1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 22 #include <linux/sunrpc/clnt.h> 23 24 #include "sunrpc.h" 25 26 #ifdef RPC_DEBUG 27 #define RPCDBG_FACILITY RPCDBG_SCHED 28 #endif 29 30 /* 31 * RPC slabs and memory pools 32 */ 33 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_TASK_POOLSIZE (8) 36 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_buffer_mempool __read_mostly; 40 41 static void rpc_async_schedule(struct work_struct *); 42 static void rpc_release_task(struct rpc_task *task); 43 static void __rpc_queue_timer_fn(unsigned long ptr); 44 45 /* 46 * RPC tasks sit here while waiting for conditions to improve. 47 */ 48 static struct rpc_wait_queue delay_queue; 49 50 /* 51 * rpciod-related stuff 52 */ 53 struct workqueue_struct *rpciod_workqueue; 54 55 /* 56 * Disable the timer for a given RPC task. Should be called with 57 * queue->lock and bh_disabled in order to avoid races within 58 * rpc_run_timer(). 59 */ 60 static void 61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 62 { 63 if (task->tk_timeout == 0) 64 return; 65 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 66 task->tk_timeout = 0; 67 list_del(&task->u.tk_wait.timer_list); 68 if (list_empty(&queue->timer_list.list)) 69 del_timer(&queue->timer_list.timer); 70 } 71 72 static void 73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 74 { 75 queue->timer_list.expires = expires; 76 mod_timer(&queue->timer_list.timer, expires); 77 } 78 79 /* 80 * Set up a timer for the current task. 81 */ 82 static void 83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 84 { 85 if (!task->tk_timeout) 86 return; 87 88 dprintk("RPC: %5u setting alarm for %lu ms\n", 89 task->tk_pid, task->tk_timeout * 1000 / HZ); 90 91 task->u.tk_wait.expires = jiffies + task->tk_timeout; 92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 93 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 95 } 96 97 /* 98 * Add new request to a priority queue. 99 */ 100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 101 struct rpc_task *task, 102 unsigned char queue_priority) 103 { 104 struct list_head *q; 105 struct rpc_task *t; 106 107 INIT_LIST_HEAD(&task->u.tk_wait.links); 108 q = &queue->tasks[queue_priority]; 109 if (unlikely(queue_priority > queue->maxpriority)) 110 q = &queue->tasks[queue->maxpriority]; 111 list_for_each_entry(t, q, u.tk_wait.list) { 112 if (t->tk_owner == task->tk_owner) { 113 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 114 return; 115 } 116 } 117 list_add_tail(&task->u.tk_wait.list, q); 118 } 119 120 /* 121 * Add new request to wait queue. 122 * 123 * Swapper tasks always get inserted at the head of the queue. 124 * This should avoid many nasty memory deadlocks and hopefully 125 * improve overall performance. 126 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 127 */ 128 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 129 struct rpc_task *task, 130 unsigned char queue_priority) 131 { 132 BUG_ON (RPC_IS_QUEUED(task)); 133 134 if (RPC_IS_PRIORITY(queue)) 135 __rpc_add_wait_queue_priority(queue, task, queue_priority); 136 else if (RPC_IS_SWAPPER(task)) 137 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 138 else 139 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 140 task->tk_waitqueue = queue; 141 queue->qlen++; 142 rpc_set_queued(task); 143 144 dprintk("RPC: %5u added to queue %p \"%s\"\n", 145 task->tk_pid, queue, rpc_qname(queue)); 146 } 147 148 /* 149 * Remove request from a priority queue. 150 */ 151 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 152 { 153 struct rpc_task *t; 154 155 if (!list_empty(&task->u.tk_wait.links)) { 156 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 157 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 158 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 159 } 160 } 161 162 /* 163 * Remove request from queue. 164 * Note: must be called with spin lock held. 165 */ 166 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 167 { 168 __rpc_disable_timer(queue, task); 169 if (RPC_IS_PRIORITY(queue)) 170 __rpc_remove_wait_queue_priority(task); 171 list_del(&task->u.tk_wait.list); 172 queue->qlen--; 173 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 174 task->tk_pid, queue, rpc_qname(queue)); 175 } 176 177 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 178 { 179 queue->priority = priority; 180 queue->count = 1 << (priority * 2); 181 } 182 183 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 184 { 185 queue->owner = pid; 186 queue->nr = RPC_BATCH_COUNT; 187 } 188 189 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 190 { 191 rpc_set_waitqueue_priority(queue, queue->maxpriority); 192 rpc_set_waitqueue_owner(queue, 0); 193 } 194 195 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 196 { 197 int i; 198 199 spin_lock_init(&queue->lock); 200 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 201 INIT_LIST_HEAD(&queue->tasks[i]); 202 queue->maxpriority = nr_queues - 1; 203 rpc_reset_waitqueue_priority(queue); 204 queue->qlen = 0; 205 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 206 INIT_LIST_HEAD(&queue->timer_list.list); 207 #ifdef RPC_DEBUG 208 queue->name = qname; 209 #endif 210 } 211 212 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 213 { 214 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 215 } 216 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 217 218 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 219 { 220 __rpc_init_priority_wait_queue(queue, qname, 1); 221 } 222 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 223 224 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 225 { 226 del_timer_sync(&queue->timer_list.timer); 227 } 228 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 229 230 static int rpc_wait_bit_killable(void *word) 231 { 232 if (fatal_signal_pending(current)) 233 return -ERESTARTSYS; 234 schedule(); 235 return 0; 236 } 237 238 #ifdef RPC_DEBUG 239 static void rpc_task_set_debuginfo(struct rpc_task *task) 240 { 241 static atomic_t rpc_pid; 242 243 task->tk_pid = atomic_inc_return(&rpc_pid); 244 } 245 #else 246 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 247 { 248 } 249 #endif 250 251 static void rpc_set_active(struct rpc_task *task) 252 { 253 rpc_task_set_debuginfo(task); 254 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 255 } 256 257 /* 258 * Mark an RPC call as having completed by clearing the 'active' bit 259 * and then waking up all tasks that were sleeping. 260 */ 261 static int rpc_complete_task(struct rpc_task *task) 262 { 263 void *m = &task->tk_runstate; 264 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 265 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 266 unsigned long flags; 267 int ret; 268 269 spin_lock_irqsave(&wq->lock, flags); 270 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 271 ret = atomic_dec_and_test(&task->tk_count); 272 if (waitqueue_active(wq)) 273 __wake_up_locked_key(wq, TASK_NORMAL, &k); 274 spin_unlock_irqrestore(&wq->lock, flags); 275 return ret; 276 } 277 278 /* 279 * Allow callers to wait for completion of an RPC call 280 * 281 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 282 * to enforce taking of the wq->lock and hence avoid races with 283 * rpc_complete_task(). 284 */ 285 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 286 { 287 if (action == NULL) 288 action = rpc_wait_bit_killable; 289 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 290 action, TASK_KILLABLE); 291 } 292 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 293 294 /* 295 * Make an RPC task runnable. 296 * 297 * Note: If the task is ASYNC, this must be called with 298 * the spinlock held to protect the wait queue operation. 299 */ 300 static void rpc_make_runnable(struct rpc_task *task) 301 { 302 rpc_clear_queued(task); 303 if (rpc_test_and_set_running(task)) 304 return; 305 if (RPC_IS_ASYNC(task)) { 306 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 307 queue_work(rpciod_workqueue, &task->u.tk_work); 308 } else 309 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 310 } 311 312 /* 313 * Prepare for sleeping on a wait queue. 314 * By always appending tasks to the list we ensure FIFO behavior. 315 * NB: An RPC task will only receive interrupt-driven events as long 316 * as it's on a wait queue. 317 */ 318 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 319 struct rpc_task *task, 320 rpc_action action, 321 unsigned char queue_priority) 322 { 323 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 324 task->tk_pid, rpc_qname(q), jiffies); 325 326 __rpc_add_wait_queue(q, task, queue_priority); 327 328 BUG_ON(task->tk_callback != NULL); 329 task->tk_callback = action; 330 __rpc_add_timer(q, task); 331 } 332 333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 334 rpc_action action) 335 { 336 /* We shouldn't ever put an inactive task to sleep */ 337 BUG_ON(!RPC_IS_ACTIVATED(task)); 338 339 /* 340 * Protect the queue operations. 341 */ 342 spin_lock_bh(&q->lock); 343 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 344 spin_unlock_bh(&q->lock); 345 } 346 EXPORT_SYMBOL_GPL(rpc_sleep_on); 347 348 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 349 rpc_action action, int priority) 350 { 351 /* We shouldn't ever put an inactive task to sleep */ 352 BUG_ON(!RPC_IS_ACTIVATED(task)); 353 354 /* 355 * Protect the queue operations. 356 */ 357 spin_lock_bh(&q->lock); 358 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 359 spin_unlock_bh(&q->lock); 360 } 361 362 /** 363 * __rpc_do_wake_up_task - wake up a single rpc_task 364 * @queue: wait queue 365 * @task: task to be woken up 366 * 367 * Caller must hold queue->lock, and have cleared the task queued flag. 368 */ 369 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 370 { 371 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 372 task->tk_pid, jiffies); 373 374 /* Has the task been executed yet? If not, we cannot wake it up! */ 375 if (!RPC_IS_ACTIVATED(task)) { 376 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 377 return; 378 } 379 380 __rpc_remove_wait_queue(queue, task); 381 382 rpc_make_runnable(task); 383 384 dprintk("RPC: __rpc_wake_up_task done\n"); 385 } 386 387 /* 388 * Wake up a queued task while the queue lock is being held 389 */ 390 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 391 { 392 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 393 __rpc_do_wake_up_task(queue, task); 394 } 395 396 /* 397 * Tests whether rpc queue is empty 398 */ 399 int rpc_queue_empty(struct rpc_wait_queue *queue) 400 { 401 int res; 402 403 spin_lock_bh(&queue->lock); 404 res = queue->qlen; 405 spin_unlock_bh(&queue->lock); 406 return res == 0; 407 } 408 EXPORT_SYMBOL_GPL(rpc_queue_empty); 409 410 /* 411 * Wake up a task on a specific queue 412 */ 413 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 414 { 415 spin_lock_bh(&queue->lock); 416 rpc_wake_up_task_queue_locked(queue, task); 417 spin_unlock_bh(&queue->lock); 418 } 419 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 420 421 /* 422 * Wake up the next task on a priority queue. 423 */ 424 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 425 { 426 struct list_head *q; 427 struct rpc_task *task; 428 429 /* 430 * Service a batch of tasks from a single owner. 431 */ 432 q = &queue->tasks[queue->priority]; 433 if (!list_empty(q)) { 434 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 435 if (queue->owner == task->tk_owner) { 436 if (--queue->nr) 437 goto out; 438 list_move_tail(&task->u.tk_wait.list, q); 439 } 440 /* 441 * Check if we need to switch queues. 442 */ 443 if (--queue->count) 444 goto new_owner; 445 } 446 447 /* 448 * Service the next queue. 449 */ 450 do { 451 if (q == &queue->tasks[0]) 452 q = &queue->tasks[queue->maxpriority]; 453 else 454 q = q - 1; 455 if (!list_empty(q)) { 456 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 457 goto new_queue; 458 } 459 } while (q != &queue->tasks[queue->priority]); 460 461 rpc_reset_waitqueue_priority(queue); 462 return NULL; 463 464 new_queue: 465 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 466 new_owner: 467 rpc_set_waitqueue_owner(queue, task->tk_owner); 468 out: 469 rpc_wake_up_task_queue_locked(queue, task); 470 return task; 471 } 472 473 /* 474 * Wake up the next task on the wait queue. 475 */ 476 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 477 { 478 struct rpc_task *task = NULL; 479 480 dprintk("RPC: wake_up_next(%p \"%s\")\n", 481 queue, rpc_qname(queue)); 482 spin_lock_bh(&queue->lock); 483 if (RPC_IS_PRIORITY(queue)) 484 task = __rpc_wake_up_next_priority(queue); 485 else { 486 task_for_first(task, &queue->tasks[0]) 487 rpc_wake_up_task_queue_locked(queue, task); 488 } 489 spin_unlock_bh(&queue->lock); 490 491 return task; 492 } 493 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 494 495 /** 496 * rpc_wake_up - wake up all rpc_tasks 497 * @queue: rpc_wait_queue on which the tasks are sleeping 498 * 499 * Grabs queue->lock 500 */ 501 void rpc_wake_up(struct rpc_wait_queue *queue) 502 { 503 struct rpc_task *task, *next; 504 struct list_head *head; 505 506 spin_lock_bh(&queue->lock); 507 head = &queue->tasks[queue->maxpriority]; 508 for (;;) { 509 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 510 rpc_wake_up_task_queue_locked(queue, task); 511 if (head == &queue->tasks[0]) 512 break; 513 head--; 514 } 515 spin_unlock_bh(&queue->lock); 516 } 517 EXPORT_SYMBOL_GPL(rpc_wake_up); 518 519 /** 520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 521 * @queue: rpc_wait_queue on which the tasks are sleeping 522 * @status: status value to set 523 * 524 * Grabs queue->lock 525 */ 526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 527 { 528 struct rpc_task *task, *next; 529 struct list_head *head; 530 531 spin_lock_bh(&queue->lock); 532 head = &queue->tasks[queue->maxpriority]; 533 for (;;) { 534 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 535 task->tk_status = status; 536 rpc_wake_up_task_queue_locked(queue, task); 537 } 538 if (head == &queue->tasks[0]) 539 break; 540 head--; 541 } 542 spin_unlock_bh(&queue->lock); 543 } 544 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 545 546 static void __rpc_queue_timer_fn(unsigned long ptr) 547 { 548 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 549 struct rpc_task *task, *n; 550 unsigned long expires, now, timeo; 551 552 spin_lock(&queue->lock); 553 expires = now = jiffies; 554 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 555 timeo = task->u.tk_wait.expires; 556 if (time_after_eq(now, timeo)) { 557 dprintk("RPC: %5u timeout\n", task->tk_pid); 558 task->tk_status = -ETIMEDOUT; 559 rpc_wake_up_task_queue_locked(queue, task); 560 continue; 561 } 562 if (expires == now || time_after(expires, timeo)) 563 expires = timeo; 564 } 565 if (!list_empty(&queue->timer_list.list)) 566 rpc_set_queue_timer(queue, expires); 567 spin_unlock(&queue->lock); 568 } 569 570 static void __rpc_atrun(struct rpc_task *task) 571 { 572 task->tk_status = 0; 573 } 574 575 /* 576 * Run a task at a later time 577 */ 578 void rpc_delay(struct rpc_task *task, unsigned long delay) 579 { 580 task->tk_timeout = delay; 581 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 582 } 583 EXPORT_SYMBOL_GPL(rpc_delay); 584 585 /* 586 * Helper to call task->tk_ops->rpc_call_prepare 587 */ 588 void rpc_prepare_task(struct rpc_task *task) 589 { 590 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 591 } 592 593 /* 594 * Helper that calls task->tk_ops->rpc_call_done if it exists 595 */ 596 void rpc_exit_task(struct rpc_task *task) 597 { 598 task->tk_action = NULL; 599 if (task->tk_ops->rpc_call_done != NULL) { 600 task->tk_ops->rpc_call_done(task, task->tk_calldata); 601 if (task->tk_action != NULL) { 602 WARN_ON(RPC_ASSASSINATED(task)); 603 /* Always release the RPC slot and buffer memory */ 604 xprt_release(task); 605 } 606 } 607 } 608 609 void rpc_exit(struct rpc_task *task, int status) 610 { 611 task->tk_status = status; 612 task->tk_action = rpc_exit_task; 613 if (RPC_IS_QUEUED(task)) 614 rpc_wake_up_queued_task(task->tk_waitqueue, task); 615 } 616 EXPORT_SYMBOL_GPL(rpc_exit); 617 618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 619 { 620 if (ops->rpc_release != NULL) 621 ops->rpc_release(calldata); 622 } 623 624 /* 625 * This is the RPC `scheduler' (or rather, the finite state machine). 626 */ 627 static void __rpc_execute(struct rpc_task *task) 628 { 629 struct rpc_wait_queue *queue; 630 int task_is_async = RPC_IS_ASYNC(task); 631 int status = 0; 632 633 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 634 task->tk_pid, task->tk_flags); 635 636 BUG_ON(RPC_IS_QUEUED(task)); 637 638 for (;;) { 639 void (*do_action)(struct rpc_task *); 640 641 /* 642 * Execute any pending callback first. 643 */ 644 do_action = task->tk_callback; 645 task->tk_callback = NULL; 646 if (do_action == NULL) { 647 /* 648 * Perform the next FSM step. 649 * tk_action may be NULL if the task has been killed. 650 * In particular, note that rpc_killall_tasks may 651 * do this at any time, so beware when dereferencing. 652 */ 653 do_action = task->tk_action; 654 if (do_action == NULL) 655 break; 656 } 657 do_action(task); 658 659 /* 660 * Lockless check for whether task is sleeping or not. 661 */ 662 if (!RPC_IS_QUEUED(task)) 663 continue; 664 /* 665 * The queue->lock protects against races with 666 * rpc_make_runnable(). 667 * 668 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 669 * rpc_task, rpc_make_runnable() can assign it to a 670 * different workqueue. We therefore cannot assume that the 671 * rpc_task pointer may still be dereferenced. 672 */ 673 queue = task->tk_waitqueue; 674 spin_lock_bh(&queue->lock); 675 if (!RPC_IS_QUEUED(task)) { 676 spin_unlock_bh(&queue->lock); 677 continue; 678 } 679 rpc_clear_running(task); 680 spin_unlock_bh(&queue->lock); 681 if (task_is_async) 682 return; 683 684 /* sync task: sleep here */ 685 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 686 status = out_of_line_wait_on_bit(&task->tk_runstate, 687 RPC_TASK_QUEUED, rpc_wait_bit_killable, 688 TASK_KILLABLE); 689 if (status == -ERESTARTSYS) { 690 /* 691 * When a sync task receives a signal, it exits with 692 * -ERESTARTSYS. In order to catch any callbacks that 693 * clean up after sleeping on some queue, we don't 694 * break the loop here, but go around once more. 695 */ 696 dprintk("RPC: %5u got signal\n", task->tk_pid); 697 task->tk_flags |= RPC_TASK_KILLED; 698 rpc_exit(task, -ERESTARTSYS); 699 } 700 rpc_set_running(task); 701 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 702 } 703 704 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 705 task->tk_status); 706 /* Release all resources associated with the task */ 707 rpc_release_task(task); 708 } 709 710 /* 711 * User-visible entry point to the scheduler. 712 * 713 * This may be called recursively if e.g. an async NFS task updates 714 * the attributes and finds that dirty pages must be flushed. 715 * NOTE: Upon exit of this function the task is guaranteed to be 716 * released. In particular note that tk_release() will have 717 * been called, so your task memory may have been freed. 718 */ 719 void rpc_execute(struct rpc_task *task) 720 { 721 rpc_set_active(task); 722 rpc_make_runnable(task); 723 if (!RPC_IS_ASYNC(task)) 724 __rpc_execute(task); 725 } 726 727 static void rpc_async_schedule(struct work_struct *work) 728 { 729 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 730 } 731 732 /** 733 * rpc_malloc - allocate an RPC buffer 734 * @task: RPC task that will use this buffer 735 * @size: requested byte size 736 * 737 * To prevent rpciod from hanging, this allocator never sleeps, 738 * returning NULL if the request cannot be serviced immediately. 739 * The caller can arrange to sleep in a way that is safe for rpciod. 740 * 741 * Most requests are 'small' (under 2KiB) and can be serviced from a 742 * mempool, ensuring that NFS reads and writes can always proceed, 743 * and that there is good locality of reference for these buffers. 744 * 745 * In order to avoid memory starvation triggering more writebacks of 746 * NFS requests, we avoid using GFP_KERNEL. 747 */ 748 void *rpc_malloc(struct rpc_task *task, size_t size) 749 { 750 struct rpc_buffer *buf; 751 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 752 753 size += sizeof(struct rpc_buffer); 754 if (size <= RPC_BUFFER_MAXSIZE) 755 buf = mempool_alloc(rpc_buffer_mempool, gfp); 756 else 757 buf = kmalloc(size, gfp); 758 759 if (!buf) 760 return NULL; 761 762 buf->len = size; 763 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 764 task->tk_pid, size, buf); 765 return &buf->data; 766 } 767 EXPORT_SYMBOL_GPL(rpc_malloc); 768 769 /** 770 * rpc_free - free buffer allocated via rpc_malloc 771 * @buffer: buffer to free 772 * 773 */ 774 void rpc_free(void *buffer) 775 { 776 size_t size; 777 struct rpc_buffer *buf; 778 779 if (!buffer) 780 return; 781 782 buf = container_of(buffer, struct rpc_buffer, data); 783 size = buf->len; 784 785 dprintk("RPC: freeing buffer of size %zu at %p\n", 786 size, buf); 787 788 if (size <= RPC_BUFFER_MAXSIZE) 789 mempool_free(buf, rpc_buffer_mempool); 790 else 791 kfree(buf); 792 } 793 EXPORT_SYMBOL_GPL(rpc_free); 794 795 /* 796 * Creation and deletion of RPC task structures 797 */ 798 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 799 { 800 memset(task, 0, sizeof(*task)); 801 atomic_set(&task->tk_count, 1); 802 task->tk_flags = task_setup_data->flags; 803 task->tk_ops = task_setup_data->callback_ops; 804 task->tk_calldata = task_setup_data->callback_data; 805 INIT_LIST_HEAD(&task->tk_task); 806 807 /* Initialize retry counters */ 808 task->tk_garb_retry = 2; 809 task->tk_cred_retry = 2; 810 task->tk_rebind_retry = 2; 811 812 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 813 task->tk_owner = current->tgid; 814 815 /* Initialize workqueue for async tasks */ 816 task->tk_workqueue = task_setup_data->workqueue; 817 818 if (task->tk_ops->rpc_call_prepare != NULL) 819 task->tk_action = rpc_prepare_task; 820 821 /* starting timestamp */ 822 task->tk_start = ktime_get(); 823 824 dprintk("RPC: new task initialized, procpid %u\n", 825 task_pid_nr(current)); 826 } 827 828 static struct rpc_task * 829 rpc_alloc_task(void) 830 { 831 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 832 } 833 834 /* 835 * Create a new task for the specified client. 836 */ 837 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 838 { 839 struct rpc_task *task = setup_data->task; 840 unsigned short flags = 0; 841 842 if (task == NULL) { 843 task = rpc_alloc_task(); 844 if (task == NULL) { 845 rpc_release_calldata(setup_data->callback_ops, 846 setup_data->callback_data); 847 return ERR_PTR(-ENOMEM); 848 } 849 flags = RPC_TASK_DYNAMIC; 850 } 851 852 rpc_init_task(task, setup_data); 853 task->tk_flags |= flags; 854 dprintk("RPC: allocated task %p\n", task); 855 return task; 856 } 857 858 static void rpc_free_task(struct rpc_task *task) 859 { 860 const struct rpc_call_ops *tk_ops = task->tk_ops; 861 void *calldata = task->tk_calldata; 862 863 if (task->tk_flags & RPC_TASK_DYNAMIC) { 864 dprintk("RPC: %5u freeing task\n", task->tk_pid); 865 mempool_free(task, rpc_task_mempool); 866 } 867 rpc_release_calldata(tk_ops, calldata); 868 } 869 870 static void rpc_async_release(struct work_struct *work) 871 { 872 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 873 } 874 875 static void rpc_release_resources_task(struct rpc_task *task) 876 { 877 if (task->tk_rqstp) 878 xprt_release(task); 879 if (task->tk_msg.rpc_cred) { 880 put_rpccred(task->tk_msg.rpc_cred); 881 task->tk_msg.rpc_cred = NULL; 882 } 883 rpc_task_release_client(task); 884 } 885 886 static void rpc_final_put_task(struct rpc_task *task, 887 struct workqueue_struct *q) 888 { 889 if (q != NULL) { 890 INIT_WORK(&task->u.tk_work, rpc_async_release); 891 queue_work(q, &task->u.tk_work); 892 } else 893 rpc_free_task(task); 894 } 895 896 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 897 { 898 if (atomic_dec_and_test(&task->tk_count)) { 899 rpc_release_resources_task(task); 900 rpc_final_put_task(task, q); 901 } 902 } 903 904 void rpc_put_task(struct rpc_task *task) 905 { 906 rpc_do_put_task(task, NULL); 907 } 908 EXPORT_SYMBOL_GPL(rpc_put_task); 909 910 void rpc_put_task_async(struct rpc_task *task) 911 { 912 rpc_do_put_task(task, task->tk_workqueue); 913 } 914 EXPORT_SYMBOL_GPL(rpc_put_task_async); 915 916 static void rpc_release_task(struct rpc_task *task) 917 { 918 dprintk("RPC: %5u release task\n", task->tk_pid); 919 920 BUG_ON (RPC_IS_QUEUED(task)); 921 922 rpc_release_resources_task(task); 923 924 /* 925 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 926 * so it should be safe to use task->tk_count as a test for whether 927 * or not any other processes still hold references to our rpc_task. 928 */ 929 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 930 /* Wake up anyone who may be waiting for task completion */ 931 if (!rpc_complete_task(task)) 932 return; 933 } else { 934 if (!atomic_dec_and_test(&task->tk_count)) 935 return; 936 } 937 rpc_final_put_task(task, task->tk_workqueue); 938 } 939 940 int rpciod_up(void) 941 { 942 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 943 } 944 945 void rpciod_down(void) 946 { 947 module_put(THIS_MODULE); 948 } 949 950 /* 951 * Start up the rpciod workqueue. 952 */ 953 static int rpciod_start(void) 954 { 955 struct workqueue_struct *wq; 956 957 /* 958 * Create the rpciod thread and wait for it to start. 959 */ 960 dprintk("RPC: creating workqueue rpciod\n"); 961 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0); 962 rpciod_workqueue = wq; 963 return rpciod_workqueue != NULL; 964 } 965 966 static void rpciod_stop(void) 967 { 968 struct workqueue_struct *wq = NULL; 969 970 if (rpciod_workqueue == NULL) 971 return; 972 dprintk("RPC: destroying workqueue rpciod\n"); 973 974 wq = rpciod_workqueue; 975 rpciod_workqueue = NULL; 976 destroy_workqueue(wq); 977 } 978 979 void 980 rpc_destroy_mempool(void) 981 { 982 rpciod_stop(); 983 if (rpc_buffer_mempool) 984 mempool_destroy(rpc_buffer_mempool); 985 if (rpc_task_mempool) 986 mempool_destroy(rpc_task_mempool); 987 if (rpc_task_slabp) 988 kmem_cache_destroy(rpc_task_slabp); 989 if (rpc_buffer_slabp) 990 kmem_cache_destroy(rpc_buffer_slabp); 991 rpc_destroy_wait_queue(&delay_queue); 992 } 993 994 int 995 rpc_init_mempool(void) 996 { 997 /* 998 * The following is not strictly a mempool initialisation, 999 * but there is no harm in doing it here 1000 */ 1001 rpc_init_wait_queue(&delay_queue, "delayq"); 1002 if (!rpciod_start()) 1003 goto err_nomem; 1004 1005 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1006 sizeof(struct rpc_task), 1007 0, SLAB_HWCACHE_ALIGN, 1008 NULL); 1009 if (!rpc_task_slabp) 1010 goto err_nomem; 1011 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1012 RPC_BUFFER_MAXSIZE, 1013 0, SLAB_HWCACHE_ALIGN, 1014 NULL); 1015 if (!rpc_buffer_slabp) 1016 goto err_nomem; 1017 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1018 rpc_task_slabp); 1019 if (!rpc_task_mempool) 1020 goto err_nomem; 1021 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1022 rpc_buffer_slabp); 1023 if (!rpc_buffer_mempool) 1024 goto err_nomem; 1025 return 0; 1026 err_nomem: 1027 rpc_destroy_mempool(); 1028 return -ENOMEM; 1029 } 1030