) {
918 		struct rpc_clnt *clnt = task->tk_client;
919 		/* Remove from client task list */
920 		spin_lock(&clnt->cl_lock);
921 		list_del(&task->tk_task);
922 		spin_unlock(&clnt->cl_lock);
923 	}
924 	BUG_ON (RPC_IS_QUEUED(task));
925 
926 #ifdef RPC_DEBUG
927 	task->tk_magic = 0;
928 #endif
929 	/* Wake up anyone who is waiting for task completion */
930 	rpc_mark_complete_task(task);
931 
932 	rpc_put_task(task);
933 }
934 
935 /*
936  * Kill all tasks for the given client.
937  * XXX: kill their descendants as well?
938  */
939 void rpc_killall_tasks(struct rpc_clnt *clnt)
940 {
941 	struct rpc_task	*rovr;
942 
943 
944 	if (list_empty(&clnt->cl_tasks))
945 		return;
946 	dprintk("RPC:       killing all tasks for client %p\n", clnt);
947 	/*
948 	 * Spin lock all_tasks to prevent changes...
949 	 */
950 	spin_lock(&clnt->cl_lock);
951 	list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
952 		if (! RPC_IS_ACTIVATED(rovr))
953 			continue;
954 		if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
955 			rovr->tk_flags |= RPC_TASK_KILLED;
956 			rpc_exit(rovr, -EIO);
957 			rpc_wake_up_task(rovr);
958 		}
959 	}
960 	spin_unlock(&clnt->cl_lock);
961 }
962 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
963 
964 int rpciod_up(void)
965 {
966 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
967 }
968 
969 void rpciod_down(void)
970 {
971 	module_put(THIS_MODULE);
972 }
973 
974 /*
975  * Start up the rpciod workqueue.
976  */
977 static int rpciod_start(void)
978 {
979 	struct workqueue_struct *wq;
980 
981 	/*
982 	 * Create the rpciod thread and wait for it to start.
983 	 */
984 	dprintk("RPC:       creating workqueue rpciod\n");
985 	wq = create_workqueue("rpciod");
986 	rpciod_workqueue = wq;
987 	return rpciod_workqueue != NULL;
988 }
989 
990 static void rpciod_stop(void)
991 {
992 	struct workqueue_struct *wq = NULL;
993 
994 	if (rpciod_workqueue == NULL)
995 		return;
996 	dprintk("RPC:       destroying workqueue rpciod\n");
997 
998 	wq = rpciod_workqueue;
999 	rpciod_workqueue = NULL;
1000 	destroy_workqueue(wq);
1001 }
1002 
1003 void
1004 rpc_destroy_mempool(void)
1005 {
1006 	rpciod_stop();
1007 	if (rpc_buffer_mempool)
1008 		mempool_destroy(rpc_buffer_mempool);
1009 	if (rpc_task_mempool)
1010 		mempool_destroy(rpc_task_mempool);
1011 	if (rpc_task_slabp)
1012 		kmem_cache_destroy(rpc_task_slabp);
1013 	if (rpc_buffer_slabp)
1014 		kmem_cache_destroy(rpc_buffer_slabp);
1015 	rpc_destroy_wait_queue(&delay_queue);
1016 }
1017 
1018 int
1019 rpc_init_mempool(void)
1020 {
1021 	/*
1022 	 * The following is not strictly a mempool initialisation,
1023 	 * but there is no harm in doing it here
1024 	 */
1025 	rpc_init_wait_queue(&delay_queue, "delayq");
1026 	if (!rpciod_start())
1027 		goto err_nomem;
1028 
1029 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1030 					     sizeof(struct rpc_task),
1031 					     0, SLAB_HWCACHE_ALIGN,
1032 					     NULL);
1033 	if (!rpc_task_slabp)
1034 		goto err_nomem;
1035 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1036 					     RPC_BUFFER_MAXSIZE,
1037 					     0, SLAB_HWCACHE_ALIGN,
1038 					     NULL);
1039 	if (!rpc_buffer_slabp)
1040 		goto err_nomem;
1041 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1042 						    rpc_task_slabp);
1043 	if (!rpc_task_mempool)
1044 		goto err_nomem;
1045 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1046 						      rpc_buffer_slabp);
1047 	if (!rpc_buffer_mempool)
1048 		goto err_nomem;
1049 	return 0;
1050 err_nomem:
1051 	rpc_destroy_mempool();
1052 	return -ENOMEM;
1053 }
1054