xref: /openbmc/linux/net/sunrpc/sched.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY		RPCDBG_SCHED
32 #endif
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36 
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE	(2048)
41 #define RPC_BUFFER_POOLSIZE	(8)
42 #define RPC_TASK_POOLSIZE	(8)
43 static struct kmem_cache	*rpc_task_slabp __read_mostly;
44 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
45 static mempool_t	*rpc_task_mempool __read_mostly;
46 static mempool_t	*rpc_buffer_mempool __read_mostly;
47 
48 static void			rpc_async_schedule(struct work_struct *);
49 static void			 rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51 
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56 
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63 
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67 	unsigned long timeout = READ_ONCE(task->tk_timeout);
68 
69 	if (timeout != 0) {
70 		unsigned long now = jiffies;
71 		if (time_before(now, timeout))
72 			return timeout - now;
73 	}
74 	return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77 
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 	if (list_empty(&task->u.tk_wait.timer_list))
87 		return;
88 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 	task->tk_timeout = 0;
90 	list_del(&task->u.tk_wait.timer_list);
91 	if (list_empty(&queue->timer_list.list))
92 		cancel_delayed_work(&queue->timer_list.dwork);
93 }
94 
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98 	unsigned long now = jiffies;
99 	queue->timer_list.expires = expires;
100 	if (time_before_eq(expires, now))
101 		expires = 0;
102 	else
103 		expires -= now;
104 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106 
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 		unsigned long timeout)
113 {
114 	dprintk("RPC: %5u setting alarm for %u ms\n",
115 		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116 
117 	task->tk_timeout = timeout;
118 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 		rpc_set_queue_timer(queue, timeout);
120 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122 
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 	if (queue->priority != priority) {
126 		queue->priority = priority;
127 		queue->nr = 1U << priority;
128 	}
129 }
130 
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135 
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 	struct rpc_task *t;
143 
144 	list_for_each_entry(t, q, u.tk_wait.list) {
145 		if (t->tk_owner == task->tk_owner) {
146 			list_add_tail(&task->u.tk_wait.links,
147 					&t->u.tk_wait.links);
148 			/* Cache the queue head in task->u.tk_wait.list */
149 			task->u.tk_wait.list.next = q;
150 			task->u.tk_wait.list.prev = NULL;
151 			return;
152 		}
153 	}
154 	INIT_LIST_HEAD(&task->u.tk_wait.links);
155 	list_add_tail(&task->u.tk_wait.list, q);
156 }
157 
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 	struct list_head *q;
165 	struct rpc_task *t;
166 
167 	if (task->u.tk_wait.list.prev == NULL) {
168 		list_del(&task->u.tk_wait.links);
169 		return;
170 	}
171 	if (!list_empty(&task->u.tk_wait.links)) {
172 		t = list_first_entry(&task->u.tk_wait.links,
173 				struct rpc_task,
174 				u.tk_wait.links);
175 		/* Assume __rpc_list_enqueue_task() cached the queue head */
176 		q = t->u.tk_wait.list.next;
177 		list_add_tail(&t->u.tk_wait.list, q);
178 		list_del(&task->u.tk_wait.links);
179 	}
180 	list_del(&task->u.tk_wait.list);
181 }
182 
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 		struct rpc_task *task,
188 		unsigned char queue_priority)
189 {
190 	if (unlikely(queue_priority > queue->maxpriority))
191 		queue_priority = queue->maxpriority;
192 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194 
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 		struct rpc_task *task,
205 		unsigned char queue_priority)
206 {
207 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
208 	if (RPC_IS_QUEUED(task))
209 		return;
210 
211 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212 	if (RPC_IS_PRIORITY(queue))
213 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
214 	else if (RPC_IS_SWAPPER(task))
215 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216 	else
217 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218 	task->tk_waitqueue = queue;
219 	queue->qlen++;
220 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
221 	smp_wmb();
222 	rpc_set_queued(task);
223 
224 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
225 			task->tk_pid, queue, rpc_qname(queue));
226 }
227 
228 /*
229  * Remove request from a priority queue.
230  */
231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232 {
233 	__rpc_list_dequeue_task(task);
234 }
235 
236 /*
237  * Remove request from queue.
238  * Note: must be called with spin lock held.
239  */
240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241 {
242 	__rpc_disable_timer(queue, task);
243 	if (RPC_IS_PRIORITY(queue))
244 		__rpc_remove_wait_queue_priority(task);
245 	else
246 		list_del(&task->u.tk_wait.list);
247 	queue->qlen--;
248 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249 			task->tk_pid, queue, rpc_qname(queue));
250 }
251 
252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253 {
254 	int i;
255 
256 	spin_lock_init(&queue->lock);
257 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258 		INIT_LIST_HEAD(&queue->tasks[i]);
259 	queue->maxpriority = nr_queues - 1;
260 	rpc_reset_waitqueue_priority(queue);
261 	queue->qlen = 0;
262 	queue->timer_list.expires = 0;
263 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264 	INIT_LIST_HEAD(&queue->timer_list.list);
265 	rpc_assign_waitqueue_name(queue, qname);
266 }
267 
268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269 {
270 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271 }
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273 
274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275 {
276 	__rpc_init_priority_wait_queue(queue, qname, 1);
277 }
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279 
280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281 {
282 	cancel_delayed_work_sync(&queue->timer_list.dwork);
283 }
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285 
286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287 {
288 	freezable_schedule_unsafe();
289 	if (signal_pending_state(mode, current))
290 		return -ERESTARTSYS;
291 	return 0;
292 }
293 
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295 static void rpc_task_set_debuginfo(struct rpc_task *task)
296 {
297 	static atomic_t rpc_pid;
298 
299 	task->tk_pid = atomic_inc_return(&rpc_pid);
300 }
301 #else
302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303 {
304 }
305 #endif
306 
307 static void rpc_set_active(struct rpc_task *task)
308 {
309 	rpc_task_set_debuginfo(task);
310 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311 	trace_rpc_task_begin(task, NULL);
312 }
313 
314 /*
315  * Mark an RPC call as having completed by clearing the 'active' bit
316  * and then waking up all tasks that were sleeping.
317  */
318 static int rpc_complete_task(struct rpc_task *task)
319 {
320 	void *m = &task->tk_runstate;
321 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323 	unsigned long flags;
324 	int ret;
325 
326 	trace_rpc_task_complete(task, NULL);
327 
328 	spin_lock_irqsave(&wq->lock, flags);
329 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330 	ret = atomic_dec_and_test(&task->tk_count);
331 	if (waitqueue_active(wq))
332 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
333 	spin_unlock_irqrestore(&wq->lock, flags);
334 	return ret;
335 }
336 
337 /*
338  * Allow callers to wait for completion of an RPC call
339  *
340  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341  * to enforce taking of the wq->lock and hence avoid races with
342  * rpc_complete_task().
343  */
344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345 {
346 	if (action == NULL)
347 		action = rpc_wait_bit_killable;
348 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349 			action, TASK_KILLABLE);
350 }
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352 
353 /*
354  * Make an RPC task runnable.
355  *
356  * Note: If the task is ASYNC, and is being made runnable after sitting on an
357  * rpc_wait_queue, this must be called with the queue spinlock held to protect
358  * the wait queue operation.
359  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362  * the RPC_TASK_RUNNING flag.
363  */
364 static void rpc_make_runnable(struct workqueue_struct *wq,
365 		struct rpc_task *task)
366 {
367 	bool need_wakeup = !rpc_test_and_set_running(task);
368 
369 	rpc_clear_queued(task);
370 	if (!need_wakeup)
371 		return;
372 	if (RPC_IS_ASYNC(task)) {
373 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374 		queue_work(wq, &task->u.tk_work);
375 	} else
376 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377 }
378 
379 /*
380  * Prepare for sleeping on a wait queue.
381  * By always appending tasks to the list we ensure FIFO behavior.
382  * NB: An RPC task will only receive interrupt-driven events as long
383  * as it's on a wait queue.
384  */
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 		struct rpc_task *task,
387 		unsigned char queue_priority)
388 {
389 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390 			task->tk_pid, rpc_qname(q), jiffies);
391 
392 	trace_rpc_task_sleep(task, q);
393 
394 	__rpc_add_wait_queue(q, task, queue_priority);
395 
396 }
397 
398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399 		struct rpc_task *task, unsigned long timeout,
400 		unsigned char queue_priority)
401 {
402 	if (time_is_after_jiffies(timeout)) {
403 		__rpc_sleep_on_priority(q, task, queue_priority);
404 		__rpc_add_timer(q, task, timeout);
405 	} else
406 		task->tk_status = -ETIMEDOUT;
407 }
408 
409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410 {
411 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412 		task->tk_callback = action;
413 }
414 
415 static bool rpc_sleep_check_activated(struct rpc_task *task)
416 {
417 	/* We shouldn't ever put an inactive task to sleep */
418 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419 		task->tk_status = -EIO;
420 		rpc_put_task_async(task);
421 		return false;
422 	}
423 	return true;
424 }
425 
426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427 				rpc_action action, unsigned long timeout)
428 {
429 	if (!rpc_sleep_check_activated(task))
430 		return;
431 
432 	rpc_set_tk_callback(task, action);
433 
434 	/*
435 	 * Protect the queue operations.
436 	 */
437 	spin_lock(&q->lock);
438 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439 	spin_unlock(&q->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442 
443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444 				rpc_action action)
445 {
446 	if (!rpc_sleep_check_activated(task))
447 		return;
448 
449 	rpc_set_tk_callback(task, action);
450 
451 	WARN_ON_ONCE(task->tk_timeout != 0);
452 	/*
453 	 * Protect the queue operations.
454 	 */
455 	spin_lock(&q->lock);
456 	__rpc_sleep_on_priority(q, task, task->tk_priority);
457 	spin_unlock(&q->lock);
458 }
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
460 
461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462 		struct rpc_task *task, unsigned long timeout, int priority)
463 {
464 	if (!rpc_sleep_check_activated(task))
465 		return;
466 
467 	priority -= RPC_PRIORITY_LOW;
468 	/*
469 	 * Protect the queue operations.
470 	 */
471 	spin_lock(&q->lock);
472 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473 	spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476 
477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478 		int priority)
479 {
480 	if (!rpc_sleep_check_activated(task))
481 		return;
482 
483 	WARN_ON_ONCE(task->tk_timeout != 0);
484 	priority -= RPC_PRIORITY_LOW;
485 	/*
486 	 * Protect the queue operations.
487 	 */
488 	spin_lock(&q->lock);
489 	__rpc_sleep_on_priority(q, task, priority);
490 	spin_unlock(&q->lock);
491 }
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493 
494 /**
495  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496  * @wq: workqueue on which to run task
497  * @queue: wait queue
498  * @task: task to be woken up
499  *
500  * Caller must hold queue->lock, and have cleared the task queued flag.
501  */
502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503 		struct rpc_wait_queue *queue,
504 		struct rpc_task *task)
505 {
506 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507 			task->tk_pid, jiffies);
508 
509 	/* Has the task been executed yet? If not, we cannot wake it up! */
510 	if (!RPC_IS_ACTIVATED(task)) {
511 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512 		return;
513 	}
514 
515 	trace_rpc_task_wakeup(task, queue);
516 
517 	__rpc_remove_wait_queue(queue, task);
518 
519 	rpc_make_runnable(wq, task);
520 
521 	dprintk("RPC:       __rpc_wake_up_task done\n");
522 }
523 
524 /*
525  * Wake up a queued task while the queue lock is being held
526  */
527 static struct rpc_task *
528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529 		struct rpc_wait_queue *queue, struct rpc_task *task,
530 		bool (*action)(struct rpc_task *, void *), void *data)
531 {
532 	if (RPC_IS_QUEUED(task)) {
533 		smp_rmb();
534 		if (task->tk_waitqueue == queue) {
535 			if (action == NULL || action(task, data)) {
536 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
537 				return task;
538 			}
539 		}
540 	}
541 	return NULL;
542 }
543 
544 /*
545  * Wake up a queued task while the queue lock is being held
546  */
547 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
548 					  struct rpc_task *task)
549 {
550 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
551 						   task, NULL, NULL);
552 }
553 
554 /*
555  * Wake up a task on a specific queue
556  */
557 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
558 {
559 	if (!RPC_IS_QUEUED(task))
560 		return;
561 	spin_lock(&queue->lock);
562 	rpc_wake_up_task_queue_locked(queue, task);
563 	spin_unlock(&queue->lock);
564 }
565 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
566 
567 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
568 {
569 	task->tk_status = *(int *)status;
570 	return true;
571 }
572 
573 static void
574 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
575 		struct rpc_task *task, int status)
576 {
577 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
578 			task, rpc_task_action_set_status, &status);
579 }
580 
581 /**
582  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
583  * @queue: pointer to rpc_wait_queue
584  * @task: pointer to rpc_task
585  * @status: integer error value
586  *
587  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
588  * set to the value of @status.
589  */
590 void
591 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
592 		struct rpc_task *task, int status)
593 {
594 	if (!RPC_IS_QUEUED(task))
595 		return;
596 	spin_lock(&queue->lock);
597 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
598 	spin_unlock(&queue->lock);
599 }
600 
601 /*
602  * Wake up the next task on a priority queue.
603  */
604 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
605 {
606 	struct list_head *q;
607 	struct rpc_task *task;
608 
609 	/*
610 	 * Service a batch of tasks from a single owner.
611 	 */
612 	q = &queue->tasks[queue->priority];
613 	if (!list_empty(q) && --queue->nr) {
614 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
615 		goto out;
616 	}
617 
618 	/*
619 	 * Service the next queue.
620 	 */
621 	do {
622 		if (q == &queue->tasks[0])
623 			q = &queue->tasks[queue->maxpriority];
624 		else
625 			q = q - 1;
626 		if (!list_empty(q)) {
627 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
628 			goto new_queue;
629 		}
630 	} while (q != &queue->tasks[queue->priority]);
631 
632 	rpc_reset_waitqueue_priority(queue);
633 	return NULL;
634 
635 new_queue:
636 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
637 out:
638 	return task;
639 }
640 
641 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
642 {
643 	if (RPC_IS_PRIORITY(queue))
644 		return __rpc_find_next_queued_priority(queue);
645 	if (!list_empty(&queue->tasks[0]))
646 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
647 	return NULL;
648 }
649 
650 /*
651  * Wake up the first task on the wait queue.
652  */
653 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
654 		struct rpc_wait_queue *queue,
655 		bool (*func)(struct rpc_task *, void *), void *data)
656 {
657 	struct rpc_task	*task = NULL;
658 
659 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
660 			queue, rpc_qname(queue));
661 	spin_lock(&queue->lock);
662 	task = __rpc_find_next_queued(queue);
663 	if (task != NULL)
664 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
665 				task, func, data);
666 	spin_unlock(&queue->lock);
667 
668 	return task;
669 }
670 
671 /*
672  * Wake up the first task on the wait queue.
673  */
674 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
675 		bool (*func)(struct rpc_task *, void *), void *data)
676 {
677 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
678 }
679 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
680 
681 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
682 {
683 	return true;
684 }
685 
686 /*
687  * Wake up the next task on the wait queue.
688 */
689 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
690 {
691 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
692 }
693 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
694 
695 /**
696  * rpc_wake_up - wake up all rpc_tasks
697  * @queue: rpc_wait_queue on which the tasks are sleeping
698  *
699  * Grabs queue->lock
700  */
701 void rpc_wake_up(struct rpc_wait_queue *queue)
702 {
703 	struct list_head *head;
704 
705 	spin_lock(&queue->lock);
706 	head = &queue->tasks[queue->maxpriority];
707 	for (;;) {
708 		while (!list_empty(head)) {
709 			struct rpc_task *task;
710 			task = list_first_entry(head,
711 					struct rpc_task,
712 					u.tk_wait.list);
713 			rpc_wake_up_task_queue_locked(queue, task);
714 		}
715 		if (head == &queue->tasks[0])
716 			break;
717 		head--;
718 	}
719 	spin_unlock(&queue->lock);
720 }
721 EXPORT_SYMBOL_GPL(rpc_wake_up);
722 
723 /**
724  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
725  * @queue: rpc_wait_queue on which the tasks are sleeping
726  * @status: status value to set
727  *
728  * Grabs queue->lock
729  */
730 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
731 {
732 	struct list_head *head;
733 
734 	spin_lock(&queue->lock);
735 	head = &queue->tasks[queue->maxpriority];
736 	for (;;) {
737 		while (!list_empty(head)) {
738 			struct rpc_task *task;
739 			task = list_first_entry(head,
740 					struct rpc_task,
741 					u.tk_wait.list);
742 			task->tk_status = status;
743 			rpc_wake_up_task_queue_locked(queue, task);
744 		}
745 		if (head == &queue->tasks[0])
746 			break;
747 		head--;
748 	}
749 	spin_unlock(&queue->lock);
750 }
751 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
752 
753 static void __rpc_queue_timer_fn(struct work_struct *work)
754 {
755 	struct rpc_wait_queue *queue = container_of(work,
756 			struct rpc_wait_queue,
757 			timer_list.dwork.work);
758 	struct rpc_task *task, *n;
759 	unsigned long expires, now, timeo;
760 
761 	spin_lock(&queue->lock);
762 	expires = now = jiffies;
763 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
764 		timeo = task->tk_timeout;
765 		if (time_after_eq(now, timeo)) {
766 			dprintk("RPC: %5u timeout\n", task->tk_pid);
767 			task->tk_status = -ETIMEDOUT;
768 			rpc_wake_up_task_queue_locked(queue, task);
769 			continue;
770 		}
771 		if (expires == now || time_after(expires, timeo))
772 			expires = timeo;
773 	}
774 	if (!list_empty(&queue->timer_list.list))
775 		rpc_set_queue_timer(queue, expires);
776 	spin_unlock(&queue->lock);
777 }
778 
779 static void __rpc_atrun(struct rpc_task *task)
780 {
781 	if (task->tk_status == -ETIMEDOUT)
782 		task->tk_status = 0;
783 }
784 
785 /*
786  * Run a task at a later time
787  */
788 void rpc_delay(struct rpc_task *task, unsigned long delay)
789 {
790 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
791 }
792 EXPORT_SYMBOL_GPL(rpc_delay);
793 
794 /*
795  * Helper to call task->tk_ops->rpc_call_prepare
796  */
797 void rpc_prepare_task(struct rpc_task *task)
798 {
799 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
800 }
801 
802 static void
803 rpc_init_task_statistics(struct rpc_task *task)
804 {
805 	/* Initialize retry counters */
806 	task->tk_garb_retry = 2;
807 	task->tk_cred_retry = 2;
808 	task->tk_rebind_retry = 2;
809 
810 	/* starting timestamp */
811 	task->tk_start = ktime_get();
812 }
813 
814 static void
815 rpc_reset_task_statistics(struct rpc_task *task)
816 {
817 	task->tk_timeouts = 0;
818 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
819 	rpc_init_task_statistics(task);
820 }
821 
822 /*
823  * Helper that calls task->tk_ops->rpc_call_done if it exists
824  */
825 void rpc_exit_task(struct rpc_task *task)
826 {
827 	trace_rpc_task_end(task, task->tk_action);
828 	task->tk_action = NULL;
829 	if (task->tk_ops->rpc_count_stats)
830 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
831 	else if (task->tk_client)
832 		rpc_count_iostats(task, task->tk_client->cl_metrics);
833 	if (task->tk_ops->rpc_call_done != NULL) {
834 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
835 		if (task->tk_action != NULL) {
836 			/* Always release the RPC slot and buffer memory */
837 			xprt_release(task);
838 			rpc_reset_task_statistics(task);
839 		}
840 	}
841 }
842 
843 void rpc_signal_task(struct rpc_task *task)
844 {
845 	struct rpc_wait_queue *queue;
846 
847 	if (!RPC_IS_ACTIVATED(task))
848 		return;
849 
850 	trace_rpc_task_signalled(task, task->tk_action);
851 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
852 	smp_mb__after_atomic();
853 	queue = READ_ONCE(task->tk_waitqueue);
854 	if (queue)
855 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
856 }
857 
858 void rpc_exit(struct rpc_task *task, int status)
859 {
860 	task->tk_status = status;
861 	task->tk_action = rpc_exit_task;
862 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
863 }
864 EXPORT_SYMBOL_GPL(rpc_exit);
865 
866 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
867 {
868 	if (ops->rpc_release != NULL)
869 		ops->rpc_release(calldata);
870 }
871 
872 /*
873  * This is the RPC `scheduler' (or rather, the finite state machine).
874  */
875 static void __rpc_execute(struct rpc_task *task)
876 {
877 	struct rpc_wait_queue *queue;
878 	int task_is_async = RPC_IS_ASYNC(task);
879 	int status = 0;
880 
881 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
882 			task->tk_pid, task->tk_flags);
883 
884 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
885 	if (RPC_IS_QUEUED(task))
886 		return;
887 
888 	for (;;) {
889 		void (*do_action)(struct rpc_task *);
890 
891 		/*
892 		 * Perform the next FSM step or a pending callback.
893 		 *
894 		 * tk_action may be NULL if the task has been killed.
895 		 * In particular, note that rpc_killall_tasks may
896 		 * do this at any time, so beware when dereferencing.
897 		 */
898 		do_action = task->tk_action;
899 		if (task->tk_callback) {
900 			do_action = task->tk_callback;
901 			task->tk_callback = NULL;
902 		}
903 		if (!do_action)
904 			break;
905 		trace_rpc_task_run_action(task, do_action);
906 		do_action(task);
907 
908 		/*
909 		 * Lockless check for whether task is sleeping or not.
910 		 */
911 		if (!RPC_IS_QUEUED(task))
912 			continue;
913 
914 		/*
915 		 * Signalled tasks should exit rather than sleep.
916 		 */
917 		if (RPC_SIGNALLED(task)) {
918 			task->tk_rpc_status = -ERESTARTSYS;
919 			rpc_exit(task, -ERESTARTSYS);
920 		}
921 
922 		/*
923 		 * The queue->lock protects against races with
924 		 * rpc_make_runnable().
925 		 *
926 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
927 		 * rpc_task, rpc_make_runnable() can assign it to a
928 		 * different workqueue. We therefore cannot assume that the
929 		 * rpc_task pointer may still be dereferenced.
930 		 */
931 		queue = task->tk_waitqueue;
932 		spin_lock(&queue->lock);
933 		if (!RPC_IS_QUEUED(task)) {
934 			spin_unlock(&queue->lock);
935 			continue;
936 		}
937 		rpc_clear_running(task);
938 		spin_unlock(&queue->lock);
939 		if (task_is_async)
940 			return;
941 
942 		/* sync task: sleep here */
943 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
944 		status = out_of_line_wait_on_bit(&task->tk_runstate,
945 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
946 				TASK_KILLABLE);
947 		if (status < 0) {
948 			/*
949 			 * When a sync task receives a signal, it exits with
950 			 * -ERESTARTSYS. In order to catch any callbacks that
951 			 * clean up after sleeping on some queue, we don't
952 			 * break the loop here, but go around once more.
953 			 */
954 			trace_rpc_task_signalled(task, task->tk_action);
955 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
956 			task->tk_rpc_status = -ERESTARTSYS;
957 			rpc_exit(task, -ERESTARTSYS);
958 		}
959 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
960 	}
961 
962 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
963 			task->tk_status);
964 	/* Release all resources associated with the task */
965 	rpc_release_task(task);
966 }
967 
968 /*
969  * User-visible entry point to the scheduler.
970  *
971  * This may be called recursively if e.g. an async NFS task updates
972  * the attributes and finds that dirty pages must be flushed.
973  * NOTE: Upon exit of this function the task is guaranteed to be
974  *	 released. In particular note that tk_release() will have
975  *	 been called, so your task memory may have been freed.
976  */
977 void rpc_execute(struct rpc_task *task)
978 {
979 	bool is_async = RPC_IS_ASYNC(task);
980 
981 	rpc_set_active(task);
982 	rpc_make_runnable(rpciod_workqueue, task);
983 	if (!is_async)
984 		__rpc_execute(task);
985 }
986 
987 static void rpc_async_schedule(struct work_struct *work)
988 {
989 	unsigned int pflags = memalloc_nofs_save();
990 
991 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
992 	memalloc_nofs_restore(pflags);
993 }
994 
995 /**
996  * rpc_malloc - allocate RPC buffer resources
997  * @task: RPC task
998  *
999  * A single memory region is allocated, which is split between the
1000  * RPC call and RPC reply that this task is being used for. When
1001  * this RPC is retired, the memory is released by calling rpc_free.
1002  *
1003  * To prevent rpciod from hanging, this allocator never sleeps,
1004  * returning -ENOMEM and suppressing warning if the request cannot
1005  * be serviced immediately. The caller can arrange to sleep in a
1006  * way that is safe for rpciod.
1007  *
1008  * Most requests are 'small' (under 2KiB) and can be serviced from a
1009  * mempool, ensuring that NFS reads and writes can always proceed,
1010  * and that there is good locality of reference for these buffers.
1011  */
1012 int rpc_malloc(struct rpc_task *task)
1013 {
1014 	struct rpc_rqst *rqst = task->tk_rqstp;
1015 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1016 	struct rpc_buffer *buf;
1017 	gfp_t gfp = GFP_NOFS;
1018 
1019 	if (RPC_IS_SWAPPER(task))
1020 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1021 
1022 	size += sizeof(struct rpc_buffer);
1023 	if (size <= RPC_BUFFER_MAXSIZE)
1024 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1025 	else
1026 		buf = kmalloc(size, gfp);
1027 
1028 	if (!buf)
1029 		return -ENOMEM;
1030 
1031 	buf->len = size;
1032 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1033 			task->tk_pid, size, buf);
1034 	rqst->rq_buffer = buf->data;
1035 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(rpc_malloc);
1039 
1040 /**
1041  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1042  * @task: RPC task
1043  *
1044  */
1045 void rpc_free(struct rpc_task *task)
1046 {
1047 	void *buffer = task->tk_rqstp->rq_buffer;
1048 	size_t size;
1049 	struct rpc_buffer *buf;
1050 
1051 	buf = container_of(buffer, struct rpc_buffer, data);
1052 	size = buf->len;
1053 
1054 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1055 			size, buf);
1056 
1057 	if (size <= RPC_BUFFER_MAXSIZE)
1058 		mempool_free(buf, rpc_buffer_mempool);
1059 	else
1060 		kfree(buf);
1061 }
1062 EXPORT_SYMBOL_GPL(rpc_free);
1063 
1064 /*
1065  * Creation and deletion of RPC task structures
1066  */
1067 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1068 {
1069 	memset(task, 0, sizeof(*task));
1070 	atomic_set(&task->tk_count, 1);
1071 	task->tk_flags  = task_setup_data->flags;
1072 	task->tk_ops = task_setup_data->callback_ops;
1073 	task->tk_calldata = task_setup_data->callback_data;
1074 	INIT_LIST_HEAD(&task->tk_task);
1075 
1076 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1077 	task->tk_owner = current->tgid;
1078 
1079 	/* Initialize workqueue for async tasks */
1080 	task->tk_workqueue = task_setup_data->workqueue;
1081 
1082 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1083 			xprt_get(task_setup_data->rpc_xprt));
1084 
1085 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1086 
1087 	if (task->tk_ops->rpc_call_prepare != NULL)
1088 		task->tk_action = rpc_prepare_task;
1089 
1090 	rpc_init_task_statistics(task);
1091 
1092 	dprintk("RPC:       new task initialized, procpid %u\n",
1093 				task_pid_nr(current));
1094 }
1095 
1096 static struct rpc_task *
1097 rpc_alloc_task(void)
1098 {
1099 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1100 }
1101 
1102 /*
1103  * Create a new task for the specified client.
1104  */
1105 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1106 {
1107 	struct rpc_task	*task = setup_data->task;
1108 	unsigned short flags = 0;
1109 
1110 	if (task == NULL) {
1111 		task = rpc_alloc_task();
1112 		flags = RPC_TASK_DYNAMIC;
1113 	}
1114 
1115 	rpc_init_task(task, setup_data);
1116 	task->tk_flags |= flags;
1117 	dprintk("RPC:       allocated task %p\n", task);
1118 	return task;
1119 }
1120 
1121 /*
1122  * rpc_free_task - release rpc task and perform cleanups
1123  *
1124  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1125  * in order to work around a workqueue dependency issue.
1126  *
1127  * Tejun Heo states:
1128  * "Workqueue currently considers two work items to be the same if they're
1129  * on the same address and won't execute them concurrently - ie. it
1130  * makes a work item which is queued again while being executed wait
1131  * for the previous execution to complete.
1132  *
1133  * If a work function frees the work item, and then waits for an event
1134  * which should be performed by another work item and *that* work item
1135  * recycles the freed work item, it can create a false dependency loop.
1136  * There really is no reliable way to detect this short of verifying
1137  * every memory free."
1138  *
1139  */
1140 static void rpc_free_task(struct rpc_task *task)
1141 {
1142 	unsigned short tk_flags = task->tk_flags;
1143 
1144 	put_rpccred(task->tk_op_cred);
1145 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1146 
1147 	if (tk_flags & RPC_TASK_DYNAMIC) {
1148 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1149 		mempool_free(task, rpc_task_mempool);
1150 	}
1151 }
1152 
1153 static void rpc_async_release(struct work_struct *work)
1154 {
1155 	unsigned int pflags = memalloc_nofs_save();
1156 
1157 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1158 	memalloc_nofs_restore(pflags);
1159 }
1160 
1161 static void rpc_release_resources_task(struct rpc_task *task)
1162 {
1163 	xprt_release(task);
1164 	if (task->tk_msg.rpc_cred) {
1165 		put_cred(task->tk_msg.rpc_cred);
1166 		task->tk_msg.rpc_cred = NULL;
1167 	}
1168 	rpc_task_release_client(task);
1169 }
1170 
1171 static void rpc_final_put_task(struct rpc_task *task,
1172 		struct workqueue_struct *q)
1173 {
1174 	if (q != NULL) {
1175 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1176 		queue_work(q, &task->u.tk_work);
1177 	} else
1178 		rpc_free_task(task);
1179 }
1180 
1181 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1182 {
1183 	if (atomic_dec_and_test(&task->tk_count)) {
1184 		rpc_release_resources_task(task);
1185 		rpc_final_put_task(task, q);
1186 	}
1187 }
1188 
1189 void rpc_put_task(struct rpc_task *task)
1190 {
1191 	rpc_do_put_task(task, NULL);
1192 }
1193 EXPORT_SYMBOL_GPL(rpc_put_task);
1194 
1195 void rpc_put_task_async(struct rpc_task *task)
1196 {
1197 	rpc_do_put_task(task, task->tk_workqueue);
1198 }
1199 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1200 
1201 static void rpc_release_task(struct rpc_task *task)
1202 {
1203 	dprintk("RPC: %5u release task\n", task->tk_pid);
1204 
1205 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1206 
1207 	rpc_release_resources_task(task);
1208 
1209 	/*
1210 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1211 	 * so it should be safe to use task->tk_count as a test for whether
1212 	 * or not any other processes still hold references to our rpc_task.
1213 	 */
1214 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1215 		/* Wake up anyone who may be waiting for task completion */
1216 		if (!rpc_complete_task(task))
1217 			return;
1218 	} else {
1219 		if (!atomic_dec_and_test(&task->tk_count))
1220 			return;
1221 	}
1222 	rpc_final_put_task(task, task->tk_workqueue);
1223 }
1224 
1225 int rpciod_up(void)
1226 {
1227 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1228 }
1229 
1230 void rpciod_down(void)
1231 {
1232 	module_put(THIS_MODULE);
1233 }
1234 
1235 /*
1236  * Start up the rpciod workqueue.
1237  */
1238 static int rpciod_start(void)
1239 {
1240 	struct workqueue_struct *wq;
1241 
1242 	/*
1243 	 * Create the rpciod thread and wait for it to start.
1244 	 */
1245 	dprintk("RPC:       creating workqueue rpciod\n");
1246 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1247 	if (!wq)
1248 		goto out_failed;
1249 	rpciod_workqueue = wq;
1250 	/* Note: highpri because network receive is latency sensitive */
1251 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1252 	if (!wq)
1253 		goto free_rpciod;
1254 	xprtiod_workqueue = wq;
1255 	return 1;
1256 free_rpciod:
1257 	wq = rpciod_workqueue;
1258 	rpciod_workqueue = NULL;
1259 	destroy_workqueue(wq);
1260 out_failed:
1261 	return 0;
1262 }
1263 
1264 static void rpciod_stop(void)
1265 {
1266 	struct workqueue_struct *wq = NULL;
1267 
1268 	if (rpciod_workqueue == NULL)
1269 		return;
1270 	dprintk("RPC:       destroying workqueue rpciod\n");
1271 
1272 	wq = rpciod_workqueue;
1273 	rpciod_workqueue = NULL;
1274 	destroy_workqueue(wq);
1275 	wq = xprtiod_workqueue;
1276 	xprtiod_workqueue = NULL;
1277 	destroy_workqueue(wq);
1278 }
1279 
1280 void
1281 rpc_destroy_mempool(void)
1282 {
1283 	rpciod_stop();
1284 	mempool_destroy(rpc_buffer_mempool);
1285 	mempool_destroy(rpc_task_mempool);
1286 	kmem_cache_destroy(rpc_task_slabp);
1287 	kmem_cache_destroy(rpc_buffer_slabp);
1288 	rpc_destroy_wait_queue(&delay_queue);
1289 }
1290 
1291 int
1292 rpc_init_mempool(void)
1293 {
1294 	/*
1295 	 * The following is not strictly a mempool initialisation,
1296 	 * but there is no harm in doing it here
1297 	 */
1298 	rpc_init_wait_queue(&delay_queue, "delayq");
1299 	if (!rpciod_start())
1300 		goto err_nomem;
1301 
1302 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1303 					     sizeof(struct rpc_task),
1304 					     0, SLAB_HWCACHE_ALIGN,
1305 					     NULL);
1306 	if (!rpc_task_slabp)
1307 		goto err_nomem;
1308 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1309 					     RPC_BUFFER_MAXSIZE,
1310 					     0, SLAB_HWCACHE_ALIGN,
1311 					     NULL);
1312 	if (!rpc_buffer_slabp)
1313 		goto err_nomem;
1314 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1315 						    rpc_task_slabp);
1316 	if (!rpc_task_mempool)
1317 		goto err_nomem;
1318 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1319 						      rpc_buffer_slabp);
1320 	if (!rpc_buffer_mempool)
1321 		goto err_nomem;
1322 	return 0;
1323 err_nomem:
1324 	rpc_destroy_mempool();
1325 	return -ENOMEM;
1326 }
1327