1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #include "sunrpc.h" 26 27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 28 #define RPCDBG_FACILITY RPCDBG_SCHED 29 #endif 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/sunrpc.h> 33 34 /* 35 * RPC slabs and memory pools 36 */ 37 #define RPC_BUFFER_MAXSIZE (2048) 38 #define RPC_BUFFER_POOLSIZE (8) 39 #define RPC_TASK_POOLSIZE (8) 40 static struct kmem_cache *rpc_task_slabp __read_mostly; 41 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 42 static mempool_t *rpc_task_mempool __read_mostly; 43 static mempool_t *rpc_buffer_mempool __read_mostly; 44 45 static void rpc_async_schedule(struct work_struct *); 46 static void rpc_release_task(struct rpc_task *task); 47 static void __rpc_queue_timer_fn(struct timer_list *t); 48 49 /* 50 * RPC tasks sit here while waiting for conditions to improve. 51 */ 52 static struct rpc_wait_queue delay_queue; 53 54 /* 55 * rpciod-related stuff 56 */ 57 struct workqueue_struct *rpciod_workqueue __read_mostly; 58 struct workqueue_struct *xprtiod_workqueue __read_mostly; 59 60 /* 61 * Disable the timer for a given RPC task. Should be called with 62 * queue->lock and bh_disabled in order to avoid races within 63 * rpc_run_timer(). 64 */ 65 static void 66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 67 { 68 if (task->tk_timeout == 0) 69 return; 70 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 71 task->tk_timeout = 0; 72 list_del(&task->u.tk_wait.timer_list); 73 if (list_empty(&queue->timer_list.list)) 74 del_timer(&queue->timer_list.timer); 75 } 76 77 static void 78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 79 { 80 queue->timer_list.expires = expires; 81 mod_timer(&queue->timer_list.timer, expires); 82 } 83 84 /* 85 * Set up a timer for the current task. 86 */ 87 static void 88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 89 { 90 if (!task->tk_timeout) 91 return; 92 93 dprintk("RPC: %5u setting alarm for %u ms\n", 94 task->tk_pid, jiffies_to_msecs(task->tk_timeout)); 95 96 task->u.tk_wait.expires = jiffies + task->tk_timeout; 97 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 98 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 99 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 100 } 101 102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue) 103 { 104 struct list_head *q = &queue->tasks[queue->priority]; 105 struct rpc_task *task; 106 107 if (!list_empty(q)) { 108 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 109 if (task->tk_owner == queue->owner) 110 list_move_tail(&task->u.tk_wait.list, q); 111 } 112 } 113 114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 115 { 116 if (queue->priority != priority) { 117 /* Fairness: rotate the list when changing priority */ 118 rpc_rotate_queue_owner(queue); 119 queue->priority = priority; 120 } 121 } 122 123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 124 { 125 queue->owner = pid; 126 queue->nr = RPC_BATCH_COUNT; 127 } 128 129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 130 { 131 rpc_set_waitqueue_priority(queue, queue->maxpriority); 132 rpc_set_waitqueue_owner(queue, 0); 133 } 134 135 /* 136 * Add new request to a priority queue. 137 */ 138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 139 struct rpc_task *task, 140 unsigned char queue_priority) 141 { 142 struct list_head *q; 143 struct rpc_task *t; 144 145 INIT_LIST_HEAD(&task->u.tk_wait.links); 146 if (unlikely(queue_priority > queue->maxpriority)) 147 queue_priority = queue->maxpriority; 148 if (queue_priority > queue->priority) 149 rpc_set_waitqueue_priority(queue, queue_priority); 150 q = &queue->tasks[queue_priority]; 151 list_for_each_entry(t, q, u.tk_wait.list) { 152 if (t->tk_owner == task->tk_owner) { 153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 154 return; 155 } 156 } 157 list_add_tail(&task->u.tk_wait.list, q); 158 } 159 160 /* 161 * Add new request to wait queue. 162 * 163 * Swapper tasks always get inserted at the head of the queue. 164 * This should avoid many nasty memory deadlocks and hopefully 165 * improve overall performance. 166 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 167 */ 168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 169 struct rpc_task *task, 170 unsigned char queue_priority) 171 { 172 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 173 if (RPC_IS_QUEUED(task)) 174 return; 175 176 if (RPC_IS_PRIORITY(queue)) 177 __rpc_add_wait_queue_priority(queue, task, queue_priority); 178 else if (RPC_IS_SWAPPER(task)) 179 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 180 else 181 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 182 task->tk_waitqueue = queue; 183 queue->qlen++; 184 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 185 smp_wmb(); 186 rpc_set_queued(task); 187 188 dprintk("RPC: %5u added to queue %p \"%s\"\n", 189 task->tk_pid, queue, rpc_qname(queue)); 190 } 191 192 /* 193 * Remove request from a priority queue. 194 */ 195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 196 { 197 struct rpc_task *t; 198 199 if (!list_empty(&task->u.tk_wait.links)) { 200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 203 } 204 } 205 206 /* 207 * Remove request from queue. 208 * Note: must be called with spin lock held. 209 */ 210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 211 { 212 __rpc_disable_timer(queue, task); 213 if (RPC_IS_PRIORITY(queue)) 214 __rpc_remove_wait_queue_priority(task); 215 list_del(&task->u.tk_wait.list); 216 queue->qlen--; 217 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 218 task->tk_pid, queue, rpc_qname(queue)); 219 } 220 221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 222 { 223 int i; 224 225 spin_lock_init(&queue->lock); 226 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 227 INIT_LIST_HEAD(&queue->tasks[i]); 228 queue->maxpriority = nr_queues - 1; 229 rpc_reset_waitqueue_priority(queue); 230 queue->qlen = 0; 231 timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0); 232 INIT_LIST_HEAD(&queue->timer_list.list); 233 rpc_assign_waitqueue_name(queue, qname); 234 } 235 236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 237 { 238 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 239 } 240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 241 242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 243 { 244 __rpc_init_priority_wait_queue(queue, qname, 1); 245 } 246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 247 248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 249 { 250 del_timer_sync(&queue->timer_list.timer); 251 } 252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 253 254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 255 { 256 freezable_schedule_unsafe(); 257 if (signal_pending_state(mode, current)) 258 return -ERESTARTSYS; 259 return 0; 260 } 261 262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 263 static void rpc_task_set_debuginfo(struct rpc_task *task) 264 { 265 static atomic_t rpc_pid; 266 267 task->tk_pid = atomic_inc_return(&rpc_pid); 268 } 269 #else 270 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 271 { 272 } 273 #endif 274 275 static void rpc_set_active(struct rpc_task *task) 276 { 277 rpc_task_set_debuginfo(task); 278 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 279 trace_rpc_task_begin(task->tk_client, task, NULL); 280 } 281 282 /* 283 * Mark an RPC call as having completed by clearing the 'active' bit 284 * and then waking up all tasks that were sleeping. 285 */ 286 static int rpc_complete_task(struct rpc_task *task) 287 { 288 void *m = &task->tk_runstate; 289 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 290 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 291 unsigned long flags; 292 int ret; 293 294 trace_rpc_task_complete(task->tk_client, task, NULL); 295 296 spin_lock_irqsave(&wq->lock, flags); 297 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 298 ret = atomic_dec_and_test(&task->tk_count); 299 if (waitqueue_active(wq)) 300 __wake_up_locked_key(wq, TASK_NORMAL, &k); 301 spin_unlock_irqrestore(&wq->lock, flags); 302 return ret; 303 } 304 305 /* 306 * Allow callers to wait for completion of an RPC call 307 * 308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 309 * to enforce taking of the wq->lock and hence avoid races with 310 * rpc_complete_task(). 311 */ 312 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 313 { 314 if (action == NULL) 315 action = rpc_wait_bit_killable; 316 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 317 action, TASK_KILLABLE); 318 } 319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 320 321 /* 322 * Make an RPC task runnable. 323 * 324 * Note: If the task is ASYNC, and is being made runnable after sitting on an 325 * rpc_wait_queue, this must be called with the queue spinlock held to protect 326 * the wait queue operation. 327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 330 * the RPC_TASK_RUNNING flag. 331 */ 332 static void rpc_make_runnable(struct workqueue_struct *wq, 333 struct rpc_task *task) 334 { 335 bool need_wakeup = !rpc_test_and_set_running(task); 336 337 rpc_clear_queued(task); 338 if (!need_wakeup) 339 return; 340 if (RPC_IS_ASYNC(task)) { 341 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 342 queue_work(wq, &task->u.tk_work); 343 } else 344 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 345 } 346 347 /* 348 * Prepare for sleeping on a wait queue. 349 * By always appending tasks to the list we ensure FIFO behavior. 350 * NB: An RPC task will only receive interrupt-driven events as long 351 * as it's on a wait queue. 352 */ 353 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 354 struct rpc_task *task, 355 rpc_action action, 356 unsigned char queue_priority) 357 { 358 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 359 task->tk_pid, rpc_qname(q), jiffies); 360 361 trace_rpc_task_sleep(task->tk_client, task, q); 362 363 __rpc_add_wait_queue(q, task, queue_priority); 364 365 WARN_ON_ONCE(task->tk_callback != NULL); 366 task->tk_callback = action; 367 __rpc_add_timer(q, task); 368 } 369 370 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 371 rpc_action action) 372 { 373 /* We shouldn't ever put an inactive task to sleep */ 374 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 375 if (!RPC_IS_ACTIVATED(task)) { 376 task->tk_status = -EIO; 377 rpc_put_task_async(task); 378 return; 379 } 380 381 /* 382 * Protect the queue operations. 383 */ 384 spin_lock_bh(&q->lock); 385 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 386 spin_unlock_bh(&q->lock); 387 } 388 EXPORT_SYMBOL_GPL(rpc_sleep_on); 389 390 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 391 rpc_action action, int priority) 392 { 393 /* We shouldn't ever put an inactive task to sleep */ 394 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 395 if (!RPC_IS_ACTIVATED(task)) { 396 task->tk_status = -EIO; 397 rpc_put_task_async(task); 398 return; 399 } 400 401 /* 402 * Protect the queue operations. 403 */ 404 spin_lock_bh(&q->lock); 405 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 406 spin_unlock_bh(&q->lock); 407 } 408 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 409 410 /** 411 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 412 * @wq: workqueue on which to run task 413 * @queue: wait queue 414 * @task: task to be woken up 415 * 416 * Caller must hold queue->lock, and have cleared the task queued flag. 417 */ 418 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 419 struct rpc_wait_queue *queue, 420 struct rpc_task *task) 421 { 422 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 423 task->tk_pid, jiffies); 424 425 /* Has the task been executed yet? If not, we cannot wake it up! */ 426 if (!RPC_IS_ACTIVATED(task)) { 427 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 428 return; 429 } 430 431 trace_rpc_task_wakeup(task->tk_client, task, queue); 432 433 __rpc_remove_wait_queue(queue, task); 434 435 rpc_make_runnable(wq, task); 436 437 dprintk("RPC: __rpc_wake_up_task done\n"); 438 } 439 440 /* 441 * Wake up a queued task while the queue lock is being held 442 */ 443 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq, 444 struct rpc_wait_queue *queue, struct rpc_task *task) 445 { 446 if (RPC_IS_QUEUED(task)) { 447 smp_rmb(); 448 if (task->tk_waitqueue == queue) 449 __rpc_do_wake_up_task_on_wq(wq, queue, task); 450 } 451 } 452 453 /* 454 * Wake up a queued task while the queue lock is being held 455 */ 456 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 457 { 458 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task); 459 } 460 461 /* 462 * Wake up a task on a specific queue 463 */ 464 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 465 { 466 spin_lock_bh(&queue->lock); 467 rpc_wake_up_task_queue_locked(queue, task); 468 spin_unlock_bh(&queue->lock); 469 } 470 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 471 472 /* 473 * Wake up the next task on a priority queue. 474 */ 475 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 476 { 477 struct list_head *q; 478 struct rpc_task *task; 479 480 /* 481 * Service a batch of tasks from a single owner. 482 */ 483 q = &queue->tasks[queue->priority]; 484 if (!list_empty(q)) { 485 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 486 if (queue->owner == task->tk_owner) { 487 if (--queue->nr) 488 goto out; 489 list_move_tail(&task->u.tk_wait.list, q); 490 } 491 /* 492 * Check if we need to switch queues. 493 */ 494 goto new_owner; 495 } 496 497 /* 498 * Service the next queue. 499 */ 500 do { 501 if (q == &queue->tasks[0]) 502 q = &queue->tasks[queue->maxpriority]; 503 else 504 q = q - 1; 505 if (!list_empty(q)) { 506 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 507 goto new_queue; 508 } 509 } while (q != &queue->tasks[queue->priority]); 510 511 rpc_reset_waitqueue_priority(queue); 512 return NULL; 513 514 new_queue: 515 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 516 new_owner: 517 rpc_set_waitqueue_owner(queue, task->tk_owner); 518 out: 519 return task; 520 } 521 522 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 523 { 524 if (RPC_IS_PRIORITY(queue)) 525 return __rpc_find_next_queued_priority(queue); 526 if (!list_empty(&queue->tasks[0])) 527 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 528 return NULL; 529 } 530 531 /* 532 * Wake up the first task on the wait queue. 533 */ 534 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 535 struct rpc_wait_queue *queue, 536 bool (*func)(struct rpc_task *, void *), void *data) 537 { 538 struct rpc_task *task = NULL; 539 540 dprintk("RPC: wake_up_first(%p \"%s\")\n", 541 queue, rpc_qname(queue)); 542 spin_lock_bh(&queue->lock); 543 task = __rpc_find_next_queued(queue); 544 if (task != NULL) { 545 if (func(task, data)) 546 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 547 else 548 task = NULL; 549 } 550 spin_unlock_bh(&queue->lock); 551 552 return task; 553 } 554 555 /* 556 * Wake up the first task on the wait queue. 557 */ 558 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 559 bool (*func)(struct rpc_task *, void *), void *data) 560 { 561 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 562 } 563 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 564 565 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 566 { 567 return true; 568 } 569 570 /* 571 * Wake up the next task on the wait queue. 572 */ 573 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 574 { 575 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 576 } 577 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 578 579 /** 580 * rpc_wake_up - wake up all rpc_tasks 581 * @queue: rpc_wait_queue on which the tasks are sleeping 582 * 583 * Grabs queue->lock 584 */ 585 void rpc_wake_up(struct rpc_wait_queue *queue) 586 { 587 struct list_head *head; 588 589 spin_lock_bh(&queue->lock); 590 head = &queue->tasks[queue->maxpriority]; 591 for (;;) { 592 while (!list_empty(head)) { 593 struct rpc_task *task; 594 task = list_first_entry(head, 595 struct rpc_task, 596 u.tk_wait.list); 597 rpc_wake_up_task_queue_locked(queue, task); 598 } 599 if (head == &queue->tasks[0]) 600 break; 601 head--; 602 } 603 spin_unlock_bh(&queue->lock); 604 } 605 EXPORT_SYMBOL_GPL(rpc_wake_up); 606 607 /** 608 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 609 * @queue: rpc_wait_queue on which the tasks are sleeping 610 * @status: status value to set 611 * 612 * Grabs queue->lock 613 */ 614 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 615 { 616 struct list_head *head; 617 618 spin_lock_bh(&queue->lock); 619 head = &queue->tasks[queue->maxpriority]; 620 for (;;) { 621 while (!list_empty(head)) { 622 struct rpc_task *task; 623 task = list_first_entry(head, 624 struct rpc_task, 625 u.tk_wait.list); 626 task->tk_status = status; 627 rpc_wake_up_task_queue_locked(queue, task); 628 } 629 if (head == &queue->tasks[0]) 630 break; 631 head--; 632 } 633 spin_unlock_bh(&queue->lock); 634 } 635 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 636 637 static void __rpc_queue_timer_fn(struct timer_list *t) 638 { 639 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer); 640 struct rpc_task *task, *n; 641 unsigned long expires, now, timeo; 642 643 spin_lock(&queue->lock); 644 expires = now = jiffies; 645 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 646 timeo = task->u.tk_wait.expires; 647 if (time_after_eq(now, timeo)) { 648 dprintk("RPC: %5u timeout\n", task->tk_pid); 649 task->tk_status = -ETIMEDOUT; 650 rpc_wake_up_task_queue_locked(queue, task); 651 continue; 652 } 653 if (expires == now || time_after(expires, timeo)) 654 expires = timeo; 655 } 656 if (!list_empty(&queue->timer_list.list)) 657 rpc_set_queue_timer(queue, expires); 658 spin_unlock(&queue->lock); 659 } 660 661 static void __rpc_atrun(struct rpc_task *task) 662 { 663 if (task->tk_status == -ETIMEDOUT) 664 task->tk_status = 0; 665 } 666 667 /* 668 * Run a task at a later time 669 */ 670 void rpc_delay(struct rpc_task *task, unsigned long delay) 671 { 672 task->tk_timeout = delay; 673 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 674 } 675 EXPORT_SYMBOL_GPL(rpc_delay); 676 677 /* 678 * Helper to call task->tk_ops->rpc_call_prepare 679 */ 680 void rpc_prepare_task(struct rpc_task *task) 681 { 682 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 683 } 684 685 static void 686 rpc_init_task_statistics(struct rpc_task *task) 687 { 688 /* Initialize retry counters */ 689 task->tk_garb_retry = 2; 690 task->tk_cred_retry = 2; 691 task->tk_rebind_retry = 2; 692 693 /* starting timestamp */ 694 task->tk_start = ktime_get(); 695 } 696 697 static void 698 rpc_reset_task_statistics(struct rpc_task *task) 699 { 700 task->tk_timeouts = 0; 701 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); 702 703 rpc_init_task_statistics(task); 704 } 705 706 /* 707 * Helper that calls task->tk_ops->rpc_call_done if it exists 708 */ 709 void rpc_exit_task(struct rpc_task *task) 710 { 711 task->tk_action = NULL; 712 if (task->tk_ops->rpc_call_done != NULL) { 713 task->tk_ops->rpc_call_done(task, task->tk_calldata); 714 if (task->tk_action != NULL) { 715 WARN_ON(RPC_ASSASSINATED(task)); 716 /* Always release the RPC slot and buffer memory */ 717 xprt_release(task); 718 rpc_reset_task_statistics(task); 719 } 720 } 721 } 722 723 void rpc_exit(struct rpc_task *task, int status) 724 { 725 task->tk_status = status; 726 task->tk_action = rpc_exit_task; 727 if (RPC_IS_QUEUED(task)) 728 rpc_wake_up_queued_task(task->tk_waitqueue, task); 729 } 730 EXPORT_SYMBOL_GPL(rpc_exit); 731 732 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 733 { 734 if (ops->rpc_release != NULL) 735 ops->rpc_release(calldata); 736 } 737 738 /* 739 * This is the RPC `scheduler' (or rather, the finite state machine). 740 */ 741 static void __rpc_execute(struct rpc_task *task) 742 { 743 struct rpc_wait_queue *queue; 744 int task_is_async = RPC_IS_ASYNC(task); 745 int status = 0; 746 747 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 748 task->tk_pid, task->tk_flags); 749 750 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 751 if (RPC_IS_QUEUED(task)) 752 return; 753 754 for (;;) { 755 void (*do_action)(struct rpc_task *); 756 757 /* 758 * Execute any pending callback first. 759 */ 760 do_action = task->tk_callback; 761 task->tk_callback = NULL; 762 if (do_action == NULL) { 763 /* 764 * Perform the next FSM step. 765 * tk_action may be NULL if the task has been killed. 766 * In particular, note that rpc_killall_tasks may 767 * do this at any time, so beware when dereferencing. 768 */ 769 do_action = task->tk_action; 770 if (do_action == NULL) 771 break; 772 } 773 trace_rpc_task_run_action(task->tk_client, task, task->tk_action); 774 do_action(task); 775 776 /* 777 * Lockless check for whether task is sleeping or not. 778 */ 779 if (!RPC_IS_QUEUED(task)) 780 continue; 781 /* 782 * The queue->lock protects against races with 783 * rpc_make_runnable(). 784 * 785 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 786 * rpc_task, rpc_make_runnable() can assign it to a 787 * different workqueue. We therefore cannot assume that the 788 * rpc_task pointer may still be dereferenced. 789 */ 790 queue = task->tk_waitqueue; 791 spin_lock_bh(&queue->lock); 792 if (!RPC_IS_QUEUED(task)) { 793 spin_unlock_bh(&queue->lock); 794 continue; 795 } 796 rpc_clear_running(task); 797 spin_unlock_bh(&queue->lock); 798 if (task_is_async) 799 return; 800 801 /* sync task: sleep here */ 802 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 803 status = out_of_line_wait_on_bit(&task->tk_runstate, 804 RPC_TASK_QUEUED, rpc_wait_bit_killable, 805 TASK_KILLABLE); 806 if (status == -ERESTARTSYS) { 807 /* 808 * When a sync task receives a signal, it exits with 809 * -ERESTARTSYS. In order to catch any callbacks that 810 * clean up after sleeping on some queue, we don't 811 * break the loop here, but go around once more. 812 */ 813 dprintk("RPC: %5u got signal\n", task->tk_pid); 814 task->tk_flags |= RPC_TASK_KILLED; 815 rpc_exit(task, -ERESTARTSYS); 816 } 817 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 818 } 819 820 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 821 task->tk_status); 822 /* Release all resources associated with the task */ 823 rpc_release_task(task); 824 } 825 826 /* 827 * User-visible entry point to the scheduler. 828 * 829 * This may be called recursively if e.g. an async NFS task updates 830 * the attributes and finds that dirty pages must be flushed. 831 * NOTE: Upon exit of this function the task is guaranteed to be 832 * released. In particular note that tk_release() will have 833 * been called, so your task memory may have been freed. 834 */ 835 void rpc_execute(struct rpc_task *task) 836 { 837 bool is_async = RPC_IS_ASYNC(task); 838 839 rpc_set_active(task); 840 rpc_make_runnable(rpciod_workqueue, task); 841 if (!is_async) 842 __rpc_execute(task); 843 } 844 845 static void rpc_async_schedule(struct work_struct *work) 846 { 847 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 848 } 849 850 /** 851 * rpc_malloc - allocate RPC buffer resources 852 * @task: RPC task 853 * 854 * A single memory region is allocated, which is split between the 855 * RPC call and RPC reply that this task is being used for. When 856 * this RPC is retired, the memory is released by calling rpc_free. 857 * 858 * To prevent rpciod from hanging, this allocator never sleeps, 859 * returning -ENOMEM and suppressing warning if the request cannot 860 * be serviced immediately. The caller can arrange to sleep in a 861 * way that is safe for rpciod. 862 * 863 * Most requests are 'small' (under 2KiB) and can be serviced from a 864 * mempool, ensuring that NFS reads and writes can always proceed, 865 * and that there is good locality of reference for these buffers. 866 * 867 * In order to avoid memory starvation triggering more writebacks of 868 * NFS requests, we avoid using GFP_KERNEL. 869 */ 870 int rpc_malloc(struct rpc_task *task) 871 { 872 struct rpc_rqst *rqst = task->tk_rqstp; 873 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 874 struct rpc_buffer *buf; 875 gfp_t gfp = GFP_NOIO | __GFP_NOWARN; 876 877 if (RPC_IS_SWAPPER(task)) 878 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 879 880 size += sizeof(struct rpc_buffer); 881 if (size <= RPC_BUFFER_MAXSIZE) 882 buf = mempool_alloc(rpc_buffer_mempool, gfp); 883 else 884 buf = kmalloc(size, gfp); 885 886 if (!buf) 887 return -ENOMEM; 888 889 buf->len = size; 890 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 891 task->tk_pid, size, buf); 892 rqst->rq_buffer = buf->data; 893 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 894 return 0; 895 } 896 EXPORT_SYMBOL_GPL(rpc_malloc); 897 898 /** 899 * rpc_free - free RPC buffer resources allocated via rpc_malloc 900 * @task: RPC task 901 * 902 */ 903 void rpc_free(struct rpc_task *task) 904 { 905 void *buffer = task->tk_rqstp->rq_buffer; 906 size_t size; 907 struct rpc_buffer *buf; 908 909 buf = container_of(buffer, struct rpc_buffer, data); 910 size = buf->len; 911 912 dprintk("RPC: freeing buffer of size %zu at %p\n", 913 size, buf); 914 915 if (size <= RPC_BUFFER_MAXSIZE) 916 mempool_free(buf, rpc_buffer_mempool); 917 else 918 kfree(buf); 919 } 920 EXPORT_SYMBOL_GPL(rpc_free); 921 922 /* 923 * Creation and deletion of RPC task structures 924 */ 925 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 926 { 927 memset(task, 0, sizeof(*task)); 928 atomic_set(&task->tk_count, 1); 929 task->tk_flags = task_setup_data->flags; 930 task->tk_ops = task_setup_data->callback_ops; 931 task->tk_calldata = task_setup_data->callback_data; 932 INIT_LIST_HEAD(&task->tk_task); 933 934 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 935 task->tk_owner = current->tgid; 936 937 /* Initialize workqueue for async tasks */ 938 task->tk_workqueue = task_setup_data->workqueue; 939 940 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt); 941 942 if (task->tk_ops->rpc_call_prepare != NULL) 943 task->tk_action = rpc_prepare_task; 944 945 rpc_init_task_statistics(task); 946 947 dprintk("RPC: new task initialized, procpid %u\n", 948 task_pid_nr(current)); 949 } 950 951 static struct rpc_task * 952 rpc_alloc_task(void) 953 { 954 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO); 955 } 956 957 /* 958 * Create a new task for the specified client. 959 */ 960 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 961 { 962 struct rpc_task *task = setup_data->task; 963 unsigned short flags = 0; 964 965 if (task == NULL) { 966 task = rpc_alloc_task(); 967 flags = RPC_TASK_DYNAMIC; 968 } 969 970 rpc_init_task(task, setup_data); 971 task->tk_flags |= flags; 972 dprintk("RPC: allocated task %p\n", task); 973 return task; 974 } 975 976 /* 977 * rpc_free_task - release rpc task and perform cleanups 978 * 979 * Note that we free up the rpc_task _after_ rpc_release_calldata() 980 * in order to work around a workqueue dependency issue. 981 * 982 * Tejun Heo states: 983 * "Workqueue currently considers two work items to be the same if they're 984 * on the same address and won't execute them concurrently - ie. it 985 * makes a work item which is queued again while being executed wait 986 * for the previous execution to complete. 987 * 988 * If a work function frees the work item, and then waits for an event 989 * which should be performed by another work item and *that* work item 990 * recycles the freed work item, it can create a false dependency loop. 991 * There really is no reliable way to detect this short of verifying 992 * every memory free." 993 * 994 */ 995 static void rpc_free_task(struct rpc_task *task) 996 { 997 unsigned short tk_flags = task->tk_flags; 998 999 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1000 1001 if (tk_flags & RPC_TASK_DYNAMIC) { 1002 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1003 mempool_free(task, rpc_task_mempool); 1004 } 1005 } 1006 1007 static void rpc_async_release(struct work_struct *work) 1008 { 1009 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1010 } 1011 1012 static void rpc_release_resources_task(struct rpc_task *task) 1013 { 1014 xprt_release(task); 1015 if (task->tk_msg.rpc_cred) { 1016 put_rpccred(task->tk_msg.rpc_cred); 1017 task->tk_msg.rpc_cred = NULL; 1018 } 1019 rpc_task_release_client(task); 1020 } 1021 1022 static void rpc_final_put_task(struct rpc_task *task, 1023 struct workqueue_struct *q) 1024 { 1025 if (q != NULL) { 1026 INIT_WORK(&task->u.tk_work, rpc_async_release); 1027 queue_work(q, &task->u.tk_work); 1028 } else 1029 rpc_free_task(task); 1030 } 1031 1032 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1033 { 1034 if (atomic_dec_and_test(&task->tk_count)) { 1035 rpc_release_resources_task(task); 1036 rpc_final_put_task(task, q); 1037 } 1038 } 1039 1040 void rpc_put_task(struct rpc_task *task) 1041 { 1042 rpc_do_put_task(task, NULL); 1043 } 1044 EXPORT_SYMBOL_GPL(rpc_put_task); 1045 1046 void rpc_put_task_async(struct rpc_task *task) 1047 { 1048 rpc_do_put_task(task, task->tk_workqueue); 1049 } 1050 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1051 1052 static void rpc_release_task(struct rpc_task *task) 1053 { 1054 dprintk("RPC: %5u release task\n", task->tk_pid); 1055 1056 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1057 1058 rpc_release_resources_task(task); 1059 1060 /* 1061 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1062 * so it should be safe to use task->tk_count as a test for whether 1063 * or not any other processes still hold references to our rpc_task. 1064 */ 1065 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1066 /* Wake up anyone who may be waiting for task completion */ 1067 if (!rpc_complete_task(task)) 1068 return; 1069 } else { 1070 if (!atomic_dec_and_test(&task->tk_count)) 1071 return; 1072 } 1073 rpc_final_put_task(task, task->tk_workqueue); 1074 } 1075 1076 int rpciod_up(void) 1077 { 1078 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1079 } 1080 1081 void rpciod_down(void) 1082 { 1083 module_put(THIS_MODULE); 1084 } 1085 1086 /* 1087 * Start up the rpciod workqueue. 1088 */ 1089 static int rpciod_start(void) 1090 { 1091 struct workqueue_struct *wq; 1092 1093 /* 1094 * Create the rpciod thread and wait for it to start. 1095 */ 1096 dprintk("RPC: creating workqueue rpciod\n"); 1097 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0); 1098 if (!wq) 1099 goto out_failed; 1100 rpciod_workqueue = wq; 1101 /* Note: highpri because network receive is latency sensitive */ 1102 wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1103 if (!wq) 1104 goto free_rpciod; 1105 xprtiod_workqueue = wq; 1106 return 1; 1107 free_rpciod: 1108 wq = rpciod_workqueue; 1109 rpciod_workqueue = NULL; 1110 destroy_workqueue(wq); 1111 out_failed: 1112 return 0; 1113 } 1114 1115 static void rpciod_stop(void) 1116 { 1117 struct workqueue_struct *wq = NULL; 1118 1119 if (rpciod_workqueue == NULL) 1120 return; 1121 dprintk("RPC: destroying workqueue rpciod\n"); 1122 1123 wq = rpciod_workqueue; 1124 rpciod_workqueue = NULL; 1125 destroy_workqueue(wq); 1126 wq = xprtiod_workqueue; 1127 xprtiod_workqueue = NULL; 1128 destroy_workqueue(wq); 1129 } 1130 1131 void 1132 rpc_destroy_mempool(void) 1133 { 1134 rpciod_stop(); 1135 mempool_destroy(rpc_buffer_mempool); 1136 mempool_destroy(rpc_task_mempool); 1137 kmem_cache_destroy(rpc_task_slabp); 1138 kmem_cache_destroy(rpc_buffer_slabp); 1139 rpc_destroy_wait_queue(&delay_queue); 1140 } 1141 1142 int 1143 rpc_init_mempool(void) 1144 { 1145 /* 1146 * The following is not strictly a mempool initialisation, 1147 * but there is no harm in doing it here 1148 */ 1149 rpc_init_wait_queue(&delay_queue, "delayq"); 1150 if (!rpciod_start()) 1151 goto err_nomem; 1152 1153 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1154 sizeof(struct rpc_task), 1155 0, SLAB_HWCACHE_ALIGN, 1156 NULL); 1157 if (!rpc_task_slabp) 1158 goto err_nomem; 1159 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1160 RPC_BUFFER_MAXSIZE, 1161 0, SLAB_HWCACHE_ALIGN, 1162 NULL); 1163 if (!rpc_buffer_slabp) 1164 goto err_nomem; 1165 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1166 rpc_task_slabp); 1167 if (!rpc_task_mempool) 1168 goto err_nomem; 1169 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1170 rpc_buffer_slabp); 1171 if (!rpc_buffer_mempool) 1172 goto err_nomem; 1173 return 0; 1174 err_nomem: 1175 rpc_destroy_mempool(); 1176 return -ENOMEM; 1177 } 1178