1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/sched.c 4 * 5 * Scheduling for synchronous and asynchronous RPC requests. 6 * 7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 8 * 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 */ 12 13 #include <linux/module.h> 14 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/mempool.h> 19 #include <linux/smp.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 #include <linux/freezer.h> 23 #include <linux/sched/mm.h> 24 25 #include <linux/sunrpc/clnt.h> 26 #include <linux/sunrpc/metrics.h> 27 28 #include "sunrpc.h" 29 30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 31 #define RPCDBG_FACILITY RPCDBG_SCHED 32 #endif 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/sunrpc.h> 36 37 /* 38 * RPC slabs and memory pools 39 */ 40 #define RPC_BUFFER_MAXSIZE (2048) 41 #define RPC_BUFFER_POOLSIZE (8) 42 #define RPC_TASK_POOLSIZE (8) 43 static struct kmem_cache *rpc_task_slabp __read_mostly; 44 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 45 static mempool_t *rpc_task_mempool __read_mostly; 46 static mempool_t *rpc_buffer_mempool __read_mostly; 47 48 static void rpc_async_schedule(struct work_struct *); 49 static void rpc_release_task(struct rpc_task *task); 50 static void __rpc_queue_timer_fn(struct work_struct *); 51 52 /* 53 * RPC tasks sit here while waiting for conditions to improve. 54 */ 55 static struct rpc_wait_queue delay_queue; 56 57 /* 58 * rpciod-related stuff 59 */ 60 struct workqueue_struct *rpciod_workqueue __read_mostly; 61 struct workqueue_struct *xprtiod_workqueue __read_mostly; 62 EXPORT_SYMBOL_GPL(xprtiod_workqueue); 63 64 unsigned long 65 rpc_task_timeout(const struct rpc_task *task) 66 { 67 unsigned long timeout = READ_ONCE(task->tk_timeout); 68 69 if (timeout != 0) { 70 unsigned long now = jiffies; 71 if (time_before(now, timeout)) 72 return timeout - now; 73 } 74 return 0; 75 } 76 EXPORT_SYMBOL_GPL(rpc_task_timeout); 77 78 /* 79 * Disable the timer for a given RPC task. Should be called with 80 * queue->lock and bh_disabled in order to avoid races within 81 * rpc_run_timer(). 82 */ 83 static void 84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 85 { 86 if (list_empty(&task->u.tk_wait.timer_list)) 87 return; 88 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 89 task->tk_timeout = 0; 90 list_del(&task->u.tk_wait.timer_list); 91 if (list_empty(&queue->timer_list.list)) 92 cancel_delayed_work(&queue->timer_list.dwork); 93 } 94 95 static void 96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 97 { 98 unsigned long now = jiffies; 99 queue->timer_list.expires = expires; 100 if (time_before_eq(expires, now)) 101 expires = 0; 102 else 103 expires -= now; 104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires); 105 } 106 107 /* 108 * Set up a timer for the current task. 109 */ 110 static void 111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 112 unsigned long timeout) 113 { 114 dprintk("RPC: %5u setting alarm for %u ms\n", 115 task->tk_pid, jiffies_to_msecs(timeout - jiffies)); 116 117 task->tk_timeout = timeout; 118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires)) 119 rpc_set_queue_timer(queue, timeout); 120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 121 } 122 123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 124 { 125 if (queue->priority != priority) { 126 queue->priority = priority; 127 queue->nr = 1U << priority; 128 } 129 } 130 131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 132 { 133 rpc_set_waitqueue_priority(queue, queue->maxpriority); 134 } 135 136 /* 137 * Add a request to a queue list 138 */ 139 static void 140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 141 { 142 struct rpc_task *t; 143 144 list_for_each_entry(t, q, u.tk_wait.list) { 145 if (t->tk_owner == task->tk_owner) { 146 list_add_tail(&task->u.tk_wait.links, 147 &t->u.tk_wait.links); 148 /* Cache the queue head in task->u.tk_wait.list */ 149 task->u.tk_wait.list.next = q; 150 task->u.tk_wait.list.prev = NULL; 151 return; 152 } 153 } 154 INIT_LIST_HEAD(&task->u.tk_wait.links); 155 list_add_tail(&task->u.tk_wait.list, q); 156 } 157 158 /* 159 * Remove request from a queue list 160 */ 161 static void 162 __rpc_list_dequeue_task(struct rpc_task *task) 163 { 164 struct list_head *q; 165 struct rpc_task *t; 166 167 if (task->u.tk_wait.list.prev == NULL) { 168 list_del(&task->u.tk_wait.links); 169 return; 170 } 171 if (!list_empty(&task->u.tk_wait.links)) { 172 t = list_first_entry(&task->u.tk_wait.links, 173 struct rpc_task, 174 u.tk_wait.links); 175 /* Assume __rpc_list_enqueue_task() cached the queue head */ 176 q = t->u.tk_wait.list.next; 177 list_add_tail(&t->u.tk_wait.list, q); 178 list_del(&task->u.tk_wait.links); 179 } 180 list_del(&task->u.tk_wait.list); 181 } 182 183 /* 184 * Add new request to a priority queue. 185 */ 186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 187 struct rpc_task *task, 188 unsigned char queue_priority) 189 { 190 if (unlikely(queue_priority > queue->maxpriority)) 191 queue_priority = queue->maxpriority; 192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 193 } 194 195 /* 196 * Add new request to wait queue. 197 * 198 * Swapper tasks always get inserted at the head of the queue. 199 * This should avoid many nasty memory deadlocks and hopefully 200 * improve overall performance. 201 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 202 */ 203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 204 struct rpc_task *task, 205 unsigned char queue_priority) 206 { 207 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 208 if (RPC_IS_PRIORITY(queue)) 209 __rpc_add_wait_queue_priority(queue, task, queue_priority); 210 else if (RPC_IS_SWAPPER(task)) 211 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 212 else 213 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 214 task->tk_waitqueue = queue; 215 queue->qlen++; 216 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 217 smp_wmb(); 218 rpc_set_queued(task); 219 220 dprintk("RPC: %5u added to queue %p \"%s\"\n", 221 task->tk_pid, queue, rpc_qname(queue)); 222 } 223 224 /* 225 * Remove request from a priority queue. 226 */ 227 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 228 { 229 __rpc_list_dequeue_task(task); 230 } 231 232 /* 233 * Remove request from queue. 234 * Note: must be called with spin lock held. 235 */ 236 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 237 { 238 __rpc_disable_timer(queue, task); 239 if (RPC_IS_PRIORITY(queue)) 240 __rpc_remove_wait_queue_priority(task); 241 else 242 list_del(&task->u.tk_wait.list); 243 queue->qlen--; 244 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 245 task->tk_pid, queue, rpc_qname(queue)); 246 } 247 248 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 249 { 250 int i; 251 252 spin_lock_init(&queue->lock); 253 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 254 INIT_LIST_HEAD(&queue->tasks[i]); 255 queue->maxpriority = nr_queues - 1; 256 rpc_reset_waitqueue_priority(queue); 257 queue->qlen = 0; 258 queue->timer_list.expires = 0; 259 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn); 260 INIT_LIST_HEAD(&queue->timer_list.list); 261 rpc_assign_waitqueue_name(queue, qname); 262 } 263 264 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 265 { 266 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 267 } 268 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 269 270 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 271 { 272 __rpc_init_priority_wait_queue(queue, qname, 1); 273 } 274 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 275 276 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 277 { 278 cancel_delayed_work_sync(&queue->timer_list.dwork); 279 } 280 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 281 282 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 283 { 284 freezable_schedule_unsafe(); 285 if (signal_pending_state(mode, current)) 286 return -ERESTARTSYS; 287 return 0; 288 } 289 290 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 291 static void rpc_task_set_debuginfo(struct rpc_task *task) 292 { 293 static atomic_t rpc_pid; 294 295 task->tk_pid = atomic_inc_return(&rpc_pid); 296 } 297 #else 298 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 299 { 300 } 301 #endif 302 303 static void rpc_set_active(struct rpc_task *task) 304 { 305 rpc_task_set_debuginfo(task); 306 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 307 trace_rpc_task_begin(task, NULL); 308 } 309 310 /* 311 * Mark an RPC call as having completed by clearing the 'active' bit 312 * and then waking up all tasks that were sleeping. 313 */ 314 static int rpc_complete_task(struct rpc_task *task) 315 { 316 void *m = &task->tk_runstate; 317 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 318 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 319 unsigned long flags; 320 int ret; 321 322 trace_rpc_task_complete(task, NULL); 323 324 spin_lock_irqsave(&wq->lock, flags); 325 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 326 ret = atomic_dec_and_test(&task->tk_count); 327 if (waitqueue_active(wq)) 328 __wake_up_locked_key(wq, TASK_NORMAL, &k); 329 spin_unlock_irqrestore(&wq->lock, flags); 330 return ret; 331 } 332 333 /* 334 * Allow callers to wait for completion of an RPC call 335 * 336 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 337 * to enforce taking of the wq->lock and hence avoid races with 338 * rpc_complete_task(). 339 */ 340 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 341 { 342 if (action == NULL) 343 action = rpc_wait_bit_killable; 344 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 345 action, TASK_KILLABLE); 346 } 347 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 348 349 /* 350 * Make an RPC task runnable. 351 * 352 * Note: If the task is ASYNC, and is being made runnable after sitting on an 353 * rpc_wait_queue, this must be called with the queue spinlock held to protect 354 * the wait queue operation. 355 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 356 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 357 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 358 * the RPC_TASK_RUNNING flag. 359 */ 360 static void rpc_make_runnable(struct workqueue_struct *wq, 361 struct rpc_task *task) 362 { 363 bool need_wakeup = !rpc_test_and_set_running(task); 364 365 rpc_clear_queued(task); 366 if (!need_wakeup) 367 return; 368 if (RPC_IS_ASYNC(task)) { 369 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 370 queue_work(wq, &task->u.tk_work); 371 } else 372 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 373 } 374 375 /* 376 * Prepare for sleeping on a wait queue. 377 * By always appending tasks to the list we ensure FIFO behavior. 378 * NB: An RPC task will only receive interrupt-driven events as long 379 * as it's on a wait queue. 380 */ 381 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q, 382 struct rpc_task *task, 383 unsigned char queue_priority) 384 { 385 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 386 task->tk_pid, rpc_qname(q), jiffies); 387 388 trace_rpc_task_sleep(task, q); 389 390 __rpc_add_wait_queue(q, task, queue_priority); 391 392 } 393 394 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 395 struct rpc_task *task, 396 unsigned char queue_priority) 397 { 398 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 399 return; 400 __rpc_do_sleep_on_priority(q, task, queue_priority); 401 } 402 403 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 404 struct rpc_task *task, unsigned long timeout, 405 unsigned char queue_priority) 406 { 407 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 408 return; 409 if (time_is_after_jiffies(timeout)) { 410 __rpc_do_sleep_on_priority(q, task, queue_priority); 411 __rpc_add_timer(q, task, timeout); 412 } else 413 task->tk_status = -ETIMEDOUT; 414 } 415 416 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 417 { 418 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 419 task->tk_callback = action; 420 } 421 422 static bool rpc_sleep_check_activated(struct rpc_task *task) 423 { 424 /* We shouldn't ever put an inactive task to sleep */ 425 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 426 task->tk_status = -EIO; 427 rpc_put_task_async(task); 428 return false; 429 } 430 return true; 431 } 432 433 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 434 rpc_action action, unsigned long timeout) 435 { 436 if (!rpc_sleep_check_activated(task)) 437 return; 438 439 rpc_set_tk_callback(task, action); 440 441 /* 442 * Protect the queue operations. 443 */ 444 spin_lock(&q->lock); 445 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 446 spin_unlock(&q->lock); 447 } 448 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 449 450 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 451 rpc_action action) 452 { 453 if (!rpc_sleep_check_activated(task)) 454 return; 455 456 rpc_set_tk_callback(task, action); 457 458 WARN_ON_ONCE(task->tk_timeout != 0); 459 /* 460 * Protect the queue operations. 461 */ 462 spin_lock(&q->lock); 463 __rpc_sleep_on_priority(q, task, task->tk_priority); 464 spin_unlock(&q->lock); 465 } 466 EXPORT_SYMBOL_GPL(rpc_sleep_on); 467 468 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 469 struct rpc_task *task, unsigned long timeout, int priority) 470 { 471 if (!rpc_sleep_check_activated(task)) 472 return; 473 474 priority -= RPC_PRIORITY_LOW; 475 /* 476 * Protect the queue operations. 477 */ 478 spin_lock(&q->lock); 479 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 480 spin_unlock(&q->lock); 481 } 482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 483 484 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 485 int priority) 486 { 487 if (!rpc_sleep_check_activated(task)) 488 return; 489 490 WARN_ON_ONCE(task->tk_timeout != 0); 491 priority -= RPC_PRIORITY_LOW; 492 /* 493 * Protect the queue operations. 494 */ 495 spin_lock(&q->lock); 496 __rpc_sleep_on_priority(q, task, priority); 497 spin_unlock(&q->lock); 498 } 499 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 500 501 /** 502 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 503 * @wq: workqueue on which to run task 504 * @queue: wait queue 505 * @task: task to be woken up 506 * 507 * Caller must hold queue->lock, and have cleared the task queued flag. 508 */ 509 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 510 struct rpc_wait_queue *queue, 511 struct rpc_task *task) 512 { 513 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 514 task->tk_pid, jiffies); 515 516 /* Has the task been executed yet? If not, we cannot wake it up! */ 517 if (!RPC_IS_ACTIVATED(task)) { 518 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 519 return; 520 } 521 522 trace_rpc_task_wakeup(task, queue); 523 524 __rpc_remove_wait_queue(queue, task); 525 526 rpc_make_runnable(wq, task); 527 528 dprintk("RPC: __rpc_wake_up_task done\n"); 529 } 530 531 /* 532 * Wake up a queued task while the queue lock is being held 533 */ 534 static struct rpc_task * 535 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 536 struct rpc_wait_queue *queue, struct rpc_task *task, 537 bool (*action)(struct rpc_task *, void *), void *data) 538 { 539 if (RPC_IS_QUEUED(task)) { 540 smp_rmb(); 541 if (task->tk_waitqueue == queue) { 542 if (action == NULL || action(task, data)) { 543 __rpc_do_wake_up_task_on_wq(wq, queue, task); 544 return task; 545 } 546 } 547 } 548 return NULL; 549 } 550 551 /* 552 * Wake up a queued task while the queue lock is being held 553 */ 554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, 555 struct rpc_task *task) 556 { 557 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 558 task, NULL, NULL); 559 } 560 561 /* 562 * Wake up a task on a specific queue 563 */ 564 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 565 { 566 if (!RPC_IS_QUEUED(task)) 567 return; 568 spin_lock(&queue->lock); 569 rpc_wake_up_task_queue_locked(queue, task); 570 spin_unlock(&queue->lock); 571 } 572 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 573 574 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 575 { 576 task->tk_status = *(int *)status; 577 return true; 578 } 579 580 static void 581 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 582 struct rpc_task *task, int status) 583 { 584 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 585 task, rpc_task_action_set_status, &status); 586 } 587 588 /** 589 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 590 * @queue: pointer to rpc_wait_queue 591 * @task: pointer to rpc_task 592 * @status: integer error value 593 * 594 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 595 * set to the value of @status. 596 */ 597 void 598 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 599 struct rpc_task *task, int status) 600 { 601 if (!RPC_IS_QUEUED(task)) 602 return; 603 spin_lock(&queue->lock); 604 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 605 spin_unlock(&queue->lock); 606 } 607 608 /* 609 * Wake up the next task on a priority queue. 610 */ 611 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 612 { 613 struct list_head *q; 614 struct rpc_task *task; 615 616 /* 617 * Service a batch of tasks from a single owner. 618 */ 619 q = &queue->tasks[queue->priority]; 620 if (!list_empty(q) && --queue->nr) { 621 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 622 goto out; 623 } 624 625 /* 626 * Service the next queue. 627 */ 628 do { 629 if (q == &queue->tasks[0]) 630 q = &queue->tasks[queue->maxpriority]; 631 else 632 q = q - 1; 633 if (!list_empty(q)) { 634 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 635 goto new_queue; 636 } 637 } while (q != &queue->tasks[queue->priority]); 638 639 rpc_reset_waitqueue_priority(queue); 640 return NULL; 641 642 new_queue: 643 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 644 out: 645 return task; 646 } 647 648 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 649 { 650 if (RPC_IS_PRIORITY(queue)) 651 return __rpc_find_next_queued_priority(queue); 652 if (!list_empty(&queue->tasks[0])) 653 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 654 return NULL; 655 } 656 657 /* 658 * Wake up the first task on the wait queue. 659 */ 660 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 661 struct rpc_wait_queue *queue, 662 bool (*func)(struct rpc_task *, void *), void *data) 663 { 664 struct rpc_task *task = NULL; 665 666 dprintk("RPC: wake_up_first(%p \"%s\")\n", 667 queue, rpc_qname(queue)); 668 spin_lock(&queue->lock); 669 task = __rpc_find_next_queued(queue); 670 if (task != NULL) 671 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 672 task, func, data); 673 spin_unlock(&queue->lock); 674 675 return task; 676 } 677 678 /* 679 * Wake up the first task on the wait queue. 680 */ 681 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 682 bool (*func)(struct rpc_task *, void *), void *data) 683 { 684 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 685 } 686 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 687 688 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 689 { 690 return true; 691 } 692 693 /* 694 * Wake up the next task on the wait queue. 695 */ 696 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 697 { 698 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 699 } 700 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 701 702 /** 703 * rpc_wake_up - wake up all rpc_tasks 704 * @queue: rpc_wait_queue on which the tasks are sleeping 705 * 706 * Grabs queue->lock 707 */ 708 void rpc_wake_up(struct rpc_wait_queue *queue) 709 { 710 struct list_head *head; 711 712 spin_lock(&queue->lock); 713 head = &queue->tasks[queue->maxpriority]; 714 for (;;) { 715 while (!list_empty(head)) { 716 struct rpc_task *task; 717 task = list_first_entry(head, 718 struct rpc_task, 719 u.tk_wait.list); 720 rpc_wake_up_task_queue_locked(queue, task); 721 } 722 if (head == &queue->tasks[0]) 723 break; 724 head--; 725 } 726 spin_unlock(&queue->lock); 727 } 728 EXPORT_SYMBOL_GPL(rpc_wake_up); 729 730 /** 731 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 732 * @queue: rpc_wait_queue on which the tasks are sleeping 733 * @status: status value to set 734 * 735 * Grabs queue->lock 736 */ 737 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 738 { 739 struct list_head *head; 740 741 spin_lock(&queue->lock); 742 head = &queue->tasks[queue->maxpriority]; 743 for (;;) { 744 while (!list_empty(head)) { 745 struct rpc_task *task; 746 task = list_first_entry(head, 747 struct rpc_task, 748 u.tk_wait.list); 749 task->tk_status = status; 750 rpc_wake_up_task_queue_locked(queue, task); 751 } 752 if (head == &queue->tasks[0]) 753 break; 754 head--; 755 } 756 spin_unlock(&queue->lock); 757 } 758 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 759 760 static void __rpc_queue_timer_fn(struct work_struct *work) 761 { 762 struct rpc_wait_queue *queue = container_of(work, 763 struct rpc_wait_queue, 764 timer_list.dwork.work); 765 struct rpc_task *task, *n; 766 unsigned long expires, now, timeo; 767 768 spin_lock(&queue->lock); 769 expires = now = jiffies; 770 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 771 timeo = task->tk_timeout; 772 if (time_after_eq(now, timeo)) { 773 dprintk("RPC: %5u timeout\n", task->tk_pid); 774 task->tk_status = -ETIMEDOUT; 775 rpc_wake_up_task_queue_locked(queue, task); 776 continue; 777 } 778 if (expires == now || time_after(expires, timeo)) 779 expires = timeo; 780 } 781 if (!list_empty(&queue->timer_list.list)) 782 rpc_set_queue_timer(queue, expires); 783 spin_unlock(&queue->lock); 784 } 785 786 static void __rpc_atrun(struct rpc_task *task) 787 { 788 if (task->tk_status == -ETIMEDOUT) 789 task->tk_status = 0; 790 } 791 792 /* 793 * Run a task at a later time 794 */ 795 void rpc_delay(struct rpc_task *task, unsigned long delay) 796 { 797 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 798 } 799 EXPORT_SYMBOL_GPL(rpc_delay); 800 801 /* 802 * Helper to call task->tk_ops->rpc_call_prepare 803 */ 804 void rpc_prepare_task(struct rpc_task *task) 805 { 806 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 807 } 808 809 static void 810 rpc_init_task_statistics(struct rpc_task *task) 811 { 812 /* Initialize retry counters */ 813 task->tk_garb_retry = 2; 814 task->tk_cred_retry = 2; 815 task->tk_rebind_retry = 2; 816 817 /* starting timestamp */ 818 task->tk_start = ktime_get(); 819 } 820 821 static void 822 rpc_reset_task_statistics(struct rpc_task *task) 823 { 824 task->tk_timeouts = 0; 825 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 826 rpc_init_task_statistics(task); 827 } 828 829 /* 830 * Helper that calls task->tk_ops->rpc_call_done if it exists 831 */ 832 void rpc_exit_task(struct rpc_task *task) 833 { 834 trace_rpc_task_end(task, task->tk_action); 835 task->tk_action = NULL; 836 if (task->tk_ops->rpc_count_stats) 837 task->tk_ops->rpc_count_stats(task, task->tk_calldata); 838 else if (task->tk_client) 839 rpc_count_iostats(task, task->tk_client->cl_metrics); 840 if (task->tk_ops->rpc_call_done != NULL) { 841 task->tk_ops->rpc_call_done(task, task->tk_calldata); 842 if (task->tk_action != NULL) { 843 /* Always release the RPC slot and buffer memory */ 844 xprt_release(task); 845 rpc_reset_task_statistics(task); 846 } 847 } 848 } 849 850 void rpc_signal_task(struct rpc_task *task) 851 { 852 struct rpc_wait_queue *queue; 853 854 if (!RPC_IS_ACTIVATED(task)) 855 return; 856 857 trace_rpc_task_signalled(task, task->tk_action); 858 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 859 smp_mb__after_atomic(); 860 queue = READ_ONCE(task->tk_waitqueue); 861 if (queue) 862 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS); 863 } 864 865 void rpc_exit(struct rpc_task *task, int status) 866 { 867 task->tk_status = status; 868 task->tk_action = rpc_exit_task; 869 rpc_wake_up_queued_task(task->tk_waitqueue, task); 870 } 871 EXPORT_SYMBOL_GPL(rpc_exit); 872 873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 874 { 875 if (ops->rpc_release != NULL) 876 ops->rpc_release(calldata); 877 } 878 879 /* 880 * This is the RPC `scheduler' (or rather, the finite state machine). 881 */ 882 static void __rpc_execute(struct rpc_task *task) 883 { 884 struct rpc_wait_queue *queue; 885 int task_is_async = RPC_IS_ASYNC(task); 886 int status = 0; 887 888 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 889 task->tk_pid, task->tk_flags); 890 891 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 892 if (RPC_IS_QUEUED(task)) 893 return; 894 895 for (;;) { 896 void (*do_action)(struct rpc_task *); 897 898 /* 899 * Perform the next FSM step or a pending callback. 900 * 901 * tk_action may be NULL if the task has been killed. 902 * In particular, note that rpc_killall_tasks may 903 * do this at any time, so beware when dereferencing. 904 */ 905 do_action = task->tk_action; 906 if (task->tk_callback) { 907 do_action = task->tk_callback; 908 task->tk_callback = NULL; 909 } 910 if (!do_action) 911 break; 912 trace_rpc_task_run_action(task, do_action); 913 do_action(task); 914 915 /* 916 * Lockless check for whether task is sleeping or not. 917 */ 918 if (!RPC_IS_QUEUED(task)) 919 continue; 920 921 /* 922 * Signalled tasks should exit rather than sleep. 923 */ 924 if (RPC_SIGNALLED(task)) { 925 task->tk_rpc_status = -ERESTARTSYS; 926 rpc_exit(task, -ERESTARTSYS); 927 } 928 929 /* 930 * The queue->lock protects against races with 931 * rpc_make_runnable(). 932 * 933 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 934 * rpc_task, rpc_make_runnable() can assign it to a 935 * different workqueue. We therefore cannot assume that the 936 * rpc_task pointer may still be dereferenced. 937 */ 938 queue = task->tk_waitqueue; 939 spin_lock(&queue->lock); 940 if (!RPC_IS_QUEUED(task)) { 941 spin_unlock(&queue->lock); 942 continue; 943 } 944 rpc_clear_running(task); 945 spin_unlock(&queue->lock); 946 if (task_is_async) 947 return; 948 949 /* sync task: sleep here */ 950 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 951 status = out_of_line_wait_on_bit(&task->tk_runstate, 952 RPC_TASK_QUEUED, rpc_wait_bit_killable, 953 TASK_KILLABLE); 954 if (status < 0) { 955 /* 956 * When a sync task receives a signal, it exits with 957 * -ERESTARTSYS. In order to catch any callbacks that 958 * clean up after sleeping on some queue, we don't 959 * break the loop here, but go around once more. 960 */ 961 trace_rpc_task_signalled(task, task->tk_action); 962 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 963 task->tk_rpc_status = -ERESTARTSYS; 964 rpc_exit(task, -ERESTARTSYS); 965 } 966 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 967 } 968 969 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 970 task->tk_status); 971 /* Release all resources associated with the task */ 972 rpc_release_task(task); 973 } 974 975 /* 976 * User-visible entry point to the scheduler. 977 * 978 * This may be called recursively if e.g. an async NFS task updates 979 * the attributes and finds that dirty pages must be flushed. 980 * NOTE: Upon exit of this function the task is guaranteed to be 981 * released. In particular note that tk_release() will have 982 * been called, so your task memory may have been freed. 983 */ 984 void rpc_execute(struct rpc_task *task) 985 { 986 bool is_async = RPC_IS_ASYNC(task); 987 988 rpc_set_active(task); 989 rpc_make_runnable(rpciod_workqueue, task); 990 if (!is_async) 991 __rpc_execute(task); 992 } 993 994 static void rpc_async_schedule(struct work_struct *work) 995 { 996 unsigned int pflags = memalloc_nofs_save(); 997 998 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 999 memalloc_nofs_restore(pflags); 1000 } 1001 1002 /** 1003 * rpc_malloc - allocate RPC buffer resources 1004 * @task: RPC task 1005 * 1006 * A single memory region is allocated, which is split between the 1007 * RPC call and RPC reply that this task is being used for. When 1008 * this RPC is retired, the memory is released by calling rpc_free. 1009 * 1010 * To prevent rpciod from hanging, this allocator never sleeps, 1011 * returning -ENOMEM and suppressing warning if the request cannot 1012 * be serviced immediately. The caller can arrange to sleep in a 1013 * way that is safe for rpciod. 1014 * 1015 * Most requests are 'small' (under 2KiB) and can be serviced from a 1016 * mempool, ensuring that NFS reads and writes can always proceed, 1017 * and that there is good locality of reference for these buffers. 1018 */ 1019 int rpc_malloc(struct rpc_task *task) 1020 { 1021 struct rpc_rqst *rqst = task->tk_rqstp; 1022 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1023 struct rpc_buffer *buf; 1024 gfp_t gfp = GFP_NOFS; 1025 1026 if (RPC_IS_SWAPPER(task)) 1027 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 1028 1029 size += sizeof(struct rpc_buffer); 1030 if (size <= RPC_BUFFER_MAXSIZE) 1031 buf = mempool_alloc(rpc_buffer_mempool, gfp); 1032 else 1033 buf = kmalloc(size, gfp); 1034 1035 if (!buf) 1036 return -ENOMEM; 1037 1038 buf->len = size; 1039 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 1040 task->tk_pid, size, buf); 1041 rqst->rq_buffer = buf->data; 1042 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1043 return 0; 1044 } 1045 EXPORT_SYMBOL_GPL(rpc_malloc); 1046 1047 /** 1048 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1049 * @task: RPC task 1050 * 1051 */ 1052 void rpc_free(struct rpc_task *task) 1053 { 1054 void *buffer = task->tk_rqstp->rq_buffer; 1055 size_t size; 1056 struct rpc_buffer *buf; 1057 1058 buf = container_of(buffer, struct rpc_buffer, data); 1059 size = buf->len; 1060 1061 dprintk("RPC: freeing buffer of size %zu at %p\n", 1062 size, buf); 1063 1064 if (size <= RPC_BUFFER_MAXSIZE) 1065 mempool_free(buf, rpc_buffer_mempool); 1066 else 1067 kfree(buf); 1068 } 1069 EXPORT_SYMBOL_GPL(rpc_free); 1070 1071 /* 1072 * Creation and deletion of RPC task structures 1073 */ 1074 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1075 { 1076 memset(task, 0, sizeof(*task)); 1077 atomic_set(&task->tk_count, 1); 1078 task->tk_flags = task_setup_data->flags; 1079 task->tk_ops = task_setup_data->callback_ops; 1080 task->tk_calldata = task_setup_data->callback_data; 1081 INIT_LIST_HEAD(&task->tk_task); 1082 1083 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1084 task->tk_owner = current->tgid; 1085 1086 /* Initialize workqueue for async tasks */ 1087 task->tk_workqueue = task_setup_data->workqueue; 1088 1089 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client, 1090 xprt_get(task_setup_data->rpc_xprt)); 1091 1092 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1093 1094 if (task->tk_ops->rpc_call_prepare != NULL) 1095 task->tk_action = rpc_prepare_task; 1096 1097 rpc_init_task_statistics(task); 1098 1099 dprintk("RPC: new task initialized, procpid %u\n", 1100 task_pid_nr(current)); 1101 } 1102 1103 static struct rpc_task * 1104 rpc_alloc_task(void) 1105 { 1106 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 1107 } 1108 1109 /* 1110 * Create a new task for the specified client. 1111 */ 1112 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1113 { 1114 struct rpc_task *task = setup_data->task; 1115 unsigned short flags = 0; 1116 1117 if (task == NULL) { 1118 task = rpc_alloc_task(); 1119 flags = RPC_TASK_DYNAMIC; 1120 } 1121 1122 rpc_init_task(task, setup_data); 1123 task->tk_flags |= flags; 1124 dprintk("RPC: allocated task %p\n", task); 1125 return task; 1126 } 1127 1128 /* 1129 * rpc_free_task - release rpc task and perform cleanups 1130 * 1131 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1132 * in order to work around a workqueue dependency issue. 1133 * 1134 * Tejun Heo states: 1135 * "Workqueue currently considers two work items to be the same if they're 1136 * on the same address and won't execute them concurrently - ie. it 1137 * makes a work item which is queued again while being executed wait 1138 * for the previous execution to complete. 1139 * 1140 * If a work function frees the work item, and then waits for an event 1141 * which should be performed by another work item and *that* work item 1142 * recycles the freed work item, it can create a false dependency loop. 1143 * There really is no reliable way to detect this short of verifying 1144 * every memory free." 1145 * 1146 */ 1147 static void rpc_free_task(struct rpc_task *task) 1148 { 1149 unsigned short tk_flags = task->tk_flags; 1150 1151 put_rpccred(task->tk_op_cred); 1152 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1153 1154 if (tk_flags & RPC_TASK_DYNAMIC) { 1155 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1156 mempool_free(task, rpc_task_mempool); 1157 } 1158 } 1159 1160 static void rpc_async_release(struct work_struct *work) 1161 { 1162 unsigned int pflags = memalloc_nofs_save(); 1163 1164 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1165 memalloc_nofs_restore(pflags); 1166 } 1167 1168 static void rpc_release_resources_task(struct rpc_task *task) 1169 { 1170 xprt_release(task); 1171 if (task->tk_msg.rpc_cred) { 1172 if (!(task->tk_flags & RPC_TASK_CRED_NOREF)) 1173 put_cred(task->tk_msg.rpc_cred); 1174 task->tk_msg.rpc_cred = NULL; 1175 } 1176 rpc_task_release_client(task); 1177 } 1178 1179 static void rpc_final_put_task(struct rpc_task *task, 1180 struct workqueue_struct *q) 1181 { 1182 if (q != NULL) { 1183 INIT_WORK(&task->u.tk_work, rpc_async_release); 1184 queue_work(q, &task->u.tk_work); 1185 } else 1186 rpc_free_task(task); 1187 } 1188 1189 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1190 { 1191 if (atomic_dec_and_test(&task->tk_count)) { 1192 rpc_release_resources_task(task); 1193 rpc_final_put_task(task, q); 1194 } 1195 } 1196 1197 void rpc_put_task(struct rpc_task *task) 1198 { 1199 rpc_do_put_task(task, NULL); 1200 } 1201 EXPORT_SYMBOL_GPL(rpc_put_task); 1202 1203 void rpc_put_task_async(struct rpc_task *task) 1204 { 1205 rpc_do_put_task(task, task->tk_workqueue); 1206 } 1207 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1208 1209 static void rpc_release_task(struct rpc_task *task) 1210 { 1211 dprintk("RPC: %5u release task\n", task->tk_pid); 1212 1213 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1214 1215 rpc_release_resources_task(task); 1216 1217 /* 1218 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1219 * so it should be safe to use task->tk_count as a test for whether 1220 * or not any other processes still hold references to our rpc_task. 1221 */ 1222 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1223 /* Wake up anyone who may be waiting for task completion */ 1224 if (!rpc_complete_task(task)) 1225 return; 1226 } else { 1227 if (!atomic_dec_and_test(&task->tk_count)) 1228 return; 1229 } 1230 rpc_final_put_task(task, task->tk_workqueue); 1231 } 1232 1233 int rpciod_up(void) 1234 { 1235 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1236 } 1237 1238 void rpciod_down(void) 1239 { 1240 module_put(THIS_MODULE); 1241 } 1242 1243 /* 1244 * Start up the rpciod workqueue. 1245 */ 1246 static int rpciod_start(void) 1247 { 1248 struct workqueue_struct *wq; 1249 1250 /* 1251 * Create the rpciod thread and wait for it to start. 1252 */ 1253 dprintk("RPC: creating workqueue rpciod\n"); 1254 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1255 if (!wq) 1256 goto out_failed; 1257 rpciod_workqueue = wq; 1258 /* Note: highpri because network receive is latency sensitive */ 1259 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0); 1260 if (!wq) 1261 goto free_rpciod; 1262 xprtiod_workqueue = wq; 1263 return 1; 1264 free_rpciod: 1265 wq = rpciod_workqueue; 1266 rpciod_workqueue = NULL; 1267 destroy_workqueue(wq); 1268 out_failed: 1269 return 0; 1270 } 1271 1272 static void rpciod_stop(void) 1273 { 1274 struct workqueue_struct *wq = NULL; 1275 1276 if (rpciod_workqueue == NULL) 1277 return; 1278 dprintk("RPC: destroying workqueue rpciod\n"); 1279 1280 wq = rpciod_workqueue; 1281 rpciod_workqueue = NULL; 1282 destroy_workqueue(wq); 1283 wq = xprtiod_workqueue; 1284 xprtiod_workqueue = NULL; 1285 destroy_workqueue(wq); 1286 } 1287 1288 void 1289 rpc_destroy_mempool(void) 1290 { 1291 rpciod_stop(); 1292 mempool_destroy(rpc_buffer_mempool); 1293 mempool_destroy(rpc_task_mempool); 1294 kmem_cache_destroy(rpc_task_slabp); 1295 kmem_cache_destroy(rpc_buffer_slabp); 1296 rpc_destroy_wait_queue(&delay_queue); 1297 } 1298 1299 int 1300 rpc_init_mempool(void) 1301 { 1302 /* 1303 * The following is not strictly a mempool initialisation, 1304 * but there is no harm in doing it here 1305 */ 1306 rpc_init_wait_queue(&delay_queue, "delayq"); 1307 if (!rpciod_start()) 1308 goto err_nomem; 1309 1310 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1311 sizeof(struct rpc_task), 1312 0, SLAB_HWCACHE_ALIGN, 1313 NULL); 1314 if (!rpc_task_slabp) 1315 goto err_nomem; 1316 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1317 RPC_BUFFER_MAXSIZE, 1318 0, SLAB_HWCACHE_ALIGN, 1319 NULL); 1320 if (!rpc_buffer_slabp) 1321 goto err_nomem; 1322 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1323 rpc_task_slabp); 1324 if (!rpc_task_mempool) 1325 goto err_nomem; 1326 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1327 rpc_buffer_slabp); 1328 if (!rpc_buffer_mempool) 1329 goto err_nomem; 1330 return 0; 1331 err_nomem: 1332 rpc_destroy_mempool(); 1333 return -ENOMEM; 1334 } 1335