1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #include "sunrpc.h" 26 27 #ifdef RPC_DEBUG 28 #define RPCDBG_FACILITY RPCDBG_SCHED 29 #endif 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/sunrpc.h> 33 34 /* 35 * RPC slabs and memory pools 36 */ 37 #define RPC_BUFFER_MAXSIZE (2048) 38 #define RPC_BUFFER_POOLSIZE (8) 39 #define RPC_TASK_POOLSIZE (8) 40 static struct kmem_cache *rpc_task_slabp __read_mostly; 41 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 42 static mempool_t *rpc_task_mempool __read_mostly; 43 static mempool_t *rpc_buffer_mempool __read_mostly; 44 45 static void rpc_async_schedule(struct work_struct *); 46 static void rpc_release_task(struct rpc_task *task); 47 static void __rpc_queue_timer_fn(unsigned long ptr); 48 49 /* 50 * RPC tasks sit here while waiting for conditions to improve. 51 */ 52 static struct rpc_wait_queue delay_queue; 53 54 /* 55 * rpciod-related stuff 56 */ 57 struct workqueue_struct *rpciod_workqueue; 58 59 /* 60 * Disable the timer for a given RPC task. Should be called with 61 * queue->lock and bh_disabled in order to avoid races within 62 * rpc_run_timer(). 63 */ 64 static void 65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 66 { 67 if (task->tk_timeout == 0) 68 return; 69 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 70 task->tk_timeout = 0; 71 list_del(&task->u.tk_wait.timer_list); 72 if (list_empty(&queue->timer_list.list)) 73 del_timer(&queue->timer_list.timer); 74 } 75 76 static void 77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 78 { 79 queue->timer_list.expires = expires; 80 mod_timer(&queue->timer_list.timer, expires); 81 } 82 83 /* 84 * Set up a timer for the current task. 85 */ 86 static void 87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 88 { 89 if (!task->tk_timeout) 90 return; 91 92 dprintk("RPC: %5u setting alarm for %lu ms\n", 93 task->tk_pid, task->tk_timeout * 1000 / HZ); 94 95 task->u.tk_wait.expires = jiffies + task->tk_timeout; 96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 97 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 99 } 100 101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue) 102 { 103 struct list_head *q = &queue->tasks[queue->priority]; 104 struct rpc_task *task; 105 106 if (!list_empty(q)) { 107 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 108 if (task->tk_owner == queue->owner) 109 list_move_tail(&task->u.tk_wait.list, q); 110 } 111 } 112 113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 114 { 115 if (queue->priority != priority) { 116 /* Fairness: rotate the list when changing priority */ 117 rpc_rotate_queue_owner(queue); 118 queue->priority = priority; 119 } 120 } 121 122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 123 { 124 queue->owner = pid; 125 queue->nr = RPC_BATCH_COUNT; 126 } 127 128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 129 { 130 rpc_set_waitqueue_priority(queue, queue->maxpriority); 131 rpc_set_waitqueue_owner(queue, 0); 132 } 133 134 /* 135 * Add new request to a priority queue. 136 */ 137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 138 struct rpc_task *task, 139 unsigned char queue_priority) 140 { 141 struct list_head *q; 142 struct rpc_task *t; 143 144 INIT_LIST_HEAD(&task->u.tk_wait.links); 145 if (unlikely(queue_priority > queue->maxpriority)) 146 queue_priority = queue->maxpriority; 147 if (queue_priority > queue->priority) 148 rpc_set_waitqueue_priority(queue, queue_priority); 149 q = &queue->tasks[queue_priority]; 150 list_for_each_entry(t, q, u.tk_wait.list) { 151 if (t->tk_owner == task->tk_owner) { 152 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 153 return; 154 } 155 } 156 list_add_tail(&task->u.tk_wait.list, q); 157 } 158 159 /* 160 * Add new request to wait queue. 161 * 162 * Swapper tasks always get inserted at the head of the queue. 163 * This should avoid many nasty memory deadlocks and hopefully 164 * improve overall performance. 165 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 166 */ 167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 168 struct rpc_task *task, 169 unsigned char queue_priority) 170 { 171 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 172 if (RPC_IS_QUEUED(task)) 173 return; 174 175 if (RPC_IS_PRIORITY(queue)) 176 __rpc_add_wait_queue_priority(queue, task, queue_priority); 177 else if (RPC_IS_SWAPPER(task)) 178 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 179 else 180 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 181 task->tk_waitqueue = queue; 182 queue->qlen++; 183 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 184 smp_wmb(); 185 rpc_set_queued(task); 186 187 dprintk("RPC: %5u added to queue %p \"%s\"\n", 188 task->tk_pid, queue, rpc_qname(queue)); 189 } 190 191 /* 192 * Remove request from a priority queue. 193 */ 194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 195 { 196 struct rpc_task *t; 197 198 if (!list_empty(&task->u.tk_wait.links)) { 199 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 200 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 201 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 202 } 203 } 204 205 /* 206 * Remove request from queue. 207 * Note: must be called with spin lock held. 208 */ 209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 210 { 211 __rpc_disable_timer(queue, task); 212 if (RPC_IS_PRIORITY(queue)) 213 __rpc_remove_wait_queue_priority(task); 214 list_del(&task->u.tk_wait.list); 215 queue->qlen--; 216 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 217 task->tk_pid, queue, rpc_qname(queue)); 218 } 219 220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 221 { 222 int i; 223 224 spin_lock_init(&queue->lock); 225 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 226 INIT_LIST_HEAD(&queue->tasks[i]); 227 queue->maxpriority = nr_queues - 1; 228 rpc_reset_waitqueue_priority(queue); 229 queue->qlen = 0; 230 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 231 INIT_LIST_HEAD(&queue->timer_list.list); 232 rpc_assign_waitqueue_name(queue, qname); 233 } 234 235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 236 { 237 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 238 } 239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 240 241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 242 { 243 __rpc_init_priority_wait_queue(queue, qname, 1); 244 } 245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 246 247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 248 { 249 del_timer_sync(&queue->timer_list.timer); 250 } 251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 252 253 static int rpc_wait_bit_killable(void *word) 254 { 255 if (fatal_signal_pending(current)) 256 return -ERESTARTSYS; 257 freezable_schedule(); 258 return 0; 259 } 260 261 #ifdef RPC_DEBUG 262 static void rpc_task_set_debuginfo(struct rpc_task *task) 263 { 264 static atomic_t rpc_pid; 265 266 task->tk_pid = atomic_inc_return(&rpc_pid); 267 } 268 #else 269 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 270 { 271 } 272 #endif 273 274 static void rpc_set_active(struct rpc_task *task) 275 { 276 trace_rpc_task_begin(task->tk_client, task, NULL); 277 278 rpc_task_set_debuginfo(task); 279 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 280 } 281 282 /* 283 * Mark an RPC call as having completed by clearing the 'active' bit 284 * and then waking up all tasks that were sleeping. 285 */ 286 static int rpc_complete_task(struct rpc_task *task) 287 { 288 void *m = &task->tk_runstate; 289 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 290 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 291 unsigned long flags; 292 int ret; 293 294 trace_rpc_task_complete(task->tk_client, task, NULL); 295 296 spin_lock_irqsave(&wq->lock, flags); 297 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 298 ret = atomic_dec_and_test(&task->tk_count); 299 if (waitqueue_active(wq)) 300 __wake_up_locked_key(wq, TASK_NORMAL, &k); 301 spin_unlock_irqrestore(&wq->lock, flags); 302 return ret; 303 } 304 305 /* 306 * Allow callers to wait for completion of an RPC call 307 * 308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 309 * to enforce taking of the wq->lock and hence avoid races with 310 * rpc_complete_task(). 311 */ 312 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 313 { 314 if (action == NULL) 315 action = rpc_wait_bit_killable; 316 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 317 action, TASK_KILLABLE); 318 } 319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 320 321 /* 322 * Make an RPC task runnable. 323 * 324 * Note: If the task is ASYNC, and is being made runnable after sitting on an 325 * rpc_wait_queue, this must be called with the queue spinlock held to protect 326 * the wait queue operation. 327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 330 * the RPC_TASK_RUNNING flag. 331 */ 332 static void rpc_make_runnable(struct rpc_task *task) 333 { 334 bool need_wakeup = !rpc_test_and_set_running(task); 335 336 rpc_clear_queued(task); 337 if (!need_wakeup) 338 return; 339 if (RPC_IS_ASYNC(task)) { 340 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 341 queue_work(rpciod_workqueue, &task->u.tk_work); 342 } else 343 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 344 } 345 346 /* 347 * Prepare for sleeping on a wait queue. 348 * By always appending tasks to the list we ensure FIFO behavior. 349 * NB: An RPC task will only receive interrupt-driven events as long 350 * as it's on a wait queue. 351 */ 352 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 353 struct rpc_task *task, 354 rpc_action action, 355 unsigned char queue_priority) 356 { 357 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 358 task->tk_pid, rpc_qname(q), jiffies); 359 360 trace_rpc_task_sleep(task->tk_client, task, q); 361 362 __rpc_add_wait_queue(q, task, queue_priority); 363 364 WARN_ON_ONCE(task->tk_callback != NULL); 365 task->tk_callback = action; 366 __rpc_add_timer(q, task); 367 } 368 369 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 370 rpc_action action) 371 { 372 /* We shouldn't ever put an inactive task to sleep */ 373 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 374 if (!RPC_IS_ACTIVATED(task)) { 375 task->tk_status = -EIO; 376 rpc_put_task_async(task); 377 return; 378 } 379 380 /* 381 * Protect the queue operations. 382 */ 383 spin_lock_bh(&q->lock); 384 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 385 spin_unlock_bh(&q->lock); 386 } 387 EXPORT_SYMBOL_GPL(rpc_sleep_on); 388 389 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 390 rpc_action action, int priority) 391 { 392 /* We shouldn't ever put an inactive task to sleep */ 393 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 394 if (!RPC_IS_ACTIVATED(task)) { 395 task->tk_status = -EIO; 396 rpc_put_task_async(task); 397 return; 398 } 399 400 /* 401 * Protect the queue operations. 402 */ 403 spin_lock_bh(&q->lock); 404 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 405 spin_unlock_bh(&q->lock); 406 } 407 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 408 409 /** 410 * __rpc_do_wake_up_task - wake up a single rpc_task 411 * @queue: wait queue 412 * @task: task to be woken up 413 * 414 * Caller must hold queue->lock, and have cleared the task queued flag. 415 */ 416 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 417 { 418 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 419 task->tk_pid, jiffies); 420 421 /* Has the task been executed yet? If not, we cannot wake it up! */ 422 if (!RPC_IS_ACTIVATED(task)) { 423 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 424 return; 425 } 426 427 trace_rpc_task_wakeup(task->tk_client, task, queue); 428 429 __rpc_remove_wait_queue(queue, task); 430 431 rpc_make_runnable(task); 432 433 dprintk("RPC: __rpc_wake_up_task done\n"); 434 } 435 436 /* 437 * Wake up a queued task while the queue lock is being held 438 */ 439 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 440 { 441 if (RPC_IS_QUEUED(task)) { 442 smp_rmb(); 443 if (task->tk_waitqueue == queue) 444 __rpc_do_wake_up_task(queue, task); 445 } 446 } 447 448 /* 449 * Tests whether rpc queue is empty 450 */ 451 int rpc_queue_empty(struct rpc_wait_queue *queue) 452 { 453 int res; 454 455 spin_lock_bh(&queue->lock); 456 res = queue->qlen; 457 spin_unlock_bh(&queue->lock); 458 return res == 0; 459 } 460 EXPORT_SYMBOL_GPL(rpc_queue_empty); 461 462 /* 463 * Wake up a task on a specific queue 464 */ 465 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 466 { 467 spin_lock_bh(&queue->lock); 468 rpc_wake_up_task_queue_locked(queue, task); 469 spin_unlock_bh(&queue->lock); 470 } 471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 472 473 /* 474 * Wake up the next task on a priority queue. 475 */ 476 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 477 { 478 struct list_head *q; 479 struct rpc_task *task; 480 481 /* 482 * Service a batch of tasks from a single owner. 483 */ 484 q = &queue->tasks[queue->priority]; 485 if (!list_empty(q)) { 486 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 487 if (queue->owner == task->tk_owner) { 488 if (--queue->nr) 489 goto out; 490 list_move_tail(&task->u.tk_wait.list, q); 491 } 492 /* 493 * Check if we need to switch queues. 494 */ 495 goto new_owner; 496 } 497 498 /* 499 * Service the next queue. 500 */ 501 do { 502 if (q == &queue->tasks[0]) 503 q = &queue->tasks[queue->maxpriority]; 504 else 505 q = q - 1; 506 if (!list_empty(q)) { 507 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 508 goto new_queue; 509 } 510 } while (q != &queue->tasks[queue->priority]); 511 512 rpc_reset_waitqueue_priority(queue); 513 return NULL; 514 515 new_queue: 516 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 517 new_owner: 518 rpc_set_waitqueue_owner(queue, task->tk_owner); 519 out: 520 return task; 521 } 522 523 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 524 { 525 if (RPC_IS_PRIORITY(queue)) 526 return __rpc_find_next_queued_priority(queue); 527 if (!list_empty(&queue->tasks[0])) 528 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 529 return NULL; 530 } 531 532 /* 533 * Wake up the first task on the wait queue. 534 */ 535 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 536 bool (*func)(struct rpc_task *, void *), void *data) 537 { 538 struct rpc_task *task = NULL; 539 540 dprintk("RPC: wake_up_first(%p \"%s\")\n", 541 queue, rpc_qname(queue)); 542 spin_lock_bh(&queue->lock); 543 task = __rpc_find_next_queued(queue); 544 if (task != NULL) { 545 if (func(task, data)) 546 rpc_wake_up_task_queue_locked(queue, task); 547 else 548 task = NULL; 549 } 550 spin_unlock_bh(&queue->lock); 551 552 return task; 553 } 554 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 555 556 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 557 { 558 return true; 559 } 560 561 /* 562 * Wake up the next task on the wait queue. 563 */ 564 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 565 { 566 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 567 } 568 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 569 570 /** 571 * rpc_wake_up - wake up all rpc_tasks 572 * @queue: rpc_wait_queue on which the tasks are sleeping 573 * 574 * Grabs queue->lock 575 */ 576 void rpc_wake_up(struct rpc_wait_queue *queue) 577 { 578 struct list_head *head; 579 580 spin_lock_bh(&queue->lock); 581 head = &queue->tasks[queue->maxpriority]; 582 for (;;) { 583 while (!list_empty(head)) { 584 struct rpc_task *task; 585 task = list_first_entry(head, 586 struct rpc_task, 587 u.tk_wait.list); 588 rpc_wake_up_task_queue_locked(queue, task); 589 } 590 if (head == &queue->tasks[0]) 591 break; 592 head--; 593 } 594 spin_unlock_bh(&queue->lock); 595 } 596 EXPORT_SYMBOL_GPL(rpc_wake_up); 597 598 /** 599 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 600 * @queue: rpc_wait_queue on which the tasks are sleeping 601 * @status: status value to set 602 * 603 * Grabs queue->lock 604 */ 605 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 606 { 607 struct list_head *head; 608 609 spin_lock_bh(&queue->lock); 610 head = &queue->tasks[queue->maxpriority]; 611 for (;;) { 612 while (!list_empty(head)) { 613 struct rpc_task *task; 614 task = list_first_entry(head, 615 struct rpc_task, 616 u.tk_wait.list); 617 task->tk_status = status; 618 rpc_wake_up_task_queue_locked(queue, task); 619 } 620 if (head == &queue->tasks[0]) 621 break; 622 head--; 623 } 624 spin_unlock_bh(&queue->lock); 625 } 626 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 627 628 static void __rpc_queue_timer_fn(unsigned long ptr) 629 { 630 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 631 struct rpc_task *task, *n; 632 unsigned long expires, now, timeo; 633 634 spin_lock(&queue->lock); 635 expires = now = jiffies; 636 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 637 timeo = task->u.tk_wait.expires; 638 if (time_after_eq(now, timeo)) { 639 dprintk("RPC: %5u timeout\n", task->tk_pid); 640 task->tk_status = -ETIMEDOUT; 641 rpc_wake_up_task_queue_locked(queue, task); 642 continue; 643 } 644 if (expires == now || time_after(expires, timeo)) 645 expires = timeo; 646 } 647 if (!list_empty(&queue->timer_list.list)) 648 rpc_set_queue_timer(queue, expires); 649 spin_unlock(&queue->lock); 650 } 651 652 static void __rpc_atrun(struct rpc_task *task) 653 { 654 task->tk_status = 0; 655 } 656 657 /* 658 * Run a task at a later time 659 */ 660 void rpc_delay(struct rpc_task *task, unsigned long delay) 661 { 662 task->tk_timeout = delay; 663 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 664 } 665 EXPORT_SYMBOL_GPL(rpc_delay); 666 667 /* 668 * Helper to call task->tk_ops->rpc_call_prepare 669 */ 670 void rpc_prepare_task(struct rpc_task *task) 671 { 672 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 673 } 674 675 static void 676 rpc_init_task_statistics(struct rpc_task *task) 677 { 678 /* Initialize retry counters */ 679 task->tk_garb_retry = 2; 680 task->tk_cred_retry = 2; 681 task->tk_rebind_retry = 2; 682 683 /* starting timestamp */ 684 task->tk_start = ktime_get(); 685 } 686 687 static void 688 rpc_reset_task_statistics(struct rpc_task *task) 689 { 690 task->tk_timeouts = 0; 691 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); 692 693 rpc_init_task_statistics(task); 694 } 695 696 /* 697 * Helper that calls task->tk_ops->rpc_call_done if it exists 698 */ 699 void rpc_exit_task(struct rpc_task *task) 700 { 701 task->tk_action = NULL; 702 if (task->tk_ops->rpc_call_done != NULL) { 703 task->tk_ops->rpc_call_done(task, task->tk_calldata); 704 if (task->tk_action != NULL) { 705 WARN_ON(RPC_ASSASSINATED(task)); 706 /* Always release the RPC slot and buffer memory */ 707 xprt_release(task); 708 rpc_reset_task_statistics(task); 709 } 710 } 711 } 712 713 void rpc_exit(struct rpc_task *task, int status) 714 { 715 task->tk_status = status; 716 task->tk_action = rpc_exit_task; 717 if (RPC_IS_QUEUED(task)) 718 rpc_wake_up_queued_task(task->tk_waitqueue, task); 719 } 720 EXPORT_SYMBOL_GPL(rpc_exit); 721 722 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 723 { 724 if (ops->rpc_release != NULL) 725 ops->rpc_release(calldata); 726 } 727 728 /* 729 * This is the RPC `scheduler' (or rather, the finite state machine). 730 */ 731 static void __rpc_execute(struct rpc_task *task) 732 { 733 struct rpc_wait_queue *queue; 734 int task_is_async = RPC_IS_ASYNC(task); 735 int status = 0; 736 737 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 738 task->tk_pid, task->tk_flags); 739 740 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 741 if (RPC_IS_QUEUED(task)) 742 return; 743 744 for (;;) { 745 void (*do_action)(struct rpc_task *); 746 747 /* 748 * Execute any pending callback first. 749 */ 750 do_action = task->tk_callback; 751 task->tk_callback = NULL; 752 if (do_action == NULL) { 753 /* 754 * Perform the next FSM step. 755 * tk_action may be NULL if the task has been killed. 756 * In particular, note that rpc_killall_tasks may 757 * do this at any time, so beware when dereferencing. 758 */ 759 do_action = task->tk_action; 760 if (do_action == NULL) 761 break; 762 } 763 trace_rpc_task_run_action(task->tk_client, task, task->tk_action); 764 do_action(task); 765 766 /* 767 * Lockless check for whether task is sleeping or not. 768 */ 769 if (!RPC_IS_QUEUED(task)) 770 continue; 771 /* 772 * The queue->lock protects against races with 773 * rpc_make_runnable(). 774 * 775 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 776 * rpc_task, rpc_make_runnable() can assign it to a 777 * different workqueue. We therefore cannot assume that the 778 * rpc_task pointer may still be dereferenced. 779 */ 780 queue = task->tk_waitqueue; 781 spin_lock_bh(&queue->lock); 782 if (!RPC_IS_QUEUED(task)) { 783 spin_unlock_bh(&queue->lock); 784 continue; 785 } 786 rpc_clear_running(task); 787 spin_unlock_bh(&queue->lock); 788 if (task_is_async) 789 return; 790 791 /* sync task: sleep here */ 792 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 793 status = out_of_line_wait_on_bit(&task->tk_runstate, 794 RPC_TASK_QUEUED, rpc_wait_bit_killable, 795 TASK_KILLABLE); 796 if (status == -ERESTARTSYS) { 797 /* 798 * When a sync task receives a signal, it exits with 799 * -ERESTARTSYS. In order to catch any callbacks that 800 * clean up after sleeping on some queue, we don't 801 * break the loop here, but go around once more. 802 */ 803 dprintk("RPC: %5u got signal\n", task->tk_pid); 804 task->tk_flags |= RPC_TASK_KILLED; 805 rpc_exit(task, -ERESTARTSYS); 806 } 807 rpc_set_running(task); 808 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 809 } 810 811 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 812 task->tk_status); 813 /* Release all resources associated with the task */ 814 rpc_release_task(task); 815 } 816 817 /* 818 * User-visible entry point to the scheduler. 819 * 820 * This may be called recursively if e.g. an async NFS task updates 821 * the attributes and finds that dirty pages must be flushed. 822 * NOTE: Upon exit of this function the task is guaranteed to be 823 * released. In particular note that tk_release() will have 824 * been called, so your task memory may have been freed. 825 */ 826 void rpc_execute(struct rpc_task *task) 827 { 828 rpc_set_active(task); 829 rpc_make_runnable(task); 830 if (!RPC_IS_ASYNC(task)) 831 __rpc_execute(task); 832 } 833 834 static void rpc_async_schedule(struct work_struct *work) 835 { 836 current->flags |= PF_FSTRANS; 837 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 838 current->flags &= ~PF_FSTRANS; 839 } 840 841 /** 842 * rpc_malloc - allocate an RPC buffer 843 * @task: RPC task that will use this buffer 844 * @size: requested byte size 845 * 846 * To prevent rpciod from hanging, this allocator never sleeps, 847 * returning NULL if the request cannot be serviced immediately. 848 * The caller can arrange to sleep in a way that is safe for rpciod. 849 * 850 * Most requests are 'small' (under 2KiB) and can be serviced from a 851 * mempool, ensuring that NFS reads and writes can always proceed, 852 * and that there is good locality of reference for these buffers. 853 * 854 * In order to avoid memory starvation triggering more writebacks of 855 * NFS requests, we avoid using GFP_KERNEL. 856 */ 857 void *rpc_malloc(struct rpc_task *task, size_t size) 858 { 859 struct rpc_buffer *buf; 860 gfp_t gfp = GFP_NOWAIT; 861 862 if (RPC_IS_SWAPPER(task)) 863 gfp |= __GFP_MEMALLOC; 864 865 size += sizeof(struct rpc_buffer); 866 if (size <= RPC_BUFFER_MAXSIZE) 867 buf = mempool_alloc(rpc_buffer_mempool, gfp); 868 else 869 buf = kmalloc(size, gfp); 870 871 if (!buf) 872 return NULL; 873 874 buf->len = size; 875 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 876 task->tk_pid, size, buf); 877 return &buf->data; 878 } 879 EXPORT_SYMBOL_GPL(rpc_malloc); 880 881 /** 882 * rpc_free - free buffer allocated via rpc_malloc 883 * @buffer: buffer to free 884 * 885 */ 886 void rpc_free(void *buffer) 887 { 888 size_t size; 889 struct rpc_buffer *buf; 890 891 if (!buffer) 892 return; 893 894 buf = container_of(buffer, struct rpc_buffer, data); 895 size = buf->len; 896 897 dprintk("RPC: freeing buffer of size %zu at %p\n", 898 size, buf); 899 900 if (size <= RPC_BUFFER_MAXSIZE) 901 mempool_free(buf, rpc_buffer_mempool); 902 else 903 kfree(buf); 904 } 905 EXPORT_SYMBOL_GPL(rpc_free); 906 907 /* 908 * Creation and deletion of RPC task structures 909 */ 910 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 911 { 912 memset(task, 0, sizeof(*task)); 913 atomic_set(&task->tk_count, 1); 914 task->tk_flags = task_setup_data->flags; 915 task->tk_ops = task_setup_data->callback_ops; 916 task->tk_calldata = task_setup_data->callback_data; 917 INIT_LIST_HEAD(&task->tk_task); 918 919 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 920 task->tk_owner = current->tgid; 921 922 /* Initialize workqueue for async tasks */ 923 task->tk_workqueue = task_setup_data->workqueue; 924 925 if (task->tk_ops->rpc_call_prepare != NULL) 926 task->tk_action = rpc_prepare_task; 927 928 rpc_init_task_statistics(task); 929 930 dprintk("RPC: new task initialized, procpid %u\n", 931 task_pid_nr(current)); 932 } 933 934 static struct rpc_task * 935 rpc_alloc_task(void) 936 { 937 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO); 938 } 939 940 /* 941 * Create a new task for the specified client. 942 */ 943 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 944 { 945 struct rpc_task *task = setup_data->task; 946 unsigned short flags = 0; 947 948 if (task == NULL) { 949 task = rpc_alloc_task(); 950 if (task == NULL) { 951 rpc_release_calldata(setup_data->callback_ops, 952 setup_data->callback_data); 953 return ERR_PTR(-ENOMEM); 954 } 955 flags = RPC_TASK_DYNAMIC; 956 } 957 958 rpc_init_task(task, setup_data); 959 task->tk_flags |= flags; 960 dprintk("RPC: allocated task %p\n", task); 961 return task; 962 } 963 964 /* 965 * rpc_free_task - release rpc task and perform cleanups 966 * 967 * Note that we free up the rpc_task _after_ rpc_release_calldata() 968 * in order to work around a workqueue dependency issue. 969 * 970 * Tejun Heo states: 971 * "Workqueue currently considers two work items to be the same if they're 972 * on the same address and won't execute them concurrently - ie. it 973 * makes a work item which is queued again while being executed wait 974 * for the previous execution to complete. 975 * 976 * If a work function frees the work item, and then waits for an event 977 * which should be performed by another work item and *that* work item 978 * recycles the freed work item, it can create a false dependency loop. 979 * There really is no reliable way to detect this short of verifying 980 * every memory free." 981 * 982 */ 983 static void rpc_free_task(struct rpc_task *task) 984 { 985 unsigned short tk_flags = task->tk_flags; 986 987 rpc_release_calldata(task->tk_ops, task->tk_calldata); 988 989 if (tk_flags & RPC_TASK_DYNAMIC) { 990 dprintk("RPC: %5u freeing task\n", task->tk_pid); 991 mempool_free(task, rpc_task_mempool); 992 } 993 } 994 995 static void rpc_async_release(struct work_struct *work) 996 { 997 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 998 } 999 1000 static void rpc_release_resources_task(struct rpc_task *task) 1001 { 1002 xprt_release(task); 1003 if (task->tk_msg.rpc_cred) { 1004 put_rpccred(task->tk_msg.rpc_cred); 1005 task->tk_msg.rpc_cred = NULL; 1006 } 1007 rpc_task_release_client(task); 1008 } 1009 1010 static void rpc_final_put_task(struct rpc_task *task, 1011 struct workqueue_struct *q) 1012 { 1013 if (q != NULL) { 1014 INIT_WORK(&task->u.tk_work, rpc_async_release); 1015 queue_work(q, &task->u.tk_work); 1016 } else 1017 rpc_free_task(task); 1018 } 1019 1020 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1021 { 1022 if (atomic_dec_and_test(&task->tk_count)) { 1023 rpc_release_resources_task(task); 1024 rpc_final_put_task(task, q); 1025 } 1026 } 1027 1028 void rpc_put_task(struct rpc_task *task) 1029 { 1030 rpc_do_put_task(task, NULL); 1031 } 1032 EXPORT_SYMBOL_GPL(rpc_put_task); 1033 1034 void rpc_put_task_async(struct rpc_task *task) 1035 { 1036 rpc_do_put_task(task, task->tk_workqueue); 1037 } 1038 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1039 1040 static void rpc_release_task(struct rpc_task *task) 1041 { 1042 dprintk("RPC: %5u release task\n", task->tk_pid); 1043 1044 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1045 1046 rpc_release_resources_task(task); 1047 1048 /* 1049 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1050 * so it should be safe to use task->tk_count as a test for whether 1051 * or not any other processes still hold references to our rpc_task. 1052 */ 1053 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1054 /* Wake up anyone who may be waiting for task completion */ 1055 if (!rpc_complete_task(task)) 1056 return; 1057 } else { 1058 if (!atomic_dec_and_test(&task->tk_count)) 1059 return; 1060 } 1061 rpc_final_put_task(task, task->tk_workqueue); 1062 } 1063 1064 int rpciod_up(void) 1065 { 1066 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1067 } 1068 1069 void rpciod_down(void) 1070 { 1071 module_put(THIS_MODULE); 1072 } 1073 1074 /* 1075 * Start up the rpciod workqueue. 1076 */ 1077 static int rpciod_start(void) 1078 { 1079 struct workqueue_struct *wq; 1080 1081 /* 1082 * Create the rpciod thread and wait for it to start. 1083 */ 1084 dprintk("RPC: creating workqueue rpciod\n"); 1085 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1); 1086 rpciod_workqueue = wq; 1087 return rpciod_workqueue != NULL; 1088 } 1089 1090 static void rpciod_stop(void) 1091 { 1092 struct workqueue_struct *wq = NULL; 1093 1094 if (rpciod_workqueue == NULL) 1095 return; 1096 dprintk("RPC: destroying workqueue rpciod\n"); 1097 1098 wq = rpciod_workqueue; 1099 rpciod_workqueue = NULL; 1100 destroy_workqueue(wq); 1101 } 1102 1103 void 1104 rpc_destroy_mempool(void) 1105 { 1106 rpciod_stop(); 1107 if (rpc_buffer_mempool) 1108 mempool_destroy(rpc_buffer_mempool); 1109 if (rpc_task_mempool) 1110 mempool_destroy(rpc_task_mempool); 1111 if (rpc_task_slabp) 1112 kmem_cache_destroy(rpc_task_slabp); 1113 if (rpc_buffer_slabp) 1114 kmem_cache_destroy(rpc_buffer_slabp); 1115 rpc_destroy_wait_queue(&delay_queue); 1116 } 1117 1118 int 1119 rpc_init_mempool(void) 1120 { 1121 /* 1122 * The following is not strictly a mempool initialisation, 1123 * but there is no harm in doing it here 1124 */ 1125 rpc_init_wait_queue(&delay_queue, "delayq"); 1126 if (!rpciod_start()) 1127 goto err_nomem; 1128 1129 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1130 sizeof(struct rpc_task), 1131 0, SLAB_HWCACHE_ALIGN, 1132 NULL); 1133 if (!rpc_task_slabp) 1134 goto err_nomem; 1135 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1136 RPC_BUFFER_MAXSIZE, 1137 0, SLAB_HWCACHE_ALIGN, 1138 NULL); 1139 if (!rpc_buffer_slabp) 1140 goto err_nomem; 1141 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1142 rpc_task_slabp); 1143 if (!rpc_task_mempool) 1144 goto err_nomem; 1145 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1146 rpc_buffer_slabp); 1147 if (!rpc_buffer_mempool) 1148 goto err_nomem; 1149 return 0; 1150 err_nomem: 1151 rpc_destroy_mempool(); 1152 return -ENOMEM; 1153 } 1154