xref: /openbmc/linux/net/sunrpc/sched.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32 
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE	(2048)
37 #define RPC_BUFFER_POOLSIZE	(8)
38 #define RPC_TASK_POOLSIZE	(8)
39 static struct kmem_cache	*rpc_task_slabp __read_mostly;
40 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41 static mempool_t	*rpc_task_mempool __read_mostly;
42 static mempool_t	*rpc_buffer_mempool __read_mostly;
43 
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47 
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52 
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59 
60 unsigned long
61 rpc_task_timeout(const struct rpc_task *task)
62 {
63 	unsigned long timeout = READ_ONCE(task->tk_timeout);
64 
65 	if (timeout != 0) {
66 		unsigned long now = jiffies;
67 		if (time_before(now, timeout))
68 			return timeout - now;
69 	}
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73 
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static void
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82 	if (list_empty(&task->u.tk_wait.timer_list))
83 		return;
84 	task->tk_timeout = 0;
85 	list_del(&task->u.tk_wait.timer_list);
86 	if (list_empty(&queue->timer_list.list))
87 		cancel_delayed_work(&queue->timer_list.dwork);
88 }
89 
90 static void
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93 	unsigned long now = jiffies;
94 	queue->timer_list.expires = expires;
95 	if (time_before_eq(expires, now))
96 		expires = 0;
97 	else
98 		expires -= now;
99 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101 
102 /*
103  * Set up a timer for the current task.
104  */
105 static void
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107 		unsigned long timeout)
108 {
109 	task->tk_timeout = timeout;
110 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111 		rpc_set_queue_timer(queue, timeout);
112 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114 
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117 	if (queue->priority != priority) {
118 		queue->priority = priority;
119 		queue->nr = 1U << priority;
120 	}
121 }
122 
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127 
128 /*
129  * Add a request to a queue list
130  */
131 static void
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134 	struct rpc_task *t;
135 
136 	list_for_each_entry(t, q, u.tk_wait.list) {
137 		if (t->tk_owner == task->tk_owner) {
138 			list_add_tail(&task->u.tk_wait.links,
139 					&t->u.tk_wait.links);
140 			/* Cache the queue head in task->u.tk_wait.list */
141 			task->u.tk_wait.list.next = q;
142 			task->u.tk_wait.list.prev = NULL;
143 			return;
144 		}
145 	}
146 	INIT_LIST_HEAD(&task->u.tk_wait.links);
147 	list_add_tail(&task->u.tk_wait.list, q);
148 }
149 
150 /*
151  * Remove request from a queue list
152  */
153 static void
154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156 	struct list_head *q;
157 	struct rpc_task *t;
158 
159 	if (task->u.tk_wait.list.prev == NULL) {
160 		list_del(&task->u.tk_wait.links);
161 		return;
162 	}
163 	if (!list_empty(&task->u.tk_wait.links)) {
164 		t = list_first_entry(&task->u.tk_wait.links,
165 				struct rpc_task,
166 				u.tk_wait.links);
167 		/* Assume __rpc_list_enqueue_task() cached the queue head */
168 		q = t->u.tk_wait.list.next;
169 		list_add_tail(&t->u.tk_wait.list, q);
170 		list_del(&task->u.tk_wait.links);
171 	}
172 	list_del(&task->u.tk_wait.list);
173 }
174 
175 /*
176  * Add new request to a priority queue.
177  */
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179 		struct rpc_task *task,
180 		unsigned char queue_priority)
181 {
182 	if (unlikely(queue_priority > queue->maxpriority))
183 		queue_priority = queue->maxpriority;
184 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186 
187 /*
188  * Add new request to wait queue.
189  *
190  * Swapper tasks always get inserted at the head of the queue.
191  * This should avoid many nasty memory deadlocks and hopefully
192  * improve overall performance.
193  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194  */
195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196 		struct rpc_task *task,
197 		unsigned char queue_priority)
198 {
199 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200 	if (RPC_IS_PRIORITY(queue))
201 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
202 	else if (RPC_IS_SWAPPER(task))
203 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204 	else
205 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206 	task->tk_waitqueue = queue;
207 	queue->qlen++;
208 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
209 	smp_wmb();
210 	rpc_set_queued(task);
211 }
212 
213 /*
214  * Remove request from a priority queue.
215  */
216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218 	__rpc_list_dequeue_task(task);
219 }
220 
221 /*
222  * Remove request from queue.
223  * Note: must be called with spin lock held.
224  */
225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227 	__rpc_disable_timer(queue, task);
228 	if (RPC_IS_PRIORITY(queue))
229 		__rpc_remove_wait_queue_priority(task);
230 	else
231 		list_del(&task->u.tk_wait.list);
232 	queue->qlen--;
233 }
234 
235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237 	int i;
238 
239 	spin_lock_init(&queue->lock);
240 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241 		INIT_LIST_HEAD(&queue->tasks[i]);
242 	queue->maxpriority = nr_queues - 1;
243 	rpc_reset_waitqueue_priority(queue);
244 	queue->qlen = 0;
245 	queue->timer_list.expires = 0;
246 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247 	INIT_LIST_HEAD(&queue->timer_list.list);
248 	rpc_assign_waitqueue_name(queue, qname);
249 }
250 
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256 
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259 	__rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262 
263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265 	cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268 
269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271 	freezable_schedule_unsafe();
272 	if (signal_pending_state(mode, current))
273 		return -ERESTARTSYS;
274 	return 0;
275 }
276 
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280 	static atomic_t rpc_pid;
281 
282 	task->tk_pid = atomic_inc_return(&rpc_pid);
283 }
284 #else
285 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
286 {
287 }
288 #endif
289 
290 static void rpc_set_active(struct rpc_task *task)
291 {
292 	rpc_task_set_debuginfo(task);
293 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
294 	trace_rpc_task_begin(task, NULL);
295 }
296 
297 /*
298  * Mark an RPC call as having completed by clearing the 'active' bit
299  * and then waking up all tasks that were sleeping.
300  */
301 static int rpc_complete_task(struct rpc_task *task)
302 {
303 	void *m = &task->tk_runstate;
304 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
305 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
306 	unsigned long flags;
307 	int ret;
308 
309 	trace_rpc_task_complete(task, NULL);
310 
311 	spin_lock_irqsave(&wq->lock, flags);
312 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
313 	ret = atomic_dec_and_test(&task->tk_count);
314 	if (waitqueue_active(wq))
315 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
316 	spin_unlock_irqrestore(&wq->lock, flags);
317 	return ret;
318 }
319 
320 /*
321  * Allow callers to wait for completion of an RPC call
322  *
323  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
324  * to enforce taking of the wq->lock and hence avoid races with
325  * rpc_complete_task().
326  */
327 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
328 {
329 	if (action == NULL)
330 		action = rpc_wait_bit_killable;
331 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
332 			action, TASK_KILLABLE);
333 }
334 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
335 
336 /*
337  * Make an RPC task runnable.
338  *
339  * Note: If the task is ASYNC, and is being made runnable after sitting on an
340  * rpc_wait_queue, this must be called with the queue spinlock held to protect
341  * the wait queue operation.
342  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
343  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
344  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
345  * the RPC_TASK_RUNNING flag.
346  */
347 static void rpc_make_runnable(struct workqueue_struct *wq,
348 		struct rpc_task *task)
349 {
350 	bool need_wakeup = !rpc_test_and_set_running(task);
351 
352 	rpc_clear_queued(task);
353 	if (!need_wakeup)
354 		return;
355 	if (RPC_IS_ASYNC(task)) {
356 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
357 		queue_work(wq, &task->u.tk_work);
358 	} else
359 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
360 }
361 
362 /*
363  * Prepare for sleeping on a wait queue.
364  * By always appending tasks to the list we ensure FIFO behavior.
365  * NB: An RPC task will only receive interrupt-driven events as long
366  * as it's on a wait queue.
367  */
368 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
369 		struct rpc_task *task,
370 		unsigned char queue_priority)
371 {
372 	trace_rpc_task_sleep(task, q);
373 
374 	__rpc_add_wait_queue(q, task, queue_priority);
375 }
376 
377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
378 		struct rpc_task *task,
379 		unsigned char queue_priority)
380 {
381 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
382 		return;
383 	__rpc_do_sleep_on_priority(q, task, queue_priority);
384 }
385 
386 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
387 		struct rpc_task *task, unsigned long timeout,
388 		unsigned char queue_priority)
389 {
390 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
391 		return;
392 	if (time_is_after_jiffies(timeout)) {
393 		__rpc_do_sleep_on_priority(q, task, queue_priority);
394 		__rpc_add_timer(q, task, timeout);
395 	} else
396 		task->tk_status = -ETIMEDOUT;
397 }
398 
399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
400 {
401 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
402 		task->tk_callback = action;
403 }
404 
405 static bool rpc_sleep_check_activated(struct rpc_task *task)
406 {
407 	/* We shouldn't ever put an inactive task to sleep */
408 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
409 		task->tk_status = -EIO;
410 		rpc_put_task_async(task);
411 		return false;
412 	}
413 	return true;
414 }
415 
416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
417 				rpc_action action, unsigned long timeout)
418 {
419 	if (!rpc_sleep_check_activated(task))
420 		return;
421 
422 	rpc_set_tk_callback(task, action);
423 
424 	/*
425 	 * Protect the queue operations.
426 	 */
427 	spin_lock(&q->lock);
428 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
429 	spin_unlock(&q->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
432 
433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
434 				rpc_action action)
435 {
436 	if (!rpc_sleep_check_activated(task))
437 		return;
438 
439 	rpc_set_tk_callback(task, action);
440 
441 	WARN_ON_ONCE(task->tk_timeout != 0);
442 	/*
443 	 * Protect the queue operations.
444 	 */
445 	spin_lock(&q->lock);
446 	__rpc_sleep_on_priority(q, task, task->tk_priority);
447 	spin_unlock(&q->lock);
448 }
449 EXPORT_SYMBOL_GPL(rpc_sleep_on);
450 
451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
452 		struct rpc_task *task, unsigned long timeout, int priority)
453 {
454 	if (!rpc_sleep_check_activated(task))
455 		return;
456 
457 	priority -= RPC_PRIORITY_LOW;
458 	/*
459 	 * Protect the queue operations.
460 	 */
461 	spin_lock(&q->lock);
462 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
463 	spin_unlock(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
466 
467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
468 		int priority)
469 {
470 	if (!rpc_sleep_check_activated(task))
471 		return;
472 
473 	WARN_ON_ONCE(task->tk_timeout != 0);
474 	priority -= RPC_PRIORITY_LOW;
475 	/*
476 	 * Protect the queue operations.
477 	 */
478 	spin_lock(&q->lock);
479 	__rpc_sleep_on_priority(q, task, priority);
480 	spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
483 
484 /**
485  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
486  * @wq: workqueue on which to run task
487  * @queue: wait queue
488  * @task: task to be woken up
489  *
490  * Caller must hold queue->lock, and have cleared the task queued flag.
491  */
492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
493 		struct rpc_wait_queue *queue,
494 		struct rpc_task *task)
495 {
496 	/* Has the task been executed yet? If not, we cannot wake it up! */
497 	if (!RPC_IS_ACTIVATED(task)) {
498 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
499 		return;
500 	}
501 
502 	trace_rpc_task_wakeup(task, queue);
503 
504 	__rpc_remove_wait_queue(queue, task);
505 
506 	rpc_make_runnable(wq, task);
507 }
508 
509 /*
510  * Wake up a queued task while the queue lock is being held
511  */
512 static struct rpc_task *
513 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
514 		struct rpc_wait_queue *queue, struct rpc_task *task,
515 		bool (*action)(struct rpc_task *, void *), void *data)
516 {
517 	if (RPC_IS_QUEUED(task)) {
518 		smp_rmb();
519 		if (task->tk_waitqueue == queue) {
520 			if (action == NULL || action(task, data)) {
521 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
522 				return task;
523 			}
524 		}
525 	}
526 	return NULL;
527 }
528 
529 /*
530  * Wake up a queued task while the queue lock is being held
531  */
532 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
533 					  struct rpc_task *task)
534 {
535 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
536 						   task, NULL, NULL);
537 }
538 
539 /*
540  * Wake up a task on a specific queue
541  */
542 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
543 {
544 	if (!RPC_IS_QUEUED(task))
545 		return;
546 	spin_lock(&queue->lock);
547 	rpc_wake_up_task_queue_locked(queue, task);
548 	spin_unlock(&queue->lock);
549 }
550 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
551 
552 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
553 {
554 	task->tk_status = *(int *)status;
555 	return true;
556 }
557 
558 static void
559 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
560 		struct rpc_task *task, int status)
561 {
562 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
563 			task, rpc_task_action_set_status, &status);
564 }
565 
566 /**
567  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
568  * @queue: pointer to rpc_wait_queue
569  * @task: pointer to rpc_task
570  * @status: integer error value
571  *
572  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
573  * set to the value of @status.
574  */
575 void
576 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
577 		struct rpc_task *task, int status)
578 {
579 	if (!RPC_IS_QUEUED(task))
580 		return;
581 	spin_lock(&queue->lock);
582 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
583 	spin_unlock(&queue->lock);
584 }
585 
586 /*
587  * Wake up the next task on a priority queue.
588  */
589 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
590 {
591 	struct list_head *q;
592 	struct rpc_task *task;
593 
594 	/*
595 	 * Service a batch of tasks from a single owner.
596 	 */
597 	q = &queue->tasks[queue->priority];
598 	if (!list_empty(q) && --queue->nr) {
599 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
600 		goto out;
601 	}
602 
603 	/*
604 	 * Service the next queue.
605 	 */
606 	do {
607 		if (q == &queue->tasks[0])
608 			q = &queue->tasks[queue->maxpriority];
609 		else
610 			q = q - 1;
611 		if (!list_empty(q)) {
612 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
613 			goto new_queue;
614 		}
615 	} while (q != &queue->tasks[queue->priority]);
616 
617 	rpc_reset_waitqueue_priority(queue);
618 	return NULL;
619 
620 new_queue:
621 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
622 out:
623 	return task;
624 }
625 
626 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
627 {
628 	if (RPC_IS_PRIORITY(queue))
629 		return __rpc_find_next_queued_priority(queue);
630 	if (!list_empty(&queue->tasks[0]))
631 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
632 	return NULL;
633 }
634 
635 /*
636  * Wake up the first task on the wait queue.
637  */
638 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
639 		struct rpc_wait_queue *queue,
640 		bool (*func)(struct rpc_task *, void *), void *data)
641 {
642 	struct rpc_task	*task = NULL;
643 
644 	spin_lock(&queue->lock);
645 	task = __rpc_find_next_queued(queue);
646 	if (task != NULL)
647 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
648 				task, func, data);
649 	spin_unlock(&queue->lock);
650 
651 	return task;
652 }
653 
654 /*
655  * Wake up the first task on the wait queue.
656  */
657 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
658 		bool (*func)(struct rpc_task *, void *), void *data)
659 {
660 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
661 }
662 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
663 
664 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
665 {
666 	return true;
667 }
668 
669 /*
670  * Wake up the next task on the wait queue.
671 */
672 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
673 {
674 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
675 }
676 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
677 
678 /**
679  * rpc_wake_up_locked - wake up all rpc_tasks
680  * @queue: rpc_wait_queue on which the tasks are sleeping
681  *
682  */
683 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
684 {
685 	struct rpc_task *task;
686 
687 	for (;;) {
688 		task = __rpc_find_next_queued(queue);
689 		if (task == NULL)
690 			break;
691 		rpc_wake_up_task_queue_locked(queue, task);
692 	}
693 }
694 
695 /**
696  * rpc_wake_up - wake up all rpc_tasks
697  * @queue: rpc_wait_queue on which the tasks are sleeping
698  *
699  * Grabs queue->lock
700  */
701 void rpc_wake_up(struct rpc_wait_queue *queue)
702 {
703 	spin_lock(&queue->lock);
704 	rpc_wake_up_locked(queue);
705 	spin_unlock(&queue->lock);
706 }
707 EXPORT_SYMBOL_GPL(rpc_wake_up);
708 
709 /**
710  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
711  * @queue: rpc_wait_queue on which the tasks are sleeping
712  * @status: status value to set
713  */
714 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
715 {
716 	struct rpc_task *task;
717 
718 	for (;;) {
719 		task = __rpc_find_next_queued(queue);
720 		if (task == NULL)
721 			break;
722 		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
723 	}
724 }
725 
726 /**
727  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
728  * @queue: rpc_wait_queue on which the tasks are sleeping
729  * @status: status value to set
730  *
731  * Grabs queue->lock
732  */
733 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
734 {
735 	spin_lock(&queue->lock);
736 	rpc_wake_up_status_locked(queue, status);
737 	spin_unlock(&queue->lock);
738 }
739 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
740 
741 static void __rpc_queue_timer_fn(struct work_struct *work)
742 {
743 	struct rpc_wait_queue *queue = container_of(work,
744 			struct rpc_wait_queue,
745 			timer_list.dwork.work);
746 	struct rpc_task *task, *n;
747 	unsigned long expires, now, timeo;
748 
749 	spin_lock(&queue->lock);
750 	expires = now = jiffies;
751 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
752 		timeo = task->tk_timeout;
753 		if (time_after_eq(now, timeo)) {
754 			trace_rpc_task_timeout(task, task->tk_action);
755 			task->tk_status = -ETIMEDOUT;
756 			rpc_wake_up_task_queue_locked(queue, task);
757 			continue;
758 		}
759 		if (expires == now || time_after(expires, timeo))
760 			expires = timeo;
761 	}
762 	if (!list_empty(&queue->timer_list.list))
763 		rpc_set_queue_timer(queue, expires);
764 	spin_unlock(&queue->lock);
765 }
766 
767 static void __rpc_atrun(struct rpc_task *task)
768 {
769 	if (task->tk_status == -ETIMEDOUT)
770 		task->tk_status = 0;
771 }
772 
773 /*
774  * Run a task at a later time
775  */
776 void rpc_delay(struct rpc_task *task, unsigned long delay)
777 {
778 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
779 }
780 EXPORT_SYMBOL_GPL(rpc_delay);
781 
782 /*
783  * Helper to call task->tk_ops->rpc_call_prepare
784  */
785 void rpc_prepare_task(struct rpc_task *task)
786 {
787 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
788 }
789 
790 static void
791 rpc_init_task_statistics(struct rpc_task *task)
792 {
793 	/* Initialize retry counters */
794 	task->tk_garb_retry = 2;
795 	task->tk_cred_retry = 2;
796 	task->tk_rebind_retry = 2;
797 
798 	/* starting timestamp */
799 	task->tk_start = ktime_get();
800 }
801 
802 static void
803 rpc_reset_task_statistics(struct rpc_task *task)
804 {
805 	task->tk_timeouts = 0;
806 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
807 	rpc_init_task_statistics(task);
808 }
809 
810 /*
811  * Helper that calls task->tk_ops->rpc_call_done if it exists
812  */
813 void rpc_exit_task(struct rpc_task *task)
814 {
815 	trace_rpc_task_end(task, task->tk_action);
816 	task->tk_action = NULL;
817 	if (task->tk_ops->rpc_count_stats)
818 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
819 	else if (task->tk_client)
820 		rpc_count_iostats(task, task->tk_client->cl_metrics);
821 	if (task->tk_ops->rpc_call_done != NULL) {
822 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
823 		if (task->tk_action != NULL) {
824 			/* Always release the RPC slot and buffer memory */
825 			xprt_release(task);
826 			rpc_reset_task_statistics(task);
827 		}
828 	}
829 }
830 
831 void rpc_signal_task(struct rpc_task *task)
832 {
833 	struct rpc_wait_queue *queue;
834 
835 	if (!RPC_IS_ACTIVATED(task))
836 		return;
837 
838 	trace_rpc_task_signalled(task, task->tk_action);
839 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
840 	smp_mb__after_atomic();
841 	queue = READ_ONCE(task->tk_waitqueue);
842 	if (queue)
843 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
844 }
845 
846 void rpc_exit(struct rpc_task *task, int status)
847 {
848 	task->tk_status = status;
849 	task->tk_action = rpc_exit_task;
850 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
851 }
852 EXPORT_SYMBOL_GPL(rpc_exit);
853 
854 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
855 {
856 	if (ops->rpc_release != NULL)
857 		ops->rpc_release(calldata);
858 }
859 
860 /*
861  * This is the RPC `scheduler' (or rather, the finite state machine).
862  */
863 static void __rpc_execute(struct rpc_task *task)
864 {
865 	struct rpc_wait_queue *queue;
866 	int task_is_async = RPC_IS_ASYNC(task);
867 	int status = 0;
868 
869 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
870 	if (RPC_IS_QUEUED(task))
871 		return;
872 
873 	for (;;) {
874 		void (*do_action)(struct rpc_task *);
875 
876 		/*
877 		 * Perform the next FSM step or a pending callback.
878 		 *
879 		 * tk_action may be NULL if the task has been killed.
880 		 * In particular, note that rpc_killall_tasks may
881 		 * do this at any time, so beware when dereferencing.
882 		 */
883 		do_action = task->tk_action;
884 		if (task->tk_callback) {
885 			do_action = task->tk_callback;
886 			task->tk_callback = NULL;
887 		}
888 		if (!do_action)
889 			break;
890 		trace_rpc_task_run_action(task, do_action);
891 		do_action(task);
892 
893 		/*
894 		 * Lockless check for whether task is sleeping or not.
895 		 */
896 		if (!RPC_IS_QUEUED(task))
897 			continue;
898 
899 		/*
900 		 * Signalled tasks should exit rather than sleep.
901 		 */
902 		if (RPC_SIGNALLED(task)) {
903 			task->tk_rpc_status = -ERESTARTSYS;
904 			rpc_exit(task, -ERESTARTSYS);
905 		}
906 
907 		/*
908 		 * The queue->lock protects against races with
909 		 * rpc_make_runnable().
910 		 *
911 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
912 		 * rpc_task, rpc_make_runnable() can assign it to a
913 		 * different workqueue. We therefore cannot assume that the
914 		 * rpc_task pointer may still be dereferenced.
915 		 */
916 		queue = task->tk_waitqueue;
917 		spin_lock(&queue->lock);
918 		if (!RPC_IS_QUEUED(task)) {
919 			spin_unlock(&queue->lock);
920 			continue;
921 		}
922 		rpc_clear_running(task);
923 		spin_unlock(&queue->lock);
924 		if (task_is_async)
925 			return;
926 
927 		/* sync task: sleep here */
928 		trace_rpc_task_sync_sleep(task, task->tk_action);
929 		status = out_of_line_wait_on_bit(&task->tk_runstate,
930 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
931 				TASK_KILLABLE);
932 		if (status < 0) {
933 			/*
934 			 * When a sync task receives a signal, it exits with
935 			 * -ERESTARTSYS. In order to catch any callbacks that
936 			 * clean up after sleeping on some queue, we don't
937 			 * break the loop here, but go around once more.
938 			 */
939 			trace_rpc_task_signalled(task, task->tk_action);
940 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
941 			task->tk_rpc_status = -ERESTARTSYS;
942 			rpc_exit(task, -ERESTARTSYS);
943 		}
944 		trace_rpc_task_sync_wake(task, task->tk_action);
945 	}
946 
947 	/* Release all resources associated with the task */
948 	rpc_release_task(task);
949 }
950 
951 /*
952  * User-visible entry point to the scheduler.
953  *
954  * This may be called recursively if e.g. an async NFS task updates
955  * the attributes and finds that dirty pages must be flushed.
956  * NOTE: Upon exit of this function the task is guaranteed to be
957  *	 released. In particular note that tk_release() will have
958  *	 been called, so your task memory may have been freed.
959  */
960 void rpc_execute(struct rpc_task *task)
961 {
962 	bool is_async = RPC_IS_ASYNC(task);
963 
964 	rpc_set_active(task);
965 	rpc_make_runnable(rpciod_workqueue, task);
966 	if (!is_async)
967 		__rpc_execute(task);
968 }
969 
970 static void rpc_async_schedule(struct work_struct *work)
971 {
972 	unsigned int pflags = memalloc_nofs_save();
973 
974 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
975 	memalloc_nofs_restore(pflags);
976 }
977 
978 /**
979  * rpc_malloc - allocate RPC buffer resources
980  * @task: RPC task
981  *
982  * A single memory region is allocated, which is split between the
983  * RPC call and RPC reply that this task is being used for. When
984  * this RPC is retired, the memory is released by calling rpc_free.
985  *
986  * To prevent rpciod from hanging, this allocator never sleeps,
987  * returning -ENOMEM and suppressing warning if the request cannot
988  * be serviced immediately. The caller can arrange to sleep in a
989  * way that is safe for rpciod.
990  *
991  * Most requests are 'small' (under 2KiB) and can be serviced from a
992  * mempool, ensuring that NFS reads and writes can always proceed,
993  * and that there is good locality of reference for these buffers.
994  */
995 int rpc_malloc(struct rpc_task *task)
996 {
997 	struct rpc_rqst *rqst = task->tk_rqstp;
998 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
999 	struct rpc_buffer *buf;
1000 	gfp_t gfp = GFP_NOFS;
1001 
1002 	if (RPC_IS_SWAPPER(task))
1003 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1004 
1005 	size += sizeof(struct rpc_buffer);
1006 	if (size <= RPC_BUFFER_MAXSIZE)
1007 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1008 	else
1009 		buf = kmalloc(size, gfp);
1010 
1011 	if (!buf)
1012 		return -ENOMEM;
1013 
1014 	buf->len = size;
1015 	rqst->rq_buffer = buf->data;
1016 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL_GPL(rpc_malloc);
1020 
1021 /**
1022  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1023  * @task: RPC task
1024  *
1025  */
1026 void rpc_free(struct rpc_task *task)
1027 {
1028 	void *buffer = task->tk_rqstp->rq_buffer;
1029 	size_t size;
1030 	struct rpc_buffer *buf;
1031 
1032 	buf = container_of(buffer, struct rpc_buffer, data);
1033 	size = buf->len;
1034 
1035 	if (size <= RPC_BUFFER_MAXSIZE)
1036 		mempool_free(buf, rpc_buffer_mempool);
1037 	else
1038 		kfree(buf);
1039 }
1040 EXPORT_SYMBOL_GPL(rpc_free);
1041 
1042 /*
1043  * Creation and deletion of RPC task structures
1044  */
1045 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1046 {
1047 	memset(task, 0, sizeof(*task));
1048 	atomic_set(&task->tk_count, 1);
1049 	task->tk_flags  = task_setup_data->flags;
1050 	task->tk_ops = task_setup_data->callback_ops;
1051 	task->tk_calldata = task_setup_data->callback_data;
1052 	INIT_LIST_HEAD(&task->tk_task);
1053 
1054 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1055 	task->tk_owner = current->tgid;
1056 
1057 	/* Initialize workqueue for async tasks */
1058 	task->tk_workqueue = task_setup_data->workqueue;
1059 
1060 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1061 			xprt_get(task_setup_data->rpc_xprt));
1062 
1063 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1064 
1065 	if (task->tk_ops->rpc_call_prepare != NULL)
1066 		task->tk_action = rpc_prepare_task;
1067 
1068 	rpc_init_task_statistics(task);
1069 }
1070 
1071 static struct rpc_task *
1072 rpc_alloc_task(void)
1073 {
1074 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1075 }
1076 
1077 /*
1078  * Create a new task for the specified client.
1079  */
1080 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1081 {
1082 	struct rpc_task	*task = setup_data->task;
1083 	unsigned short flags = 0;
1084 
1085 	if (task == NULL) {
1086 		task = rpc_alloc_task();
1087 		flags = RPC_TASK_DYNAMIC;
1088 	}
1089 
1090 	rpc_init_task(task, setup_data);
1091 	task->tk_flags |= flags;
1092 	return task;
1093 }
1094 
1095 /*
1096  * rpc_free_task - release rpc task and perform cleanups
1097  *
1098  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1099  * in order to work around a workqueue dependency issue.
1100  *
1101  * Tejun Heo states:
1102  * "Workqueue currently considers two work items to be the same if they're
1103  * on the same address and won't execute them concurrently - ie. it
1104  * makes a work item which is queued again while being executed wait
1105  * for the previous execution to complete.
1106  *
1107  * If a work function frees the work item, and then waits for an event
1108  * which should be performed by another work item and *that* work item
1109  * recycles the freed work item, it can create a false dependency loop.
1110  * There really is no reliable way to detect this short of verifying
1111  * every memory free."
1112  *
1113  */
1114 static void rpc_free_task(struct rpc_task *task)
1115 {
1116 	unsigned short tk_flags = task->tk_flags;
1117 
1118 	put_rpccred(task->tk_op_cred);
1119 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1120 
1121 	if (tk_flags & RPC_TASK_DYNAMIC)
1122 		mempool_free(task, rpc_task_mempool);
1123 }
1124 
1125 static void rpc_async_release(struct work_struct *work)
1126 {
1127 	unsigned int pflags = memalloc_nofs_save();
1128 
1129 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1130 	memalloc_nofs_restore(pflags);
1131 }
1132 
1133 static void rpc_release_resources_task(struct rpc_task *task)
1134 {
1135 	xprt_release(task);
1136 	if (task->tk_msg.rpc_cred) {
1137 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1138 			put_cred(task->tk_msg.rpc_cred);
1139 		task->tk_msg.rpc_cred = NULL;
1140 	}
1141 	rpc_task_release_client(task);
1142 }
1143 
1144 static void rpc_final_put_task(struct rpc_task *task,
1145 		struct workqueue_struct *q)
1146 {
1147 	if (q != NULL) {
1148 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1149 		queue_work(q, &task->u.tk_work);
1150 	} else
1151 		rpc_free_task(task);
1152 }
1153 
1154 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1155 {
1156 	if (atomic_dec_and_test(&task->tk_count)) {
1157 		rpc_release_resources_task(task);
1158 		rpc_final_put_task(task, q);
1159 	}
1160 }
1161 
1162 void rpc_put_task(struct rpc_task *task)
1163 {
1164 	rpc_do_put_task(task, NULL);
1165 }
1166 EXPORT_SYMBOL_GPL(rpc_put_task);
1167 
1168 void rpc_put_task_async(struct rpc_task *task)
1169 {
1170 	rpc_do_put_task(task, task->tk_workqueue);
1171 }
1172 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1173 
1174 static void rpc_release_task(struct rpc_task *task)
1175 {
1176 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1177 
1178 	rpc_release_resources_task(task);
1179 
1180 	/*
1181 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1182 	 * so it should be safe to use task->tk_count as a test for whether
1183 	 * or not any other processes still hold references to our rpc_task.
1184 	 */
1185 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1186 		/* Wake up anyone who may be waiting for task completion */
1187 		if (!rpc_complete_task(task))
1188 			return;
1189 	} else {
1190 		if (!atomic_dec_and_test(&task->tk_count))
1191 			return;
1192 	}
1193 	rpc_final_put_task(task, task->tk_workqueue);
1194 }
1195 
1196 int rpciod_up(void)
1197 {
1198 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1199 }
1200 
1201 void rpciod_down(void)
1202 {
1203 	module_put(THIS_MODULE);
1204 }
1205 
1206 /*
1207  * Start up the rpciod workqueue.
1208  */
1209 static int rpciod_start(void)
1210 {
1211 	struct workqueue_struct *wq;
1212 
1213 	/*
1214 	 * Create the rpciod thread and wait for it to start.
1215 	 */
1216 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1217 	if (!wq)
1218 		goto out_failed;
1219 	rpciod_workqueue = wq;
1220 	/* Note: highpri because network receive is latency sensitive */
1221 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1222 	if (!wq)
1223 		goto free_rpciod;
1224 	xprtiod_workqueue = wq;
1225 	return 1;
1226 free_rpciod:
1227 	wq = rpciod_workqueue;
1228 	rpciod_workqueue = NULL;
1229 	destroy_workqueue(wq);
1230 out_failed:
1231 	return 0;
1232 }
1233 
1234 static void rpciod_stop(void)
1235 {
1236 	struct workqueue_struct *wq = NULL;
1237 
1238 	if (rpciod_workqueue == NULL)
1239 		return;
1240 
1241 	wq = rpciod_workqueue;
1242 	rpciod_workqueue = NULL;
1243 	destroy_workqueue(wq);
1244 	wq = xprtiod_workqueue;
1245 	xprtiod_workqueue = NULL;
1246 	destroy_workqueue(wq);
1247 }
1248 
1249 void
1250 rpc_destroy_mempool(void)
1251 {
1252 	rpciod_stop();
1253 	mempool_destroy(rpc_buffer_mempool);
1254 	mempool_destroy(rpc_task_mempool);
1255 	kmem_cache_destroy(rpc_task_slabp);
1256 	kmem_cache_destroy(rpc_buffer_slabp);
1257 	rpc_destroy_wait_queue(&delay_queue);
1258 }
1259 
1260 int
1261 rpc_init_mempool(void)
1262 {
1263 	/*
1264 	 * The following is not strictly a mempool initialisation,
1265 	 * but there is no harm in doing it here
1266 	 */
1267 	rpc_init_wait_queue(&delay_queue, "delayq");
1268 	if (!rpciod_start())
1269 		goto err_nomem;
1270 
1271 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1272 					     sizeof(struct rpc_task),
1273 					     0, SLAB_HWCACHE_ALIGN,
1274 					     NULL);
1275 	if (!rpc_task_slabp)
1276 		goto err_nomem;
1277 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1278 					     RPC_BUFFER_MAXSIZE,
1279 					     0, SLAB_HWCACHE_ALIGN,
1280 					     NULL);
1281 	if (!rpc_buffer_slabp)
1282 		goto err_nomem;
1283 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1284 						    rpc_task_slabp);
1285 	if (!rpc_task_mempool)
1286 		goto err_nomem;
1287 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1288 						      rpc_buffer_slabp);
1289 	if (!rpc_buffer_mempool)
1290 		goto err_nomem;
1291 	return 0;
1292 err_nomem:
1293 	rpc_destroy_mempool();
1294 	return -ENOMEM;
1295 }
1296