1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #include "sunrpc.h" 26 27 #ifdef RPC_DEBUG 28 #define RPCDBG_FACILITY RPCDBG_SCHED 29 #endif 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/sunrpc.h> 33 34 /* 35 * RPC slabs and memory pools 36 */ 37 #define RPC_BUFFER_MAXSIZE (2048) 38 #define RPC_BUFFER_POOLSIZE (8) 39 #define RPC_TASK_POOLSIZE (8) 40 static struct kmem_cache *rpc_task_slabp __read_mostly; 41 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 42 static mempool_t *rpc_task_mempool __read_mostly; 43 static mempool_t *rpc_buffer_mempool __read_mostly; 44 45 static void rpc_async_schedule(struct work_struct *); 46 static void rpc_release_task(struct rpc_task *task); 47 static void __rpc_queue_timer_fn(unsigned long ptr); 48 49 /* 50 * RPC tasks sit here while waiting for conditions to improve. 51 */ 52 static struct rpc_wait_queue delay_queue; 53 54 /* 55 * rpciod-related stuff 56 */ 57 struct workqueue_struct *rpciod_workqueue; 58 59 /* 60 * Disable the timer for a given RPC task. Should be called with 61 * queue->lock and bh_disabled in order to avoid races within 62 * rpc_run_timer(). 63 */ 64 static void 65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 66 { 67 if (task->tk_timeout == 0) 68 return; 69 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 70 task->tk_timeout = 0; 71 list_del(&task->u.tk_wait.timer_list); 72 if (list_empty(&queue->timer_list.list)) 73 del_timer(&queue->timer_list.timer); 74 } 75 76 static void 77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 78 { 79 queue->timer_list.expires = expires; 80 mod_timer(&queue->timer_list.timer, expires); 81 } 82 83 /* 84 * Set up a timer for the current task. 85 */ 86 static void 87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 88 { 89 if (!task->tk_timeout) 90 return; 91 92 dprintk("RPC: %5u setting alarm for %lu ms\n", 93 task->tk_pid, task->tk_timeout * 1000 / HZ); 94 95 task->u.tk_wait.expires = jiffies + task->tk_timeout; 96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 97 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 99 } 100 101 /* 102 * Add new request to a priority queue. 103 */ 104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 105 struct rpc_task *task, 106 unsigned char queue_priority) 107 { 108 struct list_head *q; 109 struct rpc_task *t; 110 111 INIT_LIST_HEAD(&task->u.tk_wait.links); 112 q = &queue->tasks[queue_priority]; 113 if (unlikely(queue_priority > queue->maxpriority)) 114 q = &queue->tasks[queue->maxpriority]; 115 list_for_each_entry(t, q, u.tk_wait.list) { 116 if (t->tk_owner == task->tk_owner) { 117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 118 return; 119 } 120 } 121 list_add_tail(&task->u.tk_wait.list, q); 122 } 123 124 /* 125 * Add new request to wait queue. 126 * 127 * Swapper tasks always get inserted at the head of the queue. 128 * This should avoid many nasty memory deadlocks and hopefully 129 * improve overall performance. 130 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 131 */ 132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 133 struct rpc_task *task, 134 unsigned char queue_priority) 135 { 136 BUG_ON (RPC_IS_QUEUED(task)); 137 138 if (RPC_IS_PRIORITY(queue)) 139 __rpc_add_wait_queue_priority(queue, task, queue_priority); 140 else if (RPC_IS_SWAPPER(task)) 141 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 142 else 143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 144 task->tk_waitqueue = queue; 145 queue->qlen++; 146 rpc_set_queued(task); 147 148 dprintk("RPC: %5u added to queue %p \"%s\"\n", 149 task->tk_pid, queue, rpc_qname(queue)); 150 } 151 152 /* 153 * Remove request from a priority queue. 154 */ 155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 156 { 157 struct rpc_task *t; 158 159 if (!list_empty(&task->u.tk_wait.links)) { 160 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 161 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 162 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 163 } 164 } 165 166 /* 167 * Remove request from queue. 168 * Note: must be called with spin lock held. 169 */ 170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 171 { 172 __rpc_disable_timer(queue, task); 173 if (RPC_IS_PRIORITY(queue)) 174 __rpc_remove_wait_queue_priority(task); 175 list_del(&task->u.tk_wait.list); 176 queue->qlen--; 177 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 178 task->tk_pid, queue, rpc_qname(queue)); 179 } 180 181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 182 { 183 queue->priority = priority; 184 queue->count = 1 << (priority * 2); 185 } 186 187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 188 { 189 queue->owner = pid; 190 queue->nr = RPC_BATCH_COUNT; 191 } 192 193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 194 { 195 rpc_set_waitqueue_priority(queue, queue->maxpriority); 196 rpc_set_waitqueue_owner(queue, 0); 197 } 198 199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 200 { 201 int i; 202 203 spin_lock_init(&queue->lock); 204 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 205 INIT_LIST_HEAD(&queue->tasks[i]); 206 queue->maxpriority = nr_queues - 1; 207 rpc_reset_waitqueue_priority(queue); 208 queue->qlen = 0; 209 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 210 INIT_LIST_HEAD(&queue->timer_list.list); 211 rpc_assign_waitqueue_name(queue, qname); 212 } 213 214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 215 { 216 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 217 } 218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 219 220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 221 { 222 __rpc_init_priority_wait_queue(queue, qname, 1); 223 } 224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 225 226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 227 { 228 del_timer_sync(&queue->timer_list.timer); 229 } 230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 231 232 static int rpc_wait_bit_killable(void *word) 233 { 234 if (fatal_signal_pending(current)) 235 return -ERESTARTSYS; 236 freezable_schedule(); 237 return 0; 238 } 239 240 #ifdef RPC_DEBUG 241 static void rpc_task_set_debuginfo(struct rpc_task *task) 242 { 243 static atomic_t rpc_pid; 244 245 task->tk_pid = atomic_inc_return(&rpc_pid); 246 } 247 #else 248 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 249 { 250 } 251 #endif 252 253 static void rpc_set_active(struct rpc_task *task) 254 { 255 trace_rpc_task_begin(task->tk_client, task, NULL); 256 257 rpc_task_set_debuginfo(task); 258 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 259 } 260 261 /* 262 * Mark an RPC call as having completed by clearing the 'active' bit 263 * and then waking up all tasks that were sleeping. 264 */ 265 static int rpc_complete_task(struct rpc_task *task) 266 { 267 void *m = &task->tk_runstate; 268 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 269 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 270 unsigned long flags; 271 int ret; 272 273 trace_rpc_task_complete(task->tk_client, task, NULL); 274 275 spin_lock_irqsave(&wq->lock, flags); 276 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 277 ret = atomic_dec_and_test(&task->tk_count); 278 if (waitqueue_active(wq)) 279 __wake_up_locked_key(wq, TASK_NORMAL, &k); 280 spin_unlock_irqrestore(&wq->lock, flags); 281 return ret; 282 } 283 284 /* 285 * Allow callers to wait for completion of an RPC call 286 * 287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 288 * to enforce taking of the wq->lock and hence avoid races with 289 * rpc_complete_task(). 290 */ 291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 292 { 293 if (action == NULL) 294 action = rpc_wait_bit_killable; 295 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 296 action, TASK_KILLABLE); 297 } 298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 299 300 /* 301 * Make an RPC task runnable. 302 * 303 * Note: If the task is ASYNC, this must be called with 304 * the spinlock held to protect the wait queue operation. 305 */ 306 static void rpc_make_runnable(struct rpc_task *task) 307 { 308 rpc_clear_queued(task); 309 if (rpc_test_and_set_running(task)) 310 return; 311 if (RPC_IS_ASYNC(task)) { 312 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 313 queue_work(rpciod_workqueue, &task->u.tk_work); 314 } else 315 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 316 } 317 318 /* 319 * Prepare for sleeping on a wait queue. 320 * By always appending tasks to the list we ensure FIFO behavior. 321 * NB: An RPC task will only receive interrupt-driven events as long 322 * as it's on a wait queue. 323 */ 324 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 325 struct rpc_task *task, 326 rpc_action action, 327 unsigned char queue_priority) 328 { 329 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 330 task->tk_pid, rpc_qname(q), jiffies); 331 332 trace_rpc_task_sleep(task->tk_client, task, q); 333 334 __rpc_add_wait_queue(q, task, queue_priority); 335 336 BUG_ON(task->tk_callback != NULL); 337 task->tk_callback = action; 338 __rpc_add_timer(q, task); 339 } 340 341 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 342 rpc_action action) 343 { 344 /* We shouldn't ever put an inactive task to sleep */ 345 BUG_ON(!RPC_IS_ACTIVATED(task)); 346 347 /* 348 * Protect the queue operations. 349 */ 350 spin_lock_bh(&q->lock); 351 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 352 spin_unlock_bh(&q->lock); 353 } 354 EXPORT_SYMBOL_GPL(rpc_sleep_on); 355 356 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 357 rpc_action action, int priority) 358 { 359 /* We shouldn't ever put an inactive task to sleep */ 360 BUG_ON(!RPC_IS_ACTIVATED(task)); 361 362 /* 363 * Protect the queue operations. 364 */ 365 spin_lock_bh(&q->lock); 366 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 367 spin_unlock_bh(&q->lock); 368 } 369 370 /** 371 * __rpc_do_wake_up_task - wake up a single rpc_task 372 * @queue: wait queue 373 * @task: task to be woken up 374 * 375 * Caller must hold queue->lock, and have cleared the task queued flag. 376 */ 377 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 378 { 379 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 380 task->tk_pid, jiffies); 381 382 /* Has the task been executed yet? If not, we cannot wake it up! */ 383 if (!RPC_IS_ACTIVATED(task)) { 384 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 385 return; 386 } 387 388 trace_rpc_task_wakeup(task->tk_client, task, queue); 389 390 __rpc_remove_wait_queue(queue, task); 391 392 rpc_make_runnable(task); 393 394 dprintk("RPC: __rpc_wake_up_task done\n"); 395 } 396 397 /* 398 * Wake up a queued task while the queue lock is being held 399 */ 400 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 401 { 402 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 403 __rpc_do_wake_up_task(queue, task); 404 } 405 406 /* 407 * Tests whether rpc queue is empty 408 */ 409 int rpc_queue_empty(struct rpc_wait_queue *queue) 410 { 411 int res; 412 413 spin_lock_bh(&queue->lock); 414 res = queue->qlen; 415 spin_unlock_bh(&queue->lock); 416 return res == 0; 417 } 418 EXPORT_SYMBOL_GPL(rpc_queue_empty); 419 420 /* 421 * Wake up a task on a specific queue 422 */ 423 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 424 { 425 spin_lock_bh(&queue->lock); 426 rpc_wake_up_task_queue_locked(queue, task); 427 spin_unlock_bh(&queue->lock); 428 } 429 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 430 431 /* 432 * Wake up the next task on a priority queue. 433 */ 434 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 435 { 436 struct list_head *q; 437 struct rpc_task *task; 438 439 /* 440 * Service a batch of tasks from a single owner. 441 */ 442 q = &queue->tasks[queue->priority]; 443 if (!list_empty(q)) { 444 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 445 if (queue->owner == task->tk_owner) { 446 if (--queue->nr) 447 goto out; 448 list_move_tail(&task->u.tk_wait.list, q); 449 } 450 /* 451 * Check if we need to switch queues. 452 */ 453 if (--queue->count) 454 goto new_owner; 455 } 456 457 /* 458 * Service the next queue. 459 */ 460 do { 461 if (q == &queue->tasks[0]) 462 q = &queue->tasks[queue->maxpriority]; 463 else 464 q = q - 1; 465 if (!list_empty(q)) { 466 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 467 goto new_queue; 468 } 469 } while (q != &queue->tasks[queue->priority]); 470 471 rpc_reset_waitqueue_priority(queue); 472 return NULL; 473 474 new_queue: 475 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 476 new_owner: 477 rpc_set_waitqueue_owner(queue, task->tk_owner); 478 out: 479 return task; 480 } 481 482 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 483 { 484 if (RPC_IS_PRIORITY(queue)) 485 return __rpc_find_next_queued_priority(queue); 486 if (!list_empty(&queue->tasks[0])) 487 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 488 return NULL; 489 } 490 491 /* 492 * Wake up the first task on the wait queue. 493 */ 494 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 495 bool (*func)(struct rpc_task *, void *), void *data) 496 { 497 struct rpc_task *task = NULL; 498 499 dprintk("RPC: wake_up_first(%p \"%s\")\n", 500 queue, rpc_qname(queue)); 501 spin_lock_bh(&queue->lock); 502 task = __rpc_find_next_queued(queue); 503 if (task != NULL) { 504 if (func(task, data)) 505 rpc_wake_up_task_queue_locked(queue, task); 506 else 507 task = NULL; 508 } 509 spin_unlock_bh(&queue->lock); 510 511 return task; 512 } 513 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 514 515 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 516 { 517 return true; 518 } 519 520 /* 521 * Wake up the next task on the wait queue. 522 */ 523 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 524 { 525 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 526 } 527 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 528 529 /** 530 * rpc_wake_up - wake up all rpc_tasks 531 * @queue: rpc_wait_queue on which the tasks are sleeping 532 * 533 * Grabs queue->lock 534 */ 535 void rpc_wake_up(struct rpc_wait_queue *queue) 536 { 537 struct list_head *head; 538 539 spin_lock_bh(&queue->lock); 540 head = &queue->tasks[queue->maxpriority]; 541 for (;;) { 542 while (!list_empty(head)) { 543 struct rpc_task *task; 544 task = list_first_entry(head, 545 struct rpc_task, 546 u.tk_wait.list); 547 rpc_wake_up_task_queue_locked(queue, task); 548 } 549 if (head == &queue->tasks[0]) 550 break; 551 head--; 552 } 553 spin_unlock_bh(&queue->lock); 554 } 555 EXPORT_SYMBOL_GPL(rpc_wake_up); 556 557 /** 558 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 559 * @queue: rpc_wait_queue on which the tasks are sleeping 560 * @status: status value to set 561 * 562 * Grabs queue->lock 563 */ 564 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 565 { 566 struct list_head *head; 567 568 spin_lock_bh(&queue->lock); 569 head = &queue->tasks[queue->maxpriority]; 570 for (;;) { 571 while (!list_empty(head)) { 572 struct rpc_task *task; 573 task = list_first_entry(head, 574 struct rpc_task, 575 u.tk_wait.list); 576 task->tk_status = status; 577 rpc_wake_up_task_queue_locked(queue, task); 578 } 579 if (head == &queue->tasks[0]) 580 break; 581 head--; 582 } 583 spin_unlock_bh(&queue->lock); 584 } 585 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 586 587 static void __rpc_queue_timer_fn(unsigned long ptr) 588 { 589 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 590 struct rpc_task *task, *n; 591 unsigned long expires, now, timeo; 592 593 spin_lock(&queue->lock); 594 expires = now = jiffies; 595 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 596 timeo = task->u.tk_wait.expires; 597 if (time_after_eq(now, timeo)) { 598 dprintk("RPC: %5u timeout\n", task->tk_pid); 599 task->tk_status = -ETIMEDOUT; 600 rpc_wake_up_task_queue_locked(queue, task); 601 continue; 602 } 603 if (expires == now || time_after(expires, timeo)) 604 expires = timeo; 605 } 606 if (!list_empty(&queue->timer_list.list)) 607 rpc_set_queue_timer(queue, expires); 608 spin_unlock(&queue->lock); 609 } 610 611 static void __rpc_atrun(struct rpc_task *task) 612 { 613 task->tk_status = 0; 614 } 615 616 /* 617 * Run a task at a later time 618 */ 619 void rpc_delay(struct rpc_task *task, unsigned long delay) 620 { 621 task->tk_timeout = delay; 622 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 623 } 624 EXPORT_SYMBOL_GPL(rpc_delay); 625 626 /* 627 * Helper to call task->tk_ops->rpc_call_prepare 628 */ 629 void rpc_prepare_task(struct rpc_task *task) 630 { 631 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 632 } 633 634 static void 635 rpc_init_task_statistics(struct rpc_task *task) 636 { 637 /* Initialize retry counters */ 638 task->tk_garb_retry = 2; 639 task->tk_cred_retry = 2; 640 task->tk_rebind_retry = 2; 641 642 /* starting timestamp */ 643 task->tk_start = ktime_get(); 644 } 645 646 static void 647 rpc_reset_task_statistics(struct rpc_task *task) 648 { 649 task->tk_timeouts = 0; 650 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); 651 652 rpc_init_task_statistics(task); 653 } 654 655 /* 656 * Helper that calls task->tk_ops->rpc_call_done if it exists 657 */ 658 void rpc_exit_task(struct rpc_task *task) 659 { 660 task->tk_action = NULL; 661 if (task->tk_ops->rpc_call_done != NULL) { 662 task->tk_ops->rpc_call_done(task, task->tk_calldata); 663 if (task->tk_action != NULL) { 664 WARN_ON(RPC_ASSASSINATED(task)); 665 /* Always release the RPC slot and buffer memory */ 666 xprt_release(task); 667 rpc_reset_task_statistics(task); 668 } 669 } 670 } 671 672 void rpc_exit(struct rpc_task *task, int status) 673 { 674 task->tk_status = status; 675 task->tk_action = rpc_exit_task; 676 if (RPC_IS_QUEUED(task)) 677 rpc_wake_up_queued_task(task->tk_waitqueue, task); 678 } 679 EXPORT_SYMBOL_GPL(rpc_exit); 680 681 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 682 { 683 if (ops->rpc_release != NULL) 684 ops->rpc_release(calldata); 685 } 686 687 /* 688 * This is the RPC `scheduler' (or rather, the finite state machine). 689 */ 690 static void __rpc_execute(struct rpc_task *task) 691 { 692 struct rpc_wait_queue *queue; 693 int task_is_async = RPC_IS_ASYNC(task); 694 int status = 0; 695 696 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 697 task->tk_pid, task->tk_flags); 698 699 BUG_ON(RPC_IS_QUEUED(task)); 700 701 for (;;) { 702 void (*do_action)(struct rpc_task *); 703 704 /* 705 * Execute any pending callback first. 706 */ 707 do_action = task->tk_callback; 708 task->tk_callback = NULL; 709 if (do_action == NULL) { 710 /* 711 * Perform the next FSM step. 712 * tk_action may be NULL if the task has been killed. 713 * In particular, note that rpc_killall_tasks may 714 * do this at any time, so beware when dereferencing. 715 */ 716 do_action = task->tk_action; 717 if (do_action == NULL) 718 break; 719 } 720 trace_rpc_task_run_action(task->tk_client, task, task->tk_action); 721 do_action(task); 722 723 /* 724 * Lockless check for whether task is sleeping or not. 725 */ 726 if (!RPC_IS_QUEUED(task)) 727 continue; 728 /* 729 * The queue->lock protects against races with 730 * rpc_make_runnable(). 731 * 732 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 733 * rpc_task, rpc_make_runnable() can assign it to a 734 * different workqueue. We therefore cannot assume that the 735 * rpc_task pointer may still be dereferenced. 736 */ 737 queue = task->tk_waitqueue; 738 spin_lock_bh(&queue->lock); 739 if (!RPC_IS_QUEUED(task)) { 740 spin_unlock_bh(&queue->lock); 741 continue; 742 } 743 rpc_clear_running(task); 744 spin_unlock_bh(&queue->lock); 745 if (task_is_async) 746 return; 747 748 /* sync task: sleep here */ 749 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 750 status = out_of_line_wait_on_bit(&task->tk_runstate, 751 RPC_TASK_QUEUED, rpc_wait_bit_killable, 752 TASK_KILLABLE); 753 if (status == -ERESTARTSYS) { 754 /* 755 * When a sync task receives a signal, it exits with 756 * -ERESTARTSYS. In order to catch any callbacks that 757 * clean up after sleeping on some queue, we don't 758 * break the loop here, but go around once more. 759 */ 760 dprintk("RPC: %5u got signal\n", task->tk_pid); 761 task->tk_flags |= RPC_TASK_KILLED; 762 rpc_exit(task, -ERESTARTSYS); 763 } 764 rpc_set_running(task); 765 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 766 } 767 768 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 769 task->tk_status); 770 /* Release all resources associated with the task */ 771 rpc_release_task(task); 772 } 773 774 /* 775 * User-visible entry point to the scheduler. 776 * 777 * This may be called recursively if e.g. an async NFS task updates 778 * the attributes and finds that dirty pages must be flushed. 779 * NOTE: Upon exit of this function the task is guaranteed to be 780 * released. In particular note that tk_release() will have 781 * been called, so your task memory may have been freed. 782 */ 783 void rpc_execute(struct rpc_task *task) 784 { 785 rpc_set_active(task); 786 rpc_make_runnable(task); 787 if (!RPC_IS_ASYNC(task)) 788 __rpc_execute(task); 789 } 790 791 static void rpc_async_schedule(struct work_struct *work) 792 { 793 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 794 } 795 796 /** 797 * rpc_malloc - allocate an RPC buffer 798 * @task: RPC task that will use this buffer 799 * @size: requested byte size 800 * 801 * To prevent rpciod from hanging, this allocator never sleeps, 802 * returning NULL if the request cannot be serviced immediately. 803 * The caller can arrange to sleep in a way that is safe for rpciod. 804 * 805 * Most requests are 'small' (under 2KiB) and can be serviced from a 806 * mempool, ensuring that NFS reads and writes can always proceed, 807 * and that there is good locality of reference for these buffers. 808 * 809 * In order to avoid memory starvation triggering more writebacks of 810 * NFS requests, we avoid using GFP_KERNEL. 811 */ 812 void *rpc_malloc(struct rpc_task *task, size_t size) 813 { 814 struct rpc_buffer *buf; 815 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 816 817 size += sizeof(struct rpc_buffer); 818 if (size <= RPC_BUFFER_MAXSIZE) 819 buf = mempool_alloc(rpc_buffer_mempool, gfp); 820 else 821 buf = kmalloc(size, gfp); 822 823 if (!buf) 824 return NULL; 825 826 buf->len = size; 827 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 828 task->tk_pid, size, buf); 829 return &buf->data; 830 } 831 EXPORT_SYMBOL_GPL(rpc_malloc); 832 833 /** 834 * rpc_free - free buffer allocated via rpc_malloc 835 * @buffer: buffer to free 836 * 837 */ 838 void rpc_free(void *buffer) 839 { 840 size_t size; 841 struct rpc_buffer *buf; 842 843 if (!buffer) 844 return; 845 846 buf = container_of(buffer, struct rpc_buffer, data); 847 size = buf->len; 848 849 dprintk("RPC: freeing buffer of size %zu at %p\n", 850 size, buf); 851 852 if (size <= RPC_BUFFER_MAXSIZE) 853 mempool_free(buf, rpc_buffer_mempool); 854 else 855 kfree(buf); 856 } 857 EXPORT_SYMBOL_GPL(rpc_free); 858 859 /* 860 * Creation and deletion of RPC task structures 861 */ 862 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 863 { 864 memset(task, 0, sizeof(*task)); 865 atomic_set(&task->tk_count, 1); 866 task->tk_flags = task_setup_data->flags; 867 task->tk_ops = task_setup_data->callback_ops; 868 task->tk_calldata = task_setup_data->callback_data; 869 INIT_LIST_HEAD(&task->tk_task); 870 871 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 872 task->tk_owner = current->tgid; 873 874 /* Initialize workqueue for async tasks */ 875 task->tk_workqueue = task_setup_data->workqueue; 876 877 if (task->tk_ops->rpc_call_prepare != NULL) 878 task->tk_action = rpc_prepare_task; 879 880 rpc_init_task_statistics(task); 881 882 dprintk("RPC: new task initialized, procpid %u\n", 883 task_pid_nr(current)); 884 } 885 886 static struct rpc_task * 887 rpc_alloc_task(void) 888 { 889 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 890 } 891 892 /* 893 * Create a new task for the specified client. 894 */ 895 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 896 { 897 struct rpc_task *task = setup_data->task; 898 unsigned short flags = 0; 899 900 if (task == NULL) { 901 task = rpc_alloc_task(); 902 if (task == NULL) { 903 rpc_release_calldata(setup_data->callback_ops, 904 setup_data->callback_data); 905 return ERR_PTR(-ENOMEM); 906 } 907 flags = RPC_TASK_DYNAMIC; 908 } 909 910 rpc_init_task(task, setup_data); 911 task->tk_flags |= flags; 912 dprintk("RPC: allocated task %p\n", task); 913 return task; 914 } 915 916 static void rpc_free_task(struct rpc_task *task) 917 { 918 const struct rpc_call_ops *tk_ops = task->tk_ops; 919 void *calldata = task->tk_calldata; 920 921 if (task->tk_flags & RPC_TASK_DYNAMIC) { 922 dprintk("RPC: %5u freeing task\n", task->tk_pid); 923 mempool_free(task, rpc_task_mempool); 924 } 925 rpc_release_calldata(tk_ops, calldata); 926 } 927 928 static void rpc_async_release(struct work_struct *work) 929 { 930 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 931 } 932 933 static void rpc_release_resources_task(struct rpc_task *task) 934 { 935 if (task->tk_rqstp) 936 xprt_release(task); 937 if (task->tk_msg.rpc_cred) { 938 put_rpccred(task->tk_msg.rpc_cred); 939 task->tk_msg.rpc_cred = NULL; 940 } 941 rpc_task_release_client(task); 942 } 943 944 static void rpc_final_put_task(struct rpc_task *task, 945 struct workqueue_struct *q) 946 { 947 if (q != NULL) { 948 INIT_WORK(&task->u.tk_work, rpc_async_release); 949 queue_work(q, &task->u.tk_work); 950 } else 951 rpc_free_task(task); 952 } 953 954 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 955 { 956 if (atomic_dec_and_test(&task->tk_count)) { 957 rpc_release_resources_task(task); 958 rpc_final_put_task(task, q); 959 } 960 } 961 962 void rpc_put_task(struct rpc_task *task) 963 { 964 rpc_do_put_task(task, NULL); 965 } 966 EXPORT_SYMBOL_GPL(rpc_put_task); 967 968 void rpc_put_task_async(struct rpc_task *task) 969 { 970 rpc_do_put_task(task, task->tk_workqueue); 971 } 972 EXPORT_SYMBOL_GPL(rpc_put_task_async); 973 974 static void rpc_release_task(struct rpc_task *task) 975 { 976 dprintk("RPC: %5u release task\n", task->tk_pid); 977 978 BUG_ON (RPC_IS_QUEUED(task)); 979 980 rpc_release_resources_task(task); 981 982 /* 983 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 984 * so it should be safe to use task->tk_count as a test for whether 985 * or not any other processes still hold references to our rpc_task. 986 */ 987 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 988 /* Wake up anyone who may be waiting for task completion */ 989 if (!rpc_complete_task(task)) 990 return; 991 } else { 992 if (!atomic_dec_and_test(&task->tk_count)) 993 return; 994 } 995 rpc_final_put_task(task, task->tk_workqueue); 996 } 997 998 int rpciod_up(void) 999 { 1000 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1001 } 1002 1003 void rpciod_down(void) 1004 { 1005 module_put(THIS_MODULE); 1006 } 1007 1008 /* 1009 * Start up the rpciod workqueue. 1010 */ 1011 static int rpciod_start(void) 1012 { 1013 struct workqueue_struct *wq; 1014 1015 /* 1016 * Create the rpciod thread and wait for it to start. 1017 */ 1018 dprintk("RPC: creating workqueue rpciod\n"); 1019 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0); 1020 rpciod_workqueue = wq; 1021 return rpciod_workqueue != NULL; 1022 } 1023 1024 static void rpciod_stop(void) 1025 { 1026 struct workqueue_struct *wq = NULL; 1027 1028 if (rpciod_workqueue == NULL) 1029 return; 1030 dprintk("RPC: destroying workqueue rpciod\n"); 1031 1032 wq = rpciod_workqueue; 1033 rpciod_workqueue = NULL; 1034 destroy_workqueue(wq); 1035 } 1036 1037 void 1038 rpc_destroy_mempool(void) 1039 { 1040 rpciod_stop(); 1041 if (rpc_buffer_mempool) 1042 mempool_destroy(rpc_buffer_mempool); 1043 if (rpc_task_mempool) 1044 mempool_destroy(rpc_task_mempool); 1045 if (rpc_task_slabp) 1046 kmem_cache_destroy(rpc_task_slabp); 1047 if (rpc_buffer_slabp) 1048 kmem_cache_destroy(rpc_buffer_slabp); 1049 rpc_destroy_wait_queue(&delay_queue); 1050 } 1051 1052 int 1053 rpc_init_mempool(void) 1054 { 1055 /* 1056 * The following is not strictly a mempool initialisation, 1057 * but there is no harm in doing it here 1058 */ 1059 rpc_init_wait_queue(&delay_queue, "delayq"); 1060 if (!rpciod_start()) 1061 goto err_nomem; 1062 1063 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1064 sizeof(struct rpc_task), 1065 0, SLAB_HWCACHE_ALIGN, 1066 NULL); 1067 if (!rpc_task_slabp) 1068 goto err_nomem; 1069 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1070 RPC_BUFFER_MAXSIZE, 1071 0, SLAB_HWCACHE_ALIGN, 1072 NULL); 1073 if (!rpc_buffer_slabp) 1074 goto err_nomem; 1075 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1076 rpc_task_slabp); 1077 if (!rpc_task_mempool) 1078 goto err_nomem; 1079 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1080 rpc_buffer_slabp); 1081 if (!rpc_buffer_mempool) 1082 goto err_nomem; 1083 return 0; 1084 err_nomem: 1085 rpc_destroy_mempool(); 1086 return -ENOMEM; 1087 } 1088