1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/smp_lock.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #ifdef RPC_DEBUG 26 #define RPCDBG_FACILITY RPCDBG_SCHED 27 #define RPC_TASK_MAGIC_ID 0xf00baa 28 #endif 29 30 /* 31 * RPC slabs and memory pools 32 */ 33 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_TASK_POOLSIZE (8) 36 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_buffer_mempool __read_mostly; 40 41 static void rpc_async_schedule(struct work_struct *); 42 static void rpc_release_task(struct rpc_task *task); 43 static void __rpc_queue_timer_fn(unsigned long ptr); 44 45 /* 46 * RPC tasks sit here while waiting for conditions to improve. 47 */ 48 static struct rpc_wait_queue delay_queue; 49 50 /* 51 * rpciod-related stuff 52 */ 53 struct workqueue_struct *rpciod_workqueue; 54 55 /* 56 * Disable the timer for a given RPC task. Should be called with 57 * queue->lock and bh_disabled in order to avoid races within 58 * rpc_run_timer(). 59 */ 60 static void 61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 62 { 63 if (task->tk_timeout == 0) 64 return; 65 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 66 task->tk_timeout = 0; 67 list_del(&task->u.tk_wait.timer_list); 68 if (list_empty(&queue->timer_list.list)) 69 del_timer(&queue->timer_list.timer); 70 } 71 72 static void 73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 74 { 75 queue->timer_list.expires = expires; 76 mod_timer(&queue->timer_list.timer, expires); 77 } 78 79 /* 80 * Set up a timer for the current task. 81 */ 82 static void 83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 84 { 85 if (!task->tk_timeout) 86 return; 87 88 dprintk("RPC: %5u setting alarm for %lu ms\n", 89 task->tk_pid, task->tk_timeout * 1000 / HZ); 90 91 task->u.tk_wait.expires = jiffies + task->tk_timeout; 92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 93 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 95 } 96 97 /* 98 * Add new request to a priority queue. 99 */ 100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 101 { 102 struct list_head *q; 103 struct rpc_task *t; 104 105 INIT_LIST_HEAD(&task->u.tk_wait.links); 106 q = &queue->tasks[task->tk_priority]; 107 if (unlikely(task->tk_priority > queue->maxpriority)) 108 q = &queue->tasks[queue->maxpriority]; 109 list_for_each_entry(t, q, u.tk_wait.list) { 110 if (t->tk_owner == task->tk_owner) { 111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 112 return; 113 } 114 } 115 list_add_tail(&task->u.tk_wait.list, q); 116 } 117 118 /* 119 * Add new request to wait queue. 120 * 121 * Swapper tasks always get inserted at the head of the queue. 122 * This should avoid many nasty memory deadlocks and hopefully 123 * improve overall performance. 124 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 125 */ 126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 127 { 128 BUG_ON (RPC_IS_QUEUED(task)); 129 130 if (RPC_IS_PRIORITY(queue)) 131 __rpc_add_wait_queue_priority(queue, task); 132 else if (RPC_IS_SWAPPER(task)) 133 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 134 else 135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 136 task->tk_waitqueue = queue; 137 queue->qlen++; 138 rpc_set_queued(task); 139 140 dprintk("RPC: %5u added to queue %p \"%s\"\n", 141 task->tk_pid, queue, rpc_qname(queue)); 142 } 143 144 /* 145 * Remove request from a priority queue. 146 */ 147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 148 { 149 struct rpc_task *t; 150 151 if (!list_empty(&task->u.tk_wait.links)) { 152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 155 } 156 } 157 158 /* 159 * Remove request from queue. 160 * Note: must be called with spin lock held. 161 */ 162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 163 { 164 __rpc_disable_timer(queue, task); 165 if (RPC_IS_PRIORITY(queue)) 166 __rpc_remove_wait_queue_priority(task); 167 list_del(&task->u.tk_wait.list); 168 queue->qlen--; 169 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 170 task->tk_pid, queue, rpc_qname(queue)); 171 } 172 173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 174 { 175 queue->priority = priority; 176 queue->count = 1 << (priority * 2); 177 } 178 179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 180 { 181 queue->owner = pid; 182 queue->nr = RPC_BATCH_COUNT; 183 } 184 185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 186 { 187 rpc_set_waitqueue_priority(queue, queue->maxpriority); 188 rpc_set_waitqueue_owner(queue, 0); 189 } 190 191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 192 { 193 int i; 194 195 spin_lock_init(&queue->lock); 196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 197 INIT_LIST_HEAD(&queue->tasks[i]); 198 queue->maxpriority = nr_queues - 1; 199 rpc_reset_waitqueue_priority(queue); 200 queue->qlen = 0; 201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 202 INIT_LIST_HEAD(&queue->timer_list.list); 203 #ifdef RPC_DEBUG 204 queue->name = qname; 205 #endif 206 } 207 208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 209 { 210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 211 } 212 213 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 214 { 215 __rpc_init_priority_wait_queue(queue, qname, 1); 216 } 217 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 218 219 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 220 { 221 del_timer_sync(&queue->timer_list.timer); 222 } 223 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 224 225 static int rpc_wait_bit_killable(void *word) 226 { 227 if (fatal_signal_pending(current)) 228 return -ERESTARTSYS; 229 schedule(); 230 return 0; 231 } 232 233 #ifdef RPC_DEBUG 234 static void rpc_task_set_debuginfo(struct rpc_task *task) 235 { 236 static atomic_t rpc_pid; 237 238 task->tk_magic = RPC_TASK_MAGIC_ID; 239 task->tk_pid = atomic_inc_return(&rpc_pid); 240 } 241 #else 242 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 243 { 244 } 245 #endif 246 247 static void rpc_set_active(struct rpc_task *task) 248 { 249 struct rpc_clnt *clnt; 250 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 251 return; 252 rpc_task_set_debuginfo(task); 253 /* Add to global list of all tasks */ 254 clnt = task->tk_client; 255 if (clnt != NULL) { 256 spin_lock(&clnt->cl_lock); 257 list_add_tail(&task->tk_task, &clnt->cl_tasks); 258 spin_unlock(&clnt->cl_lock); 259 } 260 } 261 262 /* 263 * Mark an RPC call as having completed by clearing the 'active' bit 264 */ 265 static void rpc_mark_complete_task(struct rpc_task *task) 266 { 267 smp_mb__before_clear_bit(); 268 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 269 smp_mb__after_clear_bit(); 270 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 271 } 272 273 /* 274 * Allow callers to wait for completion of an RPC call 275 */ 276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 277 { 278 if (action == NULL) 279 action = rpc_wait_bit_killable; 280 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 281 action, TASK_KILLABLE); 282 } 283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 284 285 /* 286 * Make an RPC task runnable. 287 * 288 * Note: If the task is ASYNC, this must be called with 289 * the spinlock held to protect the wait queue operation. 290 */ 291 static void rpc_make_runnable(struct rpc_task *task) 292 { 293 rpc_clear_queued(task); 294 if (rpc_test_and_set_running(task)) 295 return; 296 if (RPC_IS_ASYNC(task)) { 297 int status; 298 299 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 300 status = queue_work(rpciod_workqueue, &task->u.tk_work); 301 if (status < 0) { 302 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 303 task->tk_status = status; 304 return; 305 } 306 } else 307 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 308 } 309 310 /* 311 * Prepare for sleeping on a wait queue. 312 * By always appending tasks to the list we ensure FIFO behavior. 313 * NB: An RPC task will only receive interrupt-driven events as long 314 * as it's on a wait queue. 315 */ 316 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 317 rpc_action action) 318 { 319 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 320 task->tk_pid, rpc_qname(q), jiffies); 321 322 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 323 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 324 return; 325 } 326 327 __rpc_add_wait_queue(q, task); 328 329 BUG_ON(task->tk_callback != NULL); 330 task->tk_callback = action; 331 __rpc_add_timer(q, task); 332 } 333 334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 335 rpc_action action) 336 { 337 /* Mark the task as being activated if so needed */ 338 rpc_set_active(task); 339 340 /* 341 * Protect the queue operations. 342 */ 343 spin_lock_bh(&q->lock); 344 __rpc_sleep_on(q, task, action); 345 spin_unlock_bh(&q->lock); 346 } 347 EXPORT_SYMBOL_GPL(rpc_sleep_on); 348 349 /** 350 * __rpc_do_wake_up_task - wake up a single rpc_task 351 * @queue: wait queue 352 * @task: task to be woken up 353 * 354 * Caller must hold queue->lock, and have cleared the task queued flag. 355 */ 356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 357 { 358 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 359 task->tk_pid, jiffies); 360 361 #ifdef RPC_DEBUG 362 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 363 #endif 364 /* Has the task been executed yet? If not, we cannot wake it up! */ 365 if (!RPC_IS_ACTIVATED(task)) { 366 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 367 return; 368 } 369 370 __rpc_remove_wait_queue(queue, task); 371 372 rpc_make_runnable(task); 373 374 dprintk("RPC: __rpc_wake_up_task done\n"); 375 } 376 377 /* 378 * Wake up a queued task while the queue lock is being held 379 */ 380 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 381 { 382 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 383 __rpc_do_wake_up_task(queue, task); 384 } 385 386 /* 387 * Wake up a task on a specific queue 388 */ 389 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 390 { 391 spin_lock_bh(&queue->lock); 392 rpc_wake_up_task_queue_locked(queue, task); 393 spin_unlock_bh(&queue->lock); 394 } 395 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 396 397 /* 398 * Wake up the specified task 399 */ 400 static void rpc_wake_up_task(struct rpc_task *task) 401 { 402 rpc_wake_up_queued_task(task->tk_waitqueue, task); 403 } 404 405 /* 406 * Wake up the next task on a priority queue. 407 */ 408 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 409 { 410 struct list_head *q; 411 struct rpc_task *task; 412 413 /* 414 * Service a batch of tasks from a single owner. 415 */ 416 q = &queue->tasks[queue->priority]; 417 if (!list_empty(q)) { 418 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 419 if (queue->owner == task->tk_owner) { 420 if (--queue->nr) 421 goto out; 422 list_move_tail(&task->u.tk_wait.list, q); 423 } 424 /* 425 * Check if we need to switch queues. 426 */ 427 if (--queue->count) 428 goto new_owner; 429 } 430 431 /* 432 * Service the next queue. 433 */ 434 do { 435 if (q == &queue->tasks[0]) 436 q = &queue->tasks[queue->maxpriority]; 437 else 438 q = q - 1; 439 if (!list_empty(q)) { 440 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 441 goto new_queue; 442 } 443 } while (q != &queue->tasks[queue->priority]); 444 445 rpc_reset_waitqueue_priority(queue); 446 return NULL; 447 448 new_queue: 449 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 450 new_owner: 451 rpc_set_waitqueue_owner(queue, task->tk_owner); 452 out: 453 rpc_wake_up_task_queue_locked(queue, task); 454 return task; 455 } 456 457 /* 458 * Wake up the next task on the wait queue. 459 */ 460 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 461 { 462 struct rpc_task *task = NULL; 463 464 dprintk("RPC: wake_up_next(%p \"%s\")\n", 465 queue, rpc_qname(queue)); 466 spin_lock_bh(&queue->lock); 467 if (RPC_IS_PRIORITY(queue)) 468 task = __rpc_wake_up_next_priority(queue); 469 else { 470 task_for_first(task, &queue->tasks[0]) 471 rpc_wake_up_task_queue_locked(queue, task); 472 } 473 spin_unlock_bh(&queue->lock); 474 475 return task; 476 } 477 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 478 479 /** 480 * rpc_wake_up - wake up all rpc_tasks 481 * @queue: rpc_wait_queue on which the tasks are sleeping 482 * 483 * Grabs queue->lock 484 */ 485 void rpc_wake_up(struct rpc_wait_queue *queue) 486 { 487 struct rpc_task *task, *next; 488 struct list_head *head; 489 490 spin_lock_bh(&queue->lock); 491 head = &queue->tasks[queue->maxpriority]; 492 for (;;) { 493 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 494 rpc_wake_up_task_queue_locked(queue, task); 495 if (head == &queue->tasks[0]) 496 break; 497 head--; 498 } 499 spin_unlock_bh(&queue->lock); 500 } 501 EXPORT_SYMBOL_GPL(rpc_wake_up); 502 503 /** 504 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 505 * @queue: rpc_wait_queue on which the tasks are sleeping 506 * @status: status value to set 507 * 508 * Grabs queue->lock 509 */ 510 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 511 { 512 struct rpc_task *task, *next; 513 struct list_head *head; 514 515 spin_lock_bh(&queue->lock); 516 head = &queue->tasks[queue->maxpriority]; 517 for (;;) { 518 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 519 task->tk_status = status; 520 rpc_wake_up_task_queue_locked(queue, task); 521 } 522 if (head == &queue->tasks[0]) 523 break; 524 head--; 525 } 526 spin_unlock_bh(&queue->lock); 527 } 528 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 529 530 static void __rpc_queue_timer_fn(unsigned long ptr) 531 { 532 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 533 struct rpc_task *task, *n; 534 unsigned long expires, now, timeo; 535 536 spin_lock(&queue->lock); 537 expires = now = jiffies; 538 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 539 timeo = task->u.tk_wait.expires; 540 if (time_after_eq(now, timeo)) { 541 dprintk("RPC: %5u timeout\n", task->tk_pid); 542 task->tk_status = -ETIMEDOUT; 543 rpc_wake_up_task_queue_locked(queue, task); 544 continue; 545 } 546 if (expires == now || time_after(expires, timeo)) 547 expires = timeo; 548 } 549 if (!list_empty(&queue->timer_list.list)) 550 rpc_set_queue_timer(queue, expires); 551 spin_unlock(&queue->lock); 552 } 553 554 static void __rpc_atrun(struct rpc_task *task) 555 { 556 task->tk_status = 0; 557 } 558 559 /* 560 * Run a task at a later time 561 */ 562 void rpc_delay(struct rpc_task *task, unsigned long delay) 563 { 564 task->tk_timeout = delay; 565 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 566 } 567 EXPORT_SYMBOL_GPL(rpc_delay); 568 569 /* 570 * Helper to call task->tk_ops->rpc_call_prepare 571 */ 572 static void rpc_prepare_task(struct rpc_task *task) 573 { 574 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 575 } 576 577 /* 578 * Helper that calls task->tk_ops->rpc_call_done if it exists 579 */ 580 void rpc_exit_task(struct rpc_task *task) 581 { 582 task->tk_action = NULL; 583 if (task->tk_ops->rpc_call_done != NULL) { 584 task->tk_ops->rpc_call_done(task, task->tk_calldata); 585 if (task->tk_action != NULL) { 586 WARN_ON(RPC_ASSASSINATED(task)); 587 /* Always release the RPC slot and buffer memory */ 588 xprt_release(task); 589 } 590 } 591 } 592 EXPORT_SYMBOL_GPL(rpc_exit_task); 593 594 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 595 { 596 if (ops->rpc_release != NULL) 597 ops->rpc_release(calldata); 598 } 599 600 /* 601 * This is the RPC `scheduler' (or rather, the finite state machine). 602 */ 603 static void __rpc_execute(struct rpc_task *task) 604 { 605 struct rpc_wait_queue *queue; 606 int task_is_async = RPC_IS_ASYNC(task); 607 int status = 0; 608 609 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 610 task->tk_pid, task->tk_flags); 611 612 BUG_ON(RPC_IS_QUEUED(task)); 613 614 for (;;) { 615 616 /* 617 * Execute any pending callback. 618 */ 619 if (task->tk_callback) { 620 void (*save_callback)(struct rpc_task *); 621 622 /* 623 * We set tk_callback to NULL before calling it, 624 * in case it sets the tk_callback field itself: 625 */ 626 save_callback = task->tk_callback; 627 task->tk_callback = NULL; 628 save_callback(task); 629 } 630 631 /* 632 * Perform the next FSM step. 633 * tk_action may be NULL when the task has been killed 634 * by someone else. 635 */ 636 if (!RPC_IS_QUEUED(task)) { 637 if (task->tk_action == NULL) 638 break; 639 task->tk_action(task); 640 } 641 642 /* 643 * Lockless check for whether task is sleeping or not. 644 */ 645 if (!RPC_IS_QUEUED(task)) 646 continue; 647 /* 648 * The queue->lock protects against races with 649 * rpc_make_runnable(). 650 * 651 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 652 * rpc_task, rpc_make_runnable() can assign it to a 653 * different workqueue. We therefore cannot assume that the 654 * rpc_task pointer may still be dereferenced. 655 */ 656 queue = task->tk_waitqueue; 657 spin_lock_bh(&queue->lock); 658 if (!RPC_IS_QUEUED(task)) { 659 spin_unlock_bh(&queue->lock); 660 continue; 661 } 662 rpc_clear_running(task); 663 spin_unlock_bh(&queue->lock); 664 if (task_is_async) 665 return; 666 667 /* sync task: sleep here */ 668 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 669 status = out_of_line_wait_on_bit(&task->tk_runstate, 670 RPC_TASK_QUEUED, rpc_wait_bit_killable, 671 TASK_KILLABLE); 672 if (status == -ERESTARTSYS) { 673 /* 674 * When a sync task receives a signal, it exits with 675 * -ERESTARTSYS. In order to catch any callbacks that 676 * clean up after sleeping on some queue, we don't 677 * break the loop here, but go around once more. 678 */ 679 dprintk("RPC: %5u got signal\n", task->tk_pid); 680 task->tk_flags |= RPC_TASK_KILLED; 681 rpc_exit(task, -ERESTARTSYS); 682 rpc_wake_up_task(task); 683 } 684 rpc_set_running(task); 685 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 686 } 687 688 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 689 task->tk_status); 690 /* Release all resources associated with the task */ 691 rpc_release_task(task); 692 } 693 694 /* 695 * User-visible entry point to the scheduler. 696 * 697 * This may be called recursively if e.g. an async NFS task updates 698 * the attributes and finds that dirty pages must be flushed. 699 * NOTE: Upon exit of this function the task is guaranteed to be 700 * released. In particular note that tk_release() will have 701 * been called, so your task memory may have been freed. 702 */ 703 void rpc_execute(struct rpc_task *task) 704 { 705 rpc_set_active(task); 706 rpc_set_running(task); 707 __rpc_execute(task); 708 } 709 710 static void rpc_async_schedule(struct work_struct *work) 711 { 712 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 713 } 714 715 struct rpc_buffer { 716 size_t len; 717 char data[]; 718 }; 719 720 /** 721 * rpc_malloc - allocate an RPC buffer 722 * @task: RPC task that will use this buffer 723 * @size: requested byte size 724 * 725 * To prevent rpciod from hanging, this allocator never sleeps, 726 * returning NULL if the request cannot be serviced immediately. 727 * The caller can arrange to sleep in a way that is safe for rpciod. 728 * 729 * Most requests are 'small' (under 2KiB) and can be serviced from a 730 * mempool, ensuring that NFS reads and writes can always proceed, 731 * and that there is good locality of reference for these buffers. 732 * 733 * In order to avoid memory starvation triggering more writebacks of 734 * NFS requests, we avoid using GFP_KERNEL. 735 */ 736 void *rpc_malloc(struct rpc_task *task, size_t size) 737 { 738 struct rpc_buffer *buf; 739 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 740 741 size += sizeof(struct rpc_buffer); 742 if (size <= RPC_BUFFER_MAXSIZE) 743 buf = mempool_alloc(rpc_buffer_mempool, gfp); 744 else 745 buf = kmalloc(size, gfp); 746 747 if (!buf) 748 return NULL; 749 750 buf->len = size; 751 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 752 task->tk_pid, size, buf); 753 return &buf->data; 754 } 755 EXPORT_SYMBOL_GPL(rpc_malloc); 756 757 /** 758 * rpc_free - free buffer allocated via rpc_malloc 759 * @buffer: buffer to free 760 * 761 */ 762 void rpc_free(void *buffer) 763 { 764 size_t size; 765 struct rpc_buffer *buf; 766 767 if (!buffer) 768 return; 769 770 buf = container_of(buffer, struct rpc_buffer, data); 771 size = buf->len; 772 773 dprintk("RPC: freeing buffer of size %zu at %p\n", 774 size, buf); 775 776 if (size <= RPC_BUFFER_MAXSIZE) 777 mempool_free(buf, rpc_buffer_mempool); 778 else 779 kfree(buf); 780 } 781 EXPORT_SYMBOL_GPL(rpc_free); 782 783 /* 784 * Creation and deletion of RPC task structures 785 */ 786 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 787 { 788 memset(task, 0, sizeof(*task)); 789 atomic_set(&task->tk_count, 1); 790 task->tk_flags = task_setup_data->flags; 791 task->tk_ops = task_setup_data->callback_ops; 792 task->tk_calldata = task_setup_data->callback_data; 793 INIT_LIST_HEAD(&task->tk_task); 794 795 /* Initialize retry counters */ 796 task->tk_garb_retry = 2; 797 task->tk_cred_retry = 2; 798 799 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 800 task->tk_owner = current->tgid; 801 802 /* Initialize workqueue for async tasks */ 803 task->tk_workqueue = task_setup_data->workqueue; 804 805 task->tk_client = task_setup_data->rpc_client; 806 if (task->tk_client != NULL) { 807 kref_get(&task->tk_client->cl_kref); 808 if (task->tk_client->cl_softrtry) 809 task->tk_flags |= RPC_TASK_SOFT; 810 } 811 812 if (task->tk_ops->rpc_call_prepare != NULL) 813 task->tk_action = rpc_prepare_task; 814 815 if (task_setup_data->rpc_message != NULL) { 816 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc; 817 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp; 818 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp; 819 /* Bind the user cred */ 820 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags); 821 if (task->tk_action == NULL) 822 rpc_call_start(task); 823 } 824 825 /* starting timestamp */ 826 task->tk_start = jiffies; 827 828 dprintk("RPC: new task initialized, procpid %u\n", 829 task_pid_nr(current)); 830 } 831 832 static struct rpc_task * 833 rpc_alloc_task(void) 834 { 835 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 836 } 837 838 /* 839 * Create a new task for the specified client. 840 */ 841 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 842 { 843 struct rpc_task *task = setup_data->task; 844 unsigned short flags = 0; 845 846 if (task == NULL) { 847 task = rpc_alloc_task(); 848 if (task == NULL) 849 goto out; 850 flags = RPC_TASK_DYNAMIC; 851 } 852 853 rpc_init_task(task, setup_data); 854 855 task->tk_flags |= flags; 856 dprintk("RPC: allocated task %p\n", task); 857 out: 858 return task; 859 } 860 861 static void rpc_free_task(struct rpc_task *task) 862 { 863 const struct rpc_call_ops *tk_ops = task->tk_ops; 864 void *calldata = task->tk_calldata; 865 866 if (task->tk_flags & RPC_TASK_DYNAMIC) { 867 dprintk("RPC: %5u freeing task\n", task->tk_pid); 868 mempool_free(task, rpc_task_mempool); 869 } 870 rpc_release_calldata(tk_ops, calldata); 871 } 872 873 static void rpc_async_release(struct work_struct *work) 874 { 875 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 876 } 877 878 void rpc_put_task(struct rpc_task *task) 879 { 880 if (!atomic_dec_and_test(&task->tk_count)) 881 return; 882 /* Release resources */ 883 if (task->tk_rqstp) 884 xprt_release(task); 885 if (task->tk_msg.rpc_cred) 886 rpcauth_unbindcred(task); 887 if (task->tk_client) { 888 rpc_release_client(task->tk_client); 889 task->tk_client = NULL; 890 } 891 if (task->tk_workqueue != NULL) { 892 INIT_WORK(&task->u.tk_work, rpc_async_release); 893 queue_work(task->tk_workqueue, &task->u.tk_work); 894 } else 895 rpc_free_task(task); 896 } 897 EXPORT_SYMBOL_GPL(rpc_put_task); 898 899 static void rpc_release_task(struct rpc_task *task) 900 { 901 #ifdef RPC_DEBUG 902 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 903 #endif 904 dprintk("RPC: %5u release task\n", task->tk_pid); 905 906 if (!list_empty(&task->tk_task)) { 907 struct rpc_clnt *clnt = task->tk_client; 908 /* Remove from client task list */ 909 spin_lock(&clnt->cl_lock); 910 list_del(&task->tk_task); 911 spin_unlock(&clnt->cl_lock); 912 } 913 BUG_ON (RPC_IS_QUEUED(task)); 914 915 #ifdef RPC_DEBUG 916 task->tk_magic = 0; 917 #endif 918 /* Wake up anyone who is waiting for task completion */ 919 rpc_mark_complete_task(task); 920 921 rpc_put_task(task); 922 } 923 924 /* 925 * Kill all tasks for the given client. 926 * XXX: kill their descendants as well? 927 */ 928 void rpc_killall_tasks(struct rpc_clnt *clnt) 929 { 930 struct rpc_task *rovr; 931 932 933 if (list_empty(&clnt->cl_tasks)) 934 return; 935 dprintk("RPC: killing all tasks for client %p\n", clnt); 936 /* 937 * Spin lock all_tasks to prevent changes... 938 */ 939 spin_lock(&clnt->cl_lock); 940 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 941 if (! RPC_IS_ACTIVATED(rovr)) 942 continue; 943 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 944 rovr->tk_flags |= RPC_TASK_KILLED; 945 rpc_exit(rovr, -EIO); 946 rpc_wake_up_task(rovr); 947 } 948 } 949 spin_unlock(&clnt->cl_lock); 950 } 951 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 952 953 int rpciod_up(void) 954 { 955 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 956 } 957 958 void rpciod_down(void) 959 { 960 module_put(THIS_MODULE); 961 } 962 963 /* 964 * Start up the rpciod workqueue. 965 */ 966 static int rpciod_start(void) 967 { 968 struct workqueue_struct *wq; 969 970 /* 971 * Create the rpciod thread and wait for it to start. 972 */ 973 dprintk("RPC: creating workqueue rpciod\n"); 974 wq = create_workqueue("rpciod"); 975 rpciod_workqueue = wq; 976 return rpciod_workqueue != NULL; 977 } 978 979 static void rpciod_stop(void) 980 { 981 struct workqueue_struct *wq = NULL; 982 983 if (rpciod_workqueue == NULL) 984 return; 985 dprintk("RPC: destroying workqueue rpciod\n"); 986 987 wq = rpciod_workqueue; 988 rpciod_workqueue = NULL; 989 destroy_workqueue(wq); 990 } 991 992 void 993 rpc_destroy_mempool(void) 994 { 995 rpciod_stop(); 996 if (rpc_buffer_mempool) 997 mempool_destroy(rpc_buffer_mempool); 998 if (rpc_task_mempool) 999 mempool_destroy(rpc_task_mempool); 1000 if (rpc_task_slabp) 1001 kmem_cache_destroy(rpc_task_slabp); 1002 if (rpc_buffer_slabp) 1003 kmem_cache_destroy(rpc_buffer_slabp); 1004 rpc_destroy_wait_queue(&delay_queue); 1005 } 1006 1007 int 1008 rpc_init_mempool(void) 1009 { 1010 /* 1011 * The following is not strictly a mempool initialisation, 1012 * but there is no harm in doing it here 1013 */ 1014 rpc_init_wait_queue(&delay_queue, "delayq"); 1015 if (!rpciod_start()) 1016 goto err_nomem; 1017 1018 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1019 sizeof(struct rpc_task), 1020 0, SLAB_HWCACHE_ALIGN, 1021 NULL); 1022 if (!rpc_task_slabp) 1023 goto err_nomem; 1024 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1025 RPC_BUFFER_MAXSIZE, 1026 0, SLAB_HWCACHE_ALIGN, 1027 NULL); 1028 if (!rpc_buffer_slabp) 1029 goto err_nomem; 1030 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1031 rpc_task_slabp); 1032 if (!rpc_task_mempool) 1033 goto err_nomem; 1034 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1035 rpc_buffer_slabp); 1036 if (!rpc_buffer_mempool) 1037 goto err_nomem; 1038 return 0; 1039 err_nomem: 1040 rpc_destroy_mempool(); 1041 return -ENOMEM; 1042 } 1043