xref: /openbmc/linux/net/sunrpc/sched.c (revision a5c43003)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 
24 #include "sunrpc.h"
25 
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY		RPCDBG_SCHED
28 #endif
29 
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE	(2048)
34 #define RPC_BUFFER_POOLSIZE	(8)
35 #define RPC_TASK_POOLSIZE	(8)
36 static struct kmem_cache	*rpc_task_slabp __read_mostly;
37 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
38 static mempool_t	*rpc_task_mempool __read_mostly;
39 static mempool_t	*rpc_buffer_mempool __read_mostly;
40 
41 static void			rpc_async_schedule(struct work_struct *);
42 static void			 rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44 
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49 
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54 
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63 	if (task->tk_timeout == 0)
64 		return;
65 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 	task->tk_timeout = 0;
67 	list_del(&task->u.tk_wait.timer_list);
68 	if (list_empty(&queue->timer_list.list))
69 		del_timer(&queue->timer_list.timer);
70 }
71 
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75 	queue->timer_list.expires = expires;
76 	mod_timer(&queue->timer_list.timer, expires);
77 }
78 
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85 	if (!task->tk_timeout)
86 		return;
87 
88 	dprintk("RPC: %5u setting alarm for %lu ms\n",
89 			task->tk_pid, task->tk_timeout * 1000 / HZ);
90 
91 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96 
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102 	struct list_head *q;
103 	struct rpc_task *t;
104 
105 	INIT_LIST_HEAD(&task->u.tk_wait.links);
106 	q = &queue->tasks[task->tk_priority];
107 	if (unlikely(task->tk_priority > queue->maxpriority))
108 		q = &queue->tasks[queue->maxpriority];
109 	list_for_each_entry(t, q, u.tk_wait.list) {
110 		if (t->tk_owner == task->tk_owner) {
111 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 			return;
113 		}
114 	}
115 	list_add_tail(&task->u.tk_wait.list, q);
116 }
117 
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128 	BUG_ON (RPC_IS_QUEUED(task));
129 
130 	if (RPC_IS_PRIORITY(queue))
131 		__rpc_add_wait_queue_priority(queue, task);
132 	else if (RPC_IS_SWAPPER(task))
133 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 	else
135 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 	task->tk_waitqueue = queue;
137 	queue->qlen++;
138 	rpc_set_queued(task);
139 
140 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 			task->tk_pid, queue, rpc_qname(queue));
142 }
143 
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149 	struct rpc_task *t;
150 
151 	if (!list_empty(&task->u.tk_wait.links)) {
152 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155 	}
156 }
157 
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164 	__rpc_disable_timer(queue, task);
165 	if (RPC_IS_PRIORITY(queue))
166 		__rpc_remove_wait_queue_priority(task);
167 	list_del(&task->u.tk_wait.list);
168 	queue->qlen--;
169 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 			task->tk_pid, queue, rpc_qname(queue));
171 }
172 
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175 	queue->priority = priority;
176 	queue->count = 1 << (priority * 2);
177 }
178 
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181 	queue->owner = pid;
182 	queue->nr = RPC_BATCH_COUNT;
183 }
184 
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 	rpc_set_waitqueue_owner(queue, 0);
189 }
190 
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193 	int i;
194 
195 	spin_lock_init(&queue->lock);
196 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 		INIT_LIST_HEAD(&queue->tasks[i]);
198 	queue->maxpriority = nr_queues - 1;
199 	rpc_reset_waitqueue_priority(queue);
200 	queue->qlen = 0;
201 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 	INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 	queue->name = qname;
205 #endif
206 }
207 
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
213 
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216 	__rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219 
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222 	del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225 
226 static int rpc_wait_bit_killable(void *word)
227 {
228 	if (fatal_signal_pending(current))
229 		return -ERESTARTSYS;
230 	schedule();
231 	return 0;
232 }
233 
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237 	static atomic_t rpc_pid;
238 
239 	task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246 
247 static void rpc_set_active(struct rpc_task *task)
248 {
249 	struct rpc_clnt *clnt;
250 	if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
251 		return;
252 	rpc_task_set_debuginfo(task);
253 	/* Add to global list of all tasks */
254 	clnt = task->tk_client;
255 	if (clnt != NULL) {
256 		spin_lock(&clnt->cl_lock);
257 		list_add_tail(&task->tk_task, &clnt->cl_tasks);
258 		spin_unlock(&clnt->cl_lock);
259 	}
260 }
261 
262 /*
263  * Mark an RPC call as having completed by clearing the 'active' bit
264  */
265 static void rpc_mark_complete_task(struct rpc_task *task)
266 {
267 	smp_mb__before_clear_bit();
268 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
269 	smp_mb__after_clear_bit();
270 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
271 }
272 
273 /*
274  * Allow callers to wait for completion of an RPC call
275  */
276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
277 {
278 	if (action == NULL)
279 		action = rpc_wait_bit_killable;
280 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
281 			action, TASK_KILLABLE);
282 }
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
284 
285 /*
286  * Make an RPC task runnable.
287  *
288  * Note: If the task is ASYNC, this must be called with
289  * the spinlock held to protect the wait queue operation.
290  */
291 static void rpc_make_runnable(struct rpc_task *task)
292 {
293 	rpc_clear_queued(task);
294 	if (rpc_test_and_set_running(task))
295 		return;
296 	if (RPC_IS_ASYNC(task)) {
297 		int status;
298 
299 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
300 		status = queue_work(rpciod_workqueue, &task->u.tk_work);
301 		if (status < 0) {
302 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
303 			task->tk_status = status;
304 			return;
305 		}
306 	} else
307 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
308 }
309 
310 /*
311  * Prepare for sleeping on a wait queue.
312  * By always appending tasks to the list we ensure FIFO behavior.
313  * NB: An RPC task will only receive interrupt-driven events as long
314  * as it's on a wait queue.
315  */
316 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
317 			rpc_action action)
318 {
319 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
320 			task->tk_pid, rpc_qname(q), jiffies);
321 
322 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
323 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
324 		return;
325 	}
326 
327 	__rpc_add_wait_queue(q, task);
328 
329 	BUG_ON(task->tk_callback != NULL);
330 	task->tk_callback = action;
331 	__rpc_add_timer(q, task);
332 }
333 
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 				rpc_action action)
336 {
337 	/* Mark the task as being activated if so needed */
338 	rpc_set_active(task);
339 
340 	/*
341 	 * Protect the queue operations.
342 	 */
343 	spin_lock_bh(&q->lock);
344 	__rpc_sleep_on(q, task, action);
345 	spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348 
349 /**
350  * __rpc_do_wake_up_task - wake up a single rpc_task
351  * @queue: wait queue
352  * @task: task to be woken up
353  *
354  * Caller must hold queue->lock, and have cleared the task queued flag.
355  */
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
357 {
358 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359 			task->tk_pid, jiffies);
360 
361 	/* Has the task been executed yet? If not, we cannot wake it up! */
362 	if (!RPC_IS_ACTIVATED(task)) {
363 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 		return;
365 	}
366 
367 	__rpc_remove_wait_queue(queue, task);
368 
369 	rpc_make_runnable(task);
370 
371 	dprintk("RPC:       __rpc_wake_up_task done\n");
372 }
373 
374 /*
375  * Wake up a queued task while the queue lock is being held
376  */
377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
378 {
379 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
380 		__rpc_do_wake_up_task(queue, task);
381 }
382 
383 /*
384  * Tests whether rpc queue is empty
385  */
386 int rpc_queue_empty(struct rpc_wait_queue *queue)
387 {
388 	int res;
389 
390 	spin_lock_bh(&queue->lock);
391 	res = queue->qlen;
392 	spin_unlock_bh(&queue->lock);
393 	return (res == 0);
394 }
395 EXPORT_SYMBOL_GPL(rpc_queue_empty);
396 
397 /*
398  * Wake up a task on a specific queue
399  */
400 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
401 {
402 	spin_lock_bh(&queue->lock);
403 	rpc_wake_up_task_queue_locked(queue, task);
404 	spin_unlock_bh(&queue->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
407 
408 /*
409  * Wake up the specified task
410  */
411 static void rpc_wake_up_task(struct rpc_task *task)
412 {
413 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
414 }
415 
416 /*
417  * Wake up the next task on a priority queue.
418  */
419 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
420 {
421 	struct list_head *q;
422 	struct rpc_task *task;
423 
424 	/*
425 	 * Service a batch of tasks from a single owner.
426 	 */
427 	q = &queue->tasks[queue->priority];
428 	if (!list_empty(q)) {
429 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
430 		if (queue->owner == task->tk_owner) {
431 			if (--queue->nr)
432 				goto out;
433 			list_move_tail(&task->u.tk_wait.list, q);
434 		}
435 		/*
436 		 * Check if we need to switch queues.
437 		 */
438 		if (--queue->count)
439 			goto new_owner;
440 	}
441 
442 	/*
443 	 * Service the next queue.
444 	 */
445 	do {
446 		if (q == &queue->tasks[0])
447 			q = &queue->tasks[queue->maxpriority];
448 		else
449 			q = q - 1;
450 		if (!list_empty(q)) {
451 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
452 			goto new_queue;
453 		}
454 	} while (q != &queue->tasks[queue->priority]);
455 
456 	rpc_reset_waitqueue_priority(queue);
457 	return NULL;
458 
459 new_queue:
460 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
461 new_owner:
462 	rpc_set_waitqueue_owner(queue, task->tk_owner);
463 out:
464 	rpc_wake_up_task_queue_locked(queue, task);
465 	return task;
466 }
467 
468 /*
469  * Wake up the next task on the wait queue.
470  */
471 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
472 {
473 	struct rpc_task	*task = NULL;
474 
475 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
476 			queue, rpc_qname(queue));
477 	spin_lock_bh(&queue->lock);
478 	if (RPC_IS_PRIORITY(queue))
479 		task = __rpc_wake_up_next_priority(queue);
480 	else {
481 		task_for_first(task, &queue->tasks[0])
482 			rpc_wake_up_task_queue_locked(queue, task);
483 	}
484 	spin_unlock_bh(&queue->lock);
485 
486 	return task;
487 }
488 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
489 
490 /**
491  * rpc_wake_up - wake up all rpc_tasks
492  * @queue: rpc_wait_queue on which the tasks are sleeping
493  *
494  * Grabs queue->lock
495  */
496 void rpc_wake_up(struct rpc_wait_queue *queue)
497 {
498 	struct rpc_task *task, *next;
499 	struct list_head *head;
500 
501 	spin_lock_bh(&queue->lock);
502 	head = &queue->tasks[queue->maxpriority];
503 	for (;;) {
504 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
505 			rpc_wake_up_task_queue_locked(queue, task);
506 		if (head == &queue->tasks[0])
507 			break;
508 		head--;
509 	}
510 	spin_unlock_bh(&queue->lock);
511 }
512 EXPORT_SYMBOL_GPL(rpc_wake_up);
513 
514 /**
515  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
516  * @queue: rpc_wait_queue on which the tasks are sleeping
517  * @status: status value to set
518  *
519  * Grabs queue->lock
520  */
521 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
522 {
523 	struct rpc_task *task, *next;
524 	struct list_head *head;
525 
526 	spin_lock_bh(&queue->lock);
527 	head = &queue->tasks[queue->maxpriority];
528 	for (;;) {
529 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
530 			task->tk_status = status;
531 			rpc_wake_up_task_queue_locked(queue, task);
532 		}
533 		if (head == &queue->tasks[0])
534 			break;
535 		head--;
536 	}
537 	spin_unlock_bh(&queue->lock);
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
540 
541 static void __rpc_queue_timer_fn(unsigned long ptr)
542 {
543 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
544 	struct rpc_task *task, *n;
545 	unsigned long expires, now, timeo;
546 
547 	spin_lock(&queue->lock);
548 	expires = now = jiffies;
549 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
550 		timeo = task->u.tk_wait.expires;
551 		if (time_after_eq(now, timeo)) {
552 			dprintk("RPC: %5u timeout\n", task->tk_pid);
553 			task->tk_status = -ETIMEDOUT;
554 			rpc_wake_up_task_queue_locked(queue, task);
555 			continue;
556 		}
557 		if (expires == now || time_after(expires, timeo))
558 			expires = timeo;
559 	}
560 	if (!list_empty(&queue->timer_list.list))
561 		rpc_set_queue_timer(queue, expires);
562 	spin_unlock(&queue->lock);
563 }
564 
565 static void __rpc_atrun(struct rpc_task *task)
566 {
567 	task->tk_status = 0;
568 }
569 
570 /*
571  * Run a task at a later time
572  */
573 void rpc_delay(struct rpc_task *task, unsigned long delay)
574 {
575 	task->tk_timeout = delay;
576 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
577 }
578 EXPORT_SYMBOL_GPL(rpc_delay);
579 
580 /*
581  * Helper to call task->tk_ops->rpc_call_prepare
582  */
583 void rpc_prepare_task(struct rpc_task *task)
584 {
585 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
586 }
587 
588 /*
589  * Helper that calls task->tk_ops->rpc_call_done if it exists
590  */
591 void rpc_exit_task(struct rpc_task *task)
592 {
593 	task->tk_action = NULL;
594 	if (task->tk_ops->rpc_call_done != NULL) {
595 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
596 		if (task->tk_action != NULL) {
597 			WARN_ON(RPC_ASSASSINATED(task));
598 			/* Always release the RPC slot and buffer memory */
599 			xprt_release(task);
600 		}
601 	}
602 }
603 EXPORT_SYMBOL_GPL(rpc_exit_task);
604 
605 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
606 {
607 	if (ops->rpc_release != NULL)
608 		ops->rpc_release(calldata);
609 }
610 
611 /*
612  * This is the RPC `scheduler' (or rather, the finite state machine).
613  */
614 static void __rpc_execute(struct rpc_task *task)
615 {
616 	struct rpc_wait_queue *queue;
617 	int task_is_async = RPC_IS_ASYNC(task);
618 	int status = 0;
619 
620 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621 			task->tk_pid, task->tk_flags);
622 
623 	BUG_ON(RPC_IS_QUEUED(task));
624 
625 	for (;;) {
626 
627 		/*
628 		 * Execute any pending callback.
629 		 */
630 		if (task->tk_callback) {
631 			void (*save_callback)(struct rpc_task *);
632 
633 			/*
634 			 * We set tk_callback to NULL before calling it,
635 			 * in case it sets the tk_callback field itself:
636 			 */
637 			save_callback = task->tk_callback;
638 			task->tk_callback = NULL;
639 			save_callback(task);
640 		}
641 
642 		/*
643 		 * Perform the next FSM step.
644 		 * tk_action may be NULL when the task has been killed
645 		 * by someone else.
646 		 */
647 		if (!RPC_IS_QUEUED(task)) {
648 			if (task->tk_action == NULL)
649 				break;
650 			task->tk_action(task);
651 		}
652 
653 		/*
654 		 * Lockless check for whether task is sleeping or not.
655 		 */
656 		if (!RPC_IS_QUEUED(task))
657 			continue;
658 		/*
659 		 * The queue->lock protects against races with
660 		 * rpc_make_runnable().
661 		 *
662 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
663 		 * rpc_task, rpc_make_runnable() can assign it to a
664 		 * different workqueue. We therefore cannot assume that the
665 		 * rpc_task pointer may still be dereferenced.
666 		 */
667 		queue = task->tk_waitqueue;
668 		spin_lock_bh(&queue->lock);
669 		if (!RPC_IS_QUEUED(task)) {
670 			spin_unlock_bh(&queue->lock);
671 			continue;
672 		}
673 		rpc_clear_running(task);
674 		spin_unlock_bh(&queue->lock);
675 		if (task_is_async)
676 			return;
677 
678 		/* sync task: sleep here */
679 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
680 		status = out_of_line_wait_on_bit(&task->tk_runstate,
681 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
682 				TASK_KILLABLE);
683 		if (status == -ERESTARTSYS) {
684 			/*
685 			 * When a sync task receives a signal, it exits with
686 			 * -ERESTARTSYS. In order to catch any callbacks that
687 			 * clean up after sleeping on some queue, we don't
688 			 * break the loop here, but go around once more.
689 			 */
690 			dprintk("RPC: %5u got signal\n", task->tk_pid);
691 			task->tk_flags |= RPC_TASK_KILLED;
692 			rpc_exit(task, -ERESTARTSYS);
693 			rpc_wake_up_task(task);
694 		}
695 		rpc_set_running(task);
696 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
697 	}
698 
699 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
700 			task->tk_status);
701 	/* Release all resources associated with the task */
702 	rpc_release_task(task);
703 }
704 
705 /*
706  * User-visible entry point to the scheduler.
707  *
708  * This may be called recursively if e.g. an async NFS task updates
709  * the attributes and finds that dirty pages must be flushed.
710  * NOTE: Upon exit of this function the task is guaranteed to be
711  *	 released. In particular note that tk_release() will have
712  *	 been called, so your task memory may have been freed.
713  */
714 void rpc_execute(struct rpc_task *task)
715 {
716 	rpc_set_active(task);
717 	rpc_set_running(task);
718 	__rpc_execute(task);
719 }
720 
721 static void rpc_async_schedule(struct work_struct *work)
722 {
723 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
724 }
725 
726 /**
727  * rpc_malloc - allocate an RPC buffer
728  * @task: RPC task that will use this buffer
729  * @size: requested byte size
730  *
731  * To prevent rpciod from hanging, this allocator never sleeps,
732  * returning NULL if the request cannot be serviced immediately.
733  * The caller can arrange to sleep in a way that is safe for rpciod.
734  *
735  * Most requests are 'small' (under 2KiB) and can be serviced from a
736  * mempool, ensuring that NFS reads and writes can always proceed,
737  * and that there is good locality of reference for these buffers.
738  *
739  * In order to avoid memory starvation triggering more writebacks of
740  * NFS requests, we avoid using GFP_KERNEL.
741  */
742 void *rpc_malloc(struct rpc_task *task, size_t size)
743 {
744 	struct rpc_buffer *buf;
745 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
746 
747 	size += sizeof(struct rpc_buffer);
748 	if (size <= RPC_BUFFER_MAXSIZE)
749 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
750 	else
751 		buf = kmalloc(size, gfp);
752 
753 	if (!buf)
754 		return NULL;
755 
756 	buf->len = size;
757 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
758 			task->tk_pid, size, buf);
759 	return &buf->data;
760 }
761 EXPORT_SYMBOL_GPL(rpc_malloc);
762 
763 /**
764  * rpc_free - free buffer allocated via rpc_malloc
765  * @buffer: buffer to free
766  *
767  */
768 void rpc_free(void *buffer)
769 {
770 	size_t size;
771 	struct rpc_buffer *buf;
772 
773 	if (!buffer)
774 		return;
775 
776 	buf = container_of(buffer, struct rpc_buffer, data);
777 	size = buf->len;
778 
779 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
780 			size, buf);
781 
782 	if (size <= RPC_BUFFER_MAXSIZE)
783 		mempool_free(buf, rpc_buffer_mempool);
784 	else
785 		kfree(buf);
786 }
787 EXPORT_SYMBOL_GPL(rpc_free);
788 
789 /*
790  * Creation and deletion of RPC task structures
791  */
792 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
793 {
794 	memset(task, 0, sizeof(*task));
795 	atomic_set(&task->tk_count, 1);
796 	task->tk_flags  = task_setup_data->flags;
797 	task->tk_ops = task_setup_data->callback_ops;
798 	task->tk_calldata = task_setup_data->callback_data;
799 	INIT_LIST_HEAD(&task->tk_task);
800 
801 	/* Initialize retry counters */
802 	task->tk_garb_retry = 2;
803 	task->tk_cred_retry = 2;
804 
805 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
806 	task->tk_owner = current->tgid;
807 
808 	/* Initialize workqueue for async tasks */
809 	task->tk_workqueue = task_setup_data->workqueue;
810 
811 	task->tk_client = task_setup_data->rpc_client;
812 	if (task->tk_client != NULL) {
813 		kref_get(&task->tk_client->cl_kref);
814 		if (task->tk_client->cl_softrtry)
815 			task->tk_flags |= RPC_TASK_SOFT;
816 	}
817 
818 	if (task->tk_ops->rpc_call_prepare != NULL)
819 		task->tk_action = rpc_prepare_task;
820 
821 	if (task_setup_data->rpc_message != NULL) {
822 		task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
823 		task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
824 		task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
825 		/* Bind the user cred */
826 		rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
827 		if (task->tk_action == NULL)
828 			rpc_call_start(task);
829 	}
830 
831 	/* starting timestamp */
832 	task->tk_start = ktime_get();
833 
834 	dprintk("RPC:       new task initialized, procpid %u\n",
835 				task_pid_nr(current));
836 }
837 
838 static struct rpc_task *
839 rpc_alloc_task(void)
840 {
841 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
842 }
843 
844 /*
845  * Create a new task for the specified client.
846  */
847 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
848 {
849 	struct rpc_task	*task = setup_data->task;
850 	unsigned short flags = 0;
851 
852 	if (task == NULL) {
853 		task = rpc_alloc_task();
854 		if (task == NULL) {
855 			rpc_release_calldata(setup_data->callback_ops,
856 					setup_data->callback_data);
857 			return ERR_PTR(-ENOMEM);
858 		}
859 		flags = RPC_TASK_DYNAMIC;
860 	}
861 
862 	rpc_init_task(task, setup_data);
863 	if (task->tk_status < 0) {
864 		int err = task->tk_status;
865 		rpc_put_task(task);
866 		return ERR_PTR(err);
867 	}
868 
869 	task->tk_flags |= flags;
870 	dprintk("RPC:       allocated task %p\n", task);
871 	return task;
872 }
873 
874 static void rpc_free_task(struct rpc_task *task)
875 {
876 	const struct rpc_call_ops *tk_ops = task->tk_ops;
877 	void *calldata = task->tk_calldata;
878 
879 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
880 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
881 		mempool_free(task, rpc_task_mempool);
882 	}
883 	rpc_release_calldata(tk_ops, calldata);
884 }
885 
886 static void rpc_async_release(struct work_struct *work)
887 {
888 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
889 }
890 
891 void rpc_put_task(struct rpc_task *task)
892 {
893 	if (!atomic_dec_and_test(&task->tk_count))
894 		return;
895 	/* Release resources */
896 	if (task->tk_rqstp)
897 		xprt_release(task);
898 	if (task->tk_msg.rpc_cred)
899 		rpcauth_unbindcred(task);
900 	if (task->tk_client) {
901 		rpc_release_client(task->tk_client);
902 		task->tk_client = NULL;
903 	}
904 	if (task->tk_workqueue != NULL) {
905 		INIT_WORK(&task->u.tk_work, rpc_async_release);
906 		queue_work(task->tk_workqueue, &task->u.tk_work);
907 	} else
908 		rpc_free_task(task);
909 }
910 EXPORT_SYMBOL_GPL(rpc_put_task);
911 
912 static void rpc_release_task(struct rpc_task *task)
913 {
914 	dprintk("RPC: %5u release task\n", task->tk_pid);
915 
916 	if (!list_empty(&task->tk_task)) {
917 		struct rpc_clnt *clnt = task->tk_client;
918 		/* Remove from client task list */
919 		spin_lock(&clnt->cl_lock);
920 		list_del(&task->tk_task);
921 		spin_unlock(&clnt->cl_lock);
922 	}
923 	BUG_ON (RPC_IS_QUEUED(task));
924 
925 	/* Wake up anyone who is waiting for task completion */
926 	rpc_mark_complete_task(task);
927 
928 	rpc_put_task(task);
929 }
930 
931 /*
932  * Kill all tasks for the given client.
933  * XXX: kill their descendants as well?
934  */
935 void rpc_killall_tasks(struct rpc_clnt *clnt)
936 {
937 	struct rpc_task	*rovr;
938 
939 
940 	if (list_empty(&clnt->cl_tasks))
941 		return;
942 	dprintk("RPC:       killing all tasks for client %p\n", clnt);
943 	/*
944 	 * Spin lock all_tasks to prevent changes...
945 	 */
946 	spin_lock(&clnt->cl_lock);
947 	list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
948 		if (! RPC_IS_ACTIVATED(rovr))
949 			continue;
950 		if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
951 			rovr->tk_flags |= RPC_TASK_KILLED;
952 			rpc_exit(rovr, -EIO);
953 			rpc_wake_up_task(rovr);
954 		}
955 	}
956 	spin_unlock(&clnt->cl_lock);
957 }
958 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
959 
960 int rpciod_up(void)
961 {
962 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
963 }
964 
965 void rpciod_down(void)
966 {
967 	module_put(THIS_MODULE);
968 }
969 
970 /*
971  * Start up the rpciod workqueue.
972  */
973 static int rpciod_start(void)
974 {
975 	struct workqueue_struct *wq;
976 
977 	/*
978 	 * Create the rpciod thread and wait for it to start.
979 	 */
980 	dprintk("RPC:       creating workqueue rpciod\n");
981 	wq = create_workqueue("rpciod");
982 	rpciod_workqueue = wq;
983 	return rpciod_workqueue != NULL;
984 }
985 
986 static void rpciod_stop(void)
987 {
988 	struct workqueue_struct *wq = NULL;
989 
990 	if (rpciod_workqueue == NULL)
991 		return;
992 	dprintk("RPC:       destroying workqueue rpciod\n");
993 
994 	wq = rpciod_workqueue;
995 	rpciod_workqueue = NULL;
996 	destroy_workqueue(wq);
997 }
998 
999 void
1000 rpc_destroy_mempool(void)
1001 {
1002 	rpciod_stop();
1003 	if (rpc_buffer_mempool)
1004 		mempool_destroy(rpc_buffer_mempool);
1005 	if (rpc_task_mempool)
1006 		mempool_destroy(rpc_task_mempool);
1007 	if (rpc_task_slabp)
1008 		kmem_cache_destroy(rpc_task_slabp);
1009 	if (rpc_buffer_slabp)
1010 		kmem_cache_destroy(rpc_buffer_slabp);
1011 	rpc_destroy_wait_queue(&delay_queue);
1012 }
1013 
1014 int
1015 rpc_init_mempool(void)
1016 {
1017 	/*
1018 	 * The following is not strictly a mempool initialisation,
1019 	 * but there is no harm in doing it here
1020 	 */
1021 	rpc_init_wait_queue(&delay_queue, "delayq");
1022 	if (!rpciod_start())
1023 		goto err_nomem;
1024 
1025 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1026 					     sizeof(struct rpc_task),
1027 					     0, SLAB_HWCACHE_ALIGN,
1028 					     NULL);
1029 	if (!rpc_task_slabp)
1030 		goto err_nomem;
1031 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1032 					     RPC_BUFFER_MAXSIZE,
1033 					     0, SLAB_HWCACHE_ALIGN,
1034 					     NULL);
1035 	if (!rpc_buffer_slabp)
1036 		goto err_nomem;
1037 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1038 						    rpc_task_slabp);
1039 	if (!rpc_task_mempool)
1040 		goto err_nomem;
1041 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1042 						      rpc_buffer_slabp);
1043 	if (!rpc_buffer_mempool)
1044 		goto err_nomem;
1045 	return 0;
1046 err_nomem:
1047 	rpc_destroy_mempool();
1048 	return -ENOMEM;
1049 }
1050