xref: /openbmc/linux/net/sunrpc/sched.c (revision b627b4ed)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY		RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID	0xf00baa
28 #endif
29 
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE	(2048)
34 #define RPC_BUFFER_POOLSIZE	(8)
35 #define RPC_TASK_POOLSIZE	(8)
36 static struct kmem_cache	*rpc_task_slabp __read_mostly;
37 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
38 static mempool_t	*rpc_task_mempool __read_mostly;
39 static mempool_t	*rpc_buffer_mempool __read_mostly;
40 
41 static void			rpc_async_schedule(struct work_struct *);
42 static void			 rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44 
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49 
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54 
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63 	if (task->tk_timeout == 0)
64 		return;
65 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 	task->tk_timeout = 0;
67 	list_del(&task->u.tk_wait.timer_list);
68 	if (list_empty(&queue->timer_list.list))
69 		del_timer(&queue->timer_list.timer);
70 }
71 
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75 	queue->timer_list.expires = expires;
76 	mod_timer(&queue->timer_list.timer, expires);
77 }
78 
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85 	if (!task->tk_timeout)
86 		return;
87 
88 	dprintk("RPC: %5u setting alarm for %lu ms\n",
89 			task->tk_pid, task->tk_timeout * 1000 / HZ);
90 
91 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96 
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102 	struct list_head *q;
103 	struct rpc_task *t;
104 
105 	INIT_LIST_HEAD(&task->u.tk_wait.links);
106 	q = &queue->tasks[task->tk_priority];
107 	if (unlikely(task->tk_priority > queue->maxpriority))
108 		q = &queue->tasks[queue->maxpriority];
109 	list_for_each_entry(t, q, u.tk_wait.list) {
110 		if (t->tk_owner == task->tk_owner) {
111 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 			return;
113 		}
114 	}
115 	list_add_tail(&task->u.tk_wait.list, q);
116 }
117 
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128 	BUG_ON (RPC_IS_QUEUED(task));
129 
130 	if (RPC_IS_PRIORITY(queue))
131 		__rpc_add_wait_queue_priority(queue, task);
132 	else if (RPC_IS_SWAPPER(task))
133 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 	else
135 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 	task->tk_waitqueue = queue;
137 	queue->qlen++;
138 	rpc_set_queued(task);
139 
140 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 			task->tk_pid, queue, rpc_qname(queue));
142 }
143 
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149 	struct rpc_task *t;
150 
151 	if (!list_empty(&task->u.tk_wait.links)) {
152 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155 	}
156 }
157 
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164 	__rpc_disable_timer(queue, task);
165 	if (RPC_IS_PRIORITY(queue))
166 		__rpc_remove_wait_queue_priority(task);
167 	list_del(&task->u.tk_wait.list);
168 	queue->qlen--;
169 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 			task->tk_pid, queue, rpc_qname(queue));
171 }
172 
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175 	queue->priority = priority;
176 	queue->count = 1 << (priority * 2);
177 }
178 
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181 	queue->owner = pid;
182 	queue->nr = RPC_BATCH_COUNT;
183 }
184 
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 	rpc_set_waitqueue_owner(queue, 0);
189 }
190 
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193 	int i;
194 
195 	spin_lock_init(&queue->lock);
196 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 		INIT_LIST_HEAD(&queue->tasks[i]);
198 	queue->maxpriority = nr_queues - 1;
199 	rpc_reset_waitqueue_priority(queue);
200 	queue->qlen = 0;
201 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 	INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 	queue->name = qname;
205 #endif
206 }
207 
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 
213 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
214 {
215 	__rpc_init_priority_wait_queue(queue, qname, 1);
216 }
217 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
218 
219 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
220 {
221 	del_timer_sync(&queue->timer_list.timer);
222 }
223 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
224 
225 static int rpc_wait_bit_killable(void *word)
226 {
227 	if (fatal_signal_pending(current))
228 		return -ERESTARTSYS;
229 	schedule();
230 	return 0;
231 }
232 
233 #ifdef RPC_DEBUG
234 static void rpc_task_set_debuginfo(struct rpc_task *task)
235 {
236 	static atomic_t rpc_pid;
237 
238 	task->tk_magic = RPC_TASK_MAGIC_ID;
239 	task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246 
247 static void rpc_set_active(struct rpc_task *task)
248 {
249 	struct rpc_clnt *clnt;
250 	if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
251 		return;
252 	rpc_task_set_debuginfo(task);
253 	/* Add to global list of all tasks */
254 	clnt = task->tk_client;
255 	if (clnt != NULL) {
256 		spin_lock(&clnt->cl_lock);
257 		list_add_tail(&task->tk_task, &clnt->cl_tasks);
258 		spin_unlock(&clnt->cl_lock);
259 	}
260 }
261 
262 /*
263  * Mark an RPC call as having completed by clearing the 'active' bit
264  */
265 static void rpc_mark_complete_task(struct rpc_task *task)
266 {
267 	smp_mb__before_clear_bit();
268 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
269 	smp_mb__after_clear_bit();
270 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
271 }
272 
273 /*
274  * Allow callers to wait for completion of an RPC call
275  */
276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
277 {
278 	if (action == NULL)
279 		action = rpc_wait_bit_killable;
280 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
281 			action, TASK_KILLABLE);
282 }
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
284 
285 /*
286  * Make an RPC task runnable.
287  *
288  * Note: If the task is ASYNC, this must be called with
289  * the spinlock held to protect the wait queue operation.
290  */
291 static void rpc_make_runnable(struct rpc_task *task)
292 {
293 	rpc_clear_queued(task);
294 	if (rpc_test_and_set_running(task))
295 		return;
296 	if (RPC_IS_ASYNC(task)) {
297 		int status;
298 
299 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
300 		status = queue_work(rpciod_workqueue, &task->u.tk_work);
301 		if (status < 0) {
302 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
303 			task->tk_status = status;
304 			return;
305 		}
306 	} else
307 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
308 }
309 
310 /*
311  * Prepare for sleeping on a wait queue.
312  * By always appending tasks to the list we ensure FIFO behavior.
313  * NB: An RPC task will only receive interrupt-driven events as long
314  * as it's on a wait queue.
315  */
316 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
317 			rpc_action action)
318 {
319 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
320 			task->tk_pid, rpc_qname(q), jiffies);
321 
322 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
323 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
324 		return;
325 	}
326 
327 	__rpc_add_wait_queue(q, task);
328 
329 	BUG_ON(task->tk_callback != NULL);
330 	task->tk_callback = action;
331 	__rpc_add_timer(q, task);
332 }
333 
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 				rpc_action action)
336 {
337 	/* Mark the task as being activated if so needed */
338 	rpc_set_active(task);
339 
340 	/*
341 	 * Protect the queue operations.
342 	 */
343 	spin_lock_bh(&q->lock);
344 	__rpc_sleep_on(q, task, action);
345 	spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348 
349 /**
350  * __rpc_do_wake_up_task - wake up a single rpc_task
351  * @queue: wait queue
352  * @task: task to be woken up
353  *
354  * Caller must hold queue->lock, and have cleared the task queued flag.
355  */
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
357 {
358 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359 			task->tk_pid, jiffies);
360 
361 #ifdef RPC_DEBUG
362 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
363 #endif
364 	/* Has the task been executed yet? If not, we cannot wake it up! */
365 	if (!RPC_IS_ACTIVATED(task)) {
366 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
367 		return;
368 	}
369 
370 	__rpc_remove_wait_queue(queue, task);
371 
372 	rpc_make_runnable(task);
373 
374 	dprintk("RPC:       __rpc_wake_up_task done\n");
375 }
376 
377 /*
378  * Wake up a queued task while the queue lock is being held
379  */
380 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
381 {
382 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
383 		__rpc_do_wake_up_task(queue, task);
384 }
385 
386 /*
387  * Wake up a task on a specific queue
388  */
389 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
390 {
391 	spin_lock_bh(&queue->lock);
392 	rpc_wake_up_task_queue_locked(queue, task);
393 	spin_unlock_bh(&queue->lock);
394 }
395 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
396 
397 /*
398  * Wake up the specified task
399  */
400 static void rpc_wake_up_task(struct rpc_task *task)
401 {
402 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
403 }
404 
405 /*
406  * Wake up the next task on a priority queue.
407  */
408 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
409 {
410 	struct list_head *q;
411 	struct rpc_task *task;
412 
413 	/*
414 	 * Service a batch of tasks from a single owner.
415 	 */
416 	q = &queue->tasks[queue->priority];
417 	if (!list_empty(q)) {
418 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
419 		if (queue->owner == task->tk_owner) {
420 			if (--queue->nr)
421 				goto out;
422 			list_move_tail(&task->u.tk_wait.list, q);
423 		}
424 		/*
425 		 * Check if we need to switch queues.
426 		 */
427 		if (--queue->count)
428 			goto new_owner;
429 	}
430 
431 	/*
432 	 * Service the next queue.
433 	 */
434 	do {
435 		if (q == &queue->tasks[0])
436 			q = &queue->tasks[queue->maxpriority];
437 		else
438 			q = q - 1;
439 		if (!list_empty(q)) {
440 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
441 			goto new_queue;
442 		}
443 	} while (q != &queue->tasks[queue->priority]);
444 
445 	rpc_reset_waitqueue_priority(queue);
446 	return NULL;
447 
448 new_queue:
449 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
450 new_owner:
451 	rpc_set_waitqueue_owner(queue, task->tk_owner);
452 out:
453 	rpc_wake_up_task_queue_locked(queue, task);
454 	return task;
455 }
456 
457 /*
458  * Wake up the next task on the wait queue.
459  */
460 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
461 {
462 	struct rpc_task	*task = NULL;
463 
464 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
465 			queue, rpc_qname(queue));
466 	spin_lock_bh(&queue->lock);
467 	if (RPC_IS_PRIORITY(queue))
468 		task = __rpc_wake_up_next_priority(queue);
469 	else {
470 		task_for_first(task, &queue->tasks[0])
471 			rpc_wake_up_task_queue_locked(queue, task);
472 	}
473 	spin_unlock_bh(&queue->lock);
474 
475 	return task;
476 }
477 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
478 
479 /**
480  * rpc_wake_up - wake up all rpc_tasks
481  * @queue: rpc_wait_queue on which the tasks are sleeping
482  *
483  * Grabs queue->lock
484  */
485 void rpc_wake_up(struct rpc_wait_queue *queue)
486 {
487 	struct rpc_task *task, *next;
488 	struct list_head *head;
489 
490 	spin_lock_bh(&queue->lock);
491 	head = &queue->tasks[queue->maxpriority];
492 	for (;;) {
493 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
494 			rpc_wake_up_task_queue_locked(queue, task);
495 		if (head == &queue->tasks[0])
496 			break;
497 		head--;
498 	}
499 	spin_unlock_bh(&queue->lock);
500 }
501 EXPORT_SYMBOL_GPL(rpc_wake_up);
502 
503 /**
504  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
505  * @queue: rpc_wait_queue on which the tasks are sleeping
506  * @status: status value to set
507  *
508  * Grabs queue->lock
509  */
510 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
511 {
512 	struct rpc_task *task, *next;
513 	struct list_head *head;
514 
515 	spin_lock_bh(&queue->lock);
516 	head = &queue->tasks[queue->maxpriority];
517 	for (;;) {
518 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
519 			task->tk_status = status;
520 			rpc_wake_up_task_queue_locked(queue, task);
521 		}
522 		if (head == &queue->tasks[0])
523 			break;
524 		head--;
525 	}
526 	spin_unlock_bh(&queue->lock);
527 }
528 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
529 
530 static void __rpc_queue_timer_fn(unsigned long ptr)
531 {
532 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
533 	struct rpc_task *task, *n;
534 	unsigned long expires, now, timeo;
535 
536 	spin_lock(&queue->lock);
537 	expires = now = jiffies;
538 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
539 		timeo = task->u.tk_wait.expires;
540 		if (time_after_eq(now, timeo)) {
541 			dprintk("RPC: %5u timeout\n", task->tk_pid);
542 			task->tk_status = -ETIMEDOUT;
543 			rpc_wake_up_task_queue_locked(queue, task);
544 			continue;
545 		}
546 		if (expires == now || time_after(expires, timeo))
547 			expires = timeo;
548 	}
549 	if (!list_empty(&queue->timer_list.list))
550 		rpc_set_queue_timer(queue, expires);
551 	spin_unlock(&queue->lock);
552 }
553 
554 static void __rpc_atrun(struct rpc_task *task)
555 {
556 	task->tk_status = 0;
557 }
558 
559 /*
560  * Run a task at a later time
561  */
562 void rpc_delay(struct rpc_task *task, unsigned long delay)
563 {
564 	task->tk_timeout = delay;
565 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
566 }
567 EXPORT_SYMBOL_GPL(rpc_delay);
568 
569 /*
570  * Helper to call task->tk_ops->rpc_call_prepare
571  */
572 static void rpc_prepare_task(struct rpc_task *task)
573 {
574 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
575 }
576 
577 /*
578  * Helper that calls task->tk_ops->rpc_call_done if it exists
579  */
580 void rpc_exit_task(struct rpc_task *task)
581 {
582 	task->tk_action = NULL;
583 	if (task->tk_ops->rpc_call_done != NULL) {
584 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
585 		if (task->tk_action != NULL) {
586 			WARN_ON(RPC_ASSASSINATED(task));
587 			/* Always release the RPC slot and buffer memory */
588 			xprt_release(task);
589 		}
590 	}
591 }
592 EXPORT_SYMBOL_GPL(rpc_exit_task);
593 
594 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
595 {
596 	if (ops->rpc_release != NULL)
597 		ops->rpc_release(calldata);
598 }
599 
600 /*
601  * This is the RPC `scheduler' (or rather, the finite state machine).
602  */
603 static void __rpc_execute(struct rpc_task *task)
604 {
605 	struct rpc_wait_queue *queue;
606 	int task_is_async = RPC_IS_ASYNC(task);
607 	int status = 0;
608 
609 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
610 			task->tk_pid, task->tk_flags);
611 
612 	BUG_ON(RPC_IS_QUEUED(task));
613 
614 	for (;;) {
615 
616 		/*
617 		 * Execute any pending callback.
618 		 */
619 		if (task->tk_callback) {
620 			void (*save_callback)(struct rpc_task *);
621 
622 			/*
623 			 * We set tk_callback to NULL before calling it,
624 			 * in case it sets the tk_callback field itself:
625 			 */
626 			save_callback = task->tk_callback;
627 			task->tk_callback = NULL;
628 			save_callback(task);
629 		}
630 
631 		/*
632 		 * Perform the next FSM step.
633 		 * tk_action may be NULL when the task has been killed
634 		 * by someone else.
635 		 */
636 		if (!RPC_IS_QUEUED(task)) {
637 			if (task->tk_action == NULL)
638 				break;
639 			task->tk_action(task);
640 		}
641 
642 		/*
643 		 * Lockless check for whether task is sleeping or not.
644 		 */
645 		if (!RPC_IS_QUEUED(task))
646 			continue;
647 		/*
648 		 * The queue->lock protects against races with
649 		 * rpc_make_runnable().
650 		 *
651 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
652 		 * rpc_task, rpc_make_runnable() can assign it to a
653 		 * different workqueue. We therefore cannot assume that the
654 		 * rpc_task pointer may still be dereferenced.
655 		 */
656 		queue = task->tk_waitqueue;
657 		spin_lock_bh(&queue->lock);
658 		if (!RPC_IS_QUEUED(task)) {
659 			spin_unlock_bh(&queue->lock);
660 			continue;
661 		}
662 		rpc_clear_running(task);
663 		spin_unlock_bh(&queue->lock);
664 		if (task_is_async)
665 			return;
666 
667 		/* sync task: sleep here */
668 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
669 		status = out_of_line_wait_on_bit(&task->tk_runstate,
670 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
671 				TASK_KILLABLE);
672 		if (status == -ERESTARTSYS) {
673 			/*
674 			 * When a sync task receives a signal, it exits with
675 			 * -ERESTARTSYS. In order to catch any callbacks that
676 			 * clean up after sleeping on some queue, we don't
677 			 * break the loop here, but go around once more.
678 			 */
679 			dprintk("RPC: %5u got signal\n", task->tk_pid);
680 			task->tk_flags |= RPC_TASK_KILLED;
681 			rpc_exit(task, -ERESTARTSYS);
682 			rpc_wake_up_task(task);
683 		}
684 		rpc_set_running(task);
685 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
686 	}
687 
688 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
689 			task->tk_status);
690 	/* Release all resources associated with the task */
691 	rpc_release_task(task);
692 }
693 
694 /*
695  * User-visible entry point to the scheduler.
696  *
697  * This may be called recursively if e.g. an async NFS task updates
698  * the attributes and finds that dirty pages must be flushed.
699  * NOTE: Upon exit of this function the task is guaranteed to be
700  *	 released. In particular note that tk_release() will have
701  *	 been called, so your task memory may have been freed.
702  */
703 void rpc_execute(struct rpc_task *task)
704 {
705 	rpc_set_active(task);
706 	rpc_set_running(task);
707 	__rpc_execute(task);
708 }
709 
710 static void rpc_async_schedule(struct work_struct *work)
711 {
712 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
713 }
714 
715 struct rpc_buffer {
716 	size_t	len;
717 	char	data[];
718 };
719 
720 /**
721  * rpc_malloc - allocate an RPC buffer
722  * @task: RPC task that will use this buffer
723  * @size: requested byte size
724  *
725  * To prevent rpciod from hanging, this allocator never sleeps,
726  * returning NULL if the request cannot be serviced immediately.
727  * The caller can arrange to sleep in a way that is safe for rpciod.
728  *
729  * Most requests are 'small' (under 2KiB) and can be serviced from a
730  * mempool, ensuring that NFS reads and writes can always proceed,
731  * and that there is good locality of reference for these buffers.
732  *
733  * In order to avoid memory starvation triggering more writebacks of
734  * NFS requests, we avoid using GFP_KERNEL.
735  */
736 void *rpc_malloc(struct rpc_task *task, size_t size)
737 {
738 	struct rpc_buffer *buf;
739 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
740 
741 	size += sizeof(struct rpc_buffer);
742 	if (size <= RPC_BUFFER_MAXSIZE)
743 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
744 	else
745 		buf = kmalloc(size, gfp);
746 
747 	if (!buf)
748 		return NULL;
749 
750 	buf->len = size;
751 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
752 			task->tk_pid, size, buf);
753 	return &buf->data;
754 }
755 EXPORT_SYMBOL_GPL(rpc_malloc);
756 
757 /**
758  * rpc_free - free buffer allocated via rpc_malloc
759  * @buffer: buffer to free
760  *
761  */
762 void rpc_free(void *buffer)
763 {
764 	size_t size;
765 	struct rpc_buffer *buf;
766 
767 	if (!buffer)
768 		return;
769 
770 	buf = container_of(buffer, struct rpc_buffer, data);
771 	size = buf->len;
772 
773 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
774 			size, buf);
775 
776 	if (size <= RPC_BUFFER_MAXSIZE)
777 		mempool_free(buf, rpc_buffer_mempool);
778 	else
779 		kfree(buf);
780 }
781 EXPORT_SYMBOL_GPL(rpc_free);
782 
783 /*
784  * Creation and deletion of RPC task structures
785  */
786 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
787 {
788 	memset(task, 0, sizeof(*task));
789 	atomic_set(&task->tk_count, 1);
790 	task->tk_flags  = task_setup_data->flags;
791 	task->tk_ops = task_setup_data->callback_ops;
792 	task->tk_calldata = task_setup_data->callback_data;
793 	INIT_LIST_HEAD(&task->tk_task);
794 
795 	/* Initialize retry counters */
796 	task->tk_garb_retry = 2;
797 	task->tk_cred_retry = 2;
798 
799 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
800 	task->tk_owner = current->tgid;
801 
802 	/* Initialize workqueue for async tasks */
803 	task->tk_workqueue = task_setup_data->workqueue;
804 
805 	task->tk_client = task_setup_data->rpc_client;
806 	if (task->tk_client != NULL) {
807 		kref_get(&task->tk_client->cl_kref);
808 		if (task->tk_client->cl_softrtry)
809 			task->tk_flags |= RPC_TASK_SOFT;
810 	}
811 
812 	if (task->tk_ops->rpc_call_prepare != NULL)
813 		task->tk_action = rpc_prepare_task;
814 
815 	if (task_setup_data->rpc_message != NULL) {
816 		task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
817 		task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
818 		task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
819 		/* Bind the user cred */
820 		rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
821 		if (task->tk_action == NULL)
822 			rpc_call_start(task);
823 	}
824 
825 	/* starting timestamp */
826 	task->tk_start = jiffies;
827 
828 	dprintk("RPC:       new task initialized, procpid %u\n",
829 				task_pid_nr(current));
830 }
831 
832 static struct rpc_task *
833 rpc_alloc_task(void)
834 {
835 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
836 }
837 
838 /*
839  * Create a new task for the specified client.
840  */
841 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
842 {
843 	struct rpc_task	*task = setup_data->task;
844 	unsigned short flags = 0;
845 
846 	if (task == NULL) {
847 		task = rpc_alloc_task();
848 		if (task == NULL)
849 			goto out;
850 		flags = RPC_TASK_DYNAMIC;
851 	}
852 
853 	rpc_init_task(task, setup_data);
854 
855 	task->tk_flags |= flags;
856 	dprintk("RPC:       allocated task %p\n", task);
857 out:
858 	return task;
859 }
860 
861 static void rpc_free_task(struct rpc_task *task)
862 {
863 	const struct rpc_call_ops *tk_ops = task->tk_ops;
864 	void *calldata = task->tk_calldata;
865 
866 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
867 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
868 		mempool_free(task, rpc_task_mempool);
869 	}
870 	rpc_release_calldata(tk_ops, calldata);
871 }
872 
873 static void rpc_async_release(struct work_struct *work)
874 {
875 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
876 }
877 
878 void rpc_put_task(struct rpc_task *task)
879 {
880 	if (!atomic_dec_and_test(&task->tk_count))
881 		return;
882 	/* Release resources */
883 	if (task->tk_rqstp)
884 		xprt_release(task);
885 	if (task->tk_msg.rpc_cred)
886 		rpcauth_unbindcred(task);
887 	if (task->tk_client) {
888 		rpc_release_client(task->tk_client);
889 		task->tk_client = NULL;
890 	}
891 	if (task->tk_workqueue != NULL) {
892 		INIT_WORK(&task->u.tk_work, rpc_async_release);
893 		queue_work(task->tk_workqueue, &task->u.tk_work);
894 	} else
895 		rpc_free_task(task);
896 }
897 EXPORT_SYMBOL_GPL(rpc_put_task);
898 
899 static void rpc_release_task(struct rpc_task *task)
900 {
901 #ifdef RPC_DEBUG
902 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
903 #endif
904 	dprintk("RPC: %5u release task\n", task->tk_pid);
905 
906 	if (!list_empty(&task->tk_task)) {
907 		struct rpc_clnt *clnt = task->tk_client;
908 		/* Remove from client task list */
909 		spin_lock(&clnt->cl_lock);
910 		list_del(&task->tk_task);
911 		spin_unlock(&clnt->cl_lock);
912 	}
913 	BUG_ON (RPC_IS_QUEUED(task));
914 
915 #ifdef RPC_DEBUG
916 	task->tk_magic = 0;
917 #endif
918 	/* Wake up anyone who is waiting for task completion */
919 	rpc_mark_complete_task(task);
920 
921 	rpc_put_task(task);
922 }
923 
924 /*
925  * Kill all tasks for the given client.
926  * XXX: kill their descendants as well?
927  */
928 void rpc_killall_tasks(struct rpc_clnt *clnt)
929 {
930 	struct rpc_task	*rovr;
931 
932 
933 	if (list_empty(&clnt->cl_tasks))
934 		return;
935 	dprintk("RPC:       killing all tasks for client %p\n", clnt);
936 	/*
937 	 * Spin lock all_tasks to prevent changes...
938 	 */
939 	spin_lock(&clnt->cl_lock);
940 	list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
941 		if (! RPC_IS_ACTIVATED(rovr))
942 			continue;
943 		if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
944 			rovr->tk_flags |= RPC_TASK_KILLED;
945 			rpc_exit(rovr, -EIO);
946 			rpc_wake_up_task(rovr);
947 		}
948 	}
949 	spin_unlock(&clnt->cl_lock);
950 }
951 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
952 
953 int rpciod_up(void)
954 {
955 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
956 }
957 
958 void rpciod_down(void)
959 {
960 	module_put(THIS_MODULE);
961 }
962 
963 /*
964  * Start up the rpciod workqueue.
965  */
966 static int rpciod_start(void)
967 {
968 	struct workqueue_struct *wq;
969 
970 	/*
971 	 * Create the rpciod thread and wait for it to start.
972 	 */
973 	dprintk("RPC:       creating workqueue rpciod\n");
974 	wq = create_workqueue("rpciod");
975 	rpciod_workqueue = wq;
976 	return rpciod_workqueue != NULL;
977 }
978 
979 static void rpciod_stop(void)
980 {
981 	struct workqueue_struct *wq = NULL;
982 
983 	if (rpciod_workqueue == NULL)
984 		return;
985 	dprintk("RPC:       destroying workqueue rpciod\n");
986 
987 	wq = rpciod_workqueue;
988 	rpciod_workqueue = NULL;
989 	destroy_workqueue(wq);
990 }
991 
992 void
993 rpc_destroy_mempool(void)
994 {
995 	rpciod_stop();
996 	if (rpc_buffer_mempool)
997 		mempool_destroy(rpc_buffer_mempool);
998 	if (rpc_task_mempool)
999 		mempool_destroy(rpc_task_mempool);
1000 	if (rpc_task_slabp)
1001 		kmem_cache_destroy(rpc_task_slabp);
1002 	if (rpc_buffer_slabp)
1003 		kmem_cache_destroy(rpc_buffer_slabp);
1004 	rpc_destroy_wait_queue(&delay_queue);
1005 }
1006 
1007 int
1008 rpc_init_mempool(void)
1009 {
1010 	/*
1011 	 * The following is not strictly a mempool initialisation,
1012 	 * but there is no harm in doing it here
1013 	 */
1014 	rpc_init_wait_queue(&delay_queue, "delayq");
1015 	if (!rpciod_start())
1016 		goto err_nomem;
1017 
1018 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1019 					     sizeof(struct rpc_task),
1020 					     0, SLAB_HWCACHE_ALIGN,
1021 					     NULL);
1022 	if (!rpc_task_slabp)
1023 		goto err_nomem;
1024 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1025 					     RPC_BUFFER_MAXSIZE,
1026 					     0, SLAB_HWCACHE_ALIGN,
1027 					     NULL);
1028 	if (!rpc_buffer_slabp)
1029 		goto err_nomem;
1030 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1031 						    rpc_task_slabp);
1032 	if (!rpc_task_mempool)
1033 		goto err_nomem;
1034 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1035 						      rpc_buffer_slabp);
1036 	if (!rpc_buffer_mempool)
1037 		goto err_nomem;
1038 	return 0;
1039 err_nomem:
1040 	rpc_destroy_mempool();
1041 	return -ENOMEM;
1042 }
1043