xref: /openbmc/linux/net/sunrpc/sched.c (revision 724ba675)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32 
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE	(2048)
37 #define RPC_BUFFER_POOLSIZE	(8)
38 #define RPC_TASK_POOLSIZE	(8)
39 static struct kmem_cache	*rpc_task_slabp __read_mostly;
40 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41 static mempool_t	*rpc_task_mempool __read_mostly;
42 static mempool_t	*rpc_buffer_mempool __read_mostly;
43 
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47 
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52 
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59 
60 gfp_t rpc_task_gfp_mask(void)
61 {
62 	if (current->flags & PF_WQ_WORKER)
63 		return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64 	return GFP_KERNEL;
65 }
66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67 
68 bool rpc_task_set_rpc_status(struct rpc_task *task, int rpc_status)
69 {
70 	if (cmpxchg(&task->tk_rpc_status, 0, rpc_status) == 0)
71 		return true;
72 	return false;
73 }
74 
75 unsigned long
76 rpc_task_timeout(const struct rpc_task *task)
77 {
78 	unsigned long timeout = READ_ONCE(task->tk_timeout);
79 
80 	if (timeout != 0) {
81 		unsigned long now = jiffies;
82 		if (time_before(now, timeout))
83 			return timeout - now;
84 	}
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(rpc_task_timeout);
88 
89 /*
90  * Disable the timer for a given RPC task. Should be called with
91  * queue->lock and bh_disabled in order to avoid races within
92  * rpc_run_timer().
93  */
94 static void
95 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
96 {
97 	if (list_empty(&task->u.tk_wait.timer_list))
98 		return;
99 	task->tk_timeout = 0;
100 	list_del(&task->u.tk_wait.timer_list);
101 	if (list_empty(&queue->timer_list.list))
102 		cancel_delayed_work(&queue->timer_list.dwork);
103 }
104 
105 static void
106 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
107 {
108 	unsigned long now = jiffies;
109 	queue->timer_list.expires = expires;
110 	if (time_before_eq(expires, now))
111 		expires = 0;
112 	else
113 		expires -= now;
114 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
115 }
116 
117 /*
118  * Set up a timer for the current task.
119  */
120 static void
121 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
122 		unsigned long timeout)
123 {
124 	task->tk_timeout = timeout;
125 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
126 		rpc_set_queue_timer(queue, timeout);
127 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
128 }
129 
130 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
131 {
132 	if (queue->priority != priority) {
133 		queue->priority = priority;
134 		queue->nr = 1U << priority;
135 	}
136 }
137 
138 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
139 {
140 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
141 }
142 
143 /*
144  * Add a request to a queue list
145  */
146 static void
147 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
148 {
149 	struct rpc_task *t;
150 
151 	list_for_each_entry(t, q, u.tk_wait.list) {
152 		if (t->tk_owner == task->tk_owner) {
153 			list_add_tail(&task->u.tk_wait.links,
154 					&t->u.tk_wait.links);
155 			/* Cache the queue head in task->u.tk_wait.list */
156 			task->u.tk_wait.list.next = q;
157 			task->u.tk_wait.list.prev = NULL;
158 			return;
159 		}
160 	}
161 	INIT_LIST_HEAD(&task->u.tk_wait.links);
162 	list_add_tail(&task->u.tk_wait.list, q);
163 }
164 
165 /*
166  * Remove request from a queue list
167  */
168 static void
169 __rpc_list_dequeue_task(struct rpc_task *task)
170 {
171 	struct list_head *q;
172 	struct rpc_task *t;
173 
174 	if (task->u.tk_wait.list.prev == NULL) {
175 		list_del(&task->u.tk_wait.links);
176 		return;
177 	}
178 	if (!list_empty(&task->u.tk_wait.links)) {
179 		t = list_first_entry(&task->u.tk_wait.links,
180 				struct rpc_task,
181 				u.tk_wait.links);
182 		/* Assume __rpc_list_enqueue_task() cached the queue head */
183 		q = t->u.tk_wait.list.next;
184 		list_add_tail(&t->u.tk_wait.list, q);
185 		list_del(&task->u.tk_wait.links);
186 	}
187 	list_del(&task->u.tk_wait.list);
188 }
189 
190 /*
191  * Add new request to a priority queue.
192  */
193 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
194 		struct rpc_task *task,
195 		unsigned char queue_priority)
196 {
197 	if (unlikely(queue_priority > queue->maxpriority))
198 		queue_priority = queue->maxpriority;
199 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
200 }
201 
202 /*
203  * Add new request to wait queue.
204  */
205 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
206 		struct rpc_task *task,
207 		unsigned char queue_priority)
208 {
209 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
210 	if (RPC_IS_PRIORITY(queue))
211 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
212 	else
213 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214 	task->tk_waitqueue = queue;
215 	queue->qlen++;
216 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
217 	smp_wmb();
218 	rpc_set_queued(task);
219 }
220 
221 /*
222  * Remove request from a priority queue.
223  */
224 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
225 {
226 	__rpc_list_dequeue_task(task);
227 }
228 
229 /*
230  * Remove request from queue.
231  * Note: must be called with spin lock held.
232  */
233 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
234 {
235 	__rpc_disable_timer(queue, task);
236 	if (RPC_IS_PRIORITY(queue))
237 		__rpc_remove_wait_queue_priority(task);
238 	else
239 		list_del(&task->u.tk_wait.list);
240 	queue->qlen--;
241 }
242 
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245 	int i;
246 
247 	spin_lock_init(&queue->lock);
248 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249 		INIT_LIST_HEAD(&queue->tasks[i]);
250 	queue->maxpriority = nr_queues - 1;
251 	rpc_reset_waitqueue_priority(queue);
252 	queue->qlen = 0;
253 	queue->timer_list.expires = 0;
254 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
255 	INIT_LIST_HEAD(&queue->timer_list.list);
256 	rpc_assign_waitqueue_name(queue, qname);
257 }
258 
259 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260 {
261 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
262 }
263 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
264 
265 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
266 {
267 	__rpc_init_priority_wait_queue(queue, qname, 1);
268 }
269 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
270 
271 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
272 {
273 	cancel_delayed_work_sync(&queue->timer_list.dwork);
274 }
275 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
276 
277 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
278 {
279 	schedule();
280 	if (signal_pending_state(mode, current))
281 		return -ERESTARTSYS;
282 	return 0;
283 }
284 
285 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
286 static void rpc_task_set_debuginfo(struct rpc_task *task)
287 {
288 	struct rpc_clnt *clnt = task->tk_client;
289 
290 	/* Might be a task carrying a reverse-direction operation */
291 	if (!clnt) {
292 		static atomic_t rpc_pid;
293 
294 		task->tk_pid = atomic_inc_return(&rpc_pid);
295 		return;
296 	}
297 
298 	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
299 }
300 #else
301 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
302 {
303 }
304 #endif
305 
306 static void rpc_set_active(struct rpc_task *task)
307 {
308 	rpc_task_set_debuginfo(task);
309 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
310 	trace_rpc_task_begin(task, NULL);
311 }
312 
313 /*
314  * Mark an RPC call as having completed by clearing the 'active' bit
315  * and then waking up all tasks that were sleeping.
316  */
317 static int rpc_complete_task(struct rpc_task *task)
318 {
319 	void *m = &task->tk_runstate;
320 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
321 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
322 	unsigned long flags;
323 	int ret;
324 
325 	trace_rpc_task_complete(task, NULL);
326 
327 	spin_lock_irqsave(&wq->lock, flags);
328 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
329 	ret = atomic_dec_and_test(&task->tk_count);
330 	if (waitqueue_active(wq))
331 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
332 	spin_unlock_irqrestore(&wq->lock, flags);
333 	return ret;
334 }
335 
336 /*
337  * Allow callers to wait for completion of an RPC call
338  *
339  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
340  * to enforce taking of the wq->lock and hence avoid races with
341  * rpc_complete_task().
342  */
343 int rpc_wait_for_completion_task(struct rpc_task *task)
344 {
345 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
346 			rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
347 }
348 EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task);
349 
350 /*
351  * Make an RPC task runnable.
352  *
353  * Note: If the task is ASYNC, and is being made runnable after sitting on an
354  * rpc_wait_queue, this must be called with the queue spinlock held to protect
355  * the wait queue operation.
356  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
357  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
358  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
359  * the RPC_TASK_RUNNING flag.
360  */
361 static void rpc_make_runnable(struct workqueue_struct *wq,
362 		struct rpc_task *task)
363 {
364 	bool need_wakeup = !rpc_test_and_set_running(task);
365 
366 	rpc_clear_queued(task);
367 	if (!need_wakeup)
368 		return;
369 	if (RPC_IS_ASYNC(task)) {
370 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
371 		queue_work(wq, &task->u.tk_work);
372 	} else
373 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
374 }
375 
376 /*
377  * Prepare for sleeping on a wait queue.
378  * By always appending tasks to the list we ensure FIFO behavior.
379  * NB: An RPC task will only receive interrupt-driven events as long
380  * as it's on a wait queue.
381  */
382 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
383 		struct rpc_task *task,
384 		unsigned char queue_priority)
385 {
386 	trace_rpc_task_sleep(task, q);
387 
388 	__rpc_add_wait_queue(q, task, queue_priority);
389 }
390 
391 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
392 		struct rpc_task *task,
393 		unsigned char queue_priority)
394 {
395 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
396 		return;
397 	__rpc_do_sleep_on_priority(q, task, queue_priority);
398 }
399 
400 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
401 		struct rpc_task *task, unsigned long timeout,
402 		unsigned char queue_priority)
403 {
404 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
405 		return;
406 	if (time_is_after_jiffies(timeout)) {
407 		__rpc_do_sleep_on_priority(q, task, queue_priority);
408 		__rpc_add_timer(q, task, timeout);
409 	} else
410 		task->tk_status = -ETIMEDOUT;
411 }
412 
413 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
414 {
415 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
416 		task->tk_callback = action;
417 }
418 
419 static bool rpc_sleep_check_activated(struct rpc_task *task)
420 {
421 	/* We shouldn't ever put an inactive task to sleep */
422 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
423 		task->tk_status = -EIO;
424 		rpc_put_task_async(task);
425 		return false;
426 	}
427 	return true;
428 }
429 
430 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
431 				rpc_action action, unsigned long timeout)
432 {
433 	if (!rpc_sleep_check_activated(task))
434 		return;
435 
436 	rpc_set_tk_callback(task, action);
437 
438 	/*
439 	 * Protect the queue operations.
440 	 */
441 	spin_lock(&q->lock);
442 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
443 	spin_unlock(&q->lock);
444 }
445 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
446 
447 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
448 				rpc_action action)
449 {
450 	if (!rpc_sleep_check_activated(task))
451 		return;
452 
453 	rpc_set_tk_callback(task, action);
454 
455 	WARN_ON_ONCE(task->tk_timeout != 0);
456 	/*
457 	 * Protect the queue operations.
458 	 */
459 	spin_lock(&q->lock);
460 	__rpc_sleep_on_priority(q, task, task->tk_priority);
461 	spin_unlock(&q->lock);
462 }
463 EXPORT_SYMBOL_GPL(rpc_sleep_on);
464 
465 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
466 		struct rpc_task *task, unsigned long timeout, int priority)
467 {
468 	if (!rpc_sleep_check_activated(task))
469 		return;
470 
471 	priority -= RPC_PRIORITY_LOW;
472 	/*
473 	 * Protect the queue operations.
474 	 */
475 	spin_lock(&q->lock);
476 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
477 	spin_unlock(&q->lock);
478 }
479 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
480 
481 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
482 		int priority)
483 {
484 	if (!rpc_sleep_check_activated(task))
485 		return;
486 
487 	WARN_ON_ONCE(task->tk_timeout != 0);
488 	priority -= RPC_PRIORITY_LOW;
489 	/*
490 	 * Protect the queue operations.
491 	 */
492 	spin_lock(&q->lock);
493 	__rpc_sleep_on_priority(q, task, priority);
494 	spin_unlock(&q->lock);
495 }
496 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
497 
498 /**
499  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
500  * @wq: workqueue on which to run task
501  * @queue: wait queue
502  * @task: task to be woken up
503  *
504  * Caller must hold queue->lock, and have cleared the task queued flag.
505  */
506 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
507 		struct rpc_wait_queue *queue,
508 		struct rpc_task *task)
509 {
510 	/* Has the task been executed yet? If not, we cannot wake it up! */
511 	if (!RPC_IS_ACTIVATED(task)) {
512 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
513 		return;
514 	}
515 
516 	trace_rpc_task_wakeup(task, queue);
517 
518 	__rpc_remove_wait_queue(queue, task);
519 
520 	rpc_make_runnable(wq, task);
521 }
522 
523 /*
524  * Wake up a queued task while the queue lock is being held
525  */
526 static struct rpc_task *
527 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
528 		struct rpc_wait_queue *queue, struct rpc_task *task,
529 		bool (*action)(struct rpc_task *, void *), void *data)
530 {
531 	if (RPC_IS_QUEUED(task)) {
532 		smp_rmb();
533 		if (task->tk_waitqueue == queue) {
534 			if (action == NULL || action(task, data)) {
535 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
536 				return task;
537 			}
538 		}
539 	}
540 	return NULL;
541 }
542 
543 /*
544  * Wake up a queued task while the queue lock is being held
545  */
546 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
547 					  struct rpc_task *task)
548 {
549 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
550 						   task, NULL, NULL);
551 }
552 
553 /*
554  * Wake up a task on a specific queue
555  */
556 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
557 {
558 	if (!RPC_IS_QUEUED(task))
559 		return;
560 	spin_lock(&queue->lock);
561 	rpc_wake_up_task_queue_locked(queue, task);
562 	spin_unlock(&queue->lock);
563 }
564 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
565 
566 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
567 {
568 	task->tk_status = *(int *)status;
569 	return true;
570 }
571 
572 static void
573 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
574 		struct rpc_task *task, int status)
575 {
576 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
577 			task, rpc_task_action_set_status, &status);
578 }
579 
580 /**
581  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
582  * @queue: pointer to rpc_wait_queue
583  * @task: pointer to rpc_task
584  * @status: integer error value
585  *
586  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
587  * set to the value of @status.
588  */
589 void
590 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
591 		struct rpc_task *task, int status)
592 {
593 	if (!RPC_IS_QUEUED(task))
594 		return;
595 	spin_lock(&queue->lock);
596 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
597 	spin_unlock(&queue->lock);
598 }
599 
600 /*
601  * Wake up the next task on a priority queue.
602  */
603 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
604 {
605 	struct list_head *q;
606 	struct rpc_task *task;
607 
608 	/*
609 	 * Service the privileged queue.
610 	 */
611 	q = &queue->tasks[RPC_NR_PRIORITY - 1];
612 	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
613 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
614 		goto out;
615 	}
616 
617 	/*
618 	 * Service a batch of tasks from a single owner.
619 	 */
620 	q = &queue->tasks[queue->priority];
621 	if (!list_empty(q) && queue->nr) {
622 		queue->nr--;
623 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
624 		goto out;
625 	}
626 
627 	/*
628 	 * Service the next queue.
629 	 */
630 	do {
631 		if (q == &queue->tasks[0])
632 			q = &queue->tasks[queue->maxpriority];
633 		else
634 			q = q - 1;
635 		if (!list_empty(q)) {
636 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
637 			goto new_queue;
638 		}
639 	} while (q != &queue->tasks[queue->priority]);
640 
641 	rpc_reset_waitqueue_priority(queue);
642 	return NULL;
643 
644 new_queue:
645 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
646 out:
647 	return task;
648 }
649 
650 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
651 {
652 	if (RPC_IS_PRIORITY(queue))
653 		return __rpc_find_next_queued_priority(queue);
654 	if (!list_empty(&queue->tasks[0]))
655 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
656 	return NULL;
657 }
658 
659 /*
660  * Wake up the first task on the wait queue.
661  */
662 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
663 		struct rpc_wait_queue *queue,
664 		bool (*func)(struct rpc_task *, void *), void *data)
665 {
666 	struct rpc_task	*task = NULL;
667 
668 	spin_lock(&queue->lock);
669 	task = __rpc_find_next_queued(queue);
670 	if (task != NULL)
671 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
672 				task, func, data);
673 	spin_unlock(&queue->lock);
674 
675 	return task;
676 }
677 
678 /*
679  * Wake up the first task on the wait queue.
680  */
681 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
682 		bool (*func)(struct rpc_task *, void *), void *data)
683 {
684 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
685 }
686 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
687 
688 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
689 {
690 	return true;
691 }
692 
693 /*
694  * Wake up the next task on the wait queue.
695 */
696 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
697 {
698 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
699 }
700 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
701 
702 /**
703  * rpc_wake_up_locked - wake up all rpc_tasks
704  * @queue: rpc_wait_queue on which the tasks are sleeping
705  *
706  */
707 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
708 {
709 	struct rpc_task *task;
710 
711 	for (;;) {
712 		task = __rpc_find_next_queued(queue);
713 		if (task == NULL)
714 			break;
715 		rpc_wake_up_task_queue_locked(queue, task);
716 	}
717 }
718 
719 /**
720  * rpc_wake_up - wake up all rpc_tasks
721  * @queue: rpc_wait_queue on which the tasks are sleeping
722  *
723  * Grabs queue->lock
724  */
725 void rpc_wake_up(struct rpc_wait_queue *queue)
726 {
727 	spin_lock(&queue->lock);
728 	rpc_wake_up_locked(queue);
729 	spin_unlock(&queue->lock);
730 }
731 EXPORT_SYMBOL_GPL(rpc_wake_up);
732 
733 /**
734  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
735  * @queue: rpc_wait_queue on which the tasks are sleeping
736  * @status: status value to set
737  */
738 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
739 {
740 	struct rpc_task *task;
741 
742 	for (;;) {
743 		task = __rpc_find_next_queued(queue);
744 		if (task == NULL)
745 			break;
746 		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
747 	}
748 }
749 
750 /**
751  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
752  * @queue: rpc_wait_queue on which the tasks are sleeping
753  * @status: status value to set
754  *
755  * Grabs queue->lock
756  */
757 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
758 {
759 	spin_lock(&queue->lock);
760 	rpc_wake_up_status_locked(queue, status);
761 	spin_unlock(&queue->lock);
762 }
763 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
764 
765 static void __rpc_queue_timer_fn(struct work_struct *work)
766 {
767 	struct rpc_wait_queue *queue = container_of(work,
768 			struct rpc_wait_queue,
769 			timer_list.dwork.work);
770 	struct rpc_task *task, *n;
771 	unsigned long expires, now, timeo;
772 
773 	spin_lock(&queue->lock);
774 	expires = now = jiffies;
775 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
776 		timeo = task->tk_timeout;
777 		if (time_after_eq(now, timeo)) {
778 			trace_rpc_task_timeout(task, task->tk_action);
779 			task->tk_status = -ETIMEDOUT;
780 			rpc_wake_up_task_queue_locked(queue, task);
781 			continue;
782 		}
783 		if (expires == now || time_after(expires, timeo))
784 			expires = timeo;
785 	}
786 	if (!list_empty(&queue->timer_list.list))
787 		rpc_set_queue_timer(queue, expires);
788 	spin_unlock(&queue->lock);
789 }
790 
791 static void __rpc_atrun(struct rpc_task *task)
792 {
793 	if (task->tk_status == -ETIMEDOUT)
794 		task->tk_status = 0;
795 }
796 
797 /*
798  * Run a task at a later time
799  */
800 void rpc_delay(struct rpc_task *task, unsigned long delay)
801 {
802 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
803 }
804 EXPORT_SYMBOL_GPL(rpc_delay);
805 
806 /*
807  * Helper to call task->tk_ops->rpc_call_prepare
808  */
809 void rpc_prepare_task(struct rpc_task *task)
810 {
811 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
812 }
813 
814 static void
815 rpc_init_task_statistics(struct rpc_task *task)
816 {
817 	/* Initialize retry counters */
818 	task->tk_garb_retry = 2;
819 	task->tk_cred_retry = 2;
820 
821 	/* starting timestamp */
822 	task->tk_start = ktime_get();
823 }
824 
825 static void
826 rpc_reset_task_statistics(struct rpc_task *task)
827 {
828 	task->tk_timeouts = 0;
829 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
830 	rpc_init_task_statistics(task);
831 }
832 
833 /*
834  * Helper that calls task->tk_ops->rpc_call_done if it exists
835  */
836 void rpc_exit_task(struct rpc_task *task)
837 {
838 	trace_rpc_task_end(task, task->tk_action);
839 	task->tk_action = NULL;
840 	if (task->tk_ops->rpc_count_stats)
841 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
842 	else if (task->tk_client)
843 		rpc_count_iostats(task, task->tk_client->cl_metrics);
844 	if (task->tk_ops->rpc_call_done != NULL) {
845 		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
846 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
847 		if (task->tk_action != NULL) {
848 			/* Always release the RPC slot and buffer memory */
849 			xprt_release(task);
850 			rpc_reset_task_statistics(task);
851 		}
852 	}
853 }
854 
855 void rpc_signal_task(struct rpc_task *task)
856 {
857 	struct rpc_wait_queue *queue;
858 
859 	if (!RPC_IS_ACTIVATED(task))
860 		return;
861 
862 	if (!rpc_task_set_rpc_status(task, -ERESTARTSYS))
863 		return;
864 	trace_rpc_task_signalled(task, task->tk_action);
865 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
866 	smp_mb__after_atomic();
867 	queue = READ_ONCE(task->tk_waitqueue);
868 	if (queue)
869 		rpc_wake_up_queued_task(queue, task);
870 }
871 
872 void rpc_task_try_cancel(struct rpc_task *task, int error)
873 {
874 	struct rpc_wait_queue *queue;
875 
876 	if (!rpc_task_set_rpc_status(task, error))
877 		return;
878 	queue = READ_ONCE(task->tk_waitqueue);
879 	if (queue)
880 		rpc_wake_up_queued_task(queue, task);
881 }
882 
883 void rpc_exit(struct rpc_task *task, int status)
884 {
885 	task->tk_status = status;
886 	task->tk_action = rpc_exit_task;
887 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
888 }
889 EXPORT_SYMBOL_GPL(rpc_exit);
890 
891 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
892 {
893 	if (ops->rpc_release != NULL)
894 		ops->rpc_release(calldata);
895 }
896 
897 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
898 {
899 	if (!xprt)
900 		return false;
901 	if (!atomic_read(&xprt->swapper))
902 		return false;
903 	return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
904 }
905 
906 /*
907  * This is the RPC `scheduler' (or rather, the finite state machine).
908  */
909 static void __rpc_execute(struct rpc_task *task)
910 {
911 	struct rpc_wait_queue *queue;
912 	int task_is_async = RPC_IS_ASYNC(task);
913 	int status = 0;
914 	unsigned long pflags = current->flags;
915 
916 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
917 	if (RPC_IS_QUEUED(task))
918 		return;
919 
920 	for (;;) {
921 		void (*do_action)(struct rpc_task *);
922 
923 		/*
924 		 * Perform the next FSM step or a pending callback.
925 		 *
926 		 * tk_action may be NULL if the task has been killed.
927 		 */
928 		do_action = task->tk_action;
929 		/* Tasks with an RPC error status should exit */
930 		if (do_action != rpc_exit_task &&
931 		    (status = READ_ONCE(task->tk_rpc_status)) != 0) {
932 			task->tk_status = status;
933 			if (do_action != NULL)
934 				do_action = rpc_exit_task;
935 		}
936 		/* Callbacks override all actions */
937 		if (task->tk_callback) {
938 			do_action = task->tk_callback;
939 			task->tk_callback = NULL;
940 		}
941 		if (!do_action)
942 			break;
943 		if (RPC_IS_SWAPPER(task) ||
944 		    xprt_needs_memalloc(task->tk_xprt, task))
945 			current->flags |= PF_MEMALLOC;
946 
947 		trace_rpc_task_run_action(task, do_action);
948 		do_action(task);
949 
950 		/*
951 		 * Lockless check for whether task is sleeping or not.
952 		 */
953 		if (!RPC_IS_QUEUED(task)) {
954 			cond_resched();
955 			continue;
956 		}
957 
958 		/*
959 		 * The queue->lock protects against races with
960 		 * rpc_make_runnable().
961 		 *
962 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
963 		 * rpc_task, rpc_make_runnable() can assign it to a
964 		 * different workqueue. We therefore cannot assume that the
965 		 * rpc_task pointer may still be dereferenced.
966 		 */
967 		queue = task->tk_waitqueue;
968 		spin_lock(&queue->lock);
969 		if (!RPC_IS_QUEUED(task)) {
970 			spin_unlock(&queue->lock);
971 			continue;
972 		}
973 		/* Wake up any task that has an exit status */
974 		if (READ_ONCE(task->tk_rpc_status) != 0) {
975 			rpc_wake_up_task_queue_locked(queue, task);
976 			spin_unlock(&queue->lock);
977 			continue;
978 		}
979 		rpc_clear_running(task);
980 		spin_unlock(&queue->lock);
981 		if (task_is_async)
982 			goto out;
983 
984 		/* sync task: sleep here */
985 		trace_rpc_task_sync_sleep(task, task->tk_action);
986 		status = out_of_line_wait_on_bit(&task->tk_runstate,
987 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
988 				TASK_KILLABLE|TASK_FREEZABLE);
989 		if (status < 0) {
990 			/*
991 			 * When a sync task receives a signal, it exits with
992 			 * -ERESTARTSYS. In order to catch any callbacks that
993 			 * clean up after sleeping on some queue, we don't
994 			 * break the loop here, but go around once more.
995 			 */
996 			rpc_signal_task(task);
997 		}
998 		trace_rpc_task_sync_wake(task, task->tk_action);
999 	}
1000 
1001 	/* Release all resources associated with the task */
1002 	rpc_release_task(task);
1003 out:
1004 	current_restore_flags(pflags, PF_MEMALLOC);
1005 }
1006 
1007 /*
1008  * User-visible entry point to the scheduler.
1009  *
1010  * This may be called recursively if e.g. an async NFS task updates
1011  * the attributes and finds that dirty pages must be flushed.
1012  * NOTE: Upon exit of this function the task is guaranteed to be
1013  *	 released. In particular note that tk_release() will have
1014  *	 been called, so your task memory may have been freed.
1015  */
1016 void rpc_execute(struct rpc_task *task)
1017 {
1018 	bool is_async = RPC_IS_ASYNC(task);
1019 
1020 	rpc_set_active(task);
1021 	rpc_make_runnable(rpciod_workqueue, task);
1022 	if (!is_async) {
1023 		unsigned int pflags = memalloc_nofs_save();
1024 		__rpc_execute(task);
1025 		memalloc_nofs_restore(pflags);
1026 	}
1027 }
1028 
1029 static void rpc_async_schedule(struct work_struct *work)
1030 {
1031 	unsigned int pflags = memalloc_nofs_save();
1032 
1033 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1034 	memalloc_nofs_restore(pflags);
1035 }
1036 
1037 /**
1038  * rpc_malloc - allocate RPC buffer resources
1039  * @task: RPC task
1040  *
1041  * A single memory region is allocated, which is split between the
1042  * RPC call and RPC reply that this task is being used for. When
1043  * this RPC is retired, the memory is released by calling rpc_free.
1044  *
1045  * To prevent rpciod from hanging, this allocator never sleeps,
1046  * returning -ENOMEM and suppressing warning if the request cannot
1047  * be serviced immediately. The caller can arrange to sleep in a
1048  * way that is safe for rpciod.
1049  *
1050  * Most requests are 'small' (under 2KiB) and can be serviced from a
1051  * mempool, ensuring that NFS reads and writes can always proceed,
1052  * and that there is good locality of reference for these buffers.
1053  */
1054 int rpc_malloc(struct rpc_task *task)
1055 {
1056 	struct rpc_rqst *rqst = task->tk_rqstp;
1057 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1058 	struct rpc_buffer *buf;
1059 	gfp_t gfp = rpc_task_gfp_mask();
1060 
1061 	size += sizeof(struct rpc_buffer);
1062 	if (size <= RPC_BUFFER_MAXSIZE) {
1063 		buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1064 		/* Reach for the mempool if dynamic allocation fails */
1065 		if (!buf && RPC_IS_ASYNC(task))
1066 			buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1067 	} else
1068 		buf = kmalloc(size, gfp);
1069 
1070 	if (!buf)
1071 		return -ENOMEM;
1072 
1073 	buf->len = size;
1074 	rqst->rq_buffer = buf->data;
1075 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1076 	return 0;
1077 }
1078 EXPORT_SYMBOL_GPL(rpc_malloc);
1079 
1080 /**
1081  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1082  * @task: RPC task
1083  *
1084  */
1085 void rpc_free(struct rpc_task *task)
1086 {
1087 	void *buffer = task->tk_rqstp->rq_buffer;
1088 	size_t size;
1089 	struct rpc_buffer *buf;
1090 
1091 	buf = container_of(buffer, struct rpc_buffer, data);
1092 	size = buf->len;
1093 
1094 	if (size <= RPC_BUFFER_MAXSIZE)
1095 		mempool_free(buf, rpc_buffer_mempool);
1096 	else
1097 		kfree(buf);
1098 }
1099 EXPORT_SYMBOL_GPL(rpc_free);
1100 
1101 /*
1102  * Creation and deletion of RPC task structures
1103  */
1104 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1105 {
1106 	memset(task, 0, sizeof(*task));
1107 	atomic_set(&task->tk_count, 1);
1108 	task->tk_flags  = task_setup_data->flags;
1109 	task->tk_ops = task_setup_data->callback_ops;
1110 	task->tk_calldata = task_setup_data->callback_data;
1111 	INIT_LIST_HEAD(&task->tk_task);
1112 
1113 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1114 	task->tk_owner = current->tgid;
1115 
1116 	/* Initialize workqueue for async tasks */
1117 	task->tk_workqueue = task_setup_data->workqueue;
1118 
1119 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1120 			xprt_get(task_setup_data->rpc_xprt));
1121 
1122 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1123 
1124 	if (task->tk_ops->rpc_call_prepare != NULL)
1125 		task->tk_action = rpc_prepare_task;
1126 
1127 	rpc_init_task_statistics(task);
1128 }
1129 
1130 static struct rpc_task *rpc_alloc_task(void)
1131 {
1132 	struct rpc_task *task;
1133 
1134 	task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1135 	if (task)
1136 		return task;
1137 	return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1138 }
1139 
1140 /*
1141  * Create a new task for the specified client.
1142  */
1143 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1144 {
1145 	struct rpc_task	*task = setup_data->task;
1146 	unsigned short flags = 0;
1147 
1148 	if (task == NULL) {
1149 		task = rpc_alloc_task();
1150 		if (task == NULL) {
1151 			rpc_release_calldata(setup_data->callback_ops,
1152 					     setup_data->callback_data);
1153 			return ERR_PTR(-ENOMEM);
1154 		}
1155 		flags = RPC_TASK_DYNAMIC;
1156 	}
1157 
1158 	rpc_init_task(task, setup_data);
1159 	task->tk_flags |= flags;
1160 	return task;
1161 }
1162 
1163 /*
1164  * rpc_free_task - release rpc task and perform cleanups
1165  *
1166  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1167  * in order to work around a workqueue dependency issue.
1168  *
1169  * Tejun Heo states:
1170  * "Workqueue currently considers two work items to be the same if they're
1171  * on the same address and won't execute them concurrently - ie. it
1172  * makes a work item which is queued again while being executed wait
1173  * for the previous execution to complete.
1174  *
1175  * If a work function frees the work item, and then waits for an event
1176  * which should be performed by another work item and *that* work item
1177  * recycles the freed work item, it can create a false dependency loop.
1178  * There really is no reliable way to detect this short of verifying
1179  * every memory free."
1180  *
1181  */
1182 static void rpc_free_task(struct rpc_task *task)
1183 {
1184 	unsigned short tk_flags = task->tk_flags;
1185 
1186 	put_rpccred(task->tk_op_cred);
1187 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1188 
1189 	if (tk_flags & RPC_TASK_DYNAMIC)
1190 		mempool_free(task, rpc_task_mempool);
1191 }
1192 
1193 static void rpc_async_release(struct work_struct *work)
1194 {
1195 	unsigned int pflags = memalloc_nofs_save();
1196 
1197 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1198 	memalloc_nofs_restore(pflags);
1199 }
1200 
1201 static void rpc_release_resources_task(struct rpc_task *task)
1202 {
1203 	xprt_release(task);
1204 	if (task->tk_msg.rpc_cred) {
1205 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1206 			put_cred(task->tk_msg.rpc_cred);
1207 		task->tk_msg.rpc_cred = NULL;
1208 	}
1209 	rpc_task_release_client(task);
1210 }
1211 
1212 static void rpc_final_put_task(struct rpc_task *task,
1213 		struct workqueue_struct *q)
1214 {
1215 	if (q != NULL) {
1216 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1217 		queue_work(q, &task->u.tk_work);
1218 	} else
1219 		rpc_free_task(task);
1220 }
1221 
1222 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1223 {
1224 	if (atomic_dec_and_test(&task->tk_count)) {
1225 		rpc_release_resources_task(task);
1226 		rpc_final_put_task(task, q);
1227 	}
1228 }
1229 
1230 void rpc_put_task(struct rpc_task *task)
1231 {
1232 	rpc_do_put_task(task, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(rpc_put_task);
1235 
1236 void rpc_put_task_async(struct rpc_task *task)
1237 {
1238 	rpc_do_put_task(task, task->tk_workqueue);
1239 }
1240 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1241 
1242 static void rpc_release_task(struct rpc_task *task)
1243 {
1244 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1245 
1246 	rpc_release_resources_task(task);
1247 
1248 	/*
1249 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1250 	 * so it should be safe to use task->tk_count as a test for whether
1251 	 * or not any other processes still hold references to our rpc_task.
1252 	 */
1253 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1254 		/* Wake up anyone who may be waiting for task completion */
1255 		if (!rpc_complete_task(task))
1256 			return;
1257 	} else {
1258 		if (!atomic_dec_and_test(&task->tk_count))
1259 			return;
1260 	}
1261 	rpc_final_put_task(task, task->tk_workqueue);
1262 }
1263 
1264 int rpciod_up(void)
1265 {
1266 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1267 }
1268 
1269 void rpciod_down(void)
1270 {
1271 	module_put(THIS_MODULE);
1272 }
1273 
1274 /*
1275  * Start up the rpciod workqueue.
1276  */
1277 static int rpciod_start(void)
1278 {
1279 	struct workqueue_struct *wq;
1280 
1281 	/*
1282 	 * Create the rpciod thread and wait for it to start.
1283 	 */
1284 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1285 	if (!wq)
1286 		goto out_failed;
1287 	rpciod_workqueue = wq;
1288 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1289 	if (!wq)
1290 		goto free_rpciod;
1291 	xprtiod_workqueue = wq;
1292 	return 1;
1293 free_rpciod:
1294 	wq = rpciod_workqueue;
1295 	rpciod_workqueue = NULL;
1296 	destroy_workqueue(wq);
1297 out_failed:
1298 	return 0;
1299 }
1300 
1301 static void rpciod_stop(void)
1302 {
1303 	struct workqueue_struct *wq = NULL;
1304 
1305 	if (rpciod_workqueue == NULL)
1306 		return;
1307 
1308 	wq = rpciod_workqueue;
1309 	rpciod_workqueue = NULL;
1310 	destroy_workqueue(wq);
1311 	wq = xprtiod_workqueue;
1312 	xprtiod_workqueue = NULL;
1313 	destroy_workqueue(wq);
1314 }
1315 
1316 void
1317 rpc_destroy_mempool(void)
1318 {
1319 	rpciod_stop();
1320 	mempool_destroy(rpc_buffer_mempool);
1321 	mempool_destroy(rpc_task_mempool);
1322 	kmem_cache_destroy(rpc_task_slabp);
1323 	kmem_cache_destroy(rpc_buffer_slabp);
1324 	rpc_destroy_wait_queue(&delay_queue);
1325 }
1326 
1327 int
1328 rpc_init_mempool(void)
1329 {
1330 	/*
1331 	 * The following is not strictly a mempool initialisation,
1332 	 * but there is no harm in doing it here
1333 	 */
1334 	rpc_init_wait_queue(&delay_queue, "delayq");
1335 	if (!rpciod_start())
1336 		goto err_nomem;
1337 
1338 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1339 					     sizeof(struct rpc_task),
1340 					     0, SLAB_HWCACHE_ALIGN,
1341 					     NULL);
1342 	if (!rpc_task_slabp)
1343 		goto err_nomem;
1344 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1345 					     RPC_BUFFER_MAXSIZE,
1346 					     0, SLAB_HWCACHE_ALIGN,
1347 					     NULL);
1348 	if (!rpc_buffer_slabp)
1349 		goto err_nomem;
1350 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1351 						    rpc_task_slabp);
1352 	if (!rpc_task_mempool)
1353 		goto err_nomem;
1354 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1355 						      rpc_buffer_slabp);
1356 	if (!rpc_buffer_mempool)
1357 		goto err_nomem;
1358 	return 0;
1359 err_nomem:
1360 	rpc_destroy_mempool();
1361 	return -ENOMEM;
1362 }
1363