xref: /openbmc/linux/net/sunrpc/sched.c (revision b5266ea6)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static struct kmem_cache	*rpc_task_slabp __read_mostly;
38 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
39 static mempool_t	*rpc_task_mempool __read_mostly;
40 static mempool_t	*rpc_buffer_mempool __read_mostly;
41 
42 static void			rpc_async_schedule(struct work_struct *);
43 static void			 rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45 
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static struct rpc_wait_queue delay_queue;
50 
51 /*
52  * rpciod-related stuff
53  */
54 struct workqueue_struct *rpciod_workqueue;
55 
56 /*
57  * Disable the timer for a given RPC task. Should be called with
58  * queue->lock and bh_disabled in order to avoid races within
59  * rpc_run_timer().
60  */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64 	if (task->tk_timeout == 0)
65 		return;
66 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67 	task->tk_timeout = 0;
68 	list_del(&task->u.tk_wait.timer_list);
69 	if (list_empty(&queue->timer_list.list))
70 		del_timer(&queue->timer_list.timer);
71 }
72 
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76 	queue->timer_list.expires = expires;
77 	mod_timer(&queue->timer_list.timer, expires);
78 }
79 
80 /*
81  * Set up a timer for the current task.
82  */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 	if (!task->tk_timeout)
87 		return;
88 
89 	dprintk("RPC: %5u setting alarm for %lu ms\n",
90 			task->tk_pid, task->tk_timeout * 1000 / HZ);
91 
92 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
93 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97 
98 /*
99  * Add new request to a priority queue.
100  */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
102 		struct rpc_task *task,
103 		unsigned char queue_priority)
104 {
105 	struct list_head *q;
106 	struct rpc_task *t;
107 
108 	INIT_LIST_HEAD(&task->u.tk_wait.links);
109 	q = &queue->tasks[queue_priority];
110 	if (unlikely(queue_priority > queue->maxpriority))
111 		q = &queue->tasks[queue->maxpriority];
112 	list_for_each_entry(t, q, u.tk_wait.list) {
113 		if (t->tk_owner == task->tk_owner) {
114 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
115 			return;
116 		}
117 	}
118 	list_add_tail(&task->u.tk_wait.list, q);
119 }
120 
121 /*
122  * Add new request to wait queue.
123  *
124  * Swapper tasks always get inserted at the head of the queue.
125  * This should avoid many nasty memory deadlocks and hopefully
126  * improve overall performance.
127  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
128  */
129 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
130 		struct rpc_task *task,
131 		unsigned char queue_priority)
132 {
133 	BUG_ON (RPC_IS_QUEUED(task));
134 
135 	if (RPC_IS_PRIORITY(queue))
136 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
137 	else if (RPC_IS_SWAPPER(task))
138 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
139 	else
140 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
141 	task->tk_waitqueue = queue;
142 	queue->qlen++;
143 	rpc_set_queued(task);
144 
145 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
146 			task->tk_pid, queue, rpc_qname(queue));
147 }
148 
149 /*
150  * Remove request from a priority queue.
151  */
152 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
153 {
154 	struct rpc_task *t;
155 
156 	if (!list_empty(&task->u.tk_wait.links)) {
157 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
158 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
159 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
160 	}
161 }
162 
163 /*
164  * Remove request from queue.
165  * Note: must be called with spin lock held.
166  */
167 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
168 {
169 	__rpc_disable_timer(queue, task);
170 	if (RPC_IS_PRIORITY(queue))
171 		__rpc_remove_wait_queue_priority(task);
172 	list_del(&task->u.tk_wait.list);
173 	queue->qlen--;
174 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
175 			task->tk_pid, queue, rpc_qname(queue));
176 }
177 
178 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
179 {
180 	queue->priority = priority;
181 	queue->count = 1 << (priority * 2);
182 }
183 
184 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
185 {
186 	queue->owner = pid;
187 	queue->nr = RPC_BATCH_COUNT;
188 }
189 
190 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
191 {
192 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
193 	rpc_set_waitqueue_owner(queue, 0);
194 }
195 
196 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
197 {
198 	int i;
199 
200 	spin_lock_init(&queue->lock);
201 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
202 		INIT_LIST_HEAD(&queue->tasks[i]);
203 	queue->maxpriority = nr_queues - 1;
204 	rpc_reset_waitqueue_priority(queue);
205 	queue->qlen = 0;
206 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
207 	INIT_LIST_HEAD(&queue->timer_list.list);
208 #ifdef RPC_DEBUG
209 	queue->name = qname;
210 #endif
211 }
212 
213 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
214 {
215 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
216 }
217 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
218 
219 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
220 {
221 	__rpc_init_priority_wait_queue(queue, qname, 1);
222 }
223 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
224 
225 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
226 {
227 	del_timer_sync(&queue->timer_list.timer);
228 }
229 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
230 
231 static int rpc_wait_bit_killable(void *word)
232 {
233 	if (fatal_signal_pending(current))
234 		return -ERESTARTSYS;
235 	freezable_schedule();
236 	return 0;
237 }
238 
239 #ifdef RPC_DEBUG
240 static void rpc_task_set_debuginfo(struct rpc_task *task)
241 {
242 	static atomic_t rpc_pid;
243 
244 	task->tk_pid = atomic_inc_return(&rpc_pid);
245 }
246 #else
247 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
248 {
249 }
250 #endif
251 
252 static void rpc_set_active(struct rpc_task *task)
253 {
254 	rpc_task_set_debuginfo(task);
255 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
256 }
257 
258 /*
259  * Mark an RPC call as having completed by clearing the 'active' bit
260  * and then waking up all tasks that were sleeping.
261  */
262 static int rpc_complete_task(struct rpc_task *task)
263 {
264 	void *m = &task->tk_runstate;
265 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
266 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
267 	unsigned long flags;
268 	int ret;
269 
270 	spin_lock_irqsave(&wq->lock, flags);
271 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
272 	ret = atomic_dec_and_test(&task->tk_count);
273 	if (waitqueue_active(wq))
274 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
275 	spin_unlock_irqrestore(&wq->lock, flags);
276 	return ret;
277 }
278 
279 /*
280  * Allow callers to wait for completion of an RPC call
281  *
282  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
283  * to enforce taking of the wq->lock and hence avoid races with
284  * rpc_complete_task().
285  */
286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
287 {
288 	if (action == NULL)
289 		action = rpc_wait_bit_killable;
290 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
291 			action, TASK_KILLABLE);
292 }
293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
294 
295 /*
296  * Make an RPC task runnable.
297  *
298  * Note: If the task is ASYNC, this must be called with
299  * the spinlock held to protect the wait queue operation.
300  */
301 static void rpc_make_runnable(struct rpc_task *task)
302 {
303 	rpc_clear_queued(task);
304 	if (rpc_test_and_set_running(task))
305 		return;
306 	if (RPC_IS_ASYNC(task)) {
307 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
308 		queue_work(rpciod_workqueue, &task->u.tk_work);
309 	} else
310 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
311 }
312 
313 /*
314  * Prepare for sleeping on a wait queue.
315  * By always appending tasks to the list we ensure FIFO behavior.
316  * NB: An RPC task will only receive interrupt-driven events as long
317  * as it's on a wait queue.
318  */
319 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
320 		struct rpc_task *task,
321 		rpc_action action,
322 		unsigned char queue_priority)
323 {
324 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325 			task->tk_pid, rpc_qname(q), jiffies);
326 
327 	__rpc_add_wait_queue(q, task, queue_priority);
328 
329 	BUG_ON(task->tk_callback != NULL);
330 	task->tk_callback = action;
331 	__rpc_add_timer(q, task);
332 }
333 
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 				rpc_action action)
336 {
337 	/* We shouldn't ever put an inactive task to sleep */
338 	BUG_ON(!RPC_IS_ACTIVATED(task));
339 
340 	/*
341 	 * Protect the queue operations.
342 	 */
343 	spin_lock_bh(&q->lock);
344 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
345 	spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348 
349 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
350 		rpc_action action, int priority)
351 {
352 	/* We shouldn't ever put an inactive task to sleep */
353 	BUG_ON(!RPC_IS_ACTIVATED(task));
354 
355 	/*
356 	 * Protect the queue operations.
357 	 */
358 	spin_lock_bh(&q->lock);
359 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
360 	spin_unlock_bh(&q->lock);
361 }
362 
363 /**
364  * __rpc_do_wake_up_task - wake up a single rpc_task
365  * @queue: wait queue
366  * @task: task to be woken up
367  *
368  * Caller must hold queue->lock, and have cleared the task queued flag.
369  */
370 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
371 {
372 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
373 			task->tk_pid, jiffies);
374 
375 	/* Has the task been executed yet? If not, we cannot wake it up! */
376 	if (!RPC_IS_ACTIVATED(task)) {
377 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
378 		return;
379 	}
380 
381 	__rpc_remove_wait_queue(queue, task);
382 
383 	rpc_make_runnable(task);
384 
385 	dprintk("RPC:       __rpc_wake_up_task done\n");
386 }
387 
388 /*
389  * Wake up a queued task while the queue lock is being held
390  */
391 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
392 {
393 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
394 		__rpc_do_wake_up_task(queue, task);
395 }
396 
397 /*
398  * Tests whether rpc queue is empty
399  */
400 int rpc_queue_empty(struct rpc_wait_queue *queue)
401 {
402 	int res;
403 
404 	spin_lock_bh(&queue->lock);
405 	res = queue->qlen;
406 	spin_unlock_bh(&queue->lock);
407 	return res == 0;
408 }
409 EXPORT_SYMBOL_GPL(rpc_queue_empty);
410 
411 /*
412  * Wake up a task on a specific queue
413  */
414 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
415 {
416 	spin_lock_bh(&queue->lock);
417 	rpc_wake_up_task_queue_locked(queue, task);
418 	spin_unlock_bh(&queue->lock);
419 }
420 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
421 
422 /*
423  * Wake up the next task on a priority queue.
424  */
425 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
426 {
427 	struct list_head *q;
428 	struct rpc_task *task;
429 
430 	/*
431 	 * Service a batch of tasks from a single owner.
432 	 */
433 	q = &queue->tasks[queue->priority];
434 	if (!list_empty(q)) {
435 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
436 		if (queue->owner == task->tk_owner) {
437 			if (--queue->nr)
438 				goto out;
439 			list_move_tail(&task->u.tk_wait.list, q);
440 		}
441 		/*
442 		 * Check if we need to switch queues.
443 		 */
444 		if (--queue->count)
445 			goto new_owner;
446 	}
447 
448 	/*
449 	 * Service the next queue.
450 	 */
451 	do {
452 		if (q == &queue->tasks[0])
453 			q = &queue->tasks[queue->maxpriority];
454 		else
455 			q = q - 1;
456 		if (!list_empty(q)) {
457 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
458 			goto new_queue;
459 		}
460 	} while (q != &queue->tasks[queue->priority]);
461 
462 	rpc_reset_waitqueue_priority(queue);
463 	return NULL;
464 
465 new_queue:
466 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
467 new_owner:
468 	rpc_set_waitqueue_owner(queue, task->tk_owner);
469 out:
470 	rpc_wake_up_task_queue_locked(queue, task);
471 	return task;
472 }
473 
474 /*
475  * Wake up the next task on the wait queue.
476  */
477 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
478 {
479 	struct rpc_task	*task = NULL;
480 
481 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
482 			queue, rpc_qname(queue));
483 	spin_lock_bh(&queue->lock);
484 	if (RPC_IS_PRIORITY(queue))
485 		task = __rpc_wake_up_next_priority(queue);
486 	else {
487 		task_for_first(task, &queue->tasks[0])
488 			rpc_wake_up_task_queue_locked(queue, task);
489 	}
490 	spin_unlock_bh(&queue->lock);
491 
492 	return task;
493 }
494 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
495 
496 /**
497  * rpc_wake_up - wake up all rpc_tasks
498  * @queue: rpc_wait_queue on which the tasks are sleeping
499  *
500  * Grabs queue->lock
501  */
502 void rpc_wake_up(struct rpc_wait_queue *queue)
503 {
504 	struct rpc_task *task, *next;
505 	struct list_head *head;
506 
507 	spin_lock_bh(&queue->lock);
508 	head = &queue->tasks[queue->maxpriority];
509 	for (;;) {
510 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
511 			rpc_wake_up_task_queue_locked(queue, task);
512 		if (head == &queue->tasks[0])
513 			break;
514 		head--;
515 	}
516 	spin_unlock_bh(&queue->lock);
517 }
518 EXPORT_SYMBOL_GPL(rpc_wake_up);
519 
520 /**
521  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
522  * @queue: rpc_wait_queue on which the tasks are sleeping
523  * @status: status value to set
524  *
525  * Grabs queue->lock
526  */
527 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
528 {
529 	struct rpc_task *task, *next;
530 	struct list_head *head;
531 
532 	spin_lock_bh(&queue->lock);
533 	head = &queue->tasks[queue->maxpriority];
534 	for (;;) {
535 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
536 			task->tk_status = status;
537 			rpc_wake_up_task_queue_locked(queue, task);
538 		}
539 		if (head == &queue->tasks[0])
540 			break;
541 		head--;
542 	}
543 	spin_unlock_bh(&queue->lock);
544 }
545 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
546 
547 static void __rpc_queue_timer_fn(unsigned long ptr)
548 {
549 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
550 	struct rpc_task *task, *n;
551 	unsigned long expires, now, timeo;
552 
553 	spin_lock(&queue->lock);
554 	expires = now = jiffies;
555 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
556 		timeo = task->u.tk_wait.expires;
557 		if (time_after_eq(now, timeo)) {
558 			dprintk("RPC: %5u timeout\n", task->tk_pid);
559 			task->tk_status = -ETIMEDOUT;
560 			rpc_wake_up_task_queue_locked(queue, task);
561 			continue;
562 		}
563 		if (expires == now || time_after(expires, timeo))
564 			expires = timeo;
565 	}
566 	if (!list_empty(&queue->timer_list.list))
567 		rpc_set_queue_timer(queue, expires);
568 	spin_unlock(&queue->lock);
569 }
570 
571 static void __rpc_atrun(struct rpc_task *task)
572 {
573 	task->tk_status = 0;
574 }
575 
576 /*
577  * Run a task at a later time
578  */
579 void rpc_delay(struct rpc_task *task, unsigned long delay)
580 {
581 	task->tk_timeout = delay;
582 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
583 }
584 EXPORT_SYMBOL_GPL(rpc_delay);
585 
586 /*
587  * Helper to call task->tk_ops->rpc_call_prepare
588  */
589 void rpc_prepare_task(struct rpc_task *task)
590 {
591 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
592 }
593 
594 static void
595 rpc_init_task_statistics(struct rpc_task *task)
596 {
597 	/* Initialize retry counters */
598 	task->tk_garb_retry = 2;
599 	task->tk_cred_retry = 2;
600 	task->tk_rebind_retry = 2;
601 
602 	/* starting timestamp */
603 	task->tk_start = ktime_get();
604 }
605 
606 static void
607 rpc_reset_task_statistics(struct rpc_task *task)
608 {
609 	task->tk_timeouts = 0;
610 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
611 
612 	rpc_init_task_statistics(task);
613 }
614 
615 /*
616  * Helper that calls task->tk_ops->rpc_call_done if it exists
617  */
618 void rpc_exit_task(struct rpc_task *task)
619 {
620 	task->tk_action = NULL;
621 	if (task->tk_ops->rpc_call_done != NULL) {
622 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
623 		if (task->tk_action != NULL) {
624 			WARN_ON(RPC_ASSASSINATED(task));
625 			/* Always release the RPC slot and buffer memory */
626 			xprt_release(task);
627 			rpc_reset_task_statistics(task);
628 		}
629 	}
630 }
631 
632 void rpc_exit(struct rpc_task *task, int status)
633 {
634 	task->tk_status = status;
635 	task->tk_action = rpc_exit_task;
636 	if (RPC_IS_QUEUED(task))
637 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
638 }
639 EXPORT_SYMBOL_GPL(rpc_exit);
640 
641 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
642 {
643 	if (ops->rpc_release != NULL)
644 		ops->rpc_release(calldata);
645 }
646 
647 /*
648  * This is the RPC `scheduler' (or rather, the finite state machine).
649  */
650 static void __rpc_execute(struct rpc_task *task)
651 {
652 	struct rpc_wait_queue *queue;
653 	int task_is_async = RPC_IS_ASYNC(task);
654 	int status = 0;
655 
656 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
657 			task->tk_pid, task->tk_flags);
658 
659 	BUG_ON(RPC_IS_QUEUED(task));
660 
661 	for (;;) {
662 		void (*do_action)(struct rpc_task *);
663 
664 		/*
665 		 * Execute any pending callback first.
666 		 */
667 		do_action = task->tk_callback;
668 		task->tk_callback = NULL;
669 		if (do_action == NULL) {
670 			/*
671 			 * Perform the next FSM step.
672 			 * tk_action may be NULL if the task has been killed.
673 			 * In particular, note that rpc_killall_tasks may
674 			 * do this at any time, so beware when dereferencing.
675 			 */
676 			do_action = task->tk_action;
677 			if (do_action == NULL)
678 				break;
679 		}
680 		do_action(task);
681 
682 		/*
683 		 * Lockless check for whether task is sleeping or not.
684 		 */
685 		if (!RPC_IS_QUEUED(task))
686 			continue;
687 		/*
688 		 * The queue->lock protects against races with
689 		 * rpc_make_runnable().
690 		 *
691 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
692 		 * rpc_task, rpc_make_runnable() can assign it to a
693 		 * different workqueue. We therefore cannot assume that the
694 		 * rpc_task pointer may still be dereferenced.
695 		 */
696 		queue = task->tk_waitqueue;
697 		spin_lock_bh(&queue->lock);
698 		if (!RPC_IS_QUEUED(task)) {
699 			spin_unlock_bh(&queue->lock);
700 			continue;
701 		}
702 		rpc_clear_running(task);
703 		spin_unlock_bh(&queue->lock);
704 		if (task_is_async)
705 			return;
706 
707 		/* sync task: sleep here */
708 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
709 		status = out_of_line_wait_on_bit(&task->tk_runstate,
710 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
711 				TASK_KILLABLE);
712 		if (status == -ERESTARTSYS) {
713 			/*
714 			 * When a sync task receives a signal, it exits with
715 			 * -ERESTARTSYS. In order to catch any callbacks that
716 			 * clean up after sleeping on some queue, we don't
717 			 * break the loop here, but go around once more.
718 			 */
719 			dprintk("RPC: %5u got signal\n", task->tk_pid);
720 			task->tk_flags |= RPC_TASK_KILLED;
721 			rpc_exit(task, -ERESTARTSYS);
722 		}
723 		rpc_set_running(task);
724 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
725 	}
726 
727 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
728 			task->tk_status);
729 	/* Release all resources associated with the task */
730 	rpc_release_task(task);
731 }
732 
733 /*
734  * User-visible entry point to the scheduler.
735  *
736  * This may be called recursively if e.g. an async NFS task updates
737  * the attributes and finds that dirty pages must be flushed.
738  * NOTE: Upon exit of this function the task is guaranteed to be
739  *	 released. In particular note that tk_release() will have
740  *	 been called, so your task memory may have been freed.
741  */
742 void rpc_execute(struct rpc_task *task)
743 {
744 	rpc_set_active(task);
745 	rpc_make_runnable(task);
746 	if (!RPC_IS_ASYNC(task))
747 		__rpc_execute(task);
748 }
749 
750 static void rpc_async_schedule(struct work_struct *work)
751 {
752 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
753 }
754 
755 /**
756  * rpc_malloc - allocate an RPC buffer
757  * @task: RPC task that will use this buffer
758  * @size: requested byte size
759  *
760  * To prevent rpciod from hanging, this allocator never sleeps,
761  * returning NULL if the request cannot be serviced immediately.
762  * The caller can arrange to sleep in a way that is safe for rpciod.
763  *
764  * Most requests are 'small' (under 2KiB) and can be serviced from a
765  * mempool, ensuring that NFS reads and writes can always proceed,
766  * and that there is good locality of reference for these buffers.
767  *
768  * In order to avoid memory starvation triggering more writebacks of
769  * NFS requests, we avoid using GFP_KERNEL.
770  */
771 void *rpc_malloc(struct rpc_task *task, size_t size)
772 {
773 	struct rpc_buffer *buf;
774 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
775 
776 	size += sizeof(struct rpc_buffer);
777 	if (size <= RPC_BUFFER_MAXSIZE)
778 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
779 	else
780 		buf = kmalloc(size, gfp);
781 
782 	if (!buf)
783 		return NULL;
784 
785 	buf->len = size;
786 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
787 			task->tk_pid, size, buf);
788 	return &buf->data;
789 }
790 EXPORT_SYMBOL_GPL(rpc_malloc);
791 
792 /**
793  * rpc_free - free buffer allocated via rpc_malloc
794  * @buffer: buffer to free
795  *
796  */
797 void rpc_free(void *buffer)
798 {
799 	size_t size;
800 	struct rpc_buffer *buf;
801 
802 	if (!buffer)
803 		return;
804 
805 	buf = container_of(buffer, struct rpc_buffer, data);
806 	size = buf->len;
807 
808 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
809 			size, buf);
810 
811 	if (size <= RPC_BUFFER_MAXSIZE)
812 		mempool_free(buf, rpc_buffer_mempool);
813 	else
814 		kfree(buf);
815 }
816 EXPORT_SYMBOL_GPL(rpc_free);
817 
818 /*
819  * Creation and deletion of RPC task structures
820  */
821 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
822 {
823 	memset(task, 0, sizeof(*task));
824 	atomic_set(&task->tk_count, 1);
825 	task->tk_flags  = task_setup_data->flags;
826 	task->tk_ops = task_setup_data->callback_ops;
827 	task->tk_calldata = task_setup_data->callback_data;
828 	INIT_LIST_HEAD(&task->tk_task);
829 
830 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
831 	task->tk_owner = current->tgid;
832 
833 	/* Initialize workqueue for async tasks */
834 	task->tk_workqueue = task_setup_data->workqueue;
835 
836 	if (task->tk_ops->rpc_call_prepare != NULL)
837 		task->tk_action = rpc_prepare_task;
838 
839 	rpc_init_task_statistics(task);
840 
841 	dprintk("RPC:       new task initialized, procpid %u\n",
842 				task_pid_nr(current));
843 }
844 
845 static struct rpc_task *
846 rpc_alloc_task(void)
847 {
848 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
849 }
850 
851 /*
852  * Create a new task for the specified client.
853  */
854 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
855 {
856 	struct rpc_task	*task = setup_data->task;
857 	unsigned short flags = 0;
858 
859 	if (task == NULL) {
860 		task = rpc_alloc_task();
861 		if (task == NULL) {
862 			rpc_release_calldata(setup_data->callback_ops,
863 					setup_data->callback_data);
864 			return ERR_PTR(-ENOMEM);
865 		}
866 		flags = RPC_TASK_DYNAMIC;
867 	}
868 
869 	rpc_init_task(task, setup_data);
870 	task->tk_flags |= flags;
871 	dprintk("RPC:       allocated task %p\n", task);
872 	return task;
873 }
874 
875 static void rpc_free_task(struct rpc_task *task)
876 {
877 	const struct rpc_call_ops *tk_ops = task->tk_ops;
878 	void *calldata = task->tk_calldata;
879 
880 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
881 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
882 		mempool_free(task, rpc_task_mempool);
883 	}
884 	rpc_release_calldata(tk_ops, calldata);
885 }
886 
887 static void rpc_async_release(struct work_struct *work)
888 {
889 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
890 }
891 
892 static void rpc_release_resources_task(struct rpc_task *task)
893 {
894 	if (task->tk_rqstp)
895 		xprt_release(task);
896 	if (task->tk_msg.rpc_cred) {
897 		put_rpccred(task->tk_msg.rpc_cred);
898 		task->tk_msg.rpc_cred = NULL;
899 	}
900 	rpc_task_release_client(task);
901 }
902 
903 static void rpc_final_put_task(struct rpc_task *task,
904 		struct workqueue_struct *q)
905 {
906 	if (q != NULL) {
907 		INIT_WORK(&task->u.tk_work, rpc_async_release);
908 		queue_work(q, &task->u.tk_work);
909 	} else
910 		rpc_free_task(task);
911 }
912 
913 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
914 {
915 	if (atomic_dec_and_test(&task->tk_count)) {
916 		rpc_release_resources_task(task);
917 		rpc_final_put_task(task, q);
918 	}
919 }
920 
921 void rpc_put_task(struct rpc_task *task)
922 {
923 	rpc_do_put_task(task, NULL);
924 }
925 EXPORT_SYMBOL_GPL(rpc_put_task);
926 
927 void rpc_put_task_async(struct rpc_task *task)
928 {
929 	rpc_do_put_task(task, task->tk_workqueue);
930 }
931 EXPORT_SYMBOL_GPL(rpc_put_task_async);
932 
933 static void rpc_release_task(struct rpc_task *task)
934 {
935 	dprintk("RPC: %5u release task\n", task->tk_pid);
936 
937 	BUG_ON (RPC_IS_QUEUED(task));
938 
939 	rpc_release_resources_task(task);
940 
941 	/*
942 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
943 	 * so it should be safe to use task->tk_count as a test for whether
944 	 * or not any other processes still hold references to our rpc_task.
945 	 */
946 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
947 		/* Wake up anyone who may be waiting for task completion */
948 		if (!rpc_complete_task(task))
949 			return;
950 	} else {
951 		if (!atomic_dec_and_test(&task->tk_count))
952 			return;
953 	}
954 	rpc_final_put_task(task, task->tk_workqueue);
955 }
956 
957 int rpciod_up(void)
958 {
959 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
960 }
961 
962 void rpciod_down(void)
963 {
964 	module_put(THIS_MODULE);
965 }
966 
967 /*
968  * Start up the rpciod workqueue.
969  */
970 static int rpciod_start(void)
971 {
972 	struct workqueue_struct *wq;
973 
974 	/*
975 	 * Create the rpciod thread and wait for it to start.
976 	 */
977 	dprintk("RPC:       creating workqueue rpciod\n");
978 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
979 	rpciod_workqueue = wq;
980 	return rpciod_workqueue != NULL;
981 }
982 
983 static void rpciod_stop(void)
984 {
985 	struct workqueue_struct *wq = NULL;
986 
987 	if (rpciod_workqueue == NULL)
988 		return;
989 	dprintk("RPC:       destroying workqueue rpciod\n");
990 
991 	wq = rpciod_workqueue;
992 	rpciod_workqueue = NULL;
993 	destroy_workqueue(wq);
994 }
995 
996 void
997 rpc_destroy_mempool(void)
998 {
999 	rpciod_stop();
1000 	if (rpc_buffer_mempool)
1001 		mempool_destroy(rpc_buffer_mempool);
1002 	if (rpc_task_mempool)
1003 		mempool_destroy(rpc_task_mempool);
1004 	if (rpc_task_slabp)
1005 		kmem_cache_destroy(rpc_task_slabp);
1006 	if (rpc_buffer_slabp)
1007 		kmem_cache_destroy(rpc_buffer_slabp);
1008 	rpc_destroy_wait_queue(&delay_queue);
1009 }
1010 
1011 int
1012 rpc_init_mempool(void)
1013 {
1014 	/*
1015 	 * The following is not strictly a mempool initialisation,
1016 	 * but there is no harm in doing it here
1017 	 */
1018 	rpc_init_wait_queue(&delay_queue, "delayq");
1019 	if (!rpciod_start())
1020 		goto err_nomem;
1021 
1022 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1023 					     sizeof(struct rpc_task),
1024 					     0, SLAB_HWCACHE_ALIGN,
1025 					     NULL);
1026 	if (!rpc_task_slabp)
1027 		goto err_nomem;
1028 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1029 					     RPC_BUFFER_MAXSIZE,
1030 					     0, SLAB_HWCACHE_ALIGN,
1031 					     NULL);
1032 	if (!rpc_buffer_slabp)
1033 		goto err_nomem;
1034 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1035 						    rpc_task_slabp);
1036 	if (!rpc_task_mempool)
1037 		goto err_nomem;
1038 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1039 						      rpc_buffer_slabp);
1040 	if (!rpc_buffer_mempool)
1041 		goto err_nomem;
1042 	return 0;
1043 err_nomem:
1044 	rpc_destroy_mempool();
1045 	return -ENOMEM;
1046 }
1047