xref: /openbmc/linux/net/sunrpc/sched.c (revision 861e10be)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58 
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 	if (task->tk_timeout == 0)
68 		return;
69 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 	task->tk_timeout = 0;
71 	list_del(&task->u.tk_wait.timer_list);
72 	if (list_empty(&queue->timer_list.list))
73 		del_timer(&queue->timer_list.timer);
74 }
75 
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 	queue->timer_list.expires = expires;
80 	mod_timer(&queue->timer_list.timer, expires);
81 }
82 
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 	if (!task->tk_timeout)
90 		return;
91 
92 	dprintk("RPC: %5u setting alarm for %lu ms\n",
93 			task->tk_pid, task->tk_timeout * 1000 / HZ);
94 
95 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100 
101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103 	struct list_head *q = &queue->tasks[queue->priority];
104 	struct rpc_task *task;
105 
106 	if (!list_empty(q)) {
107 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108 		if (task->tk_owner == queue->owner)
109 			list_move_tail(&task->u.tk_wait.list, q);
110 	}
111 }
112 
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 	if (queue->priority != priority) {
116 		/* Fairness: rotate the list when changing priority */
117 		rpc_rotate_queue_owner(queue);
118 		queue->priority = priority;
119 	}
120 }
121 
122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124 	queue->owner = pid;
125 	queue->nr = RPC_BATCH_COUNT;
126 }
127 
128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
131 	rpc_set_waitqueue_owner(queue, 0);
132 }
133 
134 /*
135  * Add new request to a priority queue.
136  */
137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138 		struct rpc_task *task,
139 		unsigned char queue_priority)
140 {
141 	struct list_head *q;
142 	struct rpc_task *t;
143 
144 	INIT_LIST_HEAD(&task->u.tk_wait.links);
145 	if (unlikely(queue_priority > queue->maxpriority))
146 		queue_priority = queue->maxpriority;
147 	if (queue_priority > queue->priority)
148 		rpc_set_waitqueue_priority(queue, queue_priority);
149 	q = &queue->tasks[queue_priority];
150 	list_for_each_entry(t, q, u.tk_wait.list) {
151 		if (t->tk_owner == task->tk_owner) {
152 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 			return;
154 		}
155 	}
156 	list_add_tail(&task->u.tk_wait.list, q);
157 }
158 
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168 		struct rpc_task *task,
169 		unsigned char queue_priority)
170 {
171 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
172 	if (RPC_IS_QUEUED(task))
173 		return;
174 
175 	if (RPC_IS_PRIORITY(queue))
176 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
177 	else if (RPC_IS_SWAPPER(task))
178 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179 	else
180 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181 	task->tk_waitqueue = queue;
182 	queue->qlen++;
183 	rpc_set_queued(task);
184 
185 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
186 			task->tk_pid, queue, rpc_qname(queue));
187 }
188 
189 /*
190  * Remove request from a priority queue.
191  */
192 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
193 {
194 	struct rpc_task *t;
195 
196 	if (!list_empty(&task->u.tk_wait.links)) {
197 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
198 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
199 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
200 	}
201 }
202 
203 /*
204  * Remove request from queue.
205  * Note: must be called with spin lock held.
206  */
207 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
208 {
209 	__rpc_disable_timer(queue, task);
210 	if (RPC_IS_PRIORITY(queue))
211 		__rpc_remove_wait_queue_priority(task);
212 	list_del(&task->u.tk_wait.list);
213 	queue->qlen--;
214 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
215 			task->tk_pid, queue, rpc_qname(queue));
216 }
217 
218 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
219 {
220 	int i;
221 
222 	spin_lock_init(&queue->lock);
223 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
224 		INIT_LIST_HEAD(&queue->tasks[i]);
225 	queue->maxpriority = nr_queues - 1;
226 	rpc_reset_waitqueue_priority(queue);
227 	queue->qlen = 0;
228 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
229 	INIT_LIST_HEAD(&queue->timer_list.list);
230 	rpc_assign_waitqueue_name(queue, qname);
231 }
232 
233 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
234 {
235 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
236 }
237 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
238 
239 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
240 {
241 	__rpc_init_priority_wait_queue(queue, qname, 1);
242 }
243 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
244 
245 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
246 {
247 	del_timer_sync(&queue->timer_list.timer);
248 }
249 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
250 
251 static int rpc_wait_bit_killable(void *word)
252 {
253 	if (fatal_signal_pending(current))
254 		return -ERESTARTSYS;
255 	freezable_schedule();
256 	return 0;
257 }
258 
259 #ifdef RPC_DEBUG
260 static void rpc_task_set_debuginfo(struct rpc_task *task)
261 {
262 	static atomic_t rpc_pid;
263 
264 	task->tk_pid = atomic_inc_return(&rpc_pid);
265 }
266 #else
267 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
268 {
269 }
270 #endif
271 
272 static void rpc_set_active(struct rpc_task *task)
273 {
274 	trace_rpc_task_begin(task->tk_client, task, NULL);
275 
276 	rpc_task_set_debuginfo(task);
277 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
278 }
279 
280 /*
281  * Mark an RPC call as having completed by clearing the 'active' bit
282  * and then waking up all tasks that were sleeping.
283  */
284 static int rpc_complete_task(struct rpc_task *task)
285 {
286 	void *m = &task->tk_runstate;
287 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
288 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
289 	unsigned long flags;
290 	int ret;
291 
292 	trace_rpc_task_complete(task->tk_client, task, NULL);
293 
294 	spin_lock_irqsave(&wq->lock, flags);
295 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
296 	ret = atomic_dec_and_test(&task->tk_count);
297 	if (waitqueue_active(wq))
298 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
299 	spin_unlock_irqrestore(&wq->lock, flags);
300 	return ret;
301 }
302 
303 /*
304  * Allow callers to wait for completion of an RPC call
305  *
306  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
307  * to enforce taking of the wq->lock and hence avoid races with
308  * rpc_complete_task().
309  */
310 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
311 {
312 	if (action == NULL)
313 		action = rpc_wait_bit_killable;
314 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
315 			action, TASK_KILLABLE);
316 }
317 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
318 
319 /*
320  * Make an RPC task runnable.
321  *
322  * Note: If the task is ASYNC, and is being made runnable after sitting on an
323  * rpc_wait_queue, this must be called with the queue spinlock held to protect
324  * the wait queue operation.
325  */
326 static void rpc_make_runnable(struct rpc_task *task)
327 {
328 	rpc_clear_queued(task);
329 	if (rpc_test_and_set_running(task))
330 		return;
331 	if (RPC_IS_ASYNC(task)) {
332 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
333 		queue_work(rpciod_workqueue, &task->u.tk_work);
334 	} else
335 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
336 }
337 
338 /*
339  * Prepare for sleeping on a wait queue.
340  * By always appending tasks to the list we ensure FIFO behavior.
341  * NB: An RPC task will only receive interrupt-driven events as long
342  * as it's on a wait queue.
343  */
344 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
345 		struct rpc_task *task,
346 		rpc_action action,
347 		unsigned char queue_priority)
348 {
349 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
350 			task->tk_pid, rpc_qname(q), jiffies);
351 
352 	trace_rpc_task_sleep(task->tk_client, task, q);
353 
354 	__rpc_add_wait_queue(q, task, queue_priority);
355 
356 	WARN_ON_ONCE(task->tk_callback != NULL);
357 	task->tk_callback = action;
358 	__rpc_add_timer(q, task);
359 }
360 
361 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
362 				rpc_action action)
363 {
364 	/* We shouldn't ever put an inactive task to sleep */
365 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
366 	if (!RPC_IS_ACTIVATED(task)) {
367 		task->tk_status = -EIO;
368 		rpc_put_task_async(task);
369 		return;
370 	}
371 
372 	/*
373 	 * Protect the queue operations.
374 	 */
375 	spin_lock_bh(&q->lock);
376 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
377 	spin_unlock_bh(&q->lock);
378 }
379 EXPORT_SYMBOL_GPL(rpc_sleep_on);
380 
381 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
382 		rpc_action action, int priority)
383 {
384 	/* We shouldn't ever put an inactive task to sleep */
385 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
386 	if (!RPC_IS_ACTIVATED(task)) {
387 		task->tk_status = -EIO;
388 		rpc_put_task_async(task);
389 		return;
390 	}
391 
392 	/*
393 	 * Protect the queue operations.
394 	 */
395 	spin_lock_bh(&q->lock);
396 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
397 	spin_unlock_bh(&q->lock);
398 }
399 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
400 
401 /**
402  * __rpc_do_wake_up_task - wake up a single rpc_task
403  * @queue: wait queue
404  * @task: task to be woken up
405  *
406  * Caller must hold queue->lock, and have cleared the task queued flag.
407  */
408 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
409 {
410 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
411 			task->tk_pid, jiffies);
412 
413 	/* Has the task been executed yet? If not, we cannot wake it up! */
414 	if (!RPC_IS_ACTIVATED(task)) {
415 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
416 		return;
417 	}
418 
419 	trace_rpc_task_wakeup(task->tk_client, task, queue);
420 
421 	__rpc_remove_wait_queue(queue, task);
422 
423 	rpc_make_runnable(task);
424 
425 	dprintk("RPC:       __rpc_wake_up_task done\n");
426 }
427 
428 /*
429  * Wake up a queued task while the queue lock is being held
430  */
431 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
432 {
433 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
434 		__rpc_do_wake_up_task(queue, task);
435 }
436 
437 /*
438  * Tests whether rpc queue is empty
439  */
440 int rpc_queue_empty(struct rpc_wait_queue *queue)
441 {
442 	int res;
443 
444 	spin_lock_bh(&queue->lock);
445 	res = queue->qlen;
446 	spin_unlock_bh(&queue->lock);
447 	return res == 0;
448 }
449 EXPORT_SYMBOL_GPL(rpc_queue_empty);
450 
451 /*
452  * Wake up a task on a specific queue
453  */
454 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
455 {
456 	spin_lock_bh(&queue->lock);
457 	rpc_wake_up_task_queue_locked(queue, task);
458 	spin_unlock_bh(&queue->lock);
459 }
460 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
461 
462 /*
463  * Wake up the next task on a priority queue.
464  */
465 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
466 {
467 	struct list_head *q;
468 	struct rpc_task *task;
469 
470 	/*
471 	 * Service a batch of tasks from a single owner.
472 	 */
473 	q = &queue->tasks[queue->priority];
474 	if (!list_empty(q)) {
475 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
476 		if (queue->owner == task->tk_owner) {
477 			if (--queue->nr)
478 				goto out;
479 			list_move_tail(&task->u.tk_wait.list, q);
480 		}
481 		/*
482 		 * Check if we need to switch queues.
483 		 */
484 		goto new_owner;
485 	}
486 
487 	/*
488 	 * Service the next queue.
489 	 */
490 	do {
491 		if (q == &queue->tasks[0])
492 			q = &queue->tasks[queue->maxpriority];
493 		else
494 			q = q - 1;
495 		if (!list_empty(q)) {
496 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
497 			goto new_queue;
498 		}
499 	} while (q != &queue->tasks[queue->priority]);
500 
501 	rpc_reset_waitqueue_priority(queue);
502 	return NULL;
503 
504 new_queue:
505 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
506 new_owner:
507 	rpc_set_waitqueue_owner(queue, task->tk_owner);
508 out:
509 	return task;
510 }
511 
512 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
513 {
514 	if (RPC_IS_PRIORITY(queue))
515 		return __rpc_find_next_queued_priority(queue);
516 	if (!list_empty(&queue->tasks[0]))
517 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
518 	return NULL;
519 }
520 
521 /*
522  * Wake up the first task on the wait queue.
523  */
524 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
525 		bool (*func)(struct rpc_task *, void *), void *data)
526 {
527 	struct rpc_task	*task = NULL;
528 
529 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
530 			queue, rpc_qname(queue));
531 	spin_lock_bh(&queue->lock);
532 	task = __rpc_find_next_queued(queue);
533 	if (task != NULL) {
534 		if (func(task, data))
535 			rpc_wake_up_task_queue_locked(queue, task);
536 		else
537 			task = NULL;
538 	}
539 	spin_unlock_bh(&queue->lock);
540 
541 	return task;
542 }
543 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
544 
545 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
546 {
547 	return true;
548 }
549 
550 /*
551  * Wake up the next task on the wait queue.
552 */
553 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
554 {
555 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
556 }
557 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
558 
559 /**
560  * rpc_wake_up - wake up all rpc_tasks
561  * @queue: rpc_wait_queue on which the tasks are sleeping
562  *
563  * Grabs queue->lock
564  */
565 void rpc_wake_up(struct rpc_wait_queue *queue)
566 {
567 	struct list_head *head;
568 
569 	spin_lock_bh(&queue->lock);
570 	head = &queue->tasks[queue->maxpriority];
571 	for (;;) {
572 		while (!list_empty(head)) {
573 			struct rpc_task *task;
574 			task = list_first_entry(head,
575 					struct rpc_task,
576 					u.tk_wait.list);
577 			rpc_wake_up_task_queue_locked(queue, task);
578 		}
579 		if (head == &queue->tasks[0])
580 			break;
581 		head--;
582 	}
583 	spin_unlock_bh(&queue->lock);
584 }
585 EXPORT_SYMBOL_GPL(rpc_wake_up);
586 
587 /**
588  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
589  * @queue: rpc_wait_queue on which the tasks are sleeping
590  * @status: status value to set
591  *
592  * Grabs queue->lock
593  */
594 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
595 {
596 	struct list_head *head;
597 
598 	spin_lock_bh(&queue->lock);
599 	head = &queue->tasks[queue->maxpriority];
600 	for (;;) {
601 		while (!list_empty(head)) {
602 			struct rpc_task *task;
603 			task = list_first_entry(head,
604 					struct rpc_task,
605 					u.tk_wait.list);
606 			task->tk_status = status;
607 			rpc_wake_up_task_queue_locked(queue, task);
608 		}
609 		if (head == &queue->tasks[0])
610 			break;
611 		head--;
612 	}
613 	spin_unlock_bh(&queue->lock);
614 }
615 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
616 
617 static void __rpc_queue_timer_fn(unsigned long ptr)
618 {
619 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
620 	struct rpc_task *task, *n;
621 	unsigned long expires, now, timeo;
622 
623 	spin_lock(&queue->lock);
624 	expires = now = jiffies;
625 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
626 		timeo = task->u.tk_wait.expires;
627 		if (time_after_eq(now, timeo)) {
628 			dprintk("RPC: %5u timeout\n", task->tk_pid);
629 			task->tk_status = -ETIMEDOUT;
630 			rpc_wake_up_task_queue_locked(queue, task);
631 			continue;
632 		}
633 		if (expires == now || time_after(expires, timeo))
634 			expires = timeo;
635 	}
636 	if (!list_empty(&queue->timer_list.list))
637 		rpc_set_queue_timer(queue, expires);
638 	spin_unlock(&queue->lock);
639 }
640 
641 static void __rpc_atrun(struct rpc_task *task)
642 {
643 	task->tk_status = 0;
644 }
645 
646 /*
647  * Run a task at a later time
648  */
649 void rpc_delay(struct rpc_task *task, unsigned long delay)
650 {
651 	task->tk_timeout = delay;
652 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
653 }
654 EXPORT_SYMBOL_GPL(rpc_delay);
655 
656 /*
657  * Helper to call task->tk_ops->rpc_call_prepare
658  */
659 void rpc_prepare_task(struct rpc_task *task)
660 {
661 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
662 }
663 
664 static void
665 rpc_init_task_statistics(struct rpc_task *task)
666 {
667 	/* Initialize retry counters */
668 	task->tk_garb_retry = 2;
669 	task->tk_cred_retry = 2;
670 	task->tk_rebind_retry = 2;
671 
672 	/* starting timestamp */
673 	task->tk_start = ktime_get();
674 }
675 
676 static void
677 rpc_reset_task_statistics(struct rpc_task *task)
678 {
679 	task->tk_timeouts = 0;
680 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
681 
682 	rpc_init_task_statistics(task);
683 }
684 
685 /*
686  * Helper that calls task->tk_ops->rpc_call_done if it exists
687  */
688 void rpc_exit_task(struct rpc_task *task)
689 {
690 	task->tk_action = NULL;
691 	if (task->tk_ops->rpc_call_done != NULL) {
692 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
693 		if (task->tk_action != NULL) {
694 			WARN_ON(RPC_ASSASSINATED(task));
695 			/* Always release the RPC slot and buffer memory */
696 			xprt_release(task);
697 			rpc_reset_task_statistics(task);
698 		}
699 	}
700 }
701 
702 void rpc_exit(struct rpc_task *task, int status)
703 {
704 	task->tk_status = status;
705 	task->tk_action = rpc_exit_task;
706 	if (RPC_IS_QUEUED(task))
707 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
708 }
709 EXPORT_SYMBOL_GPL(rpc_exit);
710 
711 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
712 {
713 	if (ops->rpc_release != NULL)
714 		ops->rpc_release(calldata);
715 }
716 
717 /*
718  * This is the RPC `scheduler' (or rather, the finite state machine).
719  */
720 static void __rpc_execute(struct rpc_task *task)
721 {
722 	struct rpc_wait_queue *queue;
723 	int task_is_async = RPC_IS_ASYNC(task);
724 	int status = 0;
725 
726 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
727 			task->tk_pid, task->tk_flags);
728 
729 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
730 	if (RPC_IS_QUEUED(task))
731 		return;
732 
733 	for (;;) {
734 		void (*do_action)(struct rpc_task *);
735 
736 		/*
737 		 * Execute any pending callback first.
738 		 */
739 		do_action = task->tk_callback;
740 		task->tk_callback = NULL;
741 		if (do_action == NULL) {
742 			/*
743 			 * Perform the next FSM step.
744 			 * tk_action may be NULL if the task has been killed.
745 			 * In particular, note that rpc_killall_tasks may
746 			 * do this at any time, so beware when dereferencing.
747 			 */
748 			do_action = task->tk_action;
749 			if (do_action == NULL)
750 				break;
751 		}
752 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
753 		do_action(task);
754 
755 		/*
756 		 * Lockless check for whether task is sleeping or not.
757 		 */
758 		if (!RPC_IS_QUEUED(task))
759 			continue;
760 		/*
761 		 * The queue->lock protects against races with
762 		 * rpc_make_runnable().
763 		 *
764 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
765 		 * rpc_task, rpc_make_runnable() can assign it to a
766 		 * different workqueue. We therefore cannot assume that the
767 		 * rpc_task pointer may still be dereferenced.
768 		 */
769 		queue = task->tk_waitqueue;
770 		spin_lock_bh(&queue->lock);
771 		if (!RPC_IS_QUEUED(task)) {
772 			spin_unlock_bh(&queue->lock);
773 			continue;
774 		}
775 		rpc_clear_running(task);
776 		spin_unlock_bh(&queue->lock);
777 		if (task_is_async)
778 			return;
779 
780 		/* sync task: sleep here */
781 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
782 		status = out_of_line_wait_on_bit(&task->tk_runstate,
783 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
784 				TASK_KILLABLE);
785 		if (status == -ERESTARTSYS) {
786 			/*
787 			 * When a sync task receives a signal, it exits with
788 			 * -ERESTARTSYS. In order to catch any callbacks that
789 			 * clean up after sleeping on some queue, we don't
790 			 * break the loop here, but go around once more.
791 			 */
792 			dprintk("RPC: %5u got signal\n", task->tk_pid);
793 			task->tk_flags |= RPC_TASK_KILLED;
794 			rpc_exit(task, -ERESTARTSYS);
795 		}
796 		rpc_set_running(task);
797 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
798 	}
799 
800 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
801 			task->tk_status);
802 	/* Release all resources associated with the task */
803 	rpc_release_task(task);
804 }
805 
806 /*
807  * User-visible entry point to the scheduler.
808  *
809  * This may be called recursively if e.g. an async NFS task updates
810  * the attributes and finds that dirty pages must be flushed.
811  * NOTE: Upon exit of this function the task is guaranteed to be
812  *	 released. In particular note that tk_release() will have
813  *	 been called, so your task memory may have been freed.
814  */
815 void rpc_execute(struct rpc_task *task)
816 {
817 	rpc_set_active(task);
818 	rpc_make_runnable(task);
819 	if (!RPC_IS_ASYNC(task))
820 		__rpc_execute(task);
821 }
822 
823 static void rpc_async_schedule(struct work_struct *work)
824 {
825 	current->flags |= PF_FSTRANS;
826 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
827 	current->flags &= ~PF_FSTRANS;
828 }
829 
830 /**
831  * rpc_malloc - allocate an RPC buffer
832  * @task: RPC task that will use this buffer
833  * @size: requested byte size
834  *
835  * To prevent rpciod from hanging, this allocator never sleeps,
836  * returning NULL if the request cannot be serviced immediately.
837  * The caller can arrange to sleep in a way that is safe for rpciod.
838  *
839  * Most requests are 'small' (under 2KiB) and can be serviced from a
840  * mempool, ensuring that NFS reads and writes can always proceed,
841  * and that there is good locality of reference for these buffers.
842  *
843  * In order to avoid memory starvation triggering more writebacks of
844  * NFS requests, we avoid using GFP_KERNEL.
845  */
846 void *rpc_malloc(struct rpc_task *task, size_t size)
847 {
848 	struct rpc_buffer *buf;
849 	gfp_t gfp = GFP_NOWAIT;
850 
851 	if (RPC_IS_SWAPPER(task))
852 		gfp |= __GFP_MEMALLOC;
853 
854 	size += sizeof(struct rpc_buffer);
855 	if (size <= RPC_BUFFER_MAXSIZE)
856 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
857 	else
858 		buf = kmalloc(size, gfp);
859 
860 	if (!buf)
861 		return NULL;
862 
863 	buf->len = size;
864 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
865 			task->tk_pid, size, buf);
866 	return &buf->data;
867 }
868 EXPORT_SYMBOL_GPL(rpc_malloc);
869 
870 /**
871  * rpc_free - free buffer allocated via rpc_malloc
872  * @buffer: buffer to free
873  *
874  */
875 void rpc_free(void *buffer)
876 {
877 	size_t size;
878 	struct rpc_buffer *buf;
879 
880 	if (!buffer)
881 		return;
882 
883 	buf = container_of(buffer, struct rpc_buffer, data);
884 	size = buf->len;
885 
886 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
887 			size, buf);
888 
889 	if (size <= RPC_BUFFER_MAXSIZE)
890 		mempool_free(buf, rpc_buffer_mempool);
891 	else
892 		kfree(buf);
893 }
894 EXPORT_SYMBOL_GPL(rpc_free);
895 
896 /*
897  * Creation and deletion of RPC task structures
898  */
899 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
900 {
901 	memset(task, 0, sizeof(*task));
902 	atomic_set(&task->tk_count, 1);
903 	task->tk_flags  = task_setup_data->flags;
904 	task->tk_ops = task_setup_data->callback_ops;
905 	task->tk_calldata = task_setup_data->callback_data;
906 	INIT_LIST_HEAD(&task->tk_task);
907 
908 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
909 	task->tk_owner = current->tgid;
910 
911 	/* Initialize workqueue for async tasks */
912 	task->tk_workqueue = task_setup_data->workqueue;
913 
914 	if (task->tk_ops->rpc_call_prepare != NULL)
915 		task->tk_action = rpc_prepare_task;
916 
917 	rpc_init_task_statistics(task);
918 
919 	dprintk("RPC:       new task initialized, procpid %u\n",
920 				task_pid_nr(current));
921 }
922 
923 static struct rpc_task *
924 rpc_alloc_task(void)
925 {
926 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
927 }
928 
929 /*
930  * Create a new task for the specified client.
931  */
932 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
933 {
934 	struct rpc_task	*task = setup_data->task;
935 	unsigned short flags = 0;
936 
937 	if (task == NULL) {
938 		task = rpc_alloc_task();
939 		if (task == NULL) {
940 			rpc_release_calldata(setup_data->callback_ops,
941 					setup_data->callback_data);
942 			return ERR_PTR(-ENOMEM);
943 		}
944 		flags = RPC_TASK_DYNAMIC;
945 	}
946 
947 	rpc_init_task(task, setup_data);
948 	task->tk_flags |= flags;
949 	dprintk("RPC:       allocated task %p\n", task);
950 	return task;
951 }
952 
953 /*
954  * rpc_free_task - release rpc task and perform cleanups
955  *
956  * Note that we free up the rpc_task _after_ rpc_release_calldata()
957  * in order to work around a workqueue dependency issue.
958  *
959  * Tejun Heo states:
960  * "Workqueue currently considers two work items to be the same if they're
961  * on the same address and won't execute them concurrently - ie. it
962  * makes a work item which is queued again while being executed wait
963  * for the previous execution to complete.
964  *
965  * If a work function frees the work item, and then waits for an event
966  * which should be performed by another work item and *that* work item
967  * recycles the freed work item, it can create a false dependency loop.
968  * There really is no reliable way to detect this short of verifying
969  * every memory free."
970  *
971  */
972 static void rpc_free_task(struct rpc_task *task)
973 {
974 	unsigned short tk_flags = task->tk_flags;
975 
976 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
977 
978 	if (tk_flags & RPC_TASK_DYNAMIC) {
979 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
980 		mempool_free(task, rpc_task_mempool);
981 	}
982 }
983 
984 static void rpc_async_release(struct work_struct *work)
985 {
986 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
987 }
988 
989 static void rpc_release_resources_task(struct rpc_task *task)
990 {
991 	xprt_release(task);
992 	if (task->tk_msg.rpc_cred) {
993 		put_rpccred(task->tk_msg.rpc_cred);
994 		task->tk_msg.rpc_cred = NULL;
995 	}
996 	rpc_task_release_client(task);
997 }
998 
999 static void rpc_final_put_task(struct rpc_task *task,
1000 		struct workqueue_struct *q)
1001 {
1002 	if (q != NULL) {
1003 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1004 		queue_work(q, &task->u.tk_work);
1005 	} else
1006 		rpc_free_task(task);
1007 }
1008 
1009 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1010 {
1011 	if (atomic_dec_and_test(&task->tk_count)) {
1012 		rpc_release_resources_task(task);
1013 		rpc_final_put_task(task, q);
1014 	}
1015 }
1016 
1017 void rpc_put_task(struct rpc_task *task)
1018 {
1019 	rpc_do_put_task(task, NULL);
1020 }
1021 EXPORT_SYMBOL_GPL(rpc_put_task);
1022 
1023 void rpc_put_task_async(struct rpc_task *task)
1024 {
1025 	rpc_do_put_task(task, task->tk_workqueue);
1026 }
1027 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1028 
1029 static void rpc_release_task(struct rpc_task *task)
1030 {
1031 	dprintk("RPC: %5u release task\n", task->tk_pid);
1032 
1033 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1034 
1035 	rpc_release_resources_task(task);
1036 
1037 	/*
1038 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1039 	 * so it should be safe to use task->tk_count as a test for whether
1040 	 * or not any other processes still hold references to our rpc_task.
1041 	 */
1042 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1043 		/* Wake up anyone who may be waiting for task completion */
1044 		if (!rpc_complete_task(task))
1045 			return;
1046 	} else {
1047 		if (!atomic_dec_and_test(&task->tk_count))
1048 			return;
1049 	}
1050 	rpc_final_put_task(task, task->tk_workqueue);
1051 }
1052 
1053 int rpciod_up(void)
1054 {
1055 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1056 }
1057 
1058 void rpciod_down(void)
1059 {
1060 	module_put(THIS_MODULE);
1061 }
1062 
1063 /*
1064  * Start up the rpciod workqueue.
1065  */
1066 static int rpciod_start(void)
1067 {
1068 	struct workqueue_struct *wq;
1069 
1070 	/*
1071 	 * Create the rpciod thread and wait for it to start.
1072 	 */
1073 	dprintk("RPC:       creating workqueue rpciod\n");
1074 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1075 	rpciod_workqueue = wq;
1076 	return rpciod_workqueue != NULL;
1077 }
1078 
1079 static void rpciod_stop(void)
1080 {
1081 	struct workqueue_struct *wq = NULL;
1082 
1083 	if (rpciod_workqueue == NULL)
1084 		return;
1085 	dprintk("RPC:       destroying workqueue rpciod\n");
1086 
1087 	wq = rpciod_workqueue;
1088 	rpciod_workqueue = NULL;
1089 	destroy_workqueue(wq);
1090 }
1091 
1092 void
1093 rpc_destroy_mempool(void)
1094 {
1095 	rpciod_stop();
1096 	if (rpc_buffer_mempool)
1097 		mempool_destroy(rpc_buffer_mempool);
1098 	if (rpc_task_mempool)
1099 		mempool_destroy(rpc_task_mempool);
1100 	if (rpc_task_slabp)
1101 		kmem_cache_destroy(rpc_task_slabp);
1102 	if (rpc_buffer_slabp)
1103 		kmem_cache_destroy(rpc_buffer_slabp);
1104 	rpc_destroy_wait_queue(&delay_queue);
1105 }
1106 
1107 int
1108 rpc_init_mempool(void)
1109 {
1110 	/*
1111 	 * The following is not strictly a mempool initialisation,
1112 	 * but there is no harm in doing it here
1113 	 */
1114 	rpc_init_wait_queue(&delay_queue, "delayq");
1115 	if (!rpciod_start())
1116 		goto err_nomem;
1117 
1118 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1119 					     sizeof(struct rpc_task),
1120 					     0, SLAB_HWCACHE_ALIGN,
1121 					     NULL);
1122 	if (!rpc_task_slabp)
1123 		goto err_nomem;
1124 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1125 					     RPC_BUFFER_MAXSIZE,
1126 					     0, SLAB_HWCACHE_ALIGN,
1127 					     NULL);
1128 	if (!rpc_buffer_slabp)
1129 		goto err_nomem;
1130 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1131 						    rpc_task_slabp);
1132 	if (!rpc_task_mempool)
1133 		goto err_nomem;
1134 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1135 						      rpc_buffer_slabp);
1136 	if (!rpc_buffer_mempool)
1137 		goto err_nomem;
1138 	return 0;
1139 err_nomem:
1140 	rpc_destroy_mempool();
1141 	return -ENOMEM;
1142 }
1143