1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #include "sunrpc.h" 26 27 #ifdef RPC_DEBUG 28 #define RPCDBG_FACILITY RPCDBG_SCHED 29 #endif 30 31 /* 32 * RPC slabs and memory pools 33 */ 34 #define RPC_BUFFER_MAXSIZE (2048) 35 #define RPC_BUFFER_POOLSIZE (8) 36 #define RPC_TASK_POOLSIZE (8) 37 static struct kmem_cache *rpc_task_slabp __read_mostly; 38 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 39 static mempool_t *rpc_task_mempool __read_mostly; 40 static mempool_t *rpc_buffer_mempool __read_mostly; 41 42 static void rpc_async_schedule(struct work_struct *); 43 static void rpc_release_task(struct rpc_task *task); 44 static void __rpc_queue_timer_fn(unsigned long ptr); 45 46 /* 47 * RPC tasks sit here while waiting for conditions to improve. 48 */ 49 static struct rpc_wait_queue delay_queue; 50 51 /* 52 * rpciod-related stuff 53 */ 54 struct workqueue_struct *rpciod_workqueue; 55 56 /* 57 * Disable the timer for a given RPC task. Should be called with 58 * queue->lock and bh_disabled in order to avoid races within 59 * rpc_run_timer(). 60 */ 61 static void 62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 63 { 64 if (task->tk_timeout == 0) 65 return; 66 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 67 task->tk_timeout = 0; 68 list_del(&task->u.tk_wait.timer_list); 69 if (list_empty(&queue->timer_list.list)) 70 del_timer(&queue->timer_list.timer); 71 } 72 73 static void 74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 75 { 76 queue->timer_list.expires = expires; 77 mod_timer(&queue->timer_list.timer, expires); 78 } 79 80 /* 81 * Set up a timer for the current task. 82 */ 83 static void 84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 85 { 86 if (!task->tk_timeout) 87 return; 88 89 dprintk("RPC: %5u setting alarm for %lu ms\n", 90 task->tk_pid, task->tk_timeout * 1000 / HZ); 91 92 task->u.tk_wait.expires = jiffies + task->tk_timeout; 93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 94 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 96 } 97 98 /* 99 * Add new request to a priority queue. 100 */ 101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 102 struct rpc_task *task, 103 unsigned char queue_priority) 104 { 105 struct list_head *q; 106 struct rpc_task *t; 107 108 INIT_LIST_HEAD(&task->u.tk_wait.links); 109 q = &queue->tasks[queue_priority]; 110 if (unlikely(queue_priority > queue->maxpriority)) 111 q = &queue->tasks[queue->maxpriority]; 112 list_for_each_entry(t, q, u.tk_wait.list) { 113 if (t->tk_owner == task->tk_owner) { 114 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 115 return; 116 } 117 } 118 list_add_tail(&task->u.tk_wait.list, q); 119 } 120 121 /* 122 * Add new request to wait queue. 123 * 124 * Swapper tasks always get inserted at the head of the queue. 125 * This should avoid many nasty memory deadlocks and hopefully 126 * improve overall performance. 127 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 128 */ 129 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 130 struct rpc_task *task, 131 unsigned char queue_priority) 132 { 133 BUG_ON (RPC_IS_QUEUED(task)); 134 135 if (RPC_IS_PRIORITY(queue)) 136 __rpc_add_wait_queue_priority(queue, task, queue_priority); 137 else if (RPC_IS_SWAPPER(task)) 138 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 139 else 140 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 141 task->tk_waitqueue = queue; 142 queue->qlen++; 143 rpc_set_queued(task); 144 145 dprintk("RPC: %5u added to queue %p \"%s\"\n", 146 task->tk_pid, queue, rpc_qname(queue)); 147 } 148 149 /* 150 * Remove request from a priority queue. 151 */ 152 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 153 { 154 struct rpc_task *t; 155 156 if (!list_empty(&task->u.tk_wait.links)) { 157 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 158 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 159 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 160 } 161 } 162 163 /* 164 * Remove request from queue. 165 * Note: must be called with spin lock held. 166 */ 167 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 168 { 169 __rpc_disable_timer(queue, task); 170 if (RPC_IS_PRIORITY(queue)) 171 __rpc_remove_wait_queue_priority(task); 172 list_del(&task->u.tk_wait.list); 173 queue->qlen--; 174 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 175 task->tk_pid, queue, rpc_qname(queue)); 176 } 177 178 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 179 { 180 queue->priority = priority; 181 queue->count = 1 << (priority * 2); 182 } 183 184 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 185 { 186 queue->owner = pid; 187 queue->nr = RPC_BATCH_COUNT; 188 } 189 190 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 191 { 192 rpc_set_waitqueue_priority(queue, queue->maxpriority); 193 rpc_set_waitqueue_owner(queue, 0); 194 } 195 196 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 197 { 198 int i; 199 200 spin_lock_init(&queue->lock); 201 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 202 INIT_LIST_HEAD(&queue->tasks[i]); 203 queue->maxpriority = nr_queues - 1; 204 rpc_reset_waitqueue_priority(queue); 205 queue->qlen = 0; 206 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 207 INIT_LIST_HEAD(&queue->timer_list.list); 208 #ifdef RPC_DEBUG 209 queue->name = qname; 210 #endif 211 } 212 213 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 214 { 215 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 216 } 217 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 218 219 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 220 { 221 __rpc_init_priority_wait_queue(queue, qname, 1); 222 } 223 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 224 225 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 226 { 227 del_timer_sync(&queue->timer_list.timer); 228 } 229 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 230 231 static int rpc_wait_bit_killable(void *word) 232 { 233 if (fatal_signal_pending(current)) 234 return -ERESTARTSYS; 235 freezable_schedule(); 236 return 0; 237 } 238 239 #ifdef RPC_DEBUG 240 static void rpc_task_set_debuginfo(struct rpc_task *task) 241 { 242 static atomic_t rpc_pid; 243 244 task->tk_pid = atomic_inc_return(&rpc_pid); 245 } 246 #else 247 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 248 { 249 } 250 #endif 251 252 static void rpc_set_active(struct rpc_task *task) 253 { 254 rpc_task_set_debuginfo(task); 255 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 256 } 257 258 /* 259 * Mark an RPC call as having completed by clearing the 'active' bit 260 * and then waking up all tasks that were sleeping. 261 */ 262 static int rpc_complete_task(struct rpc_task *task) 263 { 264 void *m = &task->tk_runstate; 265 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 266 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 267 unsigned long flags; 268 int ret; 269 270 spin_lock_irqsave(&wq->lock, flags); 271 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 272 ret = atomic_dec_and_test(&task->tk_count); 273 if (waitqueue_active(wq)) 274 __wake_up_locked_key(wq, TASK_NORMAL, &k); 275 spin_unlock_irqrestore(&wq->lock, flags); 276 return ret; 277 } 278 279 /* 280 * Allow callers to wait for completion of an RPC call 281 * 282 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 283 * to enforce taking of the wq->lock and hence avoid races with 284 * rpc_complete_task(). 285 */ 286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 287 { 288 if (action == NULL) 289 action = rpc_wait_bit_killable; 290 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 291 action, TASK_KILLABLE); 292 } 293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 294 295 /* 296 * Make an RPC task runnable. 297 * 298 * Note: If the task is ASYNC, this must be called with 299 * the spinlock held to protect the wait queue operation. 300 */ 301 static void rpc_make_runnable(struct rpc_task *task) 302 { 303 rpc_clear_queued(task); 304 if (rpc_test_and_set_running(task)) 305 return; 306 if (RPC_IS_ASYNC(task)) { 307 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 308 queue_work(rpciod_workqueue, &task->u.tk_work); 309 } else 310 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 311 } 312 313 /* 314 * Prepare for sleeping on a wait queue. 315 * By always appending tasks to the list we ensure FIFO behavior. 316 * NB: An RPC task will only receive interrupt-driven events as long 317 * as it's on a wait queue. 318 */ 319 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 320 struct rpc_task *task, 321 rpc_action action, 322 unsigned char queue_priority) 323 { 324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 325 task->tk_pid, rpc_qname(q), jiffies); 326 327 __rpc_add_wait_queue(q, task, queue_priority); 328 329 BUG_ON(task->tk_callback != NULL); 330 task->tk_callback = action; 331 __rpc_add_timer(q, task); 332 } 333 334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 335 rpc_action action) 336 { 337 /* We shouldn't ever put an inactive task to sleep */ 338 BUG_ON(!RPC_IS_ACTIVATED(task)); 339 340 /* 341 * Protect the queue operations. 342 */ 343 spin_lock_bh(&q->lock); 344 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 345 spin_unlock_bh(&q->lock); 346 } 347 EXPORT_SYMBOL_GPL(rpc_sleep_on); 348 349 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 350 rpc_action action, int priority) 351 { 352 /* We shouldn't ever put an inactive task to sleep */ 353 BUG_ON(!RPC_IS_ACTIVATED(task)); 354 355 /* 356 * Protect the queue operations. 357 */ 358 spin_lock_bh(&q->lock); 359 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 360 spin_unlock_bh(&q->lock); 361 } 362 363 /** 364 * __rpc_do_wake_up_task - wake up a single rpc_task 365 * @queue: wait queue 366 * @task: task to be woken up 367 * 368 * Caller must hold queue->lock, and have cleared the task queued flag. 369 */ 370 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 371 { 372 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 373 task->tk_pid, jiffies); 374 375 /* Has the task been executed yet? If not, we cannot wake it up! */ 376 if (!RPC_IS_ACTIVATED(task)) { 377 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 378 return; 379 } 380 381 __rpc_remove_wait_queue(queue, task); 382 383 rpc_make_runnable(task); 384 385 dprintk("RPC: __rpc_wake_up_task done\n"); 386 } 387 388 /* 389 * Wake up a queued task while the queue lock is being held 390 */ 391 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 392 { 393 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 394 __rpc_do_wake_up_task(queue, task); 395 } 396 397 /* 398 * Tests whether rpc queue is empty 399 */ 400 int rpc_queue_empty(struct rpc_wait_queue *queue) 401 { 402 int res; 403 404 spin_lock_bh(&queue->lock); 405 res = queue->qlen; 406 spin_unlock_bh(&queue->lock); 407 return res == 0; 408 } 409 EXPORT_SYMBOL_GPL(rpc_queue_empty); 410 411 /* 412 * Wake up a task on a specific queue 413 */ 414 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 415 { 416 spin_lock_bh(&queue->lock); 417 rpc_wake_up_task_queue_locked(queue, task); 418 spin_unlock_bh(&queue->lock); 419 } 420 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 421 422 /* 423 * Wake up the next task on a priority queue. 424 */ 425 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 426 { 427 struct list_head *q; 428 struct rpc_task *task; 429 430 /* 431 * Service a batch of tasks from a single owner. 432 */ 433 q = &queue->tasks[queue->priority]; 434 if (!list_empty(q)) { 435 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 436 if (queue->owner == task->tk_owner) { 437 if (--queue->nr) 438 goto out; 439 list_move_tail(&task->u.tk_wait.list, q); 440 } 441 /* 442 * Check if we need to switch queues. 443 */ 444 if (--queue->count) 445 goto new_owner; 446 } 447 448 /* 449 * Service the next queue. 450 */ 451 do { 452 if (q == &queue->tasks[0]) 453 q = &queue->tasks[queue->maxpriority]; 454 else 455 q = q - 1; 456 if (!list_empty(q)) { 457 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 458 goto new_queue; 459 } 460 } while (q != &queue->tasks[queue->priority]); 461 462 rpc_reset_waitqueue_priority(queue); 463 return NULL; 464 465 new_queue: 466 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 467 new_owner: 468 rpc_set_waitqueue_owner(queue, task->tk_owner); 469 out: 470 rpc_wake_up_task_queue_locked(queue, task); 471 return task; 472 } 473 474 /* 475 * Wake up the next task on the wait queue. 476 */ 477 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 478 { 479 struct rpc_task *task = NULL; 480 481 dprintk("RPC: wake_up_next(%p \"%s\")\n", 482 queue, rpc_qname(queue)); 483 spin_lock_bh(&queue->lock); 484 if (RPC_IS_PRIORITY(queue)) 485 task = __rpc_wake_up_next_priority(queue); 486 else { 487 task_for_first(task, &queue->tasks[0]) 488 rpc_wake_up_task_queue_locked(queue, task); 489 } 490 spin_unlock_bh(&queue->lock); 491 492 return task; 493 } 494 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 495 496 /** 497 * rpc_wake_up - wake up all rpc_tasks 498 * @queue: rpc_wait_queue on which the tasks are sleeping 499 * 500 * Grabs queue->lock 501 */ 502 void rpc_wake_up(struct rpc_wait_queue *queue) 503 { 504 struct rpc_task *task, *next; 505 struct list_head *head; 506 507 spin_lock_bh(&queue->lock); 508 head = &queue->tasks[queue->maxpriority]; 509 for (;;) { 510 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 511 rpc_wake_up_task_queue_locked(queue, task); 512 if (head == &queue->tasks[0]) 513 break; 514 head--; 515 } 516 spin_unlock_bh(&queue->lock); 517 } 518 EXPORT_SYMBOL_GPL(rpc_wake_up); 519 520 /** 521 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 522 * @queue: rpc_wait_queue on which the tasks are sleeping 523 * @status: status value to set 524 * 525 * Grabs queue->lock 526 */ 527 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 528 { 529 struct rpc_task *task, *next; 530 struct list_head *head; 531 532 spin_lock_bh(&queue->lock); 533 head = &queue->tasks[queue->maxpriority]; 534 for (;;) { 535 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 536 task->tk_status = status; 537 rpc_wake_up_task_queue_locked(queue, task); 538 } 539 if (head == &queue->tasks[0]) 540 break; 541 head--; 542 } 543 spin_unlock_bh(&queue->lock); 544 } 545 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 546 547 static void __rpc_queue_timer_fn(unsigned long ptr) 548 { 549 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 550 struct rpc_task *task, *n; 551 unsigned long expires, now, timeo; 552 553 spin_lock(&queue->lock); 554 expires = now = jiffies; 555 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 556 timeo = task->u.tk_wait.expires; 557 if (time_after_eq(now, timeo)) { 558 dprintk("RPC: %5u timeout\n", task->tk_pid); 559 task->tk_status = -ETIMEDOUT; 560 rpc_wake_up_task_queue_locked(queue, task); 561 continue; 562 } 563 if (expires == now || time_after(expires, timeo)) 564 expires = timeo; 565 } 566 if (!list_empty(&queue->timer_list.list)) 567 rpc_set_queue_timer(queue, expires); 568 spin_unlock(&queue->lock); 569 } 570 571 static void __rpc_atrun(struct rpc_task *task) 572 { 573 task->tk_status = 0; 574 } 575 576 /* 577 * Run a task at a later time 578 */ 579 void rpc_delay(struct rpc_task *task, unsigned long delay) 580 { 581 task->tk_timeout = delay; 582 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 583 } 584 EXPORT_SYMBOL_GPL(rpc_delay); 585 586 /* 587 * Helper to call task->tk_ops->rpc_call_prepare 588 */ 589 void rpc_prepare_task(struct rpc_task *task) 590 { 591 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 592 } 593 594 static void 595 rpc_init_task_statistics(struct rpc_task *task) 596 { 597 /* Initialize retry counters */ 598 task->tk_garb_retry = 2; 599 task->tk_cred_retry = 2; 600 task->tk_rebind_retry = 2; 601 602 /* starting timestamp */ 603 task->tk_start = ktime_get(); 604 } 605 606 static void 607 rpc_reset_task_statistics(struct rpc_task *task) 608 { 609 task->tk_timeouts = 0; 610 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); 611 612 rpc_init_task_statistics(task); 613 } 614 615 /* 616 * Helper that calls task->tk_ops->rpc_call_done if it exists 617 */ 618 void rpc_exit_task(struct rpc_task *task) 619 { 620 task->tk_action = NULL; 621 if (task->tk_ops->rpc_call_done != NULL) { 622 task->tk_ops->rpc_call_done(task, task->tk_calldata); 623 if (task->tk_action != NULL) { 624 WARN_ON(RPC_ASSASSINATED(task)); 625 /* Always release the RPC slot and buffer memory */ 626 xprt_release(task); 627 rpc_reset_task_statistics(task); 628 } 629 } 630 } 631 632 void rpc_exit(struct rpc_task *task, int status) 633 { 634 task->tk_status = status; 635 task->tk_action = rpc_exit_task; 636 if (RPC_IS_QUEUED(task)) 637 rpc_wake_up_queued_task(task->tk_waitqueue, task); 638 } 639 EXPORT_SYMBOL_GPL(rpc_exit); 640 641 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 642 { 643 if (ops->rpc_release != NULL) 644 ops->rpc_release(calldata); 645 } 646 647 /* 648 * This is the RPC `scheduler' (or rather, the finite state machine). 649 */ 650 static void __rpc_execute(struct rpc_task *task) 651 { 652 struct rpc_wait_queue *queue; 653 int task_is_async = RPC_IS_ASYNC(task); 654 int status = 0; 655 656 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 657 task->tk_pid, task->tk_flags); 658 659 BUG_ON(RPC_IS_QUEUED(task)); 660 661 for (;;) { 662 void (*do_action)(struct rpc_task *); 663 664 /* 665 * Execute any pending callback first. 666 */ 667 do_action = task->tk_callback; 668 task->tk_callback = NULL; 669 if (do_action == NULL) { 670 /* 671 * Perform the next FSM step. 672 * tk_action may be NULL if the task has been killed. 673 * In particular, note that rpc_killall_tasks may 674 * do this at any time, so beware when dereferencing. 675 */ 676 do_action = task->tk_action; 677 if (do_action == NULL) 678 break; 679 } 680 do_action(task); 681 682 /* 683 * Lockless check for whether task is sleeping or not. 684 */ 685 if (!RPC_IS_QUEUED(task)) 686 continue; 687 /* 688 * The queue->lock protects against races with 689 * rpc_make_runnable(). 690 * 691 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 692 * rpc_task, rpc_make_runnable() can assign it to a 693 * different workqueue. We therefore cannot assume that the 694 * rpc_task pointer may still be dereferenced. 695 */ 696 queue = task->tk_waitqueue; 697 spin_lock_bh(&queue->lock); 698 if (!RPC_IS_QUEUED(task)) { 699 spin_unlock_bh(&queue->lock); 700 continue; 701 } 702 rpc_clear_running(task); 703 spin_unlock_bh(&queue->lock); 704 if (task_is_async) 705 return; 706 707 /* sync task: sleep here */ 708 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 709 status = out_of_line_wait_on_bit(&task->tk_runstate, 710 RPC_TASK_QUEUED, rpc_wait_bit_killable, 711 TASK_KILLABLE); 712 if (status == -ERESTARTSYS) { 713 /* 714 * When a sync task receives a signal, it exits with 715 * -ERESTARTSYS. In order to catch any callbacks that 716 * clean up after sleeping on some queue, we don't 717 * break the loop here, but go around once more. 718 */ 719 dprintk("RPC: %5u got signal\n", task->tk_pid); 720 task->tk_flags |= RPC_TASK_KILLED; 721 rpc_exit(task, -ERESTARTSYS); 722 } 723 rpc_set_running(task); 724 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 725 } 726 727 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 728 task->tk_status); 729 /* Release all resources associated with the task */ 730 rpc_release_task(task); 731 } 732 733 /* 734 * User-visible entry point to the scheduler. 735 * 736 * This may be called recursively if e.g. an async NFS task updates 737 * the attributes and finds that dirty pages must be flushed. 738 * NOTE: Upon exit of this function the task is guaranteed to be 739 * released. In particular note that tk_release() will have 740 * been called, so your task memory may have been freed. 741 */ 742 void rpc_execute(struct rpc_task *task) 743 { 744 rpc_set_active(task); 745 rpc_make_runnable(task); 746 if (!RPC_IS_ASYNC(task)) 747 __rpc_execute(task); 748 } 749 750 static void rpc_async_schedule(struct work_struct *work) 751 { 752 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 753 } 754 755 /** 756 * rpc_malloc - allocate an RPC buffer 757 * @task: RPC task that will use this buffer 758 * @size: requested byte size 759 * 760 * To prevent rpciod from hanging, this allocator never sleeps, 761 * returning NULL if the request cannot be serviced immediately. 762 * The caller can arrange to sleep in a way that is safe for rpciod. 763 * 764 * Most requests are 'small' (under 2KiB) and can be serviced from a 765 * mempool, ensuring that NFS reads and writes can always proceed, 766 * and that there is good locality of reference for these buffers. 767 * 768 * In order to avoid memory starvation triggering more writebacks of 769 * NFS requests, we avoid using GFP_KERNEL. 770 */ 771 void *rpc_malloc(struct rpc_task *task, size_t size) 772 { 773 struct rpc_buffer *buf; 774 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 775 776 size += sizeof(struct rpc_buffer); 777 if (size <= RPC_BUFFER_MAXSIZE) 778 buf = mempool_alloc(rpc_buffer_mempool, gfp); 779 else 780 buf = kmalloc(size, gfp); 781 782 if (!buf) 783 return NULL; 784 785 buf->len = size; 786 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 787 task->tk_pid, size, buf); 788 return &buf->data; 789 } 790 EXPORT_SYMBOL_GPL(rpc_malloc); 791 792 /** 793 * rpc_free - free buffer allocated via rpc_malloc 794 * @buffer: buffer to free 795 * 796 */ 797 void rpc_free(void *buffer) 798 { 799 size_t size; 800 struct rpc_buffer *buf; 801 802 if (!buffer) 803 return; 804 805 buf = container_of(buffer, struct rpc_buffer, data); 806 size = buf->len; 807 808 dprintk("RPC: freeing buffer of size %zu at %p\n", 809 size, buf); 810 811 if (size <= RPC_BUFFER_MAXSIZE) 812 mempool_free(buf, rpc_buffer_mempool); 813 else 814 kfree(buf); 815 } 816 EXPORT_SYMBOL_GPL(rpc_free); 817 818 /* 819 * Creation and deletion of RPC task structures 820 */ 821 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 822 { 823 memset(task, 0, sizeof(*task)); 824 atomic_set(&task->tk_count, 1); 825 task->tk_flags = task_setup_data->flags; 826 task->tk_ops = task_setup_data->callback_ops; 827 task->tk_calldata = task_setup_data->callback_data; 828 INIT_LIST_HEAD(&task->tk_task); 829 830 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 831 task->tk_owner = current->tgid; 832 833 /* Initialize workqueue for async tasks */ 834 task->tk_workqueue = task_setup_data->workqueue; 835 836 if (task->tk_ops->rpc_call_prepare != NULL) 837 task->tk_action = rpc_prepare_task; 838 839 rpc_init_task_statistics(task); 840 841 dprintk("RPC: new task initialized, procpid %u\n", 842 task_pid_nr(current)); 843 } 844 845 static struct rpc_task * 846 rpc_alloc_task(void) 847 { 848 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 849 } 850 851 /* 852 * Create a new task for the specified client. 853 */ 854 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 855 { 856 struct rpc_task *task = setup_data->task; 857 unsigned short flags = 0; 858 859 if (task == NULL) { 860 task = rpc_alloc_task(); 861 if (task == NULL) { 862 rpc_release_calldata(setup_data->callback_ops, 863 setup_data->callback_data); 864 return ERR_PTR(-ENOMEM); 865 } 866 flags = RPC_TASK_DYNAMIC; 867 } 868 869 rpc_init_task(task, setup_data); 870 task->tk_flags |= flags; 871 dprintk("RPC: allocated task %p\n", task); 872 return task; 873 } 874 875 static void rpc_free_task(struct rpc_task *task) 876 { 877 const struct rpc_call_ops *tk_ops = task->tk_ops; 878 void *calldata = task->tk_calldata; 879 880 if (task->tk_flags & RPC_TASK_DYNAMIC) { 881 dprintk("RPC: %5u freeing task\n", task->tk_pid); 882 mempool_free(task, rpc_task_mempool); 883 } 884 rpc_release_calldata(tk_ops, calldata); 885 } 886 887 static void rpc_async_release(struct work_struct *work) 888 { 889 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 890 } 891 892 static void rpc_release_resources_task(struct rpc_task *task) 893 { 894 if (task->tk_rqstp) 895 xprt_release(task); 896 if (task->tk_msg.rpc_cred) { 897 put_rpccred(task->tk_msg.rpc_cred); 898 task->tk_msg.rpc_cred = NULL; 899 } 900 rpc_task_release_client(task); 901 } 902 903 static void rpc_final_put_task(struct rpc_task *task, 904 struct workqueue_struct *q) 905 { 906 if (q != NULL) { 907 INIT_WORK(&task->u.tk_work, rpc_async_release); 908 queue_work(q, &task->u.tk_work); 909 } else 910 rpc_free_task(task); 911 } 912 913 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 914 { 915 if (atomic_dec_and_test(&task->tk_count)) { 916 rpc_release_resources_task(task); 917 rpc_final_put_task(task, q); 918 } 919 } 920 921 void rpc_put_task(struct rpc_task *task) 922 { 923 rpc_do_put_task(task, NULL); 924 } 925 EXPORT_SYMBOL_GPL(rpc_put_task); 926 927 void rpc_put_task_async(struct rpc_task *task) 928 { 929 rpc_do_put_task(task, task->tk_workqueue); 930 } 931 EXPORT_SYMBOL_GPL(rpc_put_task_async); 932 933 static void rpc_release_task(struct rpc_task *task) 934 { 935 dprintk("RPC: %5u release task\n", task->tk_pid); 936 937 BUG_ON (RPC_IS_QUEUED(task)); 938 939 rpc_release_resources_task(task); 940 941 /* 942 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 943 * so it should be safe to use task->tk_count as a test for whether 944 * or not any other processes still hold references to our rpc_task. 945 */ 946 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 947 /* Wake up anyone who may be waiting for task completion */ 948 if (!rpc_complete_task(task)) 949 return; 950 } else { 951 if (!atomic_dec_and_test(&task->tk_count)) 952 return; 953 } 954 rpc_final_put_task(task, task->tk_workqueue); 955 } 956 957 int rpciod_up(void) 958 { 959 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 960 } 961 962 void rpciod_down(void) 963 { 964 module_put(THIS_MODULE); 965 } 966 967 /* 968 * Start up the rpciod workqueue. 969 */ 970 static int rpciod_start(void) 971 { 972 struct workqueue_struct *wq; 973 974 /* 975 * Create the rpciod thread and wait for it to start. 976 */ 977 dprintk("RPC: creating workqueue rpciod\n"); 978 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0); 979 rpciod_workqueue = wq; 980 return rpciod_workqueue != NULL; 981 } 982 983 static void rpciod_stop(void) 984 { 985 struct workqueue_struct *wq = NULL; 986 987 if (rpciod_workqueue == NULL) 988 return; 989 dprintk("RPC: destroying workqueue rpciod\n"); 990 991 wq = rpciod_workqueue; 992 rpciod_workqueue = NULL; 993 destroy_workqueue(wq); 994 } 995 996 void 997 rpc_destroy_mempool(void) 998 { 999 rpciod_stop(); 1000 if (rpc_buffer_mempool) 1001 mempool_destroy(rpc_buffer_mempool); 1002 if (rpc_task_mempool) 1003 mempool_destroy(rpc_task_mempool); 1004 if (rpc_task_slabp) 1005 kmem_cache_destroy(rpc_task_slabp); 1006 if (rpc_buffer_slabp) 1007 kmem_cache_destroy(rpc_buffer_slabp); 1008 rpc_destroy_wait_queue(&delay_queue); 1009 } 1010 1011 int 1012 rpc_init_mempool(void) 1013 { 1014 /* 1015 * The following is not strictly a mempool initialisation, 1016 * but there is no harm in doing it here 1017 */ 1018 rpc_init_wait_queue(&delay_queue, "delayq"); 1019 if (!rpciod_start()) 1020 goto err_nomem; 1021 1022 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1023 sizeof(struct rpc_task), 1024 0, SLAB_HWCACHE_ALIGN, 1025 NULL); 1026 if (!rpc_task_slabp) 1027 goto err_nomem; 1028 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1029 RPC_BUFFER_MAXSIZE, 1030 0, SLAB_HWCACHE_ALIGN, 1031 NULL); 1032 if (!rpc_buffer_slabp) 1033 goto err_nomem; 1034 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1035 rpc_task_slabp); 1036 if (!rpc_task_mempool) 1037 goto err_nomem; 1038 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1039 rpc_buffer_slabp); 1040 if (!rpc_buffer_mempool) 1041 goto err_nomem; 1042 return 0; 1043 err_nomem: 1044 rpc_destroy_mempool(); 1045 return -ENOMEM; 1046 } 1047