xref: /openbmc/linux/net/sunrpc/sched.c (revision 4800cd83)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 
24 #include "sunrpc.h"
25 
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY		RPCDBG_SCHED
28 #endif
29 
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE	(2048)
34 #define RPC_BUFFER_POOLSIZE	(8)
35 #define RPC_TASK_POOLSIZE	(8)
36 static struct kmem_cache	*rpc_task_slabp __read_mostly;
37 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
38 static mempool_t	*rpc_task_mempool __read_mostly;
39 static mempool_t	*rpc_buffer_mempool __read_mostly;
40 
41 static void			rpc_async_schedule(struct work_struct *);
42 static void			 rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44 
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49 
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54 
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63 	if (task->tk_timeout == 0)
64 		return;
65 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 	task->tk_timeout = 0;
67 	list_del(&task->u.tk_wait.timer_list);
68 	if (list_empty(&queue->timer_list.list))
69 		del_timer(&queue->timer_list.timer);
70 }
71 
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75 	queue->timer_list.expires = expires;
76 	mod_timer(&queue->timer_list.timer, expires);
77 }
78 
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85 	if (!task->tk_timeout)
86 		return;
87 
88 	dprintk("RPC: %5u setting alarm for %lu ms\n",
89 			task->tk_pid, task->tk_timeout * 1000 / HZ);
90 
91 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96 
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102 	struct list_head *q;
103 	struct rpc_task *t;
104 
105 	INIT_LIST_HEAD(&task->u.tk_wait.links);
106 	q = &queue->tasks[task->tk_priority];
107 	if (unlikely(task->tk_priority > queue->maxpriority))
108 		q = &queue->tasks[queue->maxpriority];
109 	list_for_each_entry(t, q, u.tk_wait.list) {
110 		if (t->tk_owner == task->tk_owner) {
111 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 			return;
113 		}
114 	}
115 	list_add_tail(&task->u.tk_wait.list, q);
116 }
117 
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128 	BUG_ON (RPC_IS_QUEUED(task));
129 
130 	if (RPC_IS_PRIORITY(queue))
131 		__rpc_add_wait_queue_priority(queue, task);
132 	else if (RPC_IS_SWAPPER(task))
133 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 	else
135 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 	task->tk_waitqueue = queue;
137 	queue->qlen++;
138 	rpc_set_queued(task);
139 
140 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 			task->tk_pid, queue, rpc_qname(queue));
142 }
143 
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149 	struct rpc_task *t;
150 
151 	if (!list_empty(&task->u.tk_wait.links)) {
152 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155 	}
156 }
157 
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164 	__rpc_disable_timer(queue, task);
165 	if (RPC_IS_PRIORITY(queue))
166 		__rpc_remove_wait_queue_priority(task);
167 	list_del(&task->u.tk_wait.list);
168 	queue->qlen--;
169 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 			task->tk_pid, queue, rpc_qname(queue));
171 }
172 
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175 	queue->priority = priority;
176 	queue->count = 1 << (priority * 2);
177 }
178 
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181 	queue->owner = pid;
182 	queue->nr = RPC_BATCH_COUNT;
183 }
184 
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 	rpc_set_waitqueue_owner(queue, 0);
189 }
190 
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193 	int i;
194 
195 	spin_lock_init(&queue->lock);
196 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 		INIT_LIST_HEAD(&queue->tasks[i]);
198 	queue->maxpriority = nr_queues - 1;
199 	rpc_reset_waitqueue_priority(queue);
200 	queue->qlen = 0;
201 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 	INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 	queue->name = qname;
205 #endif
206 }
207 
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
213 
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216 	__rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219 
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222 	del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225 
226 static int rpc_wait_bit_killable(void *word)
227 {
228 	if (fatal_signal_pending(current))
229 		return -ERESTARTSYS;
230 	schedule();
231 	return 0;
232 }
233 
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237 	static atomic_t rpc_pid;
238 
239 	task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246 
247 static void rpc_set_active(struct rpc_task *task)
248 {
249 	rpc_task_set_debuginfo(task);
250 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
251 }
252 
253 /*
254  * Mark an RPC call as having completed by clearing the 'active' bit
255  * and then waking up all tasks that were sleeping.
256  */
257 static int rpc_complete_task(struct rpc_task *task)
258 {
259 	void *m = &task->tk_runstate;
260 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
261 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
262 	unsigned long flags;
263 	int ret;
264 
265 	spin_lock_irqsave(&wq->lock, flags);
266 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
267 	ret = atomic_dec_and_test(&task->tk_count);
268 	if (waitqueue_active(wq))
269 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
270 	spin_unlock_irqrestore(&wq->lock, flags);
271 	return ret;
272 }
273 
274 /*
275  * Allow callers to wait for completion of an RPC call
276  *
277  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
278  * to enforce taking of the wq->lock and hence avoid races with
279  * rpc_complete_task().
280  */
281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
282 {
283 	if (action == NULL)
284 		action = rpc_wait_bit_killable;
285 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
286 			action, TASK_KILLABLE);
287 }
288 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
289 
290 /*
291  * Make an RPC task runnable.
292  *
293  * Note: If the task is ASYNC, this must be called with
294  * the spinlock held to protect the wait queue operation.
295  */
296 static void rpc_make_runnable(struct rpc_task *task)
297 {
298 	rpc_clear_queued(task);
299 	if (rpc_test_and_set_running(task))
300 		return;
301 	if (RPC_IS_ASYNC(task)) {
302 		int status;
303 
304 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
305 		status = queue_work(rpciod_workqueue, &task->u.tk_work);
306 		if (status < 0) {
307 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
308 			task->tk_status = status;
309 			return;
310 		}
311 	} else
312 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
313 }
314 
315 /*
316  * Prepare for sleeping on a wait queue.
317  * By always appending tasks to the list we ensure FIFO behavior.
318  * NB: An RPC task will only receive interrupt-driven events as long
319  * as it's on a wait queue.
320  */
321 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
322 			rpc_action action)
323 {
324 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325 			task->tk_pid, rpc_qname(q), jiffies);
326 
327 	__rpc_add_wait_queue(q, task);
328 
329 	BUG_ON(task->tk_callback != NULL);
330 	task->tk_callback = action;
331 	__rpc_add_timer(q, task);
332 }
333 
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 				rpc_action action)
336 {
337 	/* We shouldn't ever put an inactive task to sleep */
338 	BUG_ON(!RPC_IS_ACTIVATED(task));
339 
340 	/*
341 	 * Protect the queue operations.
342 	 */
343 	spin_lock_bh(&q->lock);
344 	__rpc_sleep_on(q, task, action);
345 	spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348 
349 /**
350  * __rpc_do_wake_up_task - wake up a single rpc_task
351  * @queue: wait queue
352  * @task: task to be woken up
353  *
354  * Caller must hold queue->lock, and have cleared the task queued flag.
355  */
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
357 {
358 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359 			task->tk_pid, jiffies);
360 
361 	/* Has the task been executed yet? If not, we cannot wake it up! */
362 	if (!RPC_IS_ACTIVATED(task)) {
363 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 		return;
365 	}
366 
367 	__rpc_remove_wait_queue(queue, task);
368 
369 	rpc_make_runnable(task);
370 
371 	dprintk("RPC:       __rpc_wake_up_task done\n");
372 }
373 
374 /*
375  * Wake up a queued task while the queue lock is being held
376  */
377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
378 {
379 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
380 		__rpc_do_wake_up_task(queue, task);
381 }
382 
383 /*
384  * Tests whether rpc queue is empty
385  */
386 int rpc_queue_empty(struct rpc_wait_queue *queue)
387 {
388 	int res;
389 
390 	spin_lock_bh(&queue->lock);
391 	res = queue->qlen;
392 	spin_unlock_bh(&queue->lock);
393 	return res == 0;
394 }
395 EXPORT_SYMBOL_GPL(rpc_queue_empty);
396 
397 /*
398  * Wake up a task on a specific queue
399  */
400 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
401 {
402 	spin_lock_bh(&queue->lock);
403 	rpc_wake_up_task_queue_locked(queue, task);
404 	spin_unlock_bh(&queue->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
407 
408 /*
409  * Wake up the next task on a priority queue.
410  */
411 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
412 {
413 	struct list_head *q;
414 	struct rpc_task *task;
415 
416 	/*
417 	 * Service a batch of tasks from a single owner.
418 	 */
419 	q = &queue->tasks[queue->priority];
420 	if (!list_empty(q)) {
421 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
422 		if (queue->owner == task->tk_owner) {
423 			if (--queue->nr)
424 				goto out;
425 			list_move_tail(&task->u.tk_wait.list, q);
426 		}
427 		/*
428 		 * Check if we need to switch queues.
429 		 */
430 		if (--queue->count)
431 			goto new_owner;
432 	}
433 
434 	/*
435 	 * Service the next queue.
436 	 */
437 	do {
438 		if (q == &queue->tasks[0])
439 			q = &queue->tasks[queue->maxpriority];
440 		else
441 			q = q - 1;
442 		if (!list_empty(q)) {
443 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
444 			goto new_queue;
445 		}
446 	} while (q != &queue->tasks[queue->priority]);
447 
448 	rpc_reset_waitqueue_priority(queue);
449 	return NULL;
450 
451 new_queue:
452 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
453 new_owner:
454 	rpc_set_waitqueue_owner(queue, task->tk_owner);
455 out:
456 	rpc_wake_up_task_queue_locked(queue, task);
457 	return task;
458 }
459 
460 /*
461  * Wake up the next task on the wait queue.
462  */
463 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
464 {
465 	struct rpc_task	*task = NULL;
466 
467 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
468 			queue, rpc_qname(queue));
469 	spin_lock_bh(&queue->lock);
470 	if (RPC_IS_PRIORITY(queue))
471 		task = __rpc_wake_up_next_priority(queue);
472 	else {
473 		task_for_first(task, &queue->tasks[0])
474 			rpc_wake_up_task_queue_locked(queue, task);
475 	}
476 	spin_unlock_bh(&queue->lock);
477 
478 	return task;
479 }
480 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
481 
482 /**
483  * rpc_wake_up - wake up all rpc_tasks
484  * @queue: rpc_wait_queue on which the tasks are sleeping
485  *
486  * Grabs queue->lock
487  */
488 void rpc_wake_up(struct rpc_wait_queue *queue)
489 {
490 	struct rpc_task *task, *next;
491 	struct list_head *head;
492 
493 	spin_lock_bh(&queue->lock);
494 	head = &queue->tasks[queue->maxpriority];
495 	for (;;) {
496 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
497 			rpc_wake_up_task_queue_locked(queue, task);
498 		if (head == &queue->tasks[0])
499 			break;
500 		head--;
501 	}
502 	spin_unlock_bh(&queue->lock);
503 }
504 EXPORT_SYMBOL_GPL(rpc_wake_up);
505 
506 /**
507  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
508  * @queue: rpc_wait_queue on which the tasks are sleeping
509  * @status: status value to set
510  *
511  * Grabs queue->lock
512  */
513 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
514 {
515 	struct rpc_task *task, *next;
516 	struct list_head *head;
517 
518 	spin_lock_bh(&queue->lock);
519 	head = &queue->tasks[queue->maxpriority];
520 	for (;;) {
521 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
522 			task->tk_status = status;
523 			rpc_wake_up_task_queue_locked(queue, task);
524 		}
525 		if (head == &queue->tasks[0])
526 			break;
527 		head--;
528 	}
529 	spin_unlock_bh(&queue->lock);
530 }
531 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
532 
533 static void __rpc_queue_timer_fn(unsigned long ptr)
534 {
535 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
536 	struct rpc_task *task, *n;
537 	unsigned long expires, now, timeo;
538 
539 	spin_lock(&queue->lock);
540 	expires = now = jiffies;
541 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
542 		timeo = task->u.tk_wait.expires;
543 		if (time_after_eq(now, timeo)) {
544 			dprintk("RPC: %5u timeout\n", task->tk_pid);
545 			task->tk_status = -ETIMEDOUT;
546 			rpc_wake_up_task_queue_locked(queue, task);
547 			continue;
548 		}
549 		if (expires == now || time_after(expires, timeo))
550 			expires = timeo;
551 	}
552 	if (!list_empty(&queue->timer_list.list))
553 		rpc_set_queue_timer(queue, expires);
554 	spin_unlock(&queue->lock);
555 }
556 
557 static void __rpc_atrun(struct rpc_task *task)
558 {
559 	task->tk_status = 0;
560 }
561 
562 /*
563  * Run a task at a later time
564  */
565 void rpc_delay(struct rpc_task *task, unsigned long delay)
566 {
567 	task->tk_timeout = delay;
568 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
569 }
570 EXPORT_SYMBOL_GPL(rpc_delay);
571 
572 /*
573  * Helper to call task->tk_ops->rpc_call_prepare
574  */
575 void rpc_prepare_task(struct rpc_task *task)
576 {
577 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
578 }
579 
580 /*
581  * Helper that calls task->tk_ops->rpc_call_done if it exists
582  */
583 void rpc_exit_task(struct rpc_task *task)
584 {
585 	task->tk_action = NULL;
586 	if (task->tk_ops->rpc_call_done != NULL) {
587 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
588 		if (task->tk_action != NULL) {
589 			WARN_ON(RPC_ASSASSINATED(task));
590 			/* Always release the RPC slot and buffer memory */
591 			xprt_release(task);
592 		}
593 	}
594 }
595 
596 void rpc_exit(struct rpc_task *task, int status)
597 {
598 	task->tk_status = status;
599 	task->tk_action = rpc_exit_task;
600 	if (RPC_IS_QUEUED(task))
601 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
602 }
603 EXPORT_SYMBOL_GPL(rpc_exit);
604 
605 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
606 {
607 	if (ops->rpc_release != NULL)
608 		ops->rpc_release(calldata);
609 }
610 
611 /*
612  * This is the RPC `scheduler' (or rather, the finite state machine).
613  */
614 static void __rpc_execute(struct rpc_task *task)
615 {
616 	struct rpc_wait_queue *queue;
617 	int task_is_async = RPC_IS_ASYNC(task);
618 	int status = 0;
619 
620 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621 			task->tk_pid, task->tk_flags);
622 
623 	BUG_ON(RPC_IS_QUEUED(task));
624 
625 	for (;;) {
626 
627 		/*
628 		 * Execute any pending callback.
629 		 */
630 		if (task->tk_callback) {
631 			void (*save_callback)(struct rpc_task *);
632 
633 			/*
634 			 * We set tk_callback to NULL before calling it,
635 			 * in case it sets the tk_callback field itself:
636 			 */
637 			save_callback = task->tk_callback;
638 			task->tk_callback = NULL;
639 			save_callback(task);
640 		}
641 
642 		/*
643 		 * Perform the next FSM step.
644 		 * tk_action may be NULL when the task has been killed
645 		 * by someone else.
646 		 */
647 		if (!RPC_IS_QUEUED(task)) {
648 			if (task->tk_action == NULL)
649 				break;
650 			task->tk_action(task);
651 		}
652 
653 		/*
654 		 * Lockless check for whether task is sleeping or not.
655 		 */
656 		if (!RPC_IS_QUEUED(task))
657 			continue;
658 		/*
659 		 * The queue->lock protects against races with
660 		 * rpc_make_runnable().
661 		 *
662 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
663 		 * rpc_task, rpc_make_runnable() can assign it to a
664 		 * different workqueue. We therefore cannot assume that the
665 		 * rpc_task pointer may still be dereferenced.
666 		 */
667 		queue = task->tk_waitqueue;
668 		spin_lock_bh(&queue->lock);
669 		if (!RPC_IS_QUEUED(task)) {
670 			spin_unlock_bh(&queue->lock);
671 			continue;
672 		}
673 		rpc_clear_running(task);
674 		spin_unlock_bh(&queue->lock);
675 		if (task_is_async)
676 			return;
677 
678 		/* sync task: sleep here */
679 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
680 		status = out_of_line_wait_on_bit(&task->tk_runstate,
681 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
682 				TASK_KILLABLE);
683 		if (status == -ERESTARTSYS) {
684 			/*
685 			 * When a sync task receives a signal, it exits with
686 			 * -ERESTARTSYS. In order to catch any callbacks that
687 			 * clean up after sleeping on some queue, we don't
688 			 * break the loop here, but go around once more.
689 			 */
690 			dprintk("RPC: %5u got signal\n", task->tk_pid);
691 			task->tk_flags |= RPC_TASK_KILLED;
692 			rpc_exit(task, -ERESTARTSYS);
693 		}
694 		rpc_set_running(task);
695 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
696 	}
697 
698 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
699 			task->tk_status);
700 	/* Release all resources associated with the task */
701 	rpc_release_task(task);
702 }
703 
704 /*
705  * User-visible entry point to the scheduler.
706  *
707  * This may be called recursively if e.g. an async NFS task updates
708  * the attributes and finds that dirty pages must be flushed.
709  * NOTE: Upon exit of this function the task is guaranteed to be
710  *	 released. In particular note that tk_release() will have
711  *	 been called, so your task memory may have been freed.
712  */
713 void rpc_execute(struct rpc_task *task)
714 {
715 	rpc_set_active(task);
716 	rpc_make_runnable(task);
717 	if (!RPC_IS_ASYNC(task))
718 		__rpc_execute(task);
719 }
720 
721 static void rpc_async_schedule(struct work_struct *work)
722 {
723 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
724 }
725 
726 /**
727  * rpc_malloc - allocate an RPC buffer
728  * @task: RPC task that will use this buffer
729  * @size: requested byte size
730  *
731  * To prevent rpciod from hanging, this allocator never sleeps,
732  * returning NULL if the request cannot be serviced immediately.
733  * The caller can arrange to sleep in a way that is safe for rpciod.
734  *
735  * Most requests are 'small' (under 2KiB) and can be serviced from a
736  * mempool, ensuring that NFS reads and writes can always proceed,
737  * and that there is good locality of reference for these buffers.
738  *
739  * In order to avoid memory starvation triggering more writebacks of
740  * NFS requests, we avoid using GFP_KERNEL.
741  */
742 void *rpc_malloc(struct rpc_task *task, size_t size)
743 {
744 	struct rpc_buffer *buf;
745 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
746 
747 	size += sizeof(struct rpc_buffer);
748 	if (size <= RPC_BUFFER_MAXSIZE)
749 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
750 	else
751 		buf = kmalloc(size, gfp);
752 
753 	if (!buf)
754 		return NULL;
755 
756 	buf->len = size;
757 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
758 			task->tk_pid, size, buf);
759 	return &buf->data;
760 }
761 EXPORT_SYMBOL_GPL(rpc_malloc);
762 
763 /**
764  * rpc_free - free buffer allocated via rpc_malloc
765  * @buffer: buffer to free
766  *
767  */
768 void rpc_free(void *buffer)
769 {
770 	size_t size;
771 	struct rpc_buffer *buf;
772 
773 	if (!buffer)
774 		return;
775 
776 	buf = container_of(buffer, struct rpc_buffer, data);
777 	size = buf->len;
778 
779 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
780 			size, buf);
781 
782 	if (size <= RPC_BUFFER_MAXSIZE)
783 		mempool_free(buf, rpc_buffer_mempool);
784 	else
785 		kfree(buf);
786 }
787 EXPORT_SYMBOL_GPL(rpc_free);
788 
789 /*
790  * Creation and deletion of RPC task structures
791  */
792 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
793 {
794 	memset(task, 0, sizeof(*task));
795 	atomic_set(&task->tk_count, 1);
796 	task->tk_flags  = task_setup_data->flags;
797 	task->tk_ops = task_setup_data->callback_ops;
798 	task->tk_calldata = task_setup_data->callback_data;
799 	INIT_LIST_HEAD(&task->tk_task);
800 
801 	/* Initialize retry counters */
802 	task->tk_garb_retry = 2;
803 	task->tk_cred_retry = 2;
804 
805 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
806 	task->tk_owner = current->tgid;
807 
808 	/* Initialize workqueue for async tasks */
809 	task->tk_workqueue = task_setup_data->workqueue;
810 
811 	if (task->tk_ops->rpc_call_prepare != NULL)
812 		task->tk_action = rpc_prepare_task;
813 
814 	/* starting timestamp */
815 	task->tk_start = ktime_get();
816 
817 	dprintk("RPC:       new task initialized, procpid %u\n",
818 				task_pid_nr(current));
819 }
820 
821 static struct rpc_task *
822 rpc_alloc_task(void)
823 {
824 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
825 }
826 
827 /*
828  * Create a new task for the specified client.
829  */
830 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
831 {
832 	struct rpc_task	*task = setup_data->task;
833 	unsigned short flags = 0;
834 
835 	if (task == NULL) {
836 		task = rpc_alloc_task();
837 		if (task == NULL) {
838 			rpc_release_calldata(setup_data->callback_ops,
839 					setup_data->callback_data);
840 			return ERR_PTR(-ENOMEM);
841 		}
842 		flags = RPC_TASK_DYNAMIC;
843 	}
844 
845 	rpc_init_task(task, setup_data);
846 	if (task->tk_status < 0) {
847 		int err = task->tk_status;
848 		rpc_put_task(task);
849 		return ERR_PTR(err);
850 	}
851 
852 	task->tk_flags |= flags;
853 	dprintk("RPC:       allocated task %p\n", task);
854 	return task;
855 }
856 
857 static void rpc_free_task(struct rpc_task *task)
858 {
859 	const struct rpc_call_ops *tk_ops = task->tk_ops;
860 	void *calldata = task->tk_calldata;
861 
862 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
863 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
864 		mempool_free(task, rpc_task_mempool);
865 	}
866 	rpc_release_calldata(tk_ops, calldata);
867 }
868 
869 static void rpc_async_release(struct work_struct *work)
870 {
871 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
872 }
873 
874 static void rpc_release_resources_task(struct rpc_task *task)
875 {
876 	if (task->tk_rqstp)
877 		xprt_release(task);
878 	if (task->tk_msg.rpc_cred)
879 		put_rpccred(task->tk_msg.rpc_cred);
880 	rpc_task_release_client(task);
881 }
882 
883 static void rpc_final_put_task(struct rpc_task *task,
884 		struct workqueue_struct *q)
885 {
886 	if (q != NULL) {
887 		INIT_WORK(&task->u.tk_work, rpc_async_release);
888 		queue_work(q, &task->u.tk_work);
889 	} else
890 		rpc_free_task(task);
891 }
892 
893 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
894 {
895 	if (atomic_dec_and_test(&task->tk_count)) {
896 		rpc_release_resources_task(task);
897 		rpc_final_put_task(task, q);
898 	}
899 }
900 
901 void rpc_put_task(struct rpc_task *task)
902 {
903 	rpc_do_put_task(task, NULL);
904 }
905 EXPORT_SYMBOL_GPL(rpc_put_task);
906 
907 void rpc_put_task_async(struct rpc_task *task)
908 {
909 	rpc_do_put_task(task, task->tk_workqueue);
910 }
911 EXPORT_SYMBOL_GPL(rpc_put_task_async);
912 
913 static void rpc_release_task(struct rpc_task *task)
914 {
915 	dprintk("RPC: %5u release task\n", task->tk_pid);
916 
917 	BUG_ON (RPC_IS_QUEUED(task));
918 
919 	rpc_release_resources_task(task);
920 
921 	/*
922 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
923 	 * so it should be safe to use task->tk_count as a test for whether
924 	 * or not any other processes still hold references to our rpc_task.
925 	 */
926 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
927 		/* Wake up anyone who may be waiting for task completion */
928 		if (!rpc_complete_task(task))
929 			return;
930 	} else {
931 		if (!atomic_dec_and_test(&task->tk_count))
932 			return;
933 	}
934 	rpc_final_put_task(task, task->tk_workqueue);
935 }
936 
937 int rpciod_up(void)
938 {
939 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
940 }
941 
942 void rpciod_down(void)
943 {
944 	module_put(THIS_MODULE);
945 }
946 
947 /*
948  * Start up the rpciod workqueue.
949  */
950 static int rpciod_start(void)
951 {
952 	struct workqueue_struct *wq;
953 
954 	/*
955 	 * Create the rpciod thread and wait for it to start.
956 	 */
957 	dprintk("RPC:       creating workqueue rpciod\n");
958 	wq = alloc_workqueue("rpciod", WQ_RESCUER, 0);
959 	rpciod_workqueue = wq;
960 	return rpciod_workqueue != NULL;
961 }
962 
963 static void rpciod_stop(void)
964 {
965 	struct workqueue_struct *wq = NULL;
966 
967 	if (rpciod_workqueue == NULL)
968 		return;
969 	dprintk("RPC:       destroying workqueue rpciod\n");
970 
971 	wq = rpciod_workqueue;
972 	rpciod_workqueue = NULL;
973 	destroy_workqueue(wq);
974 }
975 
976 void
977 rpc_destroy_mempool(void)
978 {
979 	rpciod_stop();
980 	if (rpc_buffer_mempool)
981 		mempool_destroy(rpc_buffer_mempool);
982 	if (rpc_task_mempool)
983 		mempool_destroy(rpc_task_mempool);
984 	if (rpc_task_slabp)
985 		kmem_cache_destroy(rpc_task_slabp);
986 	if (rpc_buffer_slabp)
987 		kmem_cache_destroy(rpc_buffer_slabp);
988 	rpc_destroy_wait_queue(&delay_queue);
989 }
990 
991 int
992 rpc_init_mempool(void)
993 {
994 	/*
995 	 * The following is not strictly a mempool initialisation,
996 	 * but there is no harm in doing it here
997 	 */
998 	rpc_init_wait_queue(&delay_queue, "delayq");
999 	if (!rpciod_start())
1000 		goto err_nomem;
1001 
1002 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1003 					     sizeof(struct rpc_task),
1004 					     0, SLAB_HWCACHE_ALIGN,
1005 					     NULL);
1006 	if (!rpc_task_slabp)
1007 		goto err_nomem;
1008 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1009 					     RPC_BUFFER_MAXSIZE,
1010 					     0, SLAB_HWCACHE_ALIGN,
1011 					     NULL);
1012 	if (!rpc_buffer_slabp)
1013 		goto err_nomem;
1014 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1015 						    rpc_task_slabp);
1016 	if (!rpc_task_mempool)
1017 		goto err_nomem;
1018 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1019 						      rpc_buffer_slabp);
1020 	if (!rpc_buffer_mempool)
1021 		goto err_nomem;
1022 	return 0;
1023 err_nomem:
1024 	rpc_destroy_mempool();
1025 	return -ENOMEM;
1026 }
1027