1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 22 #include <linux/sunrpc/clnt.h> 23 24 #include "sunrpc.h" 25 26 #ifdef RPC_DEBUG 27 #define RPCDBG_FACILITY RPCDBG_SCHED 28 #define RPC_TASK_MAGIC_ID 0xf00baa 29 #endif 30 31 /* 32 * RPC slabs and memory pools 33 */ 34 #define RPC_BUFFER_MAXSIZE (2048) 35 #define RPC_BUFFER_POOLSIZE (8) 36 #define RPC_TASK_POOLSIZE (8) 37 static struct kmem_cache *rpc_task_slabp __read_mostly; 38 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 39 static mempool_t *rpc_task_mempool __read_mostly; 40 static mempool_t *rpc_buffer_mempool __read_mostly; 41 42 static void rpc_async_schedule(struct work_struct *); 43 static void rpc_release_task(struct rpc_task *task); 44 static void __rpc_queue_timer_fn(unsigned long ptr); 45 46 /* 47 * RPC tasks sit here while waiting for conditions to improve. 48 */ 49 static struct rpc_wait_queue delay_queue; 50 51 /* 52 * rpciod-related stuff 53 */ 54 struct workqueue_struct *rpciod_workqueue; 55 56 /* 57 * Disable the timer for a given RPC task. Should be called with 58 * queue->lock and bh_disabled in order to avoid races within 59 * rpc_run_timer(). 60 */ 61 static void 62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 63 { 64 if (task->tk_timeout == 0) 65 return; 66 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 67 task->tk_timeout = 0; 68 list_del(&task->u.tk_wait.timer_list); 69 if (list_empty(&queue->timer_list.list)) 70 del_timer(&queue->timer_list.timer); 71 } 72 73 static void 74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 75 { 76 queue->timer_list.expires = expires; 77 mod_timer(&queue->timer_list.timer, expires); 78 } 79 80 /* 81 * Set up a timer for the current task. 82 */ 83 static void 84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 85 { 86 if (!task->tk_timeout) 87 return; 88 89 dprintk("RPC: %5u setting alarm for %lu ms\n", 90 task->tk_pid, task->tk_timeout * 1000 / HZ); 91 92 task->u.tk_wait.expires = jiffies + task->tk_timeout; 93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 94 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 96 } 97 98 /* 99 * Add new request to a priority queue. 100 */ 101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 102 { 103 struct list_head *q; 104 struct rpc_task *t; 105 106 INIT_LIST_HEAD(&task->u.tk_wait.links); 107 q = &queue->tasks[task->tk_priority]; 108 if (unlikely(task->tk_priority > queue->maxpriority)) 109 q = &queue->tasks[queue->maxpriority]; 110 list_for_each_entry(t, q, u.tk_wait.list) { 111 if (t->tk_owner == task->tk_owner) { 112 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 113 return; 114 } 115 } 116 list_add_tail(&task->u.tk_wait.list, q); 117 } 118 119 /* 120 * Add new request to wait queue. 121 * 122 * Swapper tasks always get inserted at the head of the queue. 123 * This should avoid many nasty memory deadlocks and hopefully 124 * improve overall performance. 125 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 126 */ 127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 128 { 129 BUG_ON (RPC_IS_QUEUED(task)); 130 131 if (RPC_IS_PRIORITY(queue)) 132 __rpc_add_wait_queue_priority(queue, task); 133 else if (RPC_IS_SWAPPER(task)) 134 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 135 else 136 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 137 task->tk_waitqueue = queue; 138 queue->qlen++; 139 rpc_set_queued(task); 140 141 dprintk("RPC: %5u added to queue %p \"%s\"\n", 142 task->tk_pid, queue, rpc_qname(queue)); 143 } 144 145 /* 146 * Remove request from a priority queue. 147 */ 148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 149 { 150 struct rpc_task *t; 151 152 if (!list_empty(&task->u.tk_wait.links)) { 153 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 154 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 155 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 156 } 157 } 158 159 /* 160 * Remove request from queue. 161 * Note: must be called with spin lock held. 162 */ 163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 164 { 165 __rpc_disable_timer(queue, task); 166 if (RPC_IS_PRIORITY(queue)) 167 __rpc_remove_wait_queue_priority(task); 168 list_del(&task->u.tk_wait.list); 169 queue->qlen--; 170 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 171 task->tk_pid, queue, rpc_qname(queue)); 172 } 173 174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 175 { 176 queue->priority = priority; 177 queue->count = 1 << (priority * 2); 178 } 179 180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 181 { 182 queue->owner = pid; 183 queue->nr = RPC_BATCH_COUNT; 184 } 185 186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 187 { 188 rpc_set_waitqueue_priority(queue, queue->maxpriority); 189 rpc_set_waitqueue_owner(queue, 0); 190 } 191 192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 193 { 194 int i; 195 196 spin_lock_init(&queue->lock); 197 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 198 INIT_LIST_HEAD(&queue->tasks[i]); 199 queue->maxpriority = nr_queues - 1; 200 rpc_reset_waitqueue_priority(queue); 201 queue->qlen = 0; 202 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 203 INIT_LIST_HEAD(&queue->timer_list.list); 204 #ifdef RPC_DEBUG 205 queue->name = qname; 206 #endif 207 } 208 209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 210 { 211 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 212 } 213 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 214 215 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 216 { 217 __rpc_init_priority_wait_queue(queue, qname, 1); 218 } 219 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 220 221 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 222 { 223 del_timer_sync(&queue->timer_list.timer); 224 } 225 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 226 227 static int rpc_wait_bit_killable(void *word) 228 { 229 if (fatal_signal_pending(current)) 230 return -ERESTARTSYS; 231 schedule(); 232 return 0; 233 } 234 235 #ifdef RPC_DEBUG 236 static void rpc_task_set_debuginfo(struct rpc_task *task) 237 { 238 static atomic_t rpc_pid; 239 240 task->tk_magic = RPC_TASK_MAGIC_ID; 241 task->tk_pid = atomic_inc_return(&rpc_pid); 242 } 243 #else 244 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 245 { 246 } 247 #endif 248 249 static void rpc_set_active(struct rpc_task *task) 250 { 251 struct rpc_clnt *clnt; 252 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 253 return; 254 rpc_task_set_debuginfo(task); 255 /* Add to global list of all tasks */ 256 clnt = task->tk_client; 257 if (clnt != NULL) { 258 spin_lock(&clnt->cl_lock); 259 list_add_tail(&task->tk_task, &clnt->cl_tasks); 260 spin_unlock(&clnt->cl_lock); 261 } 262 } 263 264 /* 265 * Mark an RPC call as having completed by clearing the 'active' bit 266 */ 267 static void rpc_mark_complete_task(struct rpc_task *task) 268 { 269 smp_mb__before_clear_bit(); 270 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 271 smp_mb__after_clear_bit(); 272 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 273 } 274 275 /* 276 * Allow callers to wait for completion of an RPC call 277 */ 278 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 279 { 280 if (action == NULL) 281 action = rpc_wait_bit_killable; 282 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 283 action, TASK_KILLABLE); 284 } 285 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 286 287 /* 288 * Make an RPC task runnable. 289 * 290 * Note: If the task is ASYNC, this must be called with 291 * the spinlock held to protect the wait queue operation. 292 */ 293 static void rpc_make_runnable(struct rpc_task *task) 294 { 295 rpc_clear_queued(task); 296 if (rpc_test_and_set_running(task)) 297 return; 298 if (RPC_IS_ASYNC(task)) { 299 int status; 300 301 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 302 status = queue_work(rpciod_workqueue, &task->u.tk_work); 303 if (status < 0) { 304 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 305 task->tk_status = status; 306 return; 307 } 308 } else 309 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 310 } 311 312 /* 313 * Prepare for sleeping on a wait queue. 314 * By always appending tasks to the list we ensure FIFO behavior. 315 * NB: An RPC task will only receive interrupt-driven events as long 316 * as it's on a wait queue. 317 */ 318 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 319 rpc_action action) 320 { 321 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 322 task->tk_pid, rpc_qname(q), jiffies); 323 324 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 325 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 326 return; 327 } 328 329 __rpc_add_wait_queue(q, task); 330 331 BUG_ON(task->tk_callback != NULL); 332 task->tk_callback = action; 333 __rpc_add_timer(q, task); 334 } 335 336 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 337 rpc_action action) 338 { 339 /* Mark the task as being activated if so needed */ 340 rpc_set_active(task); 341 342 /* 343 * Protect the queue operations. 344 */ 345 spin_lock_bh(&q->lock); 346 __rpc_sleep_on(q, task, action); 347 spin_unlock_bh(&q->lock); 348 } 349 EXPORT_SYMBOL_GPL(rpc_sleep_on); 350 351 /** 352 * __rpc_do_wake_up_task - wake up a single rpc_task 353 * @queue: wait queue 354 * @task: task to be woken up 355 * 356 * Caller must hold queue->lock, and have cleared the task queued flag. 357 */ 358 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 359 { 360 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 361 task->tk_pid, jiffies); 362 363 #ifdef RPC_DEBUG 364 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 365 #endif 366 /* Has the task been executed yet? If not, we cannot wake it up! */ 367 if (!RPC_IS_ACTIVATED(task)) { 368 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 369 return; 370 } 371 372 __rpc_remove_wait_queue(queue, task); 373 374 rpc_make_runnable(task); 375 376 dprintk("RPC: __rpc_wake_up_task done\n"); 377 } 378 379 /* 380 * Wake up a queued task while the queue lock is being held 381 */ 382 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 383 { 384 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 385 __rpc_do_wake_up_task(queue, task); 386 } 387 388 /* 389 * Tests whether rpc queue is empty 390 */ 391 int rpc_queue_empty(struct rpc_wait_queue *queue) 392 { 393 int res; 394 395 spin_lock_bh(&queue->lock); 396 res = queue->qlen; 397 spin_unlock_bh(&queue->lock); 398 return (res == 0); 399 } 400 EXPORT_SYMBOL_GPL(rpc_queue_empty); 401 402 /* 403 * Wake up a task on a specific queue 404 */ 405 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 406 { 407 spin_lock_bh(&queue->lock); 408 rpc_wake_up_task_queue_locked(queue, task); 409 spin_unlock_bh(&queue->lock); 410 } 411 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 412 413 /* 414 * Wake up the specified task 415 */ 416 static void rpc_wake_up_task(struct rpc_task *task) 417 { 418 rpc_wake_up_queued_task(task->tk_waitqueue, task); 419 } 420 421 /* 422 * Wake up the next task on a priority queue. 423 */ 424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 425 { 426 struct list_head *q; 427 struct rpc_task *task; 428 429 /* 430 * Service a batch of tasks from a single owner. 431 */ 432 q = &queue->tasks[queue->priority]; 433 if (!list_empty(q)) { 434 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 435 if (queue->owner == task->tk_owner) { 436 if (--queue->nr) 437 goto out; 438 list_move_tail(&task->u.tk_wait.list, q); 439 } 440 /* 441 * Check if we need to switch queues. 442 */ 443 if (--queue->count) 444 goto new_owner; 445 } 446 447 /* 448 * Service the next queue. 449 */ 450 do { 451 if (q == &queue->tasks[0]) 452 q = &queue->tasks[queue->maxpriority]; 453 else 454 q = q - 1; 455 if (!list_empty(q)) { 456 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 457 goto new_queue; 458 } 459 } while (q != &queue->tasks[queue->priority]); 460 461 rpc_reset_waitqueue_priority(queue); 462 return NULL; 463 464 new_queue: 465 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 466 new_owner: 467 rpc_set_waitqueue_owner(queue, task->tk_owner); 468 out: 469 rpc_wake_up_task_queue_locked(queue, task); 470 return task; 471 } 472 473 /* 474 * Wake up the next task on the wait queue. 475 */ 476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 477 { 478 struct rpc_task *task = NULL; 479 480 dprintk("RPC: wake_up_next(%p \"%s\")\n", 481 queue, rpc_qname(queue)); 482 spin_lock_bh(&queue->lock); 483 if (RPC_IS_PRIORITY(queue)) 484 task = __rpc_wake_up_next_priority(queue); 485 else { 486 task_for_first(task, &queue->tasks[0]) 487 rpc_wake_up_task_queue_locked(queue, task); 488 } 489 spin_unlock_bh(&queue->lock); 490 491 return task; 492 } 493 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 494 495 /** 496 * rpc_wake_up - wake up all rpc_tasks 497 * @queue: rpc_wait_queue on which the tasks are sleeping 498 * 499 * Grabs queue->lock 500 */ 501 void rpc_wake_up(struct rpc_wait_queue *queue) 502 { 503 struct rpc_task *task, *next; 504 struct list_head *head; 505 506 spin_lock_bh(&queue->lock); 507 head = &queue->tasks[queue->maxpriority]; 508 for (;;) { 509 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 510 rpc_wake_up_task_queue_locked(queue, task); 511 if (head == &queue->tasks[0]) 512 break; 513 head--; 514 } 515 spin_unlock_bh(&queue->lock); 516 } 517 EXPORT_SYMBOL_GPL(rpc_wake_up); 518 519 /** 520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 521 * @queue: rpc_wait_queue on which the tasks are sleeping 522 * @status: status value to set 523 * 524 * Grabs queue->lock 525 */ 526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 527 { 528 struct rpc_task *task, *next; 529 struct list_head *head; 530 531 spin_lock_bh(&queue->lock); 532 head = &queue->tasks[queue->maxpriority]; 533 for (;;) { 534 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 535 task->tk_status = status; 536 rpc_wake_up_task_queue_locked(queue, task); 537 } 538 if (head == &queue->tasks[0]) 539 break; 540 head--; 541 } 542 spin_unlock_bh(&queue->lock); 543 } 544 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 545 546 static void __rpc_queue_timer_fn(unsigned long ptr) 547 { 548 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 549 struct rpc_task *task, *n; 550 unsigned long expires, now, timeo; 551 552 spin_lock(&queue->lock); 553 expires = now = jiffies; 554 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 555 timeo = task->u.tk_wait.expires; 556 if (time_after_eq(now, timeo)) { 557 dprintk("RPC: %5u timeout\n", task->tk_pid); 558 task->tk_status = -ETIMEDOUT; 559 rpc_wake_up_task_queue_locked(queue, task); 560 continue; 561 } 562 if (expires == now || time_after(expires, timeo)) 563 expires = timeo; 564 } 565 if (!list_empty(&queue->timer_list.list)) 566 rpc_set_queue_timer(queue, expires); 567 spin_unlock(&queue->lock); 568 } 569 570 static void __rpc_atrun(struct rpc_task *task) 571 { 572 task->tk_status = 0; 573 } 574 575 /* 576 * Run a task at a later time 577 */ 578 void rpc_delay(struct rpc_task *task, unsigned long delay) 579 { 580 task->tk_timeout = delay; 581 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 582 } 583 EXPORT_SYMBOL_GPL(rpc_delay); 584 585 /* 586 * Helper to call task->tk_ops->rpc_call_prepare 587 */ 588 void rpc_prepare_task(struct rpc_task *task) 589 { 590 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 591 } 592 593 /* 594 * Helper that calls task->tk_ops->rpc_call_done if it exists 595 */ 596 void rpc_exit_task(struct rpc_task *task) 597 { 598 task->tk_action = NULL; 599 if (task->tk_ops->rpc_call_done != NULL) { 600 task->tk_ops->rpc_call_done(task, task->tk_calldata); 601 if (task->tk_action != NULL) { 602 WARN_ON(RPC_ASSASSINATED(task)); 603 /* Always release the RPC slot and buffer memory */ 604 xprt_release(task); 605 } 606 } 607 } 608 EXPORT_SYMBOL_GPL(rpc_exit_task); 609 610 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 611 { 612 if (ops->rpc_release != NULL) 613 ops->rpc_release(calldata); 614 } 615 616 /* 617 * This is the RPC `scheduler' (or rather, the finite state machine). 618 */ 619 static void __rpc_execute(struct rpc_task *task) 620 { 621 struct rpc_wait_queue *queue; 622 int task_is_async = RPC_IS_ASYNC(task); 623 int status = 0; 624 625 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 626 task->tk_pid, task->tk_flags); 627 628 BUG_ON(RPC_IS_QUEUED(task)); 629 630 for (;;) { 631 632 /* 633 * Execute any pending callback. 634 */ 635 if (task->tk_callback) { 636 void (*save_callback)(struct rpc_task *); 637 638 /* 639 * We set tk_callback to NULL before calling it, 640 * in case it sets the tk_callback field itself: 641 */ 642 save_callback = task->tk_callback; 643 task->tk_callback = NULL; 644 save_callback(task); 645 } 646 647 /* 648 * Perform the next FSM step. 649 * tk_action may be NULL when the task has been killed 650 * by someone else. 651 */ 652 if (!RPC_IS_QUEUED(task)) { 653 if (task->tk_action == NULL) 654 break; 655 task->tk_action(task); 656 } 657 658 /* 659 * Lockless check for whether task is sleeping or not. 660 */ 661 if (!RPC_IS_QUEUED(task)) 662 continue; 663 /* 664 * The queue->lock protects against races with 665 * rpc_make_runnable(). 666 * 667 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 668 * rpc_task, rpc_make_runnable() can assign it to a 669 * different workqueue. We therefore cannot assume that the 670 * rpc_task pointer may still be dereferenced. 671 */ 672 queue = task->tk_waitqueue; 673 spin_lock_bh(&queue->lock); 674 if (!RPC_IS_QUEUED(task)) { 675 spin_unlock_bh(&queue->lock); 676 continue; 677 } 678 rpc_clear_running(task); 679 spin_unlock_bh(&queue->lock); 680 if (task_is_async) 681 return; 682 683 /* sync task: sleep here */ 684 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 685 status = out_of_line_wait_on_bit(&task->tk_runstate, 686 RPC_TASK_QUEUED, rpc_wait_bit_killable, 687 TASK_KILLABLE); 688 if (status == -ERESTARTSYS) { 689 /* 690 * When a sync task receives a signal, it exits with 691 * -ERESTARTSYS. In order to catch any callbacks that 692 * clean up after sleeping on some queue, we don't 693 * break the loop here, but go around once more. 694 */ 695 dprintk("RPC: %5u got signal\n", task->tk_pid); 696 task->tk_flags |= RPC_TASK_KILLED; 697 rpc_exit(task, -ERESTARTSYS); 698 rpc_wake_up_task(task); 699 } 700 rpc_set_running(task); 701 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 702 } 703 704 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 705 task->tk_status); 706 /* Release all resources associated with the task */ 707 rpc_release_task(task); 708 } 709 710 /* 711 * User-visible entry point to the scheduler. 712 * 713 * This may be called recursively if e.g. an async NFS task updates 714 * the attributes and finds that dirty pages must be flushed. 715 * NOTE: Upon exit of this function the task is guaranteed to be 716 * released. In particular note that tk_release() will have 717 * been called, so your task memory may have been freed. 718 */ 719 void rpc_execute(struct rpc_task *task) 720 { 721 rpc_set_active(task); 722 rpc_set_running(task); 723 __rpc_execute(task); 724 } 725 726 static void rpc_async_schedule(struct work_struct *work) 727 { 728 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 729 } 730 731 /** 732 * rpc_malloc - allocate an RPC buffer 733 * @task: RPC task that will use this buffer 734 * @size: requested byte size 735 * 736 * To prevent rpciod from hanging, this allocator never sleeps, 737 * returning NULL if the request cannot be serviced immediately. 738 * The caller can arrange to sleep in a way that is safe for rpciod. 739 * 740 * Most requests are 'small' (under 2KiB) and can be serviced from a 741 * mempool, ensuring that NFS reads and writes can always proceed, 742 * and that there is good locality of reference for these buffers. 743 * 744 * In order to avoid memory starvation triggering more writebacks of 745 * NFS requests, we avoid using GFP_KERNEL. 746 */ 747 void *rpc_malloc(struct rpc_task *task, size_t size) 748 { 749 struct rpc_buffer *buf; 750 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 751 752 size += sizeof(struct rpc_buffer); 753 if (size <= RPC_BUFFER_MAXSIZE) 754 buf = mempool_alloc(rpc_buffer_mempool, gfp); 755 else 756 buf = kmalloc(size, gfp); 757 758 if (!buf) 759 return NULL; 760 761 buf->len = size; 762 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 763 task->tk_pid, size, buf); 764 return &buf->data; 765 } 766 EXPORT_SYMBOL_GPL(rpc_malloc); 767 768 /** 769 * rpc_free - free buffer allocated via rpc_malloc 770 * @buffer: buffer to free 771 * 772 */ 773 void rpc_free(void *buffer) 774 { 775 size_t size; 776 struct rpc_buffer *buf; 777 778 if (!buffer) 779 return; 780 781 buf = container_of(buffer, struct rpc_buffer, data); 782 size = buf->len; 783 784 dprintk("RPC: freeing buffer of size %zu at %p\n", 785 size, buf); 786 787 if (size <= RPC_BUFFER_MAXSIZE) 788 mempool_free(buf, rpc_buffer_mempool); 789 else 790 kfree(buf); 791 } 792 EXPORT_SYMBOL_GPL(rpc_free); 793 794 /* 795 * Creation and deletion of RPC task structures 796 */ 797 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 798 { 799 memset(task, 0, sizeof(*task)); 800 atomic_set(&task->tk_count, 1); 801 task->tk_flags = task_setup_data->flags; 802 task->tk_ops = task_setup_data->callback_ops; 803 task->tk_calldata = task_setup_data->callback_data; 804 INIT_LIST_HEAD(&task->tk_task); 805 806 /* Initialize retry counters */ 807 task->tk_garb_retry = 2; 808 task->tk_cred_retry = 2; 809 810 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 811 task->tk_owner = current->tgid; 812 813 /* Initialize workqueue for async tasks */ 814 task->tk_workqueue = task_setup_data->workqueue; 815 816 task->tk_client = task_setup_data->rpc_client; 817 if (task->tk_client != NULL) { 818 kref_get(&task->tk_client->cl_kref); 819 if (task->tk_client->cl_softrtry) 820 task->tk_flags |= RPC_TASK_SOFT; 821 } 822 823 if (task->tk_ops->rpc_call_prepare != NULL) 824 task->tk_action = rpc_prepare_task; 825 826 if (task_setup_data->rpc_message != NULL) { 827 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc; 828 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp; 829 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp; 830 /* Bind the user cred */ 831 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags); 832 if (task->tk_action == NULL) 833 rpc_call_start(task); 834 } 835 836 /* starting timestamp */ 837 task->tk_start = jiffies; 838 839 dprintk("RPC: new task initialized, procpid %u\n", 840 task_pid_nr(current)); 841 } 842 843 static struct rpc_task * 844 rpc_alloc_task(void) 845 { 846 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 847 } 848 849 /* 850 * Create a new task for the specified client. 851 */ 852 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 853 { 854 struct rpc_task *task = setup_data->task; 855 unsigned short flags = 0; 856 857 if (task == NULL) { 858 task = rpc_alloc_task(); 859 if (task == NULL) 860 goto out; 861 flags = RPC_TASK_DYNAMIC; 862 } 863 864 rpc_init_task(task, setup_data); 865 866 task->tk_flags |= flags; 867 dprintk("RPC: allocated task %p\n", task); 868 out: 869 return task; 870 } 871 872 static void rpc_free_task(struct rpc_task *task) 873 { 874 const struct rpc_call_ops *tk_ops = task->tk_ops; 875 void *calldata = task->tk_calldata; 876 877 if (task->tk_flags & RPC_TASK_DYNAMIC) { 878 dprintk("RPC: %5u freeing task\n", task->tk_pid); 879 mempool_free(task, rpc_task_mempool); 880 } 881 rpc_release_calldata(tk_ops, calldata); 882 } 883 884 static void rpc_async_release(struct work_struct *work) 885 { 886 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 887 } 888 889 void rpc_put_task(struct rpc_task *task) 890 { 891 if (!atomic_dec_and_test(&task->tk_count)) 892 return; 893 /* Release resources */ 894 if (task->tk_rqstp) 895 xprt_release(task); 896 if (task->tk_msg.rpc_cred) 897 rpcauth_unbindcred(task); 898 if (task->tk_client) { 899 rpc_release_client(task->tk_client); 900 task->tk_client = NULL; 901 } 902 if (task->tk_workqueue != NULL) { 903 INIT_WORK(&task->u.tk_work, rpc_async_release); 904 queue_work(task->tk_workqueue, &task->u.tk_work); 905 } else 906 rpc_free_task(task); 907 } 908 EXPORT_SYMBOL_GPL(rpc_put_task); 909 910 static void rpc_release_task(struct rpc_task *task) 911 { 912 #ifdef RPC_DEBUG 913 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 914 #endif 915 dprintk("RPC: %5u release task\n", task->tk_pid); 916 917 if (!list_empty(&task->tk_task)) { 918 struct rpc_clnt *clnt = task->tk_client; 919 /* Remove from client task list */ 920 spin_lock(&clnt->cl_lock); 921 list_del(&task->tk_task); 922 spin_unlock(&clnt->cl_lock); 923 } 924 BUG_ON (RPC_IS_QUEUED(task)); 925 926 #ifdef RPC_DEBUG 927 task->tk_magic = 0; 928 #endif 929 /* Wake up anyone who is waiting for task completion */ 930 rpc_mark_complete_task(task); 931 932 rpc_put_task(task); 933 } 934 935 /* 936 * Kill all tasks for the given client. 937 * XXX: kill their descendants as well? 938 */ 939 void rpc_killall_tasks(struct rpc_clnt *clnt) 940 { 941 struct rpc_task *rovr; 942 943 944 if (list_empty(&clnt->cl_tasks)) 945 return; 946 dprintk("RPC: killing all tasks for client %p\n", clnt); 947 /* 948 * Spin lock all_tasks to prevent changes... 949 */ 950 spin_lock(&clnt->cl_lock); 951 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 952 if (! RPC_IS_ACTIVATED(rovr)) 953 continue; 954 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 955 rovr->tk_flags |= RPC_TASK_KILLED; 956 rpc_exit(rovr, -EIO); 957 rpc_wake_up_task(rovr); 958 } 959 } 960 spin_unlock(&clnt->cl_lock); 961 } 962 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 963 964 int rpciod_up(void) 965 { 966 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 967 } 968 969 void rpciod_down(void) 970 { 971 module_put(THIS_MODULE); 972 } 973 974 /* 975 * Start up the rpciod workqueue. 976 */ 977 static int rpciod_start(void) 978 { 979 struct workqueue_struct *wq; 980 981 /* 982 * Create the rpciod thread and wait for it to start. 983 */ 984 dprintk("RPC: creating workqueue rpciod\n"); 985 wq = create_workqueue("rpciod"); 986 rpciod_workqueue = wq; 987 return rpciod_workqueue != NULL; 988 } 989 990 static void rpciod_stop(void) 991 { 992 struct workqueue_struct *wq = NULL; 993 994 if (rpciod_workqueue == NULL) 995 return; 996 dprintk("RPC: destroying workqueue rpciod\n"); 997 998 wq = rpciod_workqueue; 999 rpciod_workqueue = NULL; 1000 destroy_workqueue(wq); 1001 } 1002 1003 void 1004 rpc_destroy_mempool(void) 1005 { 1006 rpciod_stop(); 1007 if (rpc_buffer_mempool) 1008 mempool_destroy(rpc_buffer_mempool); 1009 if (rpc_task_mempool) 1010 mempool_destroy(rpc_task_mempool); 1011 if (rpc_task_slabp) 1012 kmem_cache_destroy(rpc_task_slabp); 1013 if (rpc_buffer_slabp) 1014 kmem_cache_destroy(rpc_buffer_slabp); 1015 rpc_destroy_wait_queue(&delay_queue); 1016 } 1017 1018 int 1019 rpc_init_mempool(void) 1020 { 1021 /* 1022 * The following is not strictly a mempool initialisation, 1023 * but there is no harm in doing it here 1024 */ 1025 rpc_init_wait_queue(&delay_queue, "delayq"); 1026 if (!rpciod_start()) 1027 goto err_nomem; 1028 1029 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1030 sizeof(struct rpc_task), 1031 0, SLAB_HWCACHE_ALIGN, 1032 NULL); 1033 if (!rpc_task_slabp) 1034 goto err_nomem; 1035 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1036 RPC_BUFFER_MAXSIZE, 1037 0, SLAB_HWCACHE_ALIGN, 1038 NULL); 1039 if (!rpc_buffer_slabp) 1040 goto err_nomem; 1041 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1042 rpc_task_slabp); 1043 if (!rpc_task_mempool) 1044 goto err_nomem; 1045 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1046 rpc_buffer_slabp); 1047 if (!rpc_buffer_mempool) 1048 goto err_nomem; 1049 return 0; 1050 err_nomem: 1051 rpc_destroy_mempool(); 1052 return -ENOMEM; 1053 } 1054