1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 22 #include <linux/sunrpc/clnt.h> 23 24 #include "sunrpc.h" 25 26 #ifdef RPC_DEBUG 27 #define RPCDBG_FACILITY RPCDBG_SCHED 28 #endif 29 30 /* 31 * RPC slabs and memory pools 32 */ 33 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_TASK_POOLSIZE (8) 36 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_buffer_mempool __read_mostly; 40 41 static void rpc_async_schedule(struct work_struct *); 42 static void rpc_release_task(struct rpc_task *task); 43 static void __rpc_queue_timer_fn(unsigned long ptr); 44 45 /* 46 * RPC tasks sit here while waiting for conditions to improve. 47 */ 48 static struct rpc_wait_queue delay_queue; 49 50 /* 51 * rpciod-related stuff 52 */ 53 struct workqueue_struct *rpciod_workqueue; 54 55 /* 56 * Disable the timer for a given RPC task. Should be called with 57 * queue->lock and bh_disabled in order to avoid races within 58 * rpc_run_timer(). 59 */ 60 static void 61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 62 { 63 if (task->tk_timeout == 0) 64 return; 65 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 66 task->tk_timeout = 0; 67 list_del(&task->u.tk_wait.timer_list); 68 if (list_empty(&queue->timer_list.list)) 69 del_timer(&queue->timer_list.timer); 70 } 71 72 static void 73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 74 { 75 queue->timer_list.expires = expires; 76 mod_timer(&queue->timer_list.timer, expires); 77 } 78 79 /* 80 * Set up a timer for the current task. 81 */ 82 static void 83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 84 { 85 if (!task->tk_timeout) 86 return; 87 88 dprintk("RPC: %5u setting alarm for %lu ms\n", 89 task->tk_pid, task->tk_timeout * 1000 / HZ); 90 91 task->u.tk_wait.expires = jiffies + task->tk_timeout; 92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 93 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 95 } 96 97 /* 98 * Add new request to a priority queue. 99 */ 100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 101 { 102 struct list_head *q; 103 struct rpc_task *t; 104 105 INIT_LIST_HEAD(&task->u.tk_wait.links); 106 q = &queue->tasks[task->tk_priority]; 107 if (unlikely(task->tk_priority > queue->maxpriority)) 108 q = &queue->tasks[queue->maxpriority]; 109 list_for_each_entry(t, q, u.tk_wait.list) { 110 if (t->tk_owner == task->tk_owner) { 111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 112 return; 113 } 114 } 115 list_add_tail(&task->u.tk_wait.list, q); 116 } 117 118 /* 119 * Add new request to wait queue. 120 * 121 * Swapper tasks always get inserted at the head of the queue. 122 * This should avoid many nasty memory deadlocks and hopefully 123 * improve overall performance. 124 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 125 */ 126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 127 { 128 BUG_ON (RPC_IS_QUEUED(task)); 129 130 if (RPC_IS_PRIORITY(queue)) 131 __rpc_add_wait_queue_priority(queue, task); 132 else if (RPC_IS_SWAPPER(task)) 133 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 134 else 135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 136 task->tk_waitqueue = queue; 137 queue->qlen++; 138 rpc_set_queued(task); 139 140 dprintk("RPC: %5u added to queue %p \"%s\"\n", 141 task->tk_pid, queue, rpc_qname(queue)); 142 } 143 144 /* 145 * Remove request from a priority queue. 146 */ 147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 148 { 149 struct rpc_task *t; 150 151 if (!list_empty(&task->u.tk_wait.links)) { 152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 155 } 156 } 157 158 /* 159 * Remove request from queue. 160 * Note: must be called with spin lock held. 161 */ 162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 163 { 164 __rpc_disable_timer(queue, task); 165 if (RPC_IS_PRIORITY(queue)) 166 __rpc_remove_wait_queue_priority(task); 167 list_del(&task->u.tk_wait.list); 168 queue->qlen--; 169 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 170 task->tk_pid, queue, rpc_qname(queue)); 171 } 172 173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 174 { 175 queue->priority = priority; 176 queue->count = 1 << (priority * 2); 177 } 178 179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 180 { 181 queue->owner = pid; 182 queue->nr = RPC_BATCH_COUNT; 183 } 184 185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 186 { 187 rpc_set_waitqueue_priority(queue, queue->maxpriority); 188 rpc_set_waitqueue_owner(queue, 0); 189 } 190 191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 192 { 193 int i; 194 195 spin_lock_init(&queue->lock); 196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 197 INIT_LIST_HEAD(&queue->tasks[i]); 198 queue->maxpriority = nr_queues - 1; 199 rpc_reset_waitqueue_priority(queue); 200 queue->qlen = 0; 201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 202 INIT_LIST_HEAD(&queue->timer_list.list); 203 #ifdef RPC_DEBUG 204 queue->name = qname; 205 #endif 206 } 207 208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 209 { 210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 211 } 212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 213 214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 215 { 216 __rpc_init_priority_wait_queue(queue, qname, 1); 217 } 218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 219 220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 221 { 222 del_timer_sync(&queue->timer_list.timer); 223 } 224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 225 226 static int rpc_wait_bit_killable(void *word) 227 { 228 if (fatal_signal_pending(current)) 229 return -ERESTARTSYS; 230 schedule(); 231 return 0; 232 } 233 234 #ifdef RPC_DEBUG 235 static void rpc_task_set_debuginfo(struct rpc_task *task) 236 { 237 static atomic_t rpc_pid; 238 239 task->tk_pid = atomic_inc_return(&rpc_pid); 240 } 241 #else 242 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 243 { 244 } 245 #endif 246 247 static void rpc_set_active(struct rpc_task *task) 248 { 249 rpc_task_set_debuginfo(task); 250 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 251 } 252 253 /* 254 * Mark an RPC call as having completed by clearing the 'active' bit 255 * and then waking up all tasks that were sleeping. 256 */ 257 static int rpc_complete_task(struct rpc_task *task) 258 { 259 void *m = &task->tk_runstate; 260 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 261 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 262 unsigned long flags; 263 int ret; 264 265 spin_lock_irqsave(&wq->lock, flags); 266 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 267 ret = atomic_dec_and_test(&task->tk_count); 268 if (waitqueue_active(wq)) 269 __wake_up_locked_key(wq, TASK_NORMAL, &k); 270 spin_unlock_irqrestore(&wq->lock, flags); 271 return ret; 272 } 273 274 /* 275 * Allow callers to wait for completion of an RPC call 276 * 277 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 278 * to enforce taking of the wq->lock and hence avoid races with 279 * rpc_complete_task(). 280 */ 281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 282 { 283 if (action == NULL) 284 action = rpc_wait_bit_killable; 285 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 286 action, TASK_KILLABLE); 287 } 288 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 289 290 /* 291 * Make an RPC task runnable. 292 * 293 * Note: If the task is ASYNC, this must be called with 294 * the spinlock held to protect the wait queue operation. 295 */ 296 static void rpc_make_runnable(struct rpc_task *task) 297 { 298 rpc_clear_queued(task); 299 if (rpc_test_and_set_running(task)) 300 return; 301 if (RPC_IS_ASYNC(task)) { 302 int status; 303 304 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 305 status = queue_work(rpciod_workqueue, &task->u.tk_work); 306 if (status < 0) { 307 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 308 task->tk_status = status; 309 return; 310 } 311 } else 312 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 313 } 314 315 /* 316 * Prepare for sleeping on a wait queue. 317 * By always appending tasks to the list we ensure FIFO behavior. 318 * NB: An RPC task will only receive interrupt-driven events as long 319 * as it's on a wait queue. 320 */ 321 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 322 rpc_action action) 323 { 324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 325 task->tk_pid, rpc_qname(q), jiffies); 326 327 __rpc_add_wait_queue(q, task); 328 329 BUG_ON(task->tk_callback != NULL); 330 task->tk_callback = action; 331 __rpc_add_timer(q, task); 332 } 333 334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 335 rpc_action action) 336 { 337 /* We shouldn't ever put an inactive task to sleep */ 338 BUG_ON(!RPC_IS_ACTIVATED(task)); 339 340 /* 341 * Protect the queue operations. 342 */ 343 spin_lock_bh(&q->lock); 344 __rpc_sleep_on(q, task, action); 345 spin_unlock_bh(&q->lock); 346 } 347 EXPORT_SYMBOL_GPL(rpc_sleep_on); 348 349 /** 350 * __rpc_do_wake_up_task - wake up a single rpc_task 351 * @queue: wait queue 352 * @task: task to be woken up 353 * 354 * Caller must hold queue->lock, and have cleared the task queued flag. 355 */ 356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 357 { 358 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 359 task->tk_pid, jiffies); 360 361 /* Has the task been executed yet? If not, we cannot wake it up! */ 362 if (!RPC_IS_ACTIVATED(task)) { 363 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 364 return; 365 } 366 367 __rpc_remove_wait_queue(queue, task); 368 369 rpc_make_runnable(task); 370 371 dprintk("RPC: __rpc_wake_up_task done\n"); 372 } 373 374 /* 375 * Wake up a queued task while the queue lock is being held 376 */ 377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 378 { 379 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 380 __rpc_do_wake_up_task(queue, task); 381 } 382 383 /* 384 * Tests whether rpc queue is empty 385 */ 386 int rpc_queue_empty(struct rpc_wait_queue *queue) 387 { 388 int res; 389 390 spin_lock_bh(&queue->lock); 391 res = queue->qlen; 392 spin_unlock_bh(&queue->lock); 393 return res == 0; 394 } 395 EXPORT_SYMBOL_GPL(rpc_queue_empty); 396 397 /* 398 * Wake up a task on a specific queue 399 */ 400 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 401 { 402 spin_lock_bh(&queue->lock); 403 rpc_wake_up_task_queue_locked(queue, task); 404 spin_unlock_bh(&queue->lock); 405 } 406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 407 408 /* 409 * Wake up the next task on a priority queue. 410 */ 411 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 412 { 413 struct list_head *q; 414 struct rpc_task *task; 415 416 /* 417 * Service a batch of tasks from a single owner. 418 */ 419 q = &queue->tasks[queue->priority]; 420 if (!list_empty(q)) { 421 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 422 if (queue->owner == task->tk_owner) { 423 if (--queue->nr) 424 goto out; 425 list_move_tail(&task->u.tk_wait.list, q); 426 } 427 /* 428 * Check if we need to switch queues. 429 */ 430 if (--queue->count) 431 goto new_owner; 432 } 433 434 /* 435 * Service the next queue. 436 */ 437 do { 438 if (q == &queue->tasks[0]) 439 q = &queue->tasks[queue->maxpriority]; 440 else 441 q = q - 1; 442 if (!list_empty(q)) { 443 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 444 goto new_queue; 445 } 446 } while (q != &queue->tasks[queue->priority]); 447 448 rpc_reset_waitqueue_priority(queue); 449 return NULL; 450 451 new_queue: 452 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 453 new_owner: 454 rpc_set_waitqueue_owner(queue, task->tk_owner); 455 out: 456 rpc_wake_up_task_queue_locked(queue, task); 457 return task; 458 } 459 460 /* 461 * Wake up the next task on the wait queue. 462 */ 463 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 464 { 465 struct rpc_task *task = NULL; 466 467 dprintk("RPC: wake_up_next(%p \"%s\")\n", 468 queue, rpc_qname(queue)); 469 spin_lock_bh(&queue->lock); 470 if (RPC_IS_PRIORITY(queue)) 471 task = __rpc_wake_up_next_priority(queue); 472 else { 473 task_for_first(task, &queue->tasks[0]) 474 rpc_wake_up_task_queue_locked(queue, task); 475 } 476 spin_unlock_bh(&queue->lock); 477 478 return task; 479 } 480 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 481 482 /** 483 * rpc_wake_up - wake up all rpc_tasks 484 * @queue: rpc_wait_queue on which the tasks are sleeping 485 * 486 * Grabs queue->lock 487 */ 488 void rpc_wake_up(struct rpc_wait_queue *queue) 489 { 490 struct rpc_task *task, *next; 491 struct list_head *head; 492 493 spin_lock_bh(&queue->lock); 494 head = &queue->tasks[queue->maxpriority]; 495 for (;;) { 496 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 497 rpc_wake_up_task_queue_locked(queue, task); 498 if (head == &queue->tasks[0]) 499 break; 500 head--; 501 } 502 spin_unlock_bh(&queue->lock); 503 } 504 EXPORT_SYMBOL_GPL(rpc_wake_up); 505 506 /** 507 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 508 * @queue: rpc_wait_queue on which the tasks are sleeping 509 * @status: status value to set 510 * 511 * Grabs queue->lock 512 */ 513 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 514 { 515 struct rpc_task *task, *next; 516 struct list_head *head; 517 518 spin_lock_bh(&queue->lock); 519 head = &queue->tasks[queue->maxpriority]; 520 for (;;) { 521 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 522 task->tk_status = status; 523 rpc_wake_up_task_queue_locked(queue, task); 524 } 525 if (head == &queue->tasks[0]) 526 break; 527 head--; 528 } 529 spin_unlock_bh(&queue->lock); 530 } 531 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 532 533 static void __rpc_queue_timer_fn(unsigned long ptr) 534 { 535 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 536 struct rpc_task *task, *n; 537 unsigned long expires, now, timeo; 538 539 spin_lock(&queue->lock); 540 expires = now = jiffies; 541 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 542 timeo = task->u.tk_wait.expires; 543 if (time_after_eq(now, timeo)) { 544 dprintk("RPC: %5u timeout\n", task->tk_pid); 545 task->tk_status = -ETIMEDOUT; 546 rpc_wake_up_task_queue_locked(queue, task); 547 continue; 548 } 549 if (expires == now || time_after(expires, timeo)) 550 expires = timeo; 551 } 552 if (!list_empty(&queue->timer_list.list)) 553 rpc_set_queue_timer(queue, expires); 554 spin_unlock(&queue->lock); 555 } 556 557 static void __rpc_atrun(struct rpc_task *task) 558 { 559 task->tk_status = 0; 560 } 561 562 /* 563 * Run a task at a later time 564 */ 565 void rpc_delay(struct rpc_task *task, unsigned long delay) 566 { 567 task->tk_timeout = delay; 568 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 569 } 570 EXPORT_SYMBOL_GPL(rpc_delay); 571 572 /* 573 * Helper to call task->tk_ops->rpc_call_prepare 574 */ 575 void rpc_prepare_task(struct rpc_task *task) 576 { 577 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 578 } 579 580 /* 581 * Helper that calls task->tk_ops->rpc_call_done if it exists 582 */ 583 void rpc_exit_task(struct rpc_task *task) 584 { 585 task->tk_action = NULL; 586 if (task->tk_ops->rpc_call_done != NULL) { 587 task->tk_ops->rpc_call_done(task, task->tk_calldata); 588 if (task->tk_action != NULL) { 589 WARN_ON(RPC_ASSASSINATED(task)); 590 /* Always release the RPC slot and buffer memory */ 591 xprt_release(task); 592 } 593 } 594 } 595 596 void rpc_exit(struct rpc_task *task, int status) 597 { 598 task->tk_status = status; 599 task->tk_action = rpc_exit_task; 600 if (RPC_IS_QUEUED(task)) 601 rpc_wake_up_queued_task(task->tk_waitqueue, task); 602 } 603 EXPORT_SYMBOL_GPL(rpc_exit); 604 605 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 606 { 607 if (ops->rpc_release != NULL) 608 ops->rpc_release(calldata); 609 } 610 611 /* 612 * This is the RPC `scheduler' (or rather, the finite state machine). 613 */ 614 static void __rpc_execute(struct rpc_task *task) 615 { 616 struct rpc_wait_queue *queue; 617 int task_is_async = RPC_IS_ASYNC(task); 618 int status = 0; 619 620 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 621 task->tk_pid, task->tk_flags); 622 623 BUG_ON(RPC_IS_QUEUED(task)); 624 625 for (;;) { 626 627 /* 628 * Execute any pending callback. 629 */ 630 if (task->tk_callback) { 631 void (*save_callback)(struct rpc_task *); 632 633 /* 634 * We set tk_callback to NULL before calling it, 635 * in case it sets the tk_callback field itself: 636 */ 637 save_callback = task->tk_callback; 638 task->tk_callback = NULL; 639 save_callback(task); 640 } 641 642 /* 643 * Perform the next FSM step. 644 * tk_action may be NULL when the task has been killed 645 * by someone else. 646 */ 647 if (!RPC_IS_QUEUED(task)) { 648 if (task->tk_action == NULL) 649 break; 650 task->tk_action(task); 651 } 652 653 /* 654 * Lockless check for whether task is sleeping or not. 655 */ 656 if (!RPC_IS_QUEUED(task)) 657 continue; 658 /* 659 * The queue->lock protects against races with 660 * rpc_make_runnable(). 661 * 662 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 663 * rpc_task, rpc_make_runnable() can assign it to a 664 * different workqueue. We therefore cannot assume that the 665 * rpc_task pointer may still be dereferenced. 666 */ 667 queue = task->tk_waitqueue; 668 spin_lock_bh(&queue->lock); 669 if (!RPC_IS_QUEUED(task)) { 670 spin_unlock_bh(&queue->lock); 671 continue; 672 } 673 rpc_clear_running(task); 674 spin_unlock_bh(&queue->lock); 675 if (task_is_async) 676 return; 677 678 /* sync task: sleep here */ 679 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 680 status = out_of_line_wait_on_bit(&task->tk_runstate, 681 RPC_TASK_QUEUED, rpc_wait_bit_killable, 682 TASK_KILLABLE); 683 if (status == -ERESTARTSYS) { 684 /* 685 * When a sync task receives a signal, it exits with 686 * -ERESTARTSYS. In order to catch any callbacks that 687 * clean up after sleeping on some queue, we don't 688 * break the loop here, but go around once more. 689 */ 690 dprintk("RPC: %5u got signal\n", task->tk_pid); 691 task->tk_flags |= RPC_TASK_KILLED; 692 rpc_exit(task, -ERESTARTSYS); 693 } 694 rpc_set_running(task); 695 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 696 } 697 698 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 699 task->tk_status); 700 /* Release all resources associated with the task */ 701 rpc_release_task(task); 702 } 703 704 /* 705 * User-visible entry point to the scheduler. 706 * 707 * This may be called recursively if e.g. an async NFS task updates 708 * the attributes and finds that dirty pages must be flushed. 709 * NOTE: Upon exit of this function the task is guaranteed to be 710 * released. In particular note that tk_release() will have 711 * been called, so your task memory may have been freed. 712 */ 713 void rpc_execute(struct rpc_task *task) 714 { 715 rpc_set_active(task); 716 rpc_make_runnable(task); 717 if (!RPC_IS_ASYNC(task)) 718 __rpc_execute(task); 719 } 720 721 static void rpc_async_schedule(struct work_struct *work) 722 { 723 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 724 } 725 726 /** 727 * rpc_malloc - allocate an RPC buffer 728 * @task: RPC task that will use this buffer 729 * @size: requested byte size 730 * 731 * To prevent rpciod from hanging, this allocator never sleeps, 732 * returning NULL if the request cannot be serviced immediately. 733 * The caller can arrange to sleep in a way that is safe for rpciod. 734 * 735 * Most requests are 'small' (under 2KiB) and can be serviced from a 736 * mempool, ensuring that NFS reads and writes can always proceed, 737 * and that there is good locality of reference for these buffers. 738 * 739 * In order to avoid memory starvation triggering more writebacks of 740 * NFS requests, we avoid using GFP_KERNEL. 741 */ 742 void *rpc_malloc(struct rpc_task *task, size_t size) 743 { 744 struct rpc_buffer *buf; 745 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 746 747 size += sizeof(struct rpc_buffer); 748 if (size <= RPC_BUFFER_MAXSIZE) 749 buf = mempool_alloc(rpc_buffer_mempool, gfp); 750 else 751 buf = kmalloc(size, gfp); 752 753 if (!buf) 754 return NULL; 755 756 buf->len = size; 757 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 758 task->tk_pid, size, buf); 759 return &buf->data; 760 } 761 EXPORT_SYMBOL_GPL(rpc_malloc); 762 763 /** 764 * rpc_free - free buffer allocated via rpc_malloc 765 * @buffer: buffer to free 766 * 767 */ 768 void rpc_free(void *buffer) 769 { 770 size_t size; 771 struct rpc_buffer *buf; 772 773 if (!buffer) 774 return; 775 776 buf = container_of(buffer, struct rpc_buffer, data); 777 size = buf->len; 778 779 dprintk("RPC: freeing buffer of size %zu at %p\n", 780 size, buf); 781 782 if (size <= RPC_BUFFER_MAXSIZE) 783 mempool_free(buf, rpc_buffer_mempool); 784 else 785 kfree(buf); 786 } 787 EXPORT_SYMBOL_GPL(rpc_free); 788 789 /* 790 * Creation and deletion of RPC task structures 791 */ 792 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 793 { 794 memset(task, 0, sizeof(*task)); 795 atomic_set(&task->tk_count, 1); 796 task->tk_flags = task_setup_data->flags; 797 task->tk_ops = task_setup_data->callback_ops; 798 task->tk_calldata = task_setup_data->callback_data; 799 INIT_LIST_HEAD(&task->tk_task); 800 801 /* Initialize retry counters */ 802 task->tk_garb_retry = 2; 803 task->tk_cred_retry = 2; 804 805 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 806 task->tk_owner = current->tgid; 807 808 /* Initialize workqueue for async tasks */ 809 task->tk_workqueue = task_setup_data->workqueue; 810 811 if (task->tk_ops->rpc_call_prepare != NULL) 812 task->tk_action = rpc_prepare_task; 813 814 /* starting timestamp */ 815 task->tk_start = ktime_get(); 816 817 dprintk("RPC: new task initialized, procpid %u\n", 818 task_pid_nr(current)); 819 } 820 821 static struct rpc_task * 822 rpc_alloc_task(void) 823 { 824 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 825 } 826 827 /* 828 * Create a new task for the specified client. 829 */ 830 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 831 { 832 struct rpc_task *task = setup_data->task; 833 unsigned short flags = 0; 834 835 if (task == NULL) { 836 task = rpc_alloc_task(); 837 if (task == NULL) { 838 rpc_release_calldata(setup_data->callback_ops, 839 setup_data->callback_data); 840 return ERR_PTR(-ENOMEM); 841 } 842 flags = RPC_TASK_DYNAMIC; 843 } 844 845 rpc_init_task(task, setup_data); 846 if (task->tk_status < 0) { 847 int err = task->tk_status; 848 rpc_put_task(task); 849 return ERR_PTR(err); 850 } 851 852 task->tk_flags |= flags; 853 dprintk("RPC: allocated task %p\n", task); 854 return task; 855 } 856 857 static void rpc_free_task(struct rpc_task *task) 858 { 859 const struct rpc_call_ops *tk_ops = task->tk_ops; 860 void *calldata = task->tk_calldata; 861 862 if (task->tk_flags & RPC_TASK_DYNAMIC) { 863 dprintk("RPC: %5u freeing task\n", task->tk_pid); 864 mempool_free(task, rpc_task_mempool); 865 } 866 rpc_release_calldata(tk_ops, calldata); 867 } 868 869 static void rpc_async_release(struct work_struct *work) 870 { 871 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 872 } 873 874 static void rpc_release_resources_task(struct rpc_task *task) 875 { 876 if (task->tk_rqstp) 877 xprt_release(task); 878 if (task->tk_msg.rpc_cred) 879 put_rpccred(task->tk_msg.rpc_cred); 880 rpc_task_release_client(task); 881 } 882 883 static void rpc_final_put_task(struct rpc_task *task, 884 struct workqueue_struct *q) 885 { 886 if (q != NULL) { 887 INIT_WORK(&task->u.tk_work, rpc_async_release); 888 queue_work(q, &task->u.tk_work); 889 } else 890 rpc_free_task(task); 891 } 892 893 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 894 { 895 if (atomic_dec_and_test(&task->tk_count)) { 896 rpc_release_resources_task(task); 897 rpc_final_put_task(task, q); 898 } 899 } 900 901 void rpc_put_task(struct rpc_task *task) 902 { 903 rpc_do_put_task(task, NULL); 904 } 905 EXPORT_SYMBOL_GPL(rpc_put_task); 906 907 void rpc_put_task_async(struct rpc_task *task) 908 { 909 rpc_do_put_task(task, task->tk_workqueue); 910 } 911 EXPORT_SYMBOL_GPL(rpc_put_task_async); 912 913 static void rpc_release_task(struct rpc_task *task) 914 { 915 dprintk("RPC: %5u release task\n", task->tk_pid); 916 917 BUG_ON (RPC_IS_QUEUED(task)); 918 919 rpc_release_resources_task(task); 920 921 /* 922 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 923 * so it should be safe to use task->tk_count as a test for whether 924 * or not any other processes still hold references to our rpc_task. 925 */ 926 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 927 /* Wake up anyone who may be waiting for task completion */ 928 if (!rpc_complete_task(task)) 929 return; 930 } else { 931 if (!atomic_dec_and_test(&task->tk_count)) 932 return; 933 } 934 rpc_final_put_task(task, task->tk_workqueue); 935 } 936 937 int rpciod_up(void) 938 { 939 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 940 } 941 942 void rpciod_down(void) 943 { 944 module_put(THIS_MODULE); 945 } 946 947 /* 948 * Start up the rpciod workqueue. 949 */ 950 static int rpciod_start(void) 951 { 952 struct workqueue_struct *wq; 953 954 /* 955 * Create the rpciod thread and wait for it to start. 956 */ 957 dprintk("RPC: creating workqueue rpciod\n"); 958 wq = alloc_workqueue("rpciod", WQ_RESCUER, 0); 959 rpciod_workqueue = wq; 960 return rpciod_workqueue != NULL; 961 } 962 963 static void rpciod_stop(void) 964 { 965 struct workqueue_struct *wq = NULL; 966 967 if (rpciod_workqueue == NULL) 968 return; 969 dprintk("RPC: destroying workqueue rpciod\n"); 970 971 wq = rpciod_workqueue; 972 rpciod_workqueue = NULL; 973 destroy_workqueue(wq); 974 } 975 976 void 977 rpc_destroy_mempool(void) 978 { 979 rpciod_stop(); 980 if (rpc_buffer_mempool) 981 mempool_destroy(rpc_buffer_mempool); 982 if (rpc_task_mempool) 983 mempool_destroy(rpc_task_mempool); 984 if (rpc_task_slabp) 985 kmem_cache_destroy(rpc_task_slabp); 986 if (rpc_buffer_slabp) 987 kmem_cache_destroy(rpc_buffer_slabp); 988 rpc_destroy_wait_queue(&delay_queue); 989 } 990 991 int 992 rpc_init_mempool(void) 993 { 994 /* 995 * The following is not strictly a mempool initialisation, 996 * but there is no harm in doing it here 997 */ 998 rpc_init_wait_queue(&delay_queue, "delayq"); 999 if (!rpciod_start()) 1000 goto err_nomem; 1001 1002 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1003 sizeof(struct rpc_task), 1004 0, SLAB_HWCACHE_ALIGN, 1005 NULL); 1006 if (!rpc_task_slabp) 1007 goto err_nomem; 1008 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1009 RPC_BUFFER_MAXSIZE, 1010 0, SLAB_HWCACHE_ALIGN, 1011 NULL); 1012 if (!rpc_buffer_slabp) 1013 goto err_nomem; 1014 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1015 rpc_task_slabp); 1016 if (!rpc_task_mempool) 1017 goto err_nomem; 1018 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1019 rpc_buffer_slabp); 1020 if (!rpc_buffer_mempool) 1021 goto err_nomem; 1022 return 0; 1023 err_nomem: 1024 rpc_destroy_mempool(); 1025 return -ENOMEM; 1026 } 1027