xref: /openbmc/linux/net/sunrpc/sched.c (revision 60772e48)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(struct timer_list *t);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59 
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68 	if (task->tk_timeout == 0)
69 		return;
70 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 	task->tk_timeout = 0;
72 	list_del(&task->u.tk_wait.timer_list);
73 	if (list_empty(&queue->timer_list.list))
74 		del_timer(&queue->timer_list.timer);
75 }
76 
77 static void
78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80 	queue->timer_list.expires = expires;
81 	mod_timer(&queue->timer_list.timer, expires);
82 }
83 
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90 	if (!task->tk_timeout)
91 		return;
92 
93 	dprintk("RPC: %5u setting alarm for %u ms\n",
94 		task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95 
96 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
97 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101 
102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
103 {
104 	struct list_head *q = &queue->tasks[queue->priority];
105 	struct rpc_task *task;
106 
107 	if (!list_empty(q)) {
108 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
109 		if (task->tk_owner == queue->owner)
110 			list_move_tail(&task->u.tk_wait.list, q);
111 	}
112 }
113 
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116 	if (queue->priority != priority) {
117 		/* Fairness: rotate the list when changing priority */
118 		rpc_rotate_queue_owner(queue);
119 		queue->priority = priority;
120 	}
121 }
122 
123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
124 {
125 	queue->owner = pid;
126 	queue->nr = RPC_BATCH_COUNT;
127 }
128 
129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
130 {
131 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
132 	rpc_set_waitqueue_owner(queue, 0);
133 }
134 
135 /*
136  * Add new request to a priority queue.
137  */
138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
139 		struct rpc_task *task,
140 		unsigned char queue_priority)
141 {
142 	struct list_head *q;
143 	struct rpc_task *t;
144 
145 	INIT_LIST_HEAD(&task->u.tk_wait.links);
146 	if (unlikely(queue_priority > queue->maxpriority))
147 		queue_priority = queue->maxpriority;
148 	if (queue_priority > queue->priority)
149 		rpc_set_waitqueue_priority(queue, queue_priority);
150 	q = &queue->tasks[queue_priority];
151 	list_for_each_entry(t, q, u.tk_wait.list) {
152 		if (t->tk_owner == task->tk_owner) {
153 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 			return;
155 		}
156 	}
157 	list_add_tail(&task->u.tk_wait.list, q);
158 }
159 
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
169 		struct rpc_task *task,
170 		unsigned char queue_priority)
171 {
172 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
173 	if (RPC_IS_QUEUED(task))
174 		return;
175 
176 	if (RPC_IS_PRIORITY(queue))
177 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
178 	else if (RPC_IS_SWAPPER(task))
179 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
180 	else
181 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
182 	task->tk_waitqueue = queue;
183 	queue->qlen++;
184 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
185 	smp_wmb();
186 	rpc_set_queued(task);
187 
188 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
189 			task->tk_pid, queue, rpc_qname(queue));
190 }
191 
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197 	struct rpc_task *t;
198 
199 	if (!list_empty(&task->u.tk_wait.links)) {
200 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 	}
204 }
205 
206 /*
207  * Remove request from queue.
208  * Note: must be called with spin lock held.
209  */
210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
211 {
212 	__rpc_disable_timer(queue, task);
213 	if (RPC_IS_PRIORITY(queue))
214 		__rpc_remove_wait_queue_priority(task);
215 	list_del(&task->u.tk_wait.list);
216 	queue->qlen--;
217 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
218 			task->tk_pid, queue, rpc_qname(queue));
219 }
220 
221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
222 {
223 	int i;
224 
225 	spin_lock_init(&queue->lock);
226 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
227 		INIT_LIST_HEAD(&queue->tasks[i]);
228 	queue->maxpriority = nr_queues - 1;
229 	rpc_reset_waitqueue_priority(queue);
230 	queue->qlen = 0;
231 	timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
232 	INIT_LIST_HEAD(&queue->timer_list.list);
233 	rpc_assign_waitqueue_name(queue, qname);
234 }
235 
236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
237 {
238 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
239 }
240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
241 
242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
243 {
244 	__rpc_init_priority_wait_queue(queue, qname, 1);
245 }
246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
247 
248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
249 {
250 	del_timer_sync(&queue->timer_list.timer);
251 }
252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
253 
254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
255 {
256 	freezable_schedule_unsafe();
257 	if (signal_pending_state(mode, current))
258 		return -ERESTARTSYS;
259 	return 0;
260 }
261 
262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
263 static void rpc_task_set_debuginfo(struct rpc_task *task)
264 {
265 	static atomic_t rpc_pid;
266 
267 	task->tk_pid = atomic_inc_return(&rpc_pid);
268 }
269 #else
270 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
271 {
272 }
273 #endif
274 
275 static void rpc_set_active(struct rpc_task *task)
276 {
277 	rpc_task_set_debuginfo(task);
278 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
279 	trace_rpc_task_begin(task->tk_client, task, NULL);
280 }
281 
282 /*
283  * Mark an RPC call as having completed by clearing the 'active' bit
284  * and then waking up all tasks that were sleeping.
285  */
286 static int rpc_complete_task(struct rpc_task *task)
287 {
288 	void *m = &task->tk_runstate;
289 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291 	unsigned long flags;
292 	int ret;
293 
294 	trace_rpc_task_complete(task->tk_client, task, NULL);
295 
296 	spin_lock_irqsave(&wq->lock, flags);
297 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298 	ret = atomic_dec_and_test(&task->tk_count);
299 	if (waitqueue_active(wq))
300 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
301 	spin_unlock_irqrestore(&wq->lock, flags);
302 	return ret;
303 }
304 
305 /*
306  * Allow callers to wait for completion of an RPC call
307  *
308  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309  * to enforce taking of the wq->lock and hence avoid races with
310  * rpc_complete_task().
311  */
312 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
313 {
314 	if (action == NULL)
315 		action = rpc_wait_bit_killable;
316 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317 			action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320 
321 /*
322  * Make an RPC task runnable.
323  *
324  * Note: If the task is ASYNC, and is being made runnable after sitting on an
325  * rpc_wait_queue, this must be called with the queue spinlock held to protect
326  * the wait queue operation.
327  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
328  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
329  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
330  * the RPC_TASK_RUNNING flag.
331  */
332 static void rpc_make_runnable(struct workqueue_struct *wq,
333 		struct rpc_task *task)
334 {
335 	bool need_wakeup = !rpc_test_and_set_running(task);
336 
337 	rpc_clear_queued(task);
338 	if (!need_wakeup)
339 		return;
340 	if (RPC_IS_ASYNC(task)) {
341 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
342 		queue_work(wq, &task->u.tk_work);
343 	} else
344 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
345 }
346 
347 /*
348  * Prepare for sleeping on a wait queue.
349  * By always appending tasks to the list we ensure FIFO behavior.
350  * NB: An RPC task will only receive interrupt-driven events as long
351  * as it's on a wait queue.
352  */
353 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
354 		struct rpc_task *task,
355 		rpc_action action,
356 		unsigned char queue_priority)
357 {
358 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
359 			task->tk_pid, rpc_qname(q), jiffies);
360 
361 	trace_rpc_task_sleep(task->tk_client, task, q);
362 
363 	__rpc_add_wait_queue(q, task, queue_priority);
364 
365 	WARN_ON_ONCE(task->tk_callback != NULL);
366 	task->tk_callback = action;
367 	__rpc_add_timer(q, task);
368 }
369 
370 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
371 				rpc_action action)
372 {
373 	/* We shouldn't ever put an inactive task to sleep */
374 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
375 	if (!RPC_IS_ACTIVATED(task)) {
376 		task->tk_status = -EIO;
377 		rpc_put_task_async(task);
378 		return;
379 	}
380 
381 	/*
382 	 * Protect the queue operations.
383 	 */
384 	spin_lock_bh(&q->lock);
385 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
386 	spin_unlock_bh(&q->lock);
387 }
388 EXPORT_SYMBOL_GPL(rpc_sleep_on);
389 
390 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
391 		rpc_action action, int priority)
392 {
393 	/* We shouldn't ever put an inactive task to sleep */
394 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
395 	if (!RPC_IS_ACTIVATED(task)) {
396 		task->tk_status = -EIO;
397 		rpc_put_task_async(task);
398 		return;
399 	}
400 
401 	/*
402 	 * Protect the queue operations.
403 	 */
404 	spin_lock_bh(&q->lock);
405 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
406 	spin_unlock_bh(&q->lock);
407 }
408 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
409 
410 /**
411  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
412  * @wq: workqueue on which to run task
413  * @queue: wait queue
414  * @task: task to be woken up
415  *
416  * Caller must hold queue->lock, and have cleared the task queued flag.
417  */
418 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
419 		struct rpc_wait_queue *queue,
420 		struct rpc_task *task)
421 {
422 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
423 			task->tk_pid, jiffies);
424 
425 	/* Has the task been executed yet? If not, we cannot wake it up! */
426 	if (!RPC_IS_ACTIVATED(task)) {
427 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
428 		return;
429 	}
430 
431 	trace_rpc_task_wakeup(task->tk_client, task, queue);
432 
433 	__rpc_remove_wait_queue(queue, task);
434 
435 	rpc_make_runnable(wq, task);
436 
437 	dprintk("RPC:       __rpc_wake_up_task done\n");
438 }
439 
440 /*
441  * Wake up a queued task while the queue lock is being held
442  */
443 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
444 		struct rpc_wait_queue *queue, struct rpc_task *task)
445 {
446 	if (RPC_IS_QUEUED(task)) {
447 		smp_rmb();
448 		if (task->tk_waitqueue == queue)
449 			__rpc_do_wake_up_task_on_wq(wq, queue, task);
450 	}
451 }
452 
453 /*
454  * Wake up a queued task while the queue lock is being held
455  */
456 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
457 {
458 	rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
459 }
460 
461 /*
462  * Wake up a task on a specific queue
463  */
464 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
465 		struct rpc_wait_queue *queue,
466 		struct rpc_task *task)
467 {
468 	spin_lock_bh(&queue->lock);
469 	rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
470 	spin_unlock_bh(&queue->lock);
471 }
472 
473 /*
474  * Wake up a task on a specific queue
475  */
476 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
477 {
478 	spin_lock_bh(&queue->lock);
479 	rpc_wake_up_task_queue_locked(queue, task);
480 	spin_unlock_bh(&queue->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
483 
484 /*
485  * Wake up the next task on a priority queue.
486  */
487 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
488 {
489 	struct list_head *q;
490 	struct rpc_task *task;
491 
492 	/*
493 	 * Service a batch of tasks from a single owner.
494 	 */
495 	q = &queue->tasks[queue->priority];
496 	if (!list_empty(q)) {
497 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
498 		if (queue->owner == task->tk_owner) {
499 			if (--queue->nr)
500 				goto out;
501 			list_move_tail(&task->u.tk_wait.list, q);
502 		}
503 		/*
504 		 * Check if we need to switch queues.
505 		 */
506 		goto new_owner;
507 	}
508 
509 	/*
510 	 * Service the next queue.
511 	 */
512 	do {
513 		if (q == &queue->tasks[0])
514 			q = &queue->tasks[queue->maxpriority];
515 		else
516 			q = q - 1;
517 		if (!list_empty(q)) {
518 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
519 			goto new_queue;
520 		}
521 	} while (q != &queue->tasks[queue->priority]);
522 
523 	rpc_reset_waitqueue_priority(queue);
524 	return NULL;
525 
526 new_queue:
527 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
528 new_owner:
529 	rpc_set_waitqueue_owner(queue, task->tk_owner);
530 out:
531 	return task;
532 }
533 
534 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
535 {
536 	if (RPC_IS_PRIORITY(queue))
537 		return __rpc_find_next_queued_priority(queue);
538 	if (!list_empty(&queue->tasks[0]))
539 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
540 	return NULL;
541 }
542 
543 /*
544  * Wake up the first task on the wait queue.
545  */
546 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
547 		struct rpc_wait_queue *queue,
548 		bool (*func)(struct rpc_task *, void *), void *data)
549 {
550 	struct rpc_task	*task = NULL;
551 
552 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
553 			queue, rpc_qname(queue));
554 	spin_lock_bh(&queue->lock);
555 	task = __rpc_find_next_queued(queue);
556 	if (task != NULL) {
557 		if (func(task, data))
558 			rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
559 		else
560 			task = NULL;
561 	}
562 	spin_unlock_bh(&queue->lock);
563 
564 	return task;
565 }
566 
567 /*
568  * Wake up the first task on the wait queue.
569  */
570 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
571 		bool (*func)(struct rpc_task *, void *), void *data)
572 {
573 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
574 }
575 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
576 
577 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
578 {
579 	return true;
580 }
581 
582 /*
583  * Wake up the next task on the wait queue.
584 */
585 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
586 {
587 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
588 }
589 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
590 
591 /**
592  * rpc_wake_up - wake up all rpc_tasks
593  * @queue: rpc_wait_queue on which the tasks are sleeping
594  *
595  * Grabs queue->lock
596  */
597 void rpc_wake_up(struct rpc_wait_queue *queue)
598 {
599 	struct list_head *head;
600 
601 	spin_lock_bh(&queue->lock);
602 	head = &queue->tasks[queue->maxpriority];
603 	for (;;) {
604 		while (!list_empty(head)) {
605 			struct rpc_task *task;
606 			task = list_first_entry(head,
607 					struct rpc_task,
608 					u.tk_wait.list);
609 			rpc_wake_up_task_queue_locked(queue, task);
610 		}
611 		if (head == &queue->tasks[0])
612 			break;
613 		head--;
614 	}
615 	spin_unlock_bh(&queue->lock);
616 }
617 EXPORT_SYMBOL_GPL(rpc_wake_up);
618 
619 /**
620  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
621  * @queue: rpc_wait_queue on which the tasks are sleeping
622  * @status: status value to set
623  *
624  * Grabs queue->lock
625  */
626 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
627 {
628 	struct list_head *head;
629 
630 	spin_lock_bh(&queue->lock);
631 	head = &queue->tasks[queue->maxpriority];
632 	for (;;) {
633 		while (!list_empty(head)) {
634 			struct rpc_task *task;
635 			task = list_first_entry(head,
636 					struct rpc_task,
637 					u.tk_wait.list);
638 			task->tk_status = status;
639 			rpc_wake_up_task_queue_locked(queue, task);
640 		}
641 		if (head == &queue->tasks[0])
642 			break;
643 		head--;
644 	}
645 	spin_unlock_bh(&queue->lock);
646 }
647 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
648 
649 static void __rpc_queue_timer_fn(struct timer_list *t)
650 {
651 	struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
652 	struct rpc_task *task, *n;
653 	unsigned long expires, now, timeo;
654 
655 	spin_lock(&queue->lock);
656 	expires = now = jiffies;
657 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
658 		timeo = task->u.tk_wait.expires;
659 		if (time_after_eq(now, timeo)) {
660 			dprintk("RPC: %5u timeout\n", task->tk_pid);
661 			task->tk_status = -ETIMEDOUT;
662 			rpc_wake_up_task_queue_locked(queue, task);
663 			continue;
664 		}
665 		if (expires == now || time_after(expires, timeo))
666 			expires = timeo;
667 	}
668 	if (!list_empty(&queue->timer_list.list))
669 		rpc_set_queue_timer(queue, expires);
670 	spin_unlock(&queue->lock);
671 }
672 
673 static void __rpc_atrun(struct rpc_task *task)
674 {
675 	if (task->tk_status == -ETIMEDOUT)
676 		task->tk_status = 0;
677 }
678 
679 /*
680  * Run a task at a later time
681  */
682 void rpc_delay(struct rpc_task *task, unsigned long delay)
683 {
684 	task->tk_timeout = delay;
685 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
686 }
687 EXPORT_SYMBOL_GPL(rpc_delay);
688 
689 /*
690  * Helper to call task->tk_ops->rpc_call_prepare
691  */
692 void rpc_prepare_task(struct rpc_task *task)
693 {
694 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
695 }
696 
697 static void
698 rpc_init_task_statistics(struct rpc_task *task)
699 {
700 	/* Initialize retry counters */
701 	task->tk_garb_retry = 2;
702 	task->tk_cred_retry = 2;
703 	task->tk_rebind_retry = 2;
704 
705 	/* starting timestamp */
706 	task->tk_start = ktime_get();
707 }
708 
709 static void
710 rpc_reset_task_statistics(struct rpc_task *task)
711 {
712 	task->tk_timeouts = 0;
713 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
714 
715 	rpc_init_task_statistics(task);
716 }
717 
718 /*
719  * Helper that calls task->tk_ops->rpc_call_done if it exists
720  */
721 void rpc_exit_task(struct rpc_task *task)
722 {
723 	task->tk_action = NULL;
724 	if (task->tk_ops->rpc_call_done != NULL) {
725 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
726 		if (task->tk_action != NULL) {
727 			WARN_ON(RPC_ASSASSINATED(task));
728 			/* Always release the RPC slot and buffer memory */
729 			xprt_release(task);
730 			rpc_reset_task_statistics(task);
731 		}
732 	}
733 }
734 
735 void rpc_exit(struct rpc_task *task, int status)
736 {
737 	task->tk_status = status;
738 	task->tk_action = rpc_exit_task;
739 	if (RPC_IS_QUEUED(task))
740 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
741 }
742 EXPORT_SYMBOL_GPL(rpc_exit);
743 
744 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
745 {
746 	if (ops->rpc_release != NULL)
747 		ops->rpc_release(calldata);
748 }
749 
750 /*
751  * This is the RPC `scheduler' (or rather, the finite state machine).
752  */
753 static void __rpc_execute(struct rpc_task *task)
754 {
755 	struct rpc_wait_queue *queue;
756 	int task_is_async = RPC_IS_ASYNC(task);
757 	int status = 0;
758 
759 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
760 			task->tk_pid, task->tk_flags);
761 
762 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
763 	if (RPC_IS_QUEUED(task))
764 		return;
765 
766 	for (;;) {
767 		void (*do_action)(struct rpc_task *);
768 
769 		/*
770 		 * Perform the next FSM step or a pending callback.
771 		 *
772 		 * tk_action may be NULL if the task has been killed.
773 		 * In particular, note that rpc_killall_tasks may
774 		 * do this at any time, so beware when dereferencing.
775 		 */
776 		do_action = task->tk_action;
777 		if (task->tk_callback) {
778 			do_action = task->tk_callback;
779 			task->tk_callback = NULL;
780 		}
781 		if (!do_action)
782 			break;
783 		trace_rpc_task_run_action(task->tk_client, task, do_action);
784 		do_action(task);
785 
786 		/*
787 		 * Lockless check for whether task is sleeping or not.
788 		 */
789 		if (!RPC_IS_QUEUED(task))
790 			continue;
791 		/*
792 		 * The queue->lock protects against races with
793 		 * rpc_make_runnable().
794 		 *
795 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
796 		 * rpc_task, rpc_make_runnable() can assign it to a
797 		 * different workqueue. We therefore cannot assume that the
798 		 * rpc_task pointer may still be dereferenced.
799 		 */
800 		queue = task->tk_waitqueue;
801 		spin_lock_bh(&queue->lock);
802 		if (!RPC_IS_QUEUED(task)) {
803 			spin_unlock_bh(&queue->lock);
804 			continue;
805 		}
806 		rpc_clear_running(task);
807 		spin_unlock_bh(&queue->lock);
808 		if (task_is_async)
809 			return;
810 
811 		/* sync task: sleep here */
812 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
813 		status = out_of_line_wait_on_bit(&task->tk_runstate,
814 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
815 				TASK_KILLABLE);
816 		if (status == -ERESTARTSYS) {
817 			/*
818 			 * When a sync task receives a signal, it exits with
819 			 * -ERESTARTSYS. In order to catch any callbacks that
820 			 * clean up after sleeping on some queue, we don't
821 			 * break the loop here, but go around once more.
822 			 */
823 			dprintk("RPC: %5u got signal\n", task->tk_pid);
824 			task->tk_flags |= RPC_TASK_KILLED;
825 			rpc_exit(task, -ERESTARTSYS);
826 		}
827 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
828 	}
829 
830 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
831 			task->tk_status);
832 	/* Release all resources associated with the task */
833 	rpc_release_task(task);
834 }
835 
836 /*
837  * User-visible entry point to the scheduler.
838  *
839  * This may be called recursively if e.g. an async NFS task updates
840  * the attributes and finds that dirty pages must be flushed.
841  * NOTE: Upon exit of this function the task is guaranteed to be
842  *	 released. In particular note that tk_release() will have
843  *	 been called, so your task memory may have been freed.
844  */
845 void rpc_execute(struct rpc_task *task)
846 {
847 	bool is_async = RPC_IS_ASYNC(task);
848 
849 	rpc_set_active(task);
850 	rpc_make_runnable(rpciod_workqueue, task);
851 	if (!is_async)
852 		__rpc_execute(task);
853 }
854 
855 static void rpc_async_schedule(struct work_struct *work)
856 {
857 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
858 }
859 
860 /**
861  * rpc_malloc - allocate RPC buffer resources
862  * @task: RPC task
863  *
864  * A single memory region is allocated, which is split between the
865  * RPC call and RPC reply that this task is being used for. When
866  * this RPC is retired, the memory is released by calling rpc_free.
867  *
868  * To prevent rpciod from hanging, this allocator never sleeps,
869  * returning -ENOMEM and suppressing warning if the request cannot
870  * be serviced immediately. The caller can arrange to sleep in a
871  * way that is safe for rpciod.
872  *
873  * Most requests are 'small' (under 2KiB) and can be serviced from a
874  * mempool, ensuring that NFS reads and writes can always proceed,
875  * and that there is good locality of reference for these buffers.
876  *
877  * In order to avoid memory starvation triggering more writebacks of
878  * NFS requests, we avoid using GFP_KERNEL.
879  */
880 int rpc_malloc(struct rpc_task *task)
881 {
882 	struct rpc_rqst *rqst = task->tk_rqstp;
883 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
884 	struct rpc_buffer *buf;
885 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
886 
887 	if (RPC_IS_SWAPPER(task))
888 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
889 
890 	size += sizeof(struct rpc_buffer);
891 	if (size <= RPC_BUFFER_MAXSIZE)
892 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
893 	else
894 		buf = kmalloc(size, gfp);
895 
896 	if (!buf)
897 		return -ENOMEM;
898 
899 	buf->len = size;
900 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
901 			task->tk_pid, size, buf);
902 	rqst->rq_buffer = buf->data;
903 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(rpc_malloc);
907 
908 /**
909  * rpc_free - free RPC buffer resources allocated via rpc_malloc
910  * @task: RPC task
911  *
912  */
913 void rpc_free(struct rpc_task *task)
914 {
915 	void *buffer = task->tk_rqstp->rq_buffer;
916 	size_t size;
917 	struct rpc_buffer *buf;
918 
919 	buf = container_of(buffer, struct rpc_buffer, data);
920 	size = buf->len;
921 
922 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
923 			size, buf);
924 
925 	if (size <= RPC_BUFFER_MAXSIZE)
926 		mempool_free(buf, rpc_buffer_mempool);
927 	else
928 		kfree(buf);
929 }
930 EXPORT_SYMBOL_GPL(rpc_free);
931 
932 /*
933  * Creation and deletion of RPC task structures
934  */
935 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
936 {
937 	memset(task, 0, sizeof(*task));
938 	atomic_set(&task->tk_count, 1);
939 	task->tk_flags  = task_setup_data->flags;
940 	task->tk_ops = task_setup_data->callback_ops;
941 	task->tk_calldata = task_setup_data->callback_data;
942 	INIT_LIST_HEAD(&task->tk_task);
943 
944 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
945 	task->tk_owner = current->tgid;
946 
947 	/* Initialize workqueue for async tasks */
948 	task->tk_workqueue = task_setup_data->workqueue;
949 
950 	task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
951 
952 	if (task->tk_ops->rpc_call_prepare != NULL)
953 		task->tk_action = rpc_prepare_task;
954 
955 	rpc_init_task_statistics(task);
956 
957 	dprintk("RPC:       new task initialized, procpid %u\n",
958 				task_pid_nr(current));
959 }
960 
961 static struct rpc_task *
962 rpc_alloc_task(void)
963 {
964 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
965 }
966 
967 /*
968  * Create a new task for the specified client.
969  */
970 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
971 {
972 	struct rpc_task	*task = setup_data->task;
973 	unsigned short flags = 0;
974 
975 	if (task == NULL) {
976 		task = rpc_alloc_task();
977 		flags = RPC_TASK_DYNAMIC;
978 	}
979 
980 	rpc_init_task(task, setup_data);
981 	task->tk_flags |= flags;
982 	dprintk("RPC:       allocated task %p\n", task);
983 	return task;
984 }
985 
986 /*
987  * rpc_free_task - release rpc task and perform cleanups
988  *
989  * Note that we free up the rpc_task _after_ rpc_release_calldata()
990  * in order to work around a workqueue dependency issue.
991  *
992  * Tejun Heo states:
993  * "Workqueue currently considers two work items to be the same if they're
994  * on the same address and won't execute them concurrently - ie. it
995  * makes a work item which is queued again while being executed wait
996  * for the previous execution to complete.
997  *
998  * If a work function frees the work item, and then waits for an event
999  * which should be performed by another work item and *that* work item
1000  * recycles the freed work item, it can create a false dependency loop.
1001  * There really is no reliable way to detect this short of verifying
1002  * every memory free."
1003  *
1004  */
1005 static void rpc_free_task(struct rpc_task *task)
1006 {
1007 	unsigned short tk_flags = task->tk_flags;
1008 
1009 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1010 
1011 	if (tk_flags & RPC_TASK_DYNAMIC) {
1012 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1013 		mempool_free(task, rpc_task_mempool);
1014 	}
1015 }
1016 
1017 static void rpc_async_release(struct work_struct *work)
1018 {
1019 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1020 }
1021 
1022 static void rpc_release_resources_task(struct rpc_task *task)
1023 {
1024 	xprt_release(task);
1025 	if (task->tk_msg.rpc_cred) {
1026 		put_rpccred(task->tk_msg.rpc_cred);
1027 		task->tk_msg.rpc_cred = NULL;
1028 	}
1029 	rpc_task_release_client(task);
1030 }
1031 
1032 static void rpc_final_put_task(struct rpc_task *task,
1033 		struct workqueue_struct *q)
1034 {
1035 	if (q != NULL) {
1036 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1037 		queue_work(q, &task->u.tk_work);
1038 	} else
1039 		rpc_free_task(task);
1040 }
1041 
1042 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1043 {
1044 	if (atomic_dec_and_test(&task->tk_count)) {
1045 		rpc_release_resources_task(task);
1046 		rpc_final_put_task(task, q);
1047 	}
1048 }
1049 
1050 void rpc_put_task(struct rpc_task *task)
1051 {
1052 	rpc_do_put_task(task, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(rpc_put_task);
1055 
1056 void rpc_put_task_async(struct rpc_task *task)
1057 {
1058 	rpc_do_put_task(task, task->tk_workqueue);
1059 }
1060 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1061 
1062 static void rpc_release_task(struct rpc_task *task)
1063 {
1064 	dprintk("RPC: %5u release task\n", task->tk_pid);
1065 
1066 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1067 
1068 	rpc_release_resources_task(task);
1069 
1070 	/*
1071 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1072 	 * so it should be safe to use task->tk_count as a test for whether
1073 	 * or not any other processes still hold references to our rpc_task.
1074 	 */
1075 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1076 		/* Wake up anyone who may be waiting for task completion */
1077 		if (!rpc_complete_task(task))
1078 			return;
1079 	} else {
1080 		if (!atomic_dec_and_test(&task->tk_count))
1081 			return;
1082 	}
1083 	rpc_final_put_task(task, task->tk_workqueue);
1084 }
1085 
1086 int rpciod_up(void)
1087 {
1088 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1089 }
1090 
1091 void rpciod_down(void)
1092 {
1093 	module_put(THIS_MODULE);
1094 }
1095 
1096 /*
1097  * Start up the rpciod workqueue.
1098  */
1099 static int rpciod_start(void)
1100 {
1101 	struct workqueue_struct *wq;
1102 
1103 	/*
1104 	 * Create the rpciod thread and wait for it to start.
1105 	 */
1106 	dprintk("RPC:       creating workqueue rpciod\n");
1107 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1108 	if (!wq)
1109 		goto out_failed;
1110 	rpciod_workqueue = wq;
1111 	/* Note: highpri because network receive is latency sensitive */
1112 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1113 	if (!wq)
1114 		goto free_rpciod;
1115 	xprtiod_workqueue = wq;
1116 	return 1;
1117 free_rpciod:
1118 	wq = rpciod_workqueue;
1119 	rpciod_workqueue = NULL;
1120 	destroy_workqueue(wq);
1121 out_failed:
1122 	return 0;
1123 }
1124 
1125 static void rpciod_stop(void)
1126 {
1127 	struct workqueue_struct *wq = NULL;
1128 
1129 	if (rpciod_workqueue == NULL)
1130 		return;
1131 	dprintk("RPC:       destroying workqueue rpciod\n");
1132 
1133 	wq = rpciod_workqueue;
1134 	rpciod_workqueue = NULL;
1135 	destroy_workqueue(wq);
1136 	wq = xprtiod_workqueue;
1137 	xprtiod_workqueue = NULL;
1138 	destroy_workqueue(wq);
1139 }
1140 
1141 void
1142 rpc_destroy_mempool(void)
1143 {
1144 	rpciod_stop();
1145 	mempool_destroy(rpc_buffer_mempool);
1146 	mempool_destroy(rpc_task_mempool);
1147 	kmem_cache_destroy(rpc_task_slabp);
1148 	kmem_cache_destroy(rpc_buffer_slabp);
1149 	rpc_destroy_wait_queue(&delay_queue);
1150 }
1151 
1152 int
1153 rpc_init_mempool(void)
1154 {
1155 	/*
1156 	 * The following is not strictly a mempool initialisation,
1157 	 * but there is no harm in doing it here
1158 	 */
1159 	rpc_init_wait_queue(&delay_queue, "delayq");
1160 	if (!rpciod_start())
1161 		goto err_nomem;
1162 
1163 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1164 					     sizeof(struct rpc_task),
1165 					     0, SLAB_HWCACHE_ALIGN,
1166 					     NULL);
1167 	if (!rpc_task_slabp)
1168 		goto err_nomem;
1169 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1170 					     RPC_BUFFER_MAXSIZE,
1171 					     0, SLAB_HWCACHE_ALIGN,
1172 					     NULL);
1173 	if (!rpc_buffer_slabp)
1174 		goto err_nomem;
1175 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1176 						    rpc_task_slabp);
1177 	if (!rpc_task_mempool)
1178 		goto err_nomem;
1179 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1180 						      rpc_buffer_slabp);
1181 	if (!rpc_buffer_mempool)
1182 		goto err_nomem;
1183 	return 0;
1184 err_nomem:
1185 	rpc_destroy_mempool();
1186 	return -ENOMEM;
1187 }
1188