xref: /openbmc/linux/net/sunrpc/sched.c (revision 615c36f5)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 
24 #include "sunrpc.h"
25 
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY		RPCDBG_SCHED
28 #endif
29 
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE	(2048)
34 #define RPC_BUFFER_POOLSIZE	(8)
35 #define RPC_TASK_POOLSIZE	(8)
36 static struct kmem_cache	*rpc_task_slabp __read_mostly;
37 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
38 static mempool_t	*rpc_task_mempool __read_mostly;
39 static mempool_t	*rpc_buffer_mempool __read_mostly;
40 
41 static void			rpc_async_schedule(struct work_struct *);
42 static void			 rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44 
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49 
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54 
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63 	if (task->tk_timeout == 0)
64 		return;
65 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 	task->tk_timeout = 0;
67 	list_del(&task->u.tk_wait.timer_list);
68 	if (list_empty(&queue->timer_list.list))
69 		del_timer(&queue->timer_list.timer);
70 }
71 
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75 	queue->timer_list.expires = expires;
76 	mod_timer(&queue->timer_list.timer, expires);
77 }
78 
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85 	if (!task->tk_timeout)
86 		return;
87 
88 	dprintk("RPC: %5u setting alarm for %lu ms\n",
89 			task->tk_pid, task->tk_timeout * 1000 / HZ);
90 
91 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96 
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
101 		struct rpc_task *task,
102 		unsigned char queue_priority)
103 {
104 	struct list_head *q;
105 	struct rpc_task *t;
106 
107 	INIT_LIST_HEAD(&task->u.tk_wait.links);
108 	q = &queue->tasks[queue_priority];
109 	if (unlikely(queue_priority > queue->maxpriority))
110 		q = &queue->tasks[queue->maxpriority];
111 	list_for_each_entry(t, q, u.tk_wait.list) {
112 		if (t->tk_owner == task->tk_owner) {
113 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
114 			return;
115 		}
116 	}
117 	list_add_tail(&task->u.tk_wait.list, q);
118 }
119 
120 /*
121  * Add new request to wait queue.
122  *
123  * Swapper tasks always get inserted at the head of the queue.
124  * This should avoid many nasty memory deadlocks and hopefully
125  * improve overall performance.
126  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
127  */
128 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
129 		struct rpc_task *task,
130 		unsigned char queue_priority)
131 {
132 	BUG_ON (RPC_IS_QUEUED(task));
133 
134 	if (RPC_IS_PRIORITY(queue))
135 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
136 	else if (RPC_IS_SWAPPER(task))
137 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
138 	else
139 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
140 	task->tk_waitqueue = queue;
141 	queue->qlen++;
142 	rpc_set_queued(task);
143 
144 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
145 			task->tk_pid, queue, rpc_qname(queue));
146 }
147 
148 /*
149  * Remove request from a priority queue.
150  */
151 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
152 {
153 	struct rpc_task *t;
154 
155 	if (!list_empty(&task->u.tk_wait.links)) {
156 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
157 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
158 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
159 	}
160 }
161 
162 /*
163  * Remove request from queue.
164  * Note: must be called with spin lock held.
165  */
166 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
167 {
168 	__rpc_disable_timer(queue, task);
169 	if (RPC_IS_PRIORITY(queue))
170 		__rpc_remove_wait_queue_priority(task);
171 	list_del(&task->u.tk_wait.list);
172 	queue->qlen--;
173 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
174 			task->tk_pid, queue, rpc_qname(queue));
175 }
176 
177 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
178 {
179 	queue->priority = priority;
180 	queue->count = 1 << (priority * 2);
181 }
182 
183 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
184 {
185 	queue->owner = pid;
186 	queue->nr = RPC_BATCH_COUNT;
187 }
188 
189 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
190 {
191 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
192 	rpc_set_waitqueue_owner(queue, 0);
193 }
194 
195 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
196 {
197 	int i;
198 
199 	spin_lock_init(&queue->lock);
200 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
201 		INIT_LIST_HEAD(&queue->tasks[i]);
202 	queue->maxpriority = nr_queues - 1;
203 	rpc_reset_waitqueue_priority(queue);
204 	queue->qlen = 0;
205 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
206 	INIT_LIST_HEAD(&queue->timer_list.list);
207 #ifdef RPC_DEBUG
208 	queue->name = qname;
209 #endif
210 }
211 
212 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
213 {
214 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
215 }
216 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
217 
218 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
219 {
220 	__rpc_init_priority_wait_queue(queue, qname, 1);
221 }
222 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
223 
224 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
225 {
226 	del_timer_sync(&queue->timer_list.timer);
227 }
228 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
229 
230 static int rpc_wait_bit_killable(void *word)
231 {
232 	if (fatal_signal_pending(current))
233 		return -ERESTARTSYS;
234 	schedule();
235 	return 0;
236 }
237 
238 #ifdef RPC_DEBUG
239 static void rpc_task_set_debuginfo(struct rpc_task *task)
240 {
241 	static atomic_t rpc_pid;
242 
243 	task->tk_pid = atomic_inc_return(&rpc_pid);
244 }
245 #else
246 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
247 {
248 }
249 #endif
250 
251 static void rpc_set_active(struct rpc_task *task)
252 {
253 	rpc_task_set_debuginfo(task);
254 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
255 }
256 
257 /*
258  * Mark an RPC call as having completed by clearing the 'active' bit
259  * and then waking up all tasks that were sleeping.
260  */
261 static int rpc_complete_task(struct rpc_task *task)
262 {
263 	void *m = &task->tk_runstate;
264 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
265 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
266 	unsigned long flags;
267 	int ret;
268 
269 	spin_lock_irqsave(&wq->lock, flags);
270 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
271 	ret = atomic_dec_and_test(&task->tk_count);
272 	if (waitqueue_active(wq))
273 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
274 	spin_unlock_irqrestore(&wq->lock, flags);
275 	return ret;
276 }
277 
278 /*
279  * Allow callers to wait for completion of an RPC call
280  *
281  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
282  * to enforce taking of the wq->lock and hence avoid races with
283  * rpc_complete_task().
284  */
285 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
286 {
287 	if (action == NULL)
288 		action = rpc_wait_bit_killable;
289 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
290 			action, TASK_KILLABLE);
291 }
292 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
293 
294 /*
295  * Make an RPC task runnable.
296  *
297  * Note: If the task is ASYNC, this must be called with
298  * the spinlock held to protect the wait queue operation.
299  */
300 static void rpc_make_runnable(struct rpc_task *task)
301 {
302 	rpc_clear_queued(task);
303 	if (rpc_test_and_set_running(task))
304 		return;
305 	if (RPC_IS_ASYNC(task)) {
306 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
307 		queue_work(rpciod_workqueue, &task->u.tk_work);
308 	} else
309 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
310 }
311 
312 /*
313  * Prepare for sleeping on a wait queue.
314  * By always appending tasks to the list we ensure FIFO behavior.
315  * NB: An RPC task will only receive interrupt-driven events as long
316  * as it's on a wait queue.
317  */
318 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
319 		struct rpc_task *task,
320 		rpc_action action,
321 		unsigned char queue_priority)
322 {
323 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
324 			task->tk_pid, rpc_qname(q), jiffies);
325 
326 	__rpc_add_wait_queue(q, task, queue_priority);
327 
328 	BUG_ON(task->tk_callback != NULL);
329 	task->tk_callback = action;
330 	__rpc_add_timer(q, task);
331 }
332 
333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
334 				rpc_action action)
335 {
336 	/* We shouldn't ever put an inactive task to sleep */
337 	BUG_ON(!RPC_IS_ACTIVATED(task));
338 
339 	/*
340 	 * Protect the queue operations.
341 	 */
342 	spin_lock_bh(&q->lock);
343 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
344 	spin_unlock_bh(&q->lock);
345 }
346 EXPORT_SYMBOL_GPL(rpc_sleep_on);
347 
348 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
349 		rpc_action action, int priority)
350 {
351 	/* We shouldn't ever put an inactive task to sleep */
352 	BUG_ON(!RPC_IS_ACTIVATED(task));
353 
354 	/*
355 	 * Protect the queue operations.
356 	 */
357 	spin_lock_bh(&q->lock);
358 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
359 	spin_unlock_bh(&q->lock);
360 }
361 
362 /**
363  * __rpc_do_wake_up_task - wake up a single rpc_task
364  * @queue: wait queue
365  * @task: task to be woken up
366  *
367  * Caller must hold queue->lock, and have cleared the task queued flag.
368  */
369 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
370 {
371 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
372 			task->tk_pid, jiffies);
373 
374 	/* Has the task been executed yet? If not, we cannot wake it up! */
375 	if (!RPC_IS_ACTIVATED(task)) {
376 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
377 		return;
378 	}
379 
380 	__rpc_remove_wait_queue(queue, task);
381 
382 	rpc_make_runnable(task);
383 
384 	dprintk("RPC:       __rpc_wake_up_task done\n");
385 }
386 
387 /*
388  * Wake up a queued task while the queue lock is being held
389  */
390 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
391 {
392 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
393 		__rpc_do_wake_up_task(queue, task);
394 }
395 
396 /*
397  * Tests whether rpc queue is empty
398  */
399 int rpc_queue_empty(struct rpc_wait_queue *queue)
400 {
401 	int res;
402 
403 	spin_lock_bh(&queue->lock);
404 	res = queue->qlen;
405 	spin_unlock_bh(&queue->lock);
406 	return res == 0;
407 }
408 EXPORT_SYMBOL_GPL(rpc_queue_empty);
409 
410 /*
411  * Wake up a task on a specific queue
412  */
413 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
414 {
415 	spin_lock_bh(&queue->lock);
416 	rpc_wake_up_task_queue_locked(queue, task);
417 	spin_unlock_bh(&queue->lock);
418 }
419 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
420 
421 /*
422  * Wake up the next task on a priority queue.
423  */
424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
425 {
426 	struct list_head *q;
427 	struct rpc_task *task;
428 
429 	/*
430 	 * Service a batch of tasks from a single owner.
431 	 */
432 	q = &queue->tasks[queue->priority];
433 	if (!list_empty(q)) {
434 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
435 		if (queue->owner == task->tk_owner) {
436 			if (--queue->nr)
437 				goto out;
438 			list_move_tail(&task->u.tk_wait.list, q);
439 		}
440 		/*
441 		 * Check if we need to switch queues.
442 		 */
443 		if (--queue->count)
444 			goto new_owner;
445 	}
446 
447 	/*
448 	 * Service the next queue.
449 	 */
450 	do {
451 		if (q == &queue->tasks[0])
452 			q = &queue->tasks[queue->maxpriority];
453 		else
454 			q = q - 1;
455 		if (!list_empty(q)) {
456 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
457 			goto new_queue;
458 		}
459 	} while (q != &queue->tasks[queue->priority]);
460 
461 	rpc_reset_waitqueue_priority(queue);
462 	return NULL;
463 
464 new_queue:
465 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
466 new_owner:
467 	rpc_set_waitqueue_owner(queue, task->tk_owner);
468 out:
469 	rpc_wake_up_task_queue_locked(queue, task);
470 	return task;
471 }
472 
473 /*
474  * Wake up the next task on the wait queue.
475  */
476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
477 {
478 	struct rpc_task	*task = NULL;
479 
480 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
481 			queue, rpc_qname(queue));
482 	spin_lock_bh(&queue->lock);
483 	if (RPC_IS_PRIORITY(queue))
484 		task = __rpc_wake_up_next_priority(queue);
485 	else {
486 		task_for_first(task, &queue->tasks[0])
487 			rpc_wake_up_task_queue_locked(queue, task);
488 	}
489 	spin_unlock_bh(&queue->lock);
490 
491 	return task;
492 }
493 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
494 
495 /**
496  * rpc_wake_up - wake up all rpc_tasks
497  * @queue: rpc_wait_queue on which the tasks are sleeping
498  *
499  * Grabs queue->lock
500  */
501 void rpc_wake_up(struct rpc_wait_queue *queue)
502 {
503 	struct rpc_task *task, *next;
504 	struct list_head *head;
505 
506 	spin_lock_bh(&queue->lock);
507 	head = &queue->tasks[queue->maxpriority];
508 	for (;;) {
509 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
510 			rpc_wake_up_task_queue_locked(queue, task);
511 		if (head == &queue->tasks[0])
512 			break;
513 		head--;
514 	}
515 	spin_unlock_bh(&queue->lock);
516 }
517 EXPORT_SYMBOL_GPL(rpc_wake_up);
518 
519 /**
520  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521  * @queue: rpc_wait_queue on which the tasks are sleeping
522  * @status: status value to set
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
527 {
528 	struct rpc_task *task, *next;
529 	struct list_head *head;
530 
531 	spin_lock_bh(&queue->lock);
532 	head = &queue->tasks[queue->maxpriority];
533 	for (;;) {
534 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535 			task->tk_status = status;
536 			rpc_wake_up_task_queue_locked(queue, task);
537 		}
538 		if (head == &queue->tasks[0])
539 			break;
540 		head--;
541 	}
542 	spin_unlock_bh(&queue->lock);
543 }
544 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
545 
546 static void __rpc_queue_timer_fn(unsigned long ptr)
547 {
548 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
549 	struct rpc_task *task, *n;
550 	unsigned long expires, now, timeo;
551 
552 	spin_lock(&queue->lock);
553 	expires = now = jiffies;
554 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
555 		timeo = task->u.tk_wait.expires;
556 		if (time_after_eq(now, timeo)) {
557 			dprintk("RPC: %5u timeout\n", task->tk_pid);
558 			task->tk_status = -ETIMEDOUT;
559 			rpc_wake_up_task_queue_locked(queue, task);
560 			continue;
561 		}
562 		if (expires == now || time_after(expires, timeo))
563 			expires = timeo;
564 	}
565 	if (!list_empty(&queue->timer_list.list))
566 		rpc_set_queue_timer(queue, expires);
567 	spin_unlock(&queue->lock);
568 }
569 
570 static void __rpc_atrun(struct rpc_task *task)
571 {
572 	task->tk_status = 0;
573 }
574 
575 /*
576  * Run a task at a later time
577  */
578 void rpc_delay(struct rpc_task *task, unsigned long delay)
579 {
580 	task->tk_timeout = delay;
581 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
582 }
583 EXPORT_SYMBOL_GPL(rpc_delay);
584 
585 /*
586  * Helper to call task->tk_ops->rpc_call_prepare
587  */
588 void rpc_prepare_task(struct rpc_task *task)
589 {
590 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
591 }
592 
593 /*
594  * Helper that calls task->tk_ops->rpc_call_done if it exists
595  */
596 void rpc_exit_task(struct rpc_task *task)
597 {
598 	task->tk_action = NULL;
599 	if (task->tk_ops->rpc_call_done != NULL) {
600 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
601 		if (task->tk_action != NULL) {
602 			WARN_ON(RPC_ASSASSINATED(task));
603 			/* Always release the RPC slot and buffer memory */
604 			xprt_release(task);
605 		}
606 	}
607 }
608 
609 void rpc_exit(struct rpc_task *task, int status)
610 {
611 	task->tk_status = status;
612 	task->tk_action = rpc_exit_task;
613 	if (RPC_IS_QUEUED(task))
614 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
615 }
616 EXPORT_SYMBOL_GPL(rpc_exit);
617 
618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
619 {
620 	if (ops->rpc_release != NULL)
621 		ops->rpc_release(calldata);
622 }
623 
624 /*
625  * This is the RPC `scheduler' (or rather, the finite state machine).
626  */
627 static void __rpc_execute(struct rpc_task *task)
628 {
629 	struct rpc_wait_queue *queue;
630 	int task_is_async = RPC_IS_ASYNC(task);
631 	int status = 0;
632 
633 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
634 			task->tk_pid, task->tk_flags);
635 
636 	BUG_ON(RPC_IS_QUEUED(task));
637 
638 	for (;;) {
639 		void (*do_action)(struct rpc_task *);
640 
641 		/*
642 		 * Execute any pending callback first.
643 		 */
644 		do_action = task->tk_callback;
645 		task->tk_callback = NULL;
646 		if (do_action == NULL) {
647 			/*
648 			 * Perform the next FSM step.
649 			 * tk_action may be NULL if the task has been killed.
650 			 * In particular, note that rpc_killall_tasks may
651 			 * do this at any time, so beware when dereferencing.
652 			 */
653 			do_action = task->tk_action;
654 			if (do_action == NULL)
655 				break;
656 		}
657 		do_action(task);
658 
659 		/*
660 		 * Lockless check for whether task is sleeping or not.
661 		 */
662 		if (!RPC_IS_QUEUED(task))
663 			continue;
664 		/*
665 		 * The queue->lock protects against races with
666 		 * rpc_make_runnable().
667 		 *
668 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
669 		 * rpc_task, rpc_make_runnable() can assign it to a
670 		 * different workqueue. We therefore cannot assume that the
671 		 * rpc_task pointer may still be dereferenced.
672 		 */
673 		queue = task->tk_waitqueue;
674 		spin_lock_bh(&queue->lock);
675 		if (!RPC_IS_QUEUED(task)) {
676 			spin_unlock_bh(&queue->lock);
677 			continue;
678 		}
679 		rpc_clear_running(task);
680 		spin_unlock_bh(&queue->lock);
681 		if (task_is_async)
682 			return;
683 
684 		/* sync task: sleep here */
685 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
686 		status = out_of_line_wait_on_bit(&task->tk_runstate,
687 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
688 				TASK_KILLABLE);
689 		if (status == -ERESTARTSYS) {
690 			/*
691 			 * When a sync task receives a signal, it exits with
692 			 * -ERESTARTSYS. In order to catch any callbacks that
693 			 * clean up after sleeping on some queue, we don't
694 			 * break the loop here, but go around once more.
695 			 */
696 			dprintk("RPC: %5u got signal\n", task->tk_pid);
697 			task->tk_flags |= RPC_TASK_KILLED;
698 			rpc_exit(task, -ERESTARTSYS);
699 		}
700 		rpc_set_running(task);
701 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
702 	}
703 
704 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
705 			task->tk_status);
706 	/* Release all resources associated with the task */
707 	rpc_release_task(task);
708 }
709 
710 /*
711  * User-visible entry point to the scheduler.
712  *
713  * This may be called recursively if e.g. an async NFS task updates
714  * the attributes and finds that dirty pages must be flushed.
715  * NOTE: Upon exit of this function the task is guaranteed to be
716  *	 released. In particular note that tk_release() will have
717  *	 been called, so your task memory may have been freed.
718  */
719 void rpc_execute(struct rpc_task *task)
720 {
721 	rpc_set_active(task);
722 	rpc_make_runnable(task);
723 	if (!RPC_IS_ASYNC(task))
724 		__rpc_execute(task);
725 }
726 
727 static void rpc_async_schedule(struct work_struct *work)
728 {
729 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
730 }
731 
732 /**
733  * rpc_malloc - allocate an RPC buffer
734  * @task: RPC task that will use this buffer
735  * @size: requested byte size
736  *
737  * To prevent rpciod from hanging, this allocator never sleeps,
738  * returning NULL if the request cannot be serviced immediately.
739  * The caller can arrange to sleep in a way that is safe for rpciod.
740  *
741  * Most requests are 'small' (under 2KiB) and can be serviced from a
742  * mempool, ensuring that NFS reads and writes can always proceed,
743  * and that there is good locality of reference for these buffers.
744  *
745  * In order to avoid memory starvation triggering more writebacks of
746  * NFS requests, we avoid using GFP_KERNEL.
747  */
748 void *rpc_malloc(struct rpc_task *task, size_t size)
749 {
750 	struct rpc_buffer *buf;
751 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
752 
753 	size += sizeof(struct rpc_buffer);
754 	if (size <= RPC_BUFFER_MAXSIZE)
755 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
756 	else
757 		buf = kmalloc(size, gfp);
758 
759 	if (!buf)
760 		return NULL;
761 
762 	buf->len = size;
763 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
764 			task->tk_pid, size, buf);
765 	return &buf->data;
766 }
767 EXPORT_SYMBOL_GPL(rpc_malloc);
768 
769 /**
770  * rpc_free - free buffer allocated via rpc_malloc
771  * @buffer: buffer to free
772  *
773  */
774 void rpc_free(void *buffer)
775 {
776 	size_t size;
777 	struct rpc_buffer *buf;
778 
779 	if (!buffer)
780 		return;
781 
782 	buf = container_of(buffer, struct rpc_buffer, data);
783 	size = buf->len;
784 
785 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
786 			size, buf);
787 
788 	if (size <= RPC_BUFFER_MAXSIZE)
789 		mempool_free(buf, rpc_buffer_mempool);
790 	else
791 		kfree(buf);
792 }
793 EXPORT_SYMBOL_GPL(rpc_free);
794 
795 /*
796  * Creation and deletion of RPC task structures
797  */
798 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
799 {
800 	memset(task, 0, sizeof(*task));
801 	atomic_set(&task->tk_count, 1);
802 	task->tk_flags  = task_setup_data->flags;
803 	task->tk_ops = task_setup_data->callback_ops;
804 	task->tk_calldata = task_setup_data->callback_data;
805 	INIT_LIST_HEAD(&task->tk_task);
806 
807 	/* Initialize retry counters */
808 	task->tk_garb_retry = 2;
809 	task->tk_cred_retry = 2;
810 	task->tk_rebind_retry = 2;
811 
812 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
813 	task->tk_owner = current->tgid;
814 
815 	/* Initialize workqueue for async tasks */
816 	task->tk_workqueue = task_setup_data->workqueue;
817 
818 	if (task->tk_ops->rpc_call_prepare != NULL)
819 		task->tk_action = rpc_prepare_task;
820 
821 	/* starting timestamp */
822 	task->tk_start = ktime_get();
823 
824 	dprintk("RPC:       new task initialized, procpid %u\n",
825 				task_pid_nr(current));
826 }
827 
828 static struct rpc_task *
829 rpc_alloc_task(void)
830 {
831 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
832 }
833 
834 /*
835  * Create a new task for the specified client.
836  */
837 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
838 {
839 	struct rpc_task	*task = setup_data->task;
840 	unsigned short flags = 0;
841 
842 	if (task == NULL) {
843 		task = rpc_alloc_task();
844 		if (task == NULL) {
845 			rpc_release_calldata(setup_data->callback_ops,
846 					setup_data->callback_data);
847 			return ERR_PTR(-ENOMEM);
848 		}
849 		flags = RPC_TASK_DYNAMIC;
850 	}
851 
852 	rpc_init_task(task, setup_data);
853 	task->tk_flags |= flags;
854 	dprintk("RPC:       allocated task %p\n", task);
855 	return task;
856 }
857 
858 static void rpc_free_task(struct rpc_task *task)
859 {
860 	const struct rpc_call_ops *tk_ops = task->tk_ops;
861 	void *calldata = task->tk_calldata;
862 
863 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
864 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
865 		mempool_free(task, rpc_task_mempool);
866 	}
867 	rpc_release_calldata(tk_ops, calldata);
868 }
869 
870 static void rpc_async_release(struct work_struct *work)
871 {
872 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
873 }
874 
875 static void rpc_release_resources_task(struct rpc_task *task)
876 {
877 	if (task->tk_rqstp)
878 		xprt_release(task);
879 	if (task->tk_msg.rpc_cred) {
880 		put_rpccred(task->tk_msg.rpc_cred);
881 		task->tk_msg.rpc_cred = NULL;
882 	}
883 	rpc_task_release_client(task);
884 }
885 
886 static void rpc_final_put_task(struct rpc_task *task,
887 		struct workqueue_struct *q)
888 {
889 	if (q != NULL) {
890 		INIT_WORK(&task->u.tk_work, rpc_async_release);
891 		queue_work(q, &task->u.tk_work);
892 	} else
893 		rpc_free_task(task);
894 }
895 
896 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
897 {
898 	if (atomic_dec_and_test(&task->tk_count)) {
899 		rpc_release_resources_task(task);
900 		rpc_final_put_task(task, q);
901 	}
902 }
903 
904 void rpc_put_task(struct rpc_task *task)
905 {
906 	rpc_do_put_task(task, NULL);
907 }
908 EXPORT_SYMBOL_GPL(rpc_put_task);
909 
910 void rpc_put_task_async(struct rpc_task *task)
911 {
912 	rpc_do_put_task(task, task->tk_workqueue);
913 }
914 EXPORT_SYMBOL_GPL(rpc_put_task_async);
915 
916 static void rpc_release_task(struct rpc_task *task)
917 {
918 	dprintk("RPC: %5u release task\n", task->tk_pid);
919 
920 	BUG_ON (RPC_IS_QUEUED(task));
921 
922 	rpc_release_resources_task(task);
923 
924 	/*
925 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
926 	 * so it should be safe to use task->tk_count as a test for whether
927 	 * or not any other processes still hold references to our rpc_task.
928 	 */
929 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
930 		/* Wake up anyone who may be waiting for task completion */
931 		if (!rpc_complete_task(task))
932 			return;
933 	} else {
934 		if (!atomic_dec_and_test(&task->tk_count))
935 			return;
936 	}
937 	rpc_final_put_task(task, task->tk_workqueue);
938 }
939 
940 int rpciod_up(void)
941 {
942 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
943 }
944 
945 void rpciod_down(void)
946 {
947 	module_put(THIS_MODULE);
948 }
949 
950 /*
951  * Start up the rpciod workqueue.
952  */
953 static int rpciod_start(void)
954 {
955 	struct workqueue_struct *wq;
956 
957 	/*
958 	 * Create the rpciod thread and wait for it to start.
959 	 */
960 	dprintk("RPC:       creating workqueue rpciod\n");
961 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
962 	rpciod_workqueue = wq;
963 	return rpciod_workqueue != NULL;
964 }
965 
966 static void rpciod_stop(void)
967 {
968 	struct workqueue_struct *wq = NULL;
969 
970 	if (rpciod_workqueue == NULL)
971 		return;
972 	dprintk("RPC:       destroying workqueue rpciod\n");
973 
974 	wq = rpciod_workqueue;
975 	rpciod_workqueue = NULL;
976 	destroy_workqueue(wq);
977 }
978 
979 void
980 rpc_destroy_mempool(void)
981 {
982 	rpciod_stop();
983 	if (rpc_buffer_mempool)
984 		mempool_destroy(rpc_buffer_mempool);
985 	if (rpc_task_mempool)
986 		mempool_destroy(rpc_task_mempool);
987 	if (rpc_task_slabp)
988 		kmem_cache_destroy(rpc_task_slabp);
989 	if (rpc_buffer_slabp)
990 		kmem_cache_destroy(rpc_buffer_slabp);
991 	rpc_destroy_wait_queue(&delay_queue);
992 }
993 
994 int
995 rpc_init_mempool(void)
996 {
997 	/*
998 	 * The following is not strictly a mempool initialisation,
999 	 * but there is no harm in doing it here
1000 	 */
1001 	rpc_init_wait_queue(&delay_queue, "delayq");
1002 	if (!rpciod_start())
1003 		goto err_nomem;
1004 
1005 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1006 					     sizeof(struct rpc_task),
1007 					     0, SLAB_HWCACHE_ALIGN,
1008 					     NULL);
1009 	if (!rpc_task_slabp)
1010 		goto err_nomem;
1011 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1012 					     RPC_BUFFER_MAXSIZE,
1013 					     0, SLAB_HWCACHE_ALIGN,
1014 					     NULL);
1015 	if (!rpc_buffer_slabp)
1016 		goto err_nomem;
1017 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1018 						    rpc_task_slabp);
1019 	if (!rpc_task_mempool)
1020 		goto err_nomem;
1021 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1022 						      rpc_buffer_slabp);
1023 	if (!rpc_buffer_mempool)
1024 		goto err_nomem;
1025 	return 0;
1026 err_nomem:
1027 	rpc_destroy_mempool();
1028 	return -ENOMEM;
1029 }
1030