xref: /openbmc/linux/net/sunrpc/sched.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY		RPCDBG_SCHED
32 #endif
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36 
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE	(2048)
41 #define RPC_BUFFER_POOLSIZE	(8)
42 #define RPC_TASK_POOLSIZE	(8)
43 static struct kmem_cache	*rpc_task_slabp __read_mostly;
44 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
45 static mempool_t	*rpc_task_mempool __read_mostly;
46 static mempool_t	*rpc_buffer_mempool __read_mostly;
47 
48 static void			rpc_async_schedule(struct work_struct *);
49 static void			 rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51 
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56 
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63 
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67 	unsigned long timeout = READ_ONCE(task->tk_timeout);
68 
69 	if (timeout != 0) {
70 		unsigned long now = jiffies;
71 		if (time_before(now, timeout))
72 			return timeout - now;
73 	}
74 	return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77 
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 	if (list_empty(&task->u.tk_wait.timer_list))
87 		return;
88 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 	task->tk_timeout = 0;
90 	list_del(&task->u.tk_wait.timer_list);
91 	if (list_empty(&queue->timer_list.list))
92 		cancel_delayed_work(&queue->timer_list.dwork);
93 }
94 
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98 	unsigned long now = jiffies;
99 	queue->timer_list.expires = expires;
100 	if (time_before_eq(expires, now))
101 		expires = 0;
102 	else
103 		expires -= now;
104 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106 
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 		unsigned long timeout)
113 {
114 	dprintk("RPC: %5u setting alarm for %u ms\n",
115 		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116 
117 	task->tk_timeout = timeout;
118 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 		rpc_set_queue_timer(queue, timeout);
120 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122 
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 	if (queue->priority != priority) {
126 		queue->priority = priority;
127 		queue->nr = 1U << priority;
128 	}
129 }
130 
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135 
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 	struct rpc_task *t;
143 
144 	list_for_each_entry(t, q, u.tk_wait.list) {
145 		if (t->tk_owner == task->tk_owner) {
146 			list_add_tail(&task->u.tk_wait.links,
147 					&t->u.tk_wait.links);
148 			/* Cache the queue head in task->u.tk_wait.list */
149 			task->u.tk_wait.list.next = q;
150 			task->u.tk_wait.list.prev = NULL;
151 			return;
152 		}
153 	}
154 	INIT_LIST_HEAD(&task->u.tk_wait.links);
155 	list_add_tail(&task->u.tk_wait.list, q);
156 }
157 
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 	struct list_head *q;
165 	struct rpc_task *t;
166 
167 	if (task->u.tk_wait.list.prev == NULL) {
168 		list_del(&task->u.tk_wait.links);
169 		return;
170 	}
171 	if (!list_empty(&task->u.tk_wait.links)) {
172 		t = list_first_entry(&task->u.tk_wait.links,
173 				struct rpc_task,
174 				u.tk_wait.links);
175 		/* Assume __rpc_list_enqueue_task() cached the queue head */
176 		q = t->u.tk_wait.list.next;
177 		list_add_tail(&t->u.tk_wait.list, q);
178 		list_del(&task->u.tk_wait.links);
179 	}
180 	list_del(&task->u.tk_wait.list);
181 }
182 
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 		struct rpc_task *task,
188 		unsigned char queue_priority)
189 {
190 	if (unlikely(queue_priority > queue->maxpriority))
191 		queue_priority = queue->maxpriority;
192 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194 
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 		struct rpc_task *task,
205 		unsigned char queue_priority)
206 {
207 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
208 	if (RPC_IS_PRIORITY(queue))
209 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
210 	else if (RPC_IS_SWAPPER(task))
211 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
212 	else
213 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214 	task->tk_waitqueue = queue;
215 	queue->qlen++;
216 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
217 	smp_wmb();
218 	rpc_set_queued(task);
219 
220 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
221 			task->tk_pid, queue, rpc_qname(queue));
222 }
223 
224 /*
225  * Remove request from a priority queue.
226  */
227 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
228 {
229 	__rpc_list_dequeue_task(task);
230 }
231 
232 /*
233  * Remove request from queue.
234  * Note: must be called with spin lock held.
235  */
236 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
237 {
238 	__rpc_disable_timer(queue, task);
239 	if (RPC_IS_PRIORITY(queue))
240 		__rpc_remove_wait_queue_priority(task);
241 	else
242 		list_del(&task->u.tk_wait.list);
243 	queue->qlen--;
244 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
245 			task->tk_pid, queue, rpc_qname(queue));
246 }
247 
248 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
249 {
250 	int i;
251 
252 	spin_lock_init(&queue->lock);
253 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
254 		INIT_LIST_HEAD(&queue->tasks[i]);
255 	queue->maxpriority = nr_queues - 1;
256 	rpc_reset_waitqueue_priority(queue);
257 	queue->qlen = 0;
258 	queue->timer_list.expires = 0;
259 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
260 	INIT_LIST_HEAD(&queue->timer_list.list);
261 	rpc_assign_waitqueue_name(queue, qname);
262 }
263 
264 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265 {
266 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
267 }
268 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
269 
270 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
271 {
272 	__rpc_init_priority_wait_queue(queue, qname, 1);
273 }
274 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
275 
276 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
277 {
278 	cancel_delayed_work_sync(&queue->timer_list.dwork);
279 }
280 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
281 
282 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
283 {
284 	freezable_schedule_unsafe();
285 	if (signal_pending_state(mode, current))
286 		return -ERESTARTSYS;
287 	return 0;
288 }
289 
290 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
291 static void rpc_task_set_debuginfo(struct rpc_task *task)
292 {
293 	static atomic_t rpc_pid;
294 
295 	task->tk_pid = atomic_inc_return(&rpc_pid);
296 }
297 #else
298 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
299 {
300 }
301 #endif
302 
303 static void rpc_set_active(struct rpc_task *task)
304 {
305 	rpc_task_set_debuginfo(task);
306 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307 	trace_rpc_task_begin(task, NULL);
308 }
309 
310 /*
311  * Mark an RPC call as having completed by clearing the 'active' bit
312  * and then waking up all tasks that were sleeping.
313  */
314 static int rpc_complete_task(struct rpc_task *task)
315 {
316 	void *m = &task->tk_runstate;
317 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
318 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
319 	unsigned long flags;
320 	int ret;
321 
322 	trace_rpc_task_complete(task, NULL);
323 
324 	spin_lock_irqsave(&wq->lock, flags);
325 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
326 	ret = atomic_dec_and_test(&task->tk_count);
327 	if (waitqueue_active(wq))
328 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
329 	spin_unlock_irqrestore(&wq->lock, flags);
330 	return ret;
331 }
332 
333 /*
334  * Allow callers to wait for completion of an RPC call
335  *
336  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
337  * to enforce taking of the wq->lock and hence avoid races with
338  * rpc_complete_task().
339  */
340 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
341 {
342 	if (action == NULL)
343 		action = rpc_wait_bit_killable;
344 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
345 			action, TASK_KILLABLE);
346 }
347 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
348 
349 /*
350  * Make an RPC task runnable.
351  *
352  * Note: If the task is ASYNC, and is being made runnable after sitting on an
353  * rpc_wait_queue, this must be called with the queue spinlock held to protect
354  * the wait queue operation.
355  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
356  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
357  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
358  * the RPC_TASK_RUNNING flag.
359  */
360 static void rpc_make_runnable(struct workqueue_struct *wq,
361 		struct rpc_task *task)
362 {
363 	bool need_wakeup = !rpc_test_and_set_running(task);
364 
365 	rpc_clear_queued(task);
366 	if (!need_wakeup)
367 		return;
368 	if (RPC_IS_ASYNC(task)) {
369 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
370 		queue_work(wq, &task->u.tk_work);
371 	} else
372 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
373 }
374 
375 /*
376  * Prepare for sleeping on a wait queue.
377  * By always appending tasks to the list we ensure FIFO behavior.
378  * NB: An RPC task will only receive interrupt-driven events as long
379  * as it's on a wait queue.
380  */
381 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
382 		struct rpc_task *task,
383 		unsigned char queue_priority)
384 {
385 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
386 			task->tk_pid, rpc_qname(q), jiffies);
387 
388 	trace_rpc_task_sleep(task, q);
389 
390 	__rpc_add_wait_queue(q, task, queue_priority);
391 
392 }
393 
394 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
395 		struct rpc_task *task,
396 		unsigned char queue_priority)
397 {
398 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399 		return;
400 	__rpc_do_sleep_on_priority(q, task, queue_priority);
401 }
402 
403 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
404 		struct rpc_task *task, unsigned long timeout,
405 		unsigned char queue_priority)
406 {
407 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
408 		return;
409 	if (time_is_after_jiffies(timeout)) {
410 		__rpc_do_sleep_on_priority(q, task, queue_priority);
411 		__rpc_add_timer(q, task, timeout);
412 	} else
413 		task->tk_status = -ETIMEDOUT;
414 }
415 
416 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
417 {
418 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
419 		task->tk_callback = action;
420 }
421 
422 static bool rpc_sleep_check_activated(struct rpc_task *task)
423 {
424 	/* We shouldn't ever put an inactive task to sleep */
425 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
426 		task->tk_status = -EIO;
427 		rpc_put_task_async(task);
428 		return false;
429 	}
430 	return true;
431 }
432 
433 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
434 				rpc_action action, unsigned long timeout)
435 {
436 	if (!rpc_sleep_check_activated(task))
437 		return;
438 
439 	rpc_set_tk_callback(task, action);
440 
441 	/*
442 	 * Protect the queue operations.
443 	 */
444 	spin_lock(&q->lock);
445 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
446 	spin_unlock(&q->lock);
447 }
448 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
449 
450 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
451 				rpc_action action)
452 {
453 	if (!rpc_sleep_check_activated(task))
454 		return;
455 
456 	rpc_set_tk_callback(task, action);
457 
458 	WARN_ON_ONCE(task->tk_timeout != 0);
459 	/*
460 	 * Protect the queue operations.
461 	 */
462 	spin_lock(&q->lock);
463 	__rpc_sleep_on_priority(q, task, task->tk_priority);
464 	spin_unlock(&q->lock);
465 }
466 EXPORT_SYMBOL_GPL(rpc_sleep_on);
467 
468 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
469 		struct rpc_task *task, unsigned long timeout, int priority)
470 {
471 	if (!rpc_sleep_check_activated(task))
472 		return;
473 
474 	priority -= RPC_PRIORITY_LOW;
475 	/*
476 	 * Protect the queue operations.
477 	 */
478 	spin_lock(&q->lock);
479 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
480 	spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
483 
484 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
485 		int priority)
486 {
487 	if (!rpc_sleep_check_activated(task))
488 		return;
489 
490 	WARN_ON_ONCE(task->tk_timeout != 0);
491 	priority -= RPC_PRIORITY_LOW;
492 	/*
493 	 * Protect the queue operations.
494 	 */
495 	spin_lock(&q->lock);
496 	__rpc_sleep_on_priority(q, task, priority);
497 	spin_unlock(&q->lock);
498 }
499 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
500 
501 /**
502  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
503  * @wq: workqueue on which to run task
504  * @queue: wait queue
505  * @task: task to be woken up
506  *
507  * Caller must hold queue->lock, and have cleared the task queued flag.
508  */
509 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
510 		struct rpc_wait_queue *queue,
511 		struct rpc_task *task)
512 {
513 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
514 			task->tk_pid, jiffies);
515 
516 	/* Has the task been executed yet? If not, we cannot wake it up! */
517 	if (!RPC_IS_ACTIVATED(task)) {
518 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
519 		return;
520 	}
521 
522 	trace_rpc_task_wakeup(task, queue);
523 
524 	__rpc_remove_wait_queue(queue, task);
525 
526 	rpc_make_runnable(wq, task);
527 
528 	dprintk("RPC:       __rpc_wake_up_task done\n");
529 }
530 
531 /*
532  * Wake up a queued task while the queue lock is being held
533  */
534 static struct rpc_task *
535 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
536 		struct rpc_wait_queue *queue, struct rpc_task *task,
537 		bool (*action)(struct rpc_task *, void *), void *data)
538 {
539 	if (RPC_IS_QUEUED(task)) {
540 		smp_rmb();
541 		if (task->tk_waitqueue == queue) {
542 			if (action == NULL || action(task, data)) {
543 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
544 				return task;
545 			}
546 		}
547 	}
548 	return NULL;
549 }
550 
551 /*
552  * Wake up a queued task while the queue lock is being held
553  */
554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
555 					  struct rpc_task *task)
556 {
557 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
558 						   task, NULL, NULL);
559 }
560 
561 /*
562  * Wake up a task on a specific queue
563  */
564 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
565 {
566 	if (!RPC_IS_QUEUED(task))
567 		return;
568 	spin_lock(&queue->lock);
569 	rpc_wake_up_task_queue_locked(queue, task);
570 	spin_unlock(&queue->lock);
571 }
572 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
573 
574 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
575 {
576 	task->tk_status = *(int *)status;
577 	return true;
578 }
579 
580 static void
581 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
582 		struct rpc_task *task, int status)
583 {
584 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
585 			task, rpc_task_action_set_status, &status);
586 }
587 
588 /**
589  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
590  * @queue: pointer to rpc_wait_queue
591  * @task: pointer to rpc_task
592  * @status: integer error value
593  *
594  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
595  * set to the value of @status.
596  */
597 void
598 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
599 		struct rpc_task *task, int status)
600 {
601 	if (!RPC_IS_QUEUED(task))
602 		return;
603 	spin_lock(&queue->lock);
604 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
605 	spin_unlock(&queue->lock);
606 }
607 
608 /*
609  * Wake up the next task on a priority queue.
610  */
611 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
612 {
613 	struct list_head *q;
614 	struct rpc_task *task;
615 
616 	/*
617 	 * Service a batch of tasks from a single owner.
618 	 */
619 	q = &queue->tasks[queue->priority];
620 	if (!list_empty(q) && --queue->nr) {
621 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
622 		goto out;
623 	}
624 
625 	/*
626 	 * Service the next queue.
627 	 */
628 	do {
629 		if (q == &queue->tasks[0])
630 			q = &queue->tasks[queue->maxpriority];
631 		else
632 			q = q - 1;
633 		if (!list_empty(q)) {
634 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
635 			goto new_queue;
636 		}
637 	} while (q != &queue->tasks[queue->priority]);
638 
639 	rpc_reset_waitqueue_priority(queue);
640 	return NULL;
641 
642 new_queue:
643 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
644 out:
645 	return task;
646 }
647 
648 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
649 {
650 	if (RPC_IS_PRIORITY(queue))
651 		return __rpc_find_next_queued_priority(queue);
652 	if (!list_empty(&queue->tasks[0]))
653 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
654 	return NULL;
655 }
656 
657 /*
658  * Wake up the first task on the wait queue.
659  */
660 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
661 		struct rpc_wait_queue *queue,
662 		bool (*func)(struct rpc_task *, void *), void *data)
663 {
664 	struct rpc_task	*task = NULL;
665 
666 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
667 			queue, rpc_qname(queue));
668 	spin_lock(&queue->lock);
669 	task = __rpc_find_next_queued(queue);
670 	if (task != NULL)
671 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
672 				task, func, data);
673 	spin_unlock(&queue->lock);
674 
675 	return task;
676 }
677 
678 /*
679  * Wake up the first task on the wait queue.
680  */
681 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
682 		bool (*func)(struct rpc_task *, void *), void *data)
683 {
684 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
685 }
686 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
687 
688 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
689 {
690 	return true;
691 }
692 
693 /*
694  * Wake up the next task on the wait queue.
695 */
696 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
697 {
698 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
699 }
700 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
701 
702 /**
703  * rpc_wake_up - wake up all rpc_tasks
704  * @queue: rpc_wait_queue on which the tasks are sleeping
705  *
706  * Grabs queue->lock
707  */
708 void rpc_wake_up(struct rpc_wait_queue *queue)
709 {
710 	struct list_head *head;
711 
712 	spin_lock(&queue->lock);
713 	head = &queue->tasks[queue->maxpriority];
714 	for (;;) {
715 		while (!list_empty(head)) {
716 			struct rpc_task *task;
717 			task = list_first_entry(head,
718 					struct rpc_task,
719 					u.tk_wait.list);
720 			rpc_wake_up_task_queue_locked(queue, task);
721 		}
722 		if (head == &queue->tasks[0])
723 			break;
724 		head--;
725 	}
726 	spin_unlock(&queue->lock);
727 }
728 EXPORT_SYMBOL_GPL(rpc_wake_up);
729 
730 /**
731  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
732  * @queue: rpc_wait_queue on which the tasks are sleeping
733  * @status: status value to set
734  *
735  * Grabs queue->lock
736  */
737 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
738 {
739 	struct list_head *head;
740 
741 	spin_lock(&queue->lock);
742 	head = &queue->tasks[queue->maxpriority];
743 	for (;;) {
744 		while (!list_empty(head)) {
745 			struct rpc_task *task;
746 			task = list_first_entry(head,
747 					struct rpc_task,
748 					u.tk_wait.list);
749 			task->tk_status = status;
750 			rpc_wake_up_task_queue_locked(queue, task);
751 		}
752 		if (head == &queue->tasks[0])
753 			break;
754 		head--;
755 	}
756 	spin_unlock(&queue->lock);
757 }
758 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
759 
760 static void __rpc_queue_timer_fn(struct work_struct *work)
761 {
762 	struct rpc_wait_queue *queue = container_of(work,
763 			struct rpc_wait_queue,
764 			timer_list.dwork.work);
765 	struct rpc_task *task, *n;
766 	unsigned long expires, now, timeo;
767 
768 	spin_lock(&queue->lock);
769 	expires = now = jiffies;
770 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
771 		timeo = task->tk_timeout;
772 		if (time_after_eq(now, timeo)) {
773 			dprintk("RPC: %5u timeout\n", task->tk_pid);
774 			task->tk_status = -ETIMEDOUT;
775 			rpc_wake_up_task_queue_locked(queue, task);
776 			continue;
777 		}
778 		if (expires == now || time_after(expires, timeo))
779 			expires = timeo;
780 	}
781 	if (!list_empty(&queue->timer_list.list))
782 		rpc_set_queue_timer(queue, expires);
783 	spin_unlock(&queue->lock);
784 }
785 
786 static void __rpc_atrun(struct rpc_task *task)
787 {
788 	if (task->tk_status == -ETIMEDOUT)
789 		task->tk_status = 0;
790 }
791 
792 /*
793  * Run a task at a later time
794  */
795 void rpc_delay(struct rpc_task *task, unsigned long delay)
796 {
797 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
798 }
799 EXPORT_SYMBOL_GPL(rpc_delay);
800 
801 /*
802  * Helper to call task->tk_ops->rpc_call_prepare
803  */
804 void rpc_prepare_task(struct rpc_task *task)
805 {
806 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
807 }
808 
809 static void
810 rpc_init_task_statistics(struct rpc_task *task)
811 {
812 	/* Initialize retry counters */
813 	task->tk_garb_retry = 2;
814 	task->tk_cred_retry = 2;
815 	task->tk_rebind_retry = 2;
816 
817 	/* starting timestamp */
818 	task->tk_start = ktime_get();
819 }
820 
821 static void
822 rpc_reset_task_statistics(struct rpc_task *task)
823 {
824 	task->tk_timeouts = 0;
825 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
826 	rpc_init_task_statistics(task);
827 }
828 
829 /*
830  * Helper that calls task->tk_ops->rpc_call_done if it exists
831  */
832 void rpc_exit_task(struct rpc_task *task)
833 {
834 	trace_rpc_task_end(task, task->tk_action);
835 	task->tk_action = NULL;
836 	if (task->tk_ops->rpc_count_stats)
837 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
838 	else if (task->tk_client)
839 		rpc_count_iostats(task, task->tk_client->cl_metrics);
840 	if (task->tk_ops->rpc_call_done != NULL) {
841 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
842 		if (task->tk_action != NULL) {
843 			/* Always release the RPC slot and buffer memory */
844 			xprt_release(task);
845 			rpc_reset_task_statistics(task);
846 		}
847 	}
848 }
849 
850 void rpc_signal_task(struct rpc_task *task)
851 {
852 	struct rpc_wait_queue *queue;
853 
854 	if (!RPC_IS_ACTIVATED(task))
855 		return;
856 
857 	trace_rpc_task_signalled(task, task->tk_action);
858 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
859 	smp_mb__after_atomic();
860 	queue = READ_ONCE(task->tk_waitqueue);
861 	if (queue)
862 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
863 }
864 
865 void rpc_exit(struct rpc_task *task, int status)
866 {
867 	task->tk_status = status;
868 	task->tk_action = rpc_exit_task;
869 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
870 }
871 EXPORT_SYMBOL_GPL(rpc_exit);
872 
873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
874 {
875 	if (ops->rpc_release != NULL)
876 		ops->rpc_release(calldata);
877 }
878 
879 /*
880  * This is the RPC `scheduler' (or rather, the finite state machine).
881  */
882 static void __rpc_execute(struct rpc_task *task)
883 {
884 	struct rpc_wait_queue *queue;
885 	int task_is_async = RPC_IS_ASYNC(task);
886 	int status = 0;
887 
888 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
889 			task->tk_pid, task->tk_flags);
890 
891 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
892 	if (RPC_IS_QUEUED(task))
893 		return;
894 
895 	for (;;) {
896 		void (*do_action)(struct rpc_task *);
897 
898 		/*
899 		 * Perform the next FSM step or a pending callback.
900 		 *
901 		 * tk_action may be NULL if the task has been killed.
902 		 * In particular, note that rpc_killall_tasks may
903 		 * do this at any time, so beware when dereferencing.
904 		 */
905 		do_action = task->tk_action;
906 		if (task->tk_callback) {
907 			do_action = task->tk_callback;
908 			task->tk_callback = NULL;
909 		}
910 		if (!do_action)
911 			break;
912 		trace_rpc_task_run_action(task, do_action);
913 		do_action(task);
914 
915 		/*
916 		 * Lockless check for whether task is sleeping or not.
917 		 */
918 		if (!RPC_IS_QUEUED(task))
919 			continue;
920 
921 		/*
922 		 * Signalled tasks should exit rather than sleep.
923 		 */
924 		if (RPC_SIGNALLED(task)) {
925 			task->tk_rpc_status = -ERESTARTSYS;
926 			rpc_exit(task, -ERESTARTSYS);
927 		}
928 
929 		/*
930 		 * The queue->lock protects against races with
931 		 * rpc_make_runnable().
932 		 *
933 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
934 		 * rpc_task, rpc_make_runnable() can assign it to a
935 		 * different workqueue. We therefore cannot assume that the
936 		 * rpc_task pointer may still be dereferenced.
937 		 */
938 		queue = task->tk_waitqueue;
939 		spin_lock(&queue->lock);
940 		if (!RPC_IS_QUEUED(task)) {
941 			spin_unlock(&queue->lock);
942 			continue;
943 		}
944 		rpc_clear_running(task);
945 		spin_unlock(&queue->lock);
946 		if (task_is_async)
947 			return;
948 
949 		/* sync task: sleep here */
950 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
951 		status = out_of_line_wait_on_bit(&task->tk_runstate,
952 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
953 				TASK_KILLABLE);
954 		if (status < 0) {
955 			/*
956 			 * When a sync task receives a signal, it exits with
957 			 * -ERESTARTSYS. In order to catch any callbacks that
958 			 * clean up after sleeping on some queue, we don't
959 			 * break the loop here, but go around once more.
960 			 */
961 			trace_rpc_task_signalled(task, task->tk_action);
962 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
963 			task->tk_rpc_status = -ERESTARTSYS;
964 			rpc_exit(task, -ERESTARTSYS);
965 		}
966 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
967 	}
968 
969 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
970 			task->tk_status);
971 	/* Release all resources associated with the task */
972 	rpc_release_task(task);
973 }
974 
975 /*
976  * User-visible entry point to the scheduler.
977  *
978  * This may be called recursively if e.g. an async NFS task updates
979  * the attributes and finds that dirty pages must be flushed.
980  * NOTE: Upon exit of this function the task is guaranteed to be
981  *	 released. In particular note that tk_release() will have
982  *	 been called, so your task memory may have been freed.
983  */
984 void rpc_execute(struct rpc_task *task)
985 {
986 	bool is_async = RPC_IS_ASYNC(task);
987 
988 	rpc_set_active(task);
989 	rpc_make_runnable(rpciod_workqueue, task);
990 	if (!is_async)
991 		__rpc_execute(task);
992 }
993 
994 static void rpc_async_schedule(struct work_struct *work)
995 {
996 	unsigned int pflags = memalloc_nofs_save();
997 
998 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
999 	memalloc_nofs_restore(pflags);
1000 }
1001 
1002 /**
1003  * rpc_malloc - allocate RPC buffer resources
1004  * @task: RPC task
1005  *
1006  * A single memory region is allocated, which is split between the
1007  * RPC call and RPC reply that this task is being used for. When
1008  * this RPC is retired, the memory is released by calling rpc_free.
1009  *
1010  * To prevent rpciod from hanging, this allocator never sleeps,
1011  * returning -ENOMEM and suppressing warning if the request cannot
1012  * be serviced immediately. The caller can arrange to sleep in a
1013  * way that is safe for rpciod.
1014  *
1015  * Most requests are 'small' (under 2KiB) and can be serviced from a
1016  * mempool, ensuring that NFS reads and writes can always proceed,
1017  * and that there is good locality of reference for these buffers.
1018  */
1019 int rpc_malloc(struct rpc_task *task)
1020 {
1021 	struct rpc_rqst *rqst = task->tk_rqstp;
1022 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1023 	struct rpc_buffer *buf;
1024 	gfp_t gfp = GFP_NOFS;
1025 
1026 	if (RPC_IS_SWAPPER(task))
1027 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1028 
1029 	size += sizeof(struct rpc_buffer);
1030 	if (size <= RPC_BUFFER_MAXSIZE)
1031 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1032 	else
1033 		buf = kmalloc(size, gfp);
1034 
1035 	if (!buf)
1036 		return -ENOMEM;
1037 
1038 	buf->len = size;
1039 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1040 			task->tk_pid, size, buf);
1041 	rqst->rq_buffer = buf->data;
1042 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1043 	return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(rpc_malloc);
1046 
1047 /**
1048  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1049  * @task: RPC task
1050  *
1051  */
1052 void rpc_free(struct rpc_task *task)
1053 {
1054 	void *buffer = task->tk_rqstp->rq_buffer;
1055 	size_t size;
1056 	struct rpc_buffer *buf;
1057 
1058 	buf = container_of(buffer, struct rpc_buffer, data);
1059 	size = buf->len;
1060 
1061 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1062 			size, buf);
1063 
1064 	if (size <= RPC_BUFFER_MAXSIZE)
1065 		mempool_free(buf, rpc_buffer_mempool);
1066 	else
1067 		kfree(buf);
1068 }
1069 EXPORT_SYMBOL_GPL(rpc_free);
1070 
1071 /*
1072  * Creation and deletion of RPC task structures
1073  */
1074 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1075 {
1076 	memset(task, 0, sizeof(*task));
1077 	atomic_set(&task->tk_count, 1);
1078 	task->tk_flags  = task_setup_data->flags;
1079 	task->tk_ops = task_setup_data->callback_ops;
1080 	task->tk_calldata = task_setup_data->callback_data;
1081 	INIT_LIST_HEAD(&task->tk_task);
1082 
1083 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1084 	task->tk_owner = current->tgid;
1085 
1086 	/* Initialize workqueue for async tasks */
1087 	task->tk_workqueue = task_setup_data->workqueue;
1088 
1089 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1090 			xprt_get(task_setup_data->rpc_xprt));
1091 
1092 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1093 
1094 	if (task->tk_ops->rpc_call_prepare != NULL)
1095 		task->tk_action = rpc_prepare_task;
1096 
1097 	rpc_init_task_statistics(task);
1098 
1099 	dprintk("RPC:       new task initialized, procpid %u\n",
1100 				task_pid_nr(current));
1101 }
1102 
1103 static struct rpc_task *
1104 rpc_alloc_task(void)
1105 {
1106 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1107 }
1108 
1109 /*
1110  * Create a new task for the specified client.
1111  */
1112 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1113 {
1114 	struct rpc_task	*task = setup_data->task;
1115 	unsigned short flags = 0;
1116 
1117 	if (task == NULL) {
1118 		task = rpc_alloc_task();
1119 		flags = RPC_TASK_DYNAMIC;
1120 	}
1121 
1122 	rpc_init_task(task, setup_data);
1123 	task->tk_flags |= flags;
1124 	dprintk("RPC:       allocated task %p\n", task);
1125 	return task;
1126 }
1127 
1128 /*
1129  * rpc_free_task - release rpc task and perform cleanups
1130  *
1131  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1132  * in order to work around a workqueue dependency issue.
1133  *
1134  * Tejun Heo states:
1135  * "Workqueue currently considers two work items to be the same if they're
1136  * on the same address and won't execute them concurrently - ie. it
1137  * makes a work item which is queued again while being executed wait
1138  * for the previous execution to complete.
1139  *
1140  * If a work function frees the work item, and then waits for an event
1141  * which should be performed by another work item and *that* work item
1142  * recycles the freed work item, it can create a false dependency loop.
1143  * There really is no reliable way to detect this short of verifying
1144  * every memory free."
1145  *
1146  */
1147 static void rpc_free_task(struct rpc_task *task)
1148 {
1149 	unsigned short tk_flags = task->tk_flags;
1150 
1151 	put_rpccred(task->tk_op_cred);
1152 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1153 
1154 	if (tk_flags & RPC_TASK_DYNAMIC) {
1155 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1156 		mempool_free(task, rpc_task_mempool);
1157 	}
1158 }
1159 
1160 static void rpc_async_release(struct work_struct *work)
1161 {
1162 	unsigned int pflags = memalloc_nofs_save();
1163 
1164 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1165 	memalloc_nofs_restore(pflags);
1166 }
1167 
1168 static void rpc_release_resources_task(struct rpc_task *task)
1169 {
1170 	xprt_release(task);
1171 	if (task->tk_msg.rpc_cred) {
1172 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1173 			put_cred(task->tk_msg.rpc_cred);
1174 		task->tk_msg.rpc_cred = NULL;
1175 	}
1176 	rpc_task_release_client(task);
1177 }
1178 
1179 static void rpc_final_put_task(struct rpc_task *task,
1180 		struct workqueue_struct *q)
1181 {
1182 	if (q != NULL) {
1183 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1184 		queue_work(q, &task->u.tk_work);
1185 	} else
1186 		rpc_free_task(task);
1187 }
1188 
1189 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1190 {
1191 	if (atomic_dec_and_test(&task->tk_count)) {
1192 		rpc_release_resources_task(task);
1193 		rpc_final_put_task(task, q);
1194 	}
1195 }
1196 
1197 void rpc_put_task(struct rpc_task *task)
1198 {
1199 	rpc_do_put_task(task, NULL);
1200 }
1201 EXPORT_SYMBOL_GPL(rpc_put_task);
1202 
1203 void rpc_put_task_async(struct rpc_task *task)
1204 {
1205 	rpc_do_put_task(task, task->tk_workqueue);
1206 }
1207 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1208 
1209 static void rpc_release_task(struct rpc_task *task)
1210 {
1211 	dprintk("RPC: %5u release task\n", task->tk_pid);
1212 
1213 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1214 
1215 	rpc_release_resources_task(task);
1216 
1217 	/*
1218 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1219 	 * so it should be safe to use task->tk_count as a test for whether
1220 	 * or not any other processes still hold references to our rpc_task.
1221 	 */
1222 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1223 		/* Wake up anyone who may be waiting for task completion */
1224 		if (!rpc_complete_task(task))
1225 			return;
1226 	} else {
1227 		if (!atomic_dec_and_test(&task->tk_count))
1228 			return;
1229 	}
1230 	rpc_final_put_task(task, task->tk_workqueue);
1231 }
1232 
1233 int rpciod_up(void)
1234 {
1235 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1236 }
1237 
1238 void rpciod_down(void)
1239 {
1240 	module_put(THIS_MODULE);
1241 }
1242 
1243 /*
1244  * Start up the rpciod workqueue.
1245  */
1246 static int rpciod_start(void)
1247 {
1248 	struct workqueue_struct *wq;
1249 
1250 	/*
1251 	 * Create the rpciod thread and wait for it to start.
1252 	 */
1253 	dprintk("RPC:       creating workqueue rpciod\n");
1254 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1255 	if (!wq)
1256 		goto out_failed;
1257 	rpciod_workqueue = wq;
1258 	/* Note: highpri because network receive is latency sensitive */
1259 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1260 	if (!wq)
1261 		goto free_rpciod;
1262 	xprtiod_workqueue = wq;
1263 	return 1;
1264 free_rpciod:
1265 	wq = rpciod_workqueue;
1266 	rpciod_workqueue = NULL;
1267 	destroy_workqueue(wq);
1268 out_failed:
1269 	return 0;
1270 }
1271 
1272 static void rpciod_stop(void)
1273 {
1274 	struct workqueue_struct *wq = NULL;
1275 
1276 	if (rpciod_workqueue == NULL)
1277 		return;
1278 	dprintk("RPC:       destroying workqueue rpciod\n");
1279 
1280 	wq = rpciod_workqueue;
1281 	rpciod_workqueue = NULL;
1282 	destroy_workqueue(wq);
1283 	wq = xprtiod_workqueue;
1284 	xprtiod_workqueue = NULL;
1285 	destroy_workqueue(wq);
1286 }
1287 
1288 void
1289 rpc_destroy_mempool(void)
1290 {
1291 	rpciod_stop();
1292 	mempool_destroy(rpc_buffer_mempool);
1293 	mempool_destroy(rpc_task_mempool);
1294 	kmem_cache_destroy(rpc_task_slabp);
1295 	kmem_cache_destroy(rpc_buffer_slabp);
1296 	rpc_destroy_wait_queue(&delay_queue);
1297 }
1298 
1299 int
1300 rpc_init_mempool(void)
1301 {
1302 	/*
1303 	 * The following is not strictly a mempool initialisation,
1304 	 * but there is no harm in doing it here
1305 	 */
1306 	rpc_init_wait_queue(&delay_queue, "delayq");
1307 	if (!rpciod_start())
1308 		goto err_nomem;
1309 
1310 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1311 					     sizeof(struct rpc_task),
1312 					     0, SLAB_HWCACHE_ALIGN,
1313 					     NULL);
1314 	if (!rpc_task_slabp)
1315 		goto err_nomem;
1316 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1317 					     RPC_BUFFER_MAXSIZE,
1318 					     0, SLAB_HWCACHE_ALIGN,
1319 					     NULL);
1320 	if (!rpc_buffer_slabp)
1321 		goto err_nomem;
1322 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1323 						    rpc_task_slabp);
1324 	if (!rpc_task_mempool)
1325 		goto err_nomem;
1326 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1327 						      rpc_buffer_slabp);
1328 	if (!rpc_buffer_mempool)
1329 		goto err_nomem;
1330 	return 0;
1331 err_nomem:
1332 	rpc_destroy_mempool();
1333 	return -ENOMEM;
1334 }
1335