1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/sched.c 4 * 5 * Scheduling for synchronous and asynchronous RPC requests. 6 * 7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 8 * 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 */ 12 13 #include <linux/module.h> 14 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/mempool.h> 19 #include <linux/smp.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 #include <linux/freezer.h> 23 #include <linux/sched/mm.h> 24 25 #include <linux/sunrpc/clnt.h> 26 #include <linux/sunrpc/metrics.h> 27 28 #include "sunrpc.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/sunrpc.h> 32 33 /* 34 * RPC slabs and memory pools 35 */ 36 #define RPC_BUFFER_MAXSIZE (2048) 37 #define RPC_BUFFER_POOLSIZE (8) 38 #define RPC_TASK_POOLSIZE (8) 39 static struct kmem_cache *rpc_task_slabp __read_mostly; 40 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 41 static mempool_t *rpc_task_mempool __read_mostly; 42 static mempool_t *rpc_buffer_mempool __read_mostly; 43 44 static void rpc_async_schedule(struct work_struct *); 45 static void rpc_release_task(struct rpc_task *task); 46 static void __rpc_queue_timer_fn(struct work_struct *); 47 48 /* 49 * RPC tasks sit here while waiting for conditions to improve. 50 */ 51 static struct rpc_wait_queue delay_queue; 52 53 /* 54 * rpciod-related stuff 55 */ 56 struct workqueue_struct *rpciod_workqueue __read_mostly; 57 struct workqueue_struct *xprtiod_workqueue __read_mostly; 58 EXPORT_SYMBOL_GPL(xprtiod_workqueue); 59 60 unsigned long 61 rpc_task_timeout(const struct rpc_task *task) 62 { 63 unsigned long timeout = READ_ONCE(task->tk_timeout); 64 65 if (timeout != 0) { 66 unsigned long now = jiffies; 67 if (time_before(now, timeout)) 68 return timeout - now; 69 } 70 return 0; 71 } 72 EXPORT_SYMBOL_GPL(rpc_task_timeout); 73 74 /* 75 * Disable the timer for a given RPC task. Should be called with 76 * queue->lock and bh_disabled in order to avoid races within 77 * rpc_run_timer(). 78 */ 79 static void 80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 81 { 82 if (list_empty(&task->u.tk_wait.timer_list)) 83 return; 84 task->tk_timeout = 0; 85 list_del(&task->u.tk_wait.timer_list); 86 if (list_empty(&queue->timer_list.list)) 87 cancel_delayed_work(&queue->timer_list.dwork); 88 } 89 90 static void 91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 92 { 93 unsigned long now = jiffies; 94 queue->timer_list.expires = expires; 95 if (time_before_eq(expires, now)) 96 expires = 0; 97 else 98 expires -= now; 99 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires); 100 } 101 102 /* 103 * Set up a timer for the current task. 104 */ 105 static void 106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 107 unsigned long timeout) 108 { 109 task->tk_timeout = timeout; 110 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires)) 111 rpc_set_queue_timer(queue, timeout); 112 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 113 } 114 115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 116 { 117 if (queue->priority != priority) { 118 queue->priority = priority; 119 queue->nr = 1U << priority; 120 } 121 } 122 123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 124 { 125 rpc_set_waitqueue_priority(queue, queue->maxpriority); 126 } 127 128 /* 129 * Add a request to a queue list 130 */ 131 static void 132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 133 { 134 struct rpc_task *t; 135 136 list_for_each_entry(t, q, u.tk_wait.list) { 137 if (t->tk_owner == task->tk_owner) { 138 list_add_tail(&task->u.tk_wait.links, 139 &t->u.tk_wait.links); 140 /* Cache the queue head in task->u.tk_wait.list */ 141 task->u.tk_wait.list.next = q; 142 task->u.tk_wait.list.prev = NULL; 143 return; 144 } 145 } 146 INIT_LIST_HEAD(&task->u.tk_wait.links); 147 list_add_tail(&task->u.tk_wait.list, q); 148 } 149 150 /* 151 * Remove request from a queue list 152 */ 153 static void 154 __rpc_list_dequeue_task(struct rpc_task *task) 155 { 156 struct list_head *q; 157 struct rpc_task *t; 158 159 if (task->u.tk_wait.list.prev == NULL) { 160 list_del(&task->u.tk_wait.links); 161 return; 162 } 163 if (!list_empty(&task->u.tk_wait.links)) { 164 t = list_first_entry(&task->u.tk_wait.links, 165 struct rpc_task, 166 u.tk_wait.links); 167 /* Assume __rpc_list_enqueue_task() cached the queue head */ 168 q = t->u.tk_wait.list.next; 169 list_add_tail(&t->u.tk_wait.list, q); 170 list_del(&task->u.tk_wait.links); 171 } 172 list_del(&task->u.tk_wait.list); 173 } 174 175 /* 176 * Add new request to a priority queue. 177 */ 178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 179 struct rpc_task *task, 180 unsigned char queue_priority) 181 { 182 if (unlikely(queue_priority > queue->maxpriority)) 183 queue_priority = queue->maxpriority; 184 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 185 } 186 187 /* 188 * Add new request to wait queue. 189 * 190 * Swapper tasks always get inserted at the head of the queue. 191 * This should avoid many nasty memory deadlocks and hopefully 192 * improve overall performance. 193 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 194 */ 195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 196 struct rpc_task *task, 197 unsigned char queue_priority) 198 { 199 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 200 if (RPC_IS_PRIORITY(queue)) 201 __rpc_add_wait_queue_priority(queue, task, queue_priority); 202 else if (RPC_IS_SWAPPER(task)) 203 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 204 else 205 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 206 task->tk_waitqueue = queue; 207 queue->qlen++; 208 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 209 smp_wmb(); 210 rpc_set_queued(task); 211 } 212 213 /* 214 * Remove request from a priority queue. 215 */ 216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 217 { 218 __rpc_list_dequeue_task(task); 219 } 220 221 /* 222 * Remove request from queue. 223 * Note: must be called with spin lock held. 224 */ 225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 226 { 227 __rpc_disable_timer(queue, task); 228 if (RPC_IS_PRIORITY(queue)) 229 __rpc_remove_wait_queue_priority(task); 230 else 231 list_del(&task->u.tk_wait.list); 232 queue->qlen--; 233 } 234 235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 236 { 237 int i; 238 239 spin_lock_init(&queue->lock); 240 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 241 INIT_LIST_HEAD(&queue->tasks[i]); 242 queue->maxpriority = nr_queues - 1; 243 rpc_reset_waitqueue_priority(queue); 244 queue->qlen = 0; 245 queue->timer_list.expires = 0; 246 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn); 247 INIT_LIST_HEAD(&queue->timer_list.list); 248 rpc_assign_waitqueue_name(queue, qname); 249 } 250 251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 252 { 253 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 254 } 255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 256 257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 258 { 259 __rpc_init_priority_wait_queue(queue, qname, 1); 260 } 261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 262 263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 264 { 265 cancel_delayed_work_sync(&queue->timer_list.dwork); 266 } 267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 268 269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 270 { 271 freezable_schedule_unsafe(); 272 if (signal_pending_state(mode, current)) 273 return -ERESTARTSYS; 274 return 0; 275 } 276 277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 278 static void rpc_task_set_debuginfo(struct rpc_task *task) 279 { 280 struct rpc_clnt *clnt = task->tk_client; 281 282 /* Might be a task carrying a reverse-direction operation */ 283 if (!clnt) { 284 static atomic_t rpc_pid; 285 286 task->tk_pid = atomic_inc_return(&rpc_pid); 287 return; 288 } 289 290 task->tk_pid = atomic_inc_return(&clnt->cl_pid); 291 } 292 #else 293 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 294 { 295 } 296 #endif 297 298 static void rpc_set_active(struct rpc_task *task) 299 { 300 rpc_task_set_debuginfo(task); 301 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 302 trace_rpc_task_begin(task, NULL); 303 } 304 305 /* 306 * Mark an RPC call as having completed by clearing the 'active' bit 307 * and then waking up all tasks that were sleeping. 308 */ 309 static int rpc_complete_task(struct rpc_task *task) 310 { 311 void *m = &task->tk_runstate; 312 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 313 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 314 unsigned long flags; 315 int ret; 316 317 trace_rpc_task_complete(task, NULL); 318 319 spin_lock_irqsave(&wq->lock, flags); 320 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 321 ret = atomic_dec_and_test(&task->tk_count); 322 if (waitqueue_active(wq)) 323 __wake_up_locked_key(wq, TASK_NORMAL, &k); 324 spin_unlock_irqrestore(&wq->lock, flags); 325 return ret; 326 } 327 328 /* 329 * Allow callers to wait for completion of an RPC call 330 * 331 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 332 * to enforce taking of the wq->lock and hence avoid races with 333 * rpc_complete_task(). 334 */ 335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 336 { 337 if (action == NULL) 338 action = rpc_wait_bit_killable; 339 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 340 action, TASK_KILLABLE); 341 } 342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 343 344 /* 345 * Make an RPC task runnable. 346 * 347 * Note: If the task is ASYNC, and is being made runnable after sitting on an 348 * rpc_wait_queue, this must be called with the queue spinlock held to protect 349 * the wait queue operation. 350 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 351 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 352 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 353 * the RPC_TASK_RUNNING flag. 354 */ 355 static void rpc_make_runnable(struct workqueue_struct *wq, 356 struct rpc_task *task) 357 { 358 bool need_wakeup = !rpc_test_and_set_running(task); 359 360 rpc_clear_queued(task); 361 if (!need_wakeup) 362 return; 363 if (RPC_IS_ASYNC(task)) { 364 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 365 queue_work(wq, &task->u.tk_work); 366 } else 367 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 368 } 369 370 /* 371 * Prepare for sleeping on a wait queue. 372 * By always appending tasks to the list we ensure FIFO behavior. 373 * NB: An RPC task will only receive interrupt-driven events as long 374 * as it's on a wait queue. 375 */ 376 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q, 377 struct rpc_task *task, 378 unsigned char queue_priority) 379 { 380 trace_rpc_task_sleep(task, q); 381 382 __rpc_add_wait_queue(q, task, queue_priority); 383 } 384 385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 386 struct rpc_task *task, 387 unsigned char queue_priority) 388 { 389 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 390 return; 391 __rpc_do_sleep_on_priority(q, task, queue_priority); 392 } 393 394 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 395 struct rpc_task *task, unsigned long timeout, 396 unsigned char queue_priority) 397 { 398 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 399 return; 400 if (time_is_after_jiffies(timeout)) { 401 __rpc_do_sleep_on_priority(q, task, queue_priority); 402 __rpc_add_timer(q, task, timeout); 403 } else 404 task->tk_status = -ETIMEDOUT; 405 } 406 407 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 408 { 409 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 410 task->tk_callback = action; 411 } 412 413 static bool rpc_sleep_check_activated(struct rpc_task *task) 414 { 415 /* We shouldn't ever put an inactive task to sleep */ 416 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 417 task->tk_status = -EIO; 418 rpc_put_task_async(task); 419 return false; 420 } 421 return true; 422 } 423 424 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 425 rpc_action action, unsigned long timeout) 426 { 427 if (!rpc_sleep_check_activated(task)) 428 return; 429 430 rpc_set_tk_callback(task, action); 431 432 /* 433 * Protect the queue operations. 434 */ 435 spin_lock(&q->lock); 436 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 437 spin_unlock(&q->lock); 438 } 439 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 440 441 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 442 rpc_action action) 443 { 444 if (!rpc_sleep_check_activated(task)) 445 return; 446 447 rpc_set_tk_callback(task, action); 448 449 WARN_ON_ONCE(task->tk_timeout != 0); 450 /* 451 * Protect the queue operations. 452 */ 453 spin_lock(&q->lock); 454 __rpc_sleep_on_priority(q, task, task->tk_priority); 455 spin_unlock(&q->lock); 456 } 457 EXPORT_SYMBOL_GPL(rpc_sleep_on); 458 459 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 460 struct rpc_task *task, unsigned long timeout, int priority) 461 { 462 if (!rpc_sleep_check_activated(task)) 463 return; 464 465 priority -= RPC_PRIORITY_LOW; 466 /* 467 * Protect the queue operations. 468 */ 469 spin_lock(&q->lock); 470 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 471 spin_unlock(&q->lock); 472 } 473 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 474 475 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 476 int priority) 477 { 478 if (!rpc_sleep_check_activated(task)) 479 return; 480 481 WARN_ON_ONCE(task->tk_timeout != 0); 482 priority -= RPC_PRIORITY_LOW; 483 /* 484 * Protect the queue operations. 485 */ 486 spin_lock(&q->lock); 487 __rpc_sleep_on_priority(q, task, priority); 488 spin_unlock(&q->lock); 489 } 490 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 491 492 /** 493 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 494 * @wq: workqueue on which to run task 495 * @queue: wait queue 496 * @task: task to be woken up 497 * 498 * Caller must hold queue->lock, and have cleared the task queued flag. 499 */ 500 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 501 struct rpc_wait_queue *queue, 502 struct rpc_task *task) 503 { 504 /* Has the task been executed yet? If not, we cannot wake it up! */ 505 if (!RPC_IS_ACTIVATED(task)) { 506 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 507 return; 508 } 509 510 trace_rpc_task_wakeup(task, queue); 511 512 __rpc_remove_wait_queue(queue, task); 513 514 rpc_make_runnable(wq, task); 515 } 516 517 /* 518 * Wake up a queued task while the queue lock is being held 519 */ 520 static struct rpc_task * 521 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 522 struct rpc_wait_queue *queue, struct rpc_task *task, 523 bool (*action)(struct rpc_task *, void *), void *data) 524 { 525 if (RPC_IS_QUEUED(task)) { 526 smp_rmb(); 527 if (task->tk_waitqueue == queue) { 528 if (action == NULL || action(task, data)) { 529 __rpc_do_wake_up_task_on_wq(wq, queue, task); 530 return task; 531 } 532 } 533 } 534 return NULL; 535 } 536 537 /* 538 * Wake up a queued task while the queue lock is being held 539 */ 540 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, 541 struct rpc_task *task) 542 { 543 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 544 task, NULL, NULL); 545 } 546 547 /* 548 * Wake up a task on a specific queue 549 */ 550 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 551 { 552 if (!RPC_IS_QUEUED(task)) 553 return; 554 spin_lock(&queue->lock); 555 rpc_wake_up_task_queue_locked(queue, task); 556 spin_unlock(&queue->lock); 557 } 558 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 559 560 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 561 { 562 task->tk_status = *(int *)status; 563 return true; 564 } 565 566 static void 567 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 568 struct rpc_task *task, int status) 569 { 570 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 571 task, rpc_task_action_set_status, &status); 572 } 573 574 /** 575 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 576 * @queue: pointer to rpc_wait_queue 577 * @task: pointer to rpc_task 578 * @status: integer error value 579 * 580 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 581 * set to the value of @status. 582 */ 583 void 584 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 585 struct rpc_task *task, int status) 586 { 587 if (!RPC_IS_QUEUED(task)) 588 return; 589 spin_lock(&queue->lock); 590 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 591 spin_unlock(&queue->lock); 592 } 593 594 /* 595 * Wake up the next task on a priority queue. 596 */ 597 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 598 { 599 struct list_head *q; 600 struct rpc_task *task; 601 602 /* 603 * Service the privileged queue. 604 */ 605 q = &queue->tasks[RPC_NR_PRIORITY - 1]; 606 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) { 607 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 608 goto out; 609 } 610 611 /* 612 * Service a batch of tasks from a single owner. 613 */ 614 q = &queue->tasks[queue->priority]; 615 if (!list_empty(q) && queue->nr) { 616 queue->nr--; 617 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 618 goto out; 619 } 620 621 /* 622 * Service the next queue. 623 */ 624 do { 625 if (q == &queue->tasks[0]) 626 q = &queue->tasks[queue->maxpriority]; 627 else 628 q = q - 1; 629 if (!list_empty(q)) { 630 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 631 goto new_queue; 632 } 633 } while (q != &queue->tasks[queue->priority]); 634 635 rpc_reset_waitqueue_priority(queue); 636 return NULL; 637 638 new_queue: 639 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 640 out: 641 return task; 642 } 643 644 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 645 { 646 if (RPC_IS_PRIORITY(queue)) 647 return __rpc_find_next_queued_priority(queue); 648 if (!list_empty(&queue->tasks[0])) 649 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 650 return NULL; 651 } 652 653 /* 654 * Wake up the first task on the wait queue. 655 */ 656 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 657 struct rpc_wait_queue *queue, 658 bool (*func)(struct rpc_task *, void *), void *data) 659 { 660 struct rpc_task *task = NULL; 661 662 spin_lock(&queue->lock); 663 task = __rpc_find_next_queued(queue); 664 if (task != NULL) 665 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 666 task, func, data); 667 spin_unlock(&queue->lock); 668 669 return task; 670 } 671 672 /* 673 * Wake up the first task on the wait queue. 674 */ 675 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 676 bool (*func)(struct rpc_task *, void *), void *data) 677 { 678 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 679 } 680 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 681 682 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 683 { 684 return true; 685 } 686 687 /* 688 * Wake up the next task on the wait queue. 689 */ 690 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 691 { 692 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 693 } 694 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 695 696 /** 697 * rpc_wake_up_locked - wake up all rpc_tasks 698 * @queue: rpc_wait_queue on which the tasks are sleeping 699 * 700 */ 701 static void rpc_wake_up_locked(struct rpc_wait_queue *queue) 702 { 703 struct rpc_task *task; 704 705 for (;;) { 706 task = __rpc_find_next_queued(queue); 707 if (task == NULL) 708 break; 709 rpc_wake_up_task_queue_locked(queue, task); 710 } 711 } 712 713 /** 714 * rpc_wake_up - wake up all rpc_tasks 715 * @queue: rpc_wait_queue on which the tasks are sleeping 716 * 717 * Grabs queue->lock 718 */ 719 void rpc_wake_up(struct rpc_wait_queue *queue) 720 { 721 spin_lock(&queue->lock); 722 rpc_wake_up_locked(queue); 723 spin_unlock(&queue->lock); 724 } 725 EXPORT_SYMBOL_GPL(rpc_wake_up); 726 727 /** 728 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value. 729 * @queue: rpc_wait_queue on which the tasks are sleeping 730 * @status: status value to set 731 */ 732 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status) 733 { 734 struct rpc_task *task; 735 736 for (;;) { 737 task = __rpc_find_next_queued(queue); 738 if (task == NULL) 739 break; 740 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 741 } 742 } 743 744 /** 745 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 746 * @queue: rpc_wait_queue on which the tasks are sleeping 747 * @status: status value to set 748 * 749 * Grabs queue->lock 750 */ 751 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 752 { 753 spin_lock(&queue->lock); 754 rpc_wake_up_status_locked(queue, status); 755 spin_unlock(&queue->lock); 756 } 757 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 758 759 static void __rpc_queue_timer_fn(struct work_struct *work) 760 { 761 struct rpc_wait_queue *queue = container_of(work, 762 struct rpc_wait_queue, 763 timer_list.dwork.work); 764 struct rpc_task *task, *n; 765 unsigned long expires, now, timeo; 766 767 spin_lock(&queue->lock); 768 expires = now = jiffies; 769 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 770 timeo = task->tk_timeout; 771 if (time_after_eq(now, timeo)) { 772 trace_rpc_task_timeout(task, task->tk_action); 773 task->tk_status = -ETIMEDOUT; 774 rpc_wake_up_task_queue_locked(queue, task); 775 continue; 776 } 777 if (expires == now || time_after(expires, timeo)) 778 expires = timeo; 779 } 780 if (!list_empty(&queue->timer_list.list)) 781 rpc_set_queue_timer(queue, expires); 782 spin_unlock(&queue->lock); 783 } 784 785 static void __rpc_atrun(struct rpc_task *task) 786 { 787 if (task->tk_status == -ETIMEDOUT) 788 task->tk_status = 0; 789 } 790 791 /* 792 * Run a task at a later time 793 */ 794 void rpc_delay(struct rpc_task *task, unsigned long delay) 795 { 796 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 797 } 798 EXPORT_SYMBOL_GPL(rpc_delay); 799 800 /* 801 * Helper to call task->tk_ops->rpc_call_prepare 802 */ 803 void rpc_prepare_task(struct rpc_task *task) 804 { 805 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 806 } 807 808 static void 809 rpc_init_task_statistics(struct rpc_task *task) 810 { 811 /* Initialize retry counters */ 812 task->tk_garb_retry = 2; 813 task->tk_cred_retry = 2; 814 task->tk_rebind_retry = 2; 815 816 /* starting timestamp */ 817 task->tk_start = ktime_get(); 818 } 819 820 static void 821 rpc_reset_task_statistics(struct rpc_task *task) 822 { 823 task->tk_timeouts = 0; 824 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 825 rpc_init_task_statistics(task); 826 } 827 828 /* 829 * Helper that calls task->tk_ops->rpc_call_done if it exists 830 */ 831 void rpc_exit_task(struct rpc_task *task) 832 { 833 trace_rpc_task_end(task, task->tk_action); 834 task->tk_action = NULL; 835 if (task->tk_ops->rpc_count_stats) 836 task->tk_ops->rpc_count_stats(task, task->tk_calldata); 837 else if (task->tk_client) 838 rpc_count_iostats(task, task->tk_client->cl_metrics); 839 if (task->tk_ops->rpc_call_done != NULL) { 840 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done); 841 task->tk_ops->rpc_call_done(task, task->tk_calldata); 842 if (task->tk_action != NULL) { 843 /* Always release the RPC slot and buffer memory */ 844 xprt_release(task); 845 rpc_reset_task_statistics(task); 846 } 847 } 848 } 849 850 void rpc_signal_task(struct rpc_task *task) 851 { 852 struct rpc_wait_queue *queue; 853 854 if (!RPC_IS_ACTIVATED(task)) 855 return; 856 857 trace_rpc_task_signalled(task, task->tk_action); 858 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 859 smp_mb__after_atomic(); 860 queue = READ_ONCE(task->tk_waitqueue); 861 if (queue) 862 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS); 863 } 864 865 void rpc_exit(struct rpc_task *task, int status) 866 { 867 task->tk_status = status; 868 task->tk_action = rpc_exit_task; 869 rpc_wake_up_queued_task(task->tk_waitqueue, task); 870 } 871 EXPORT_SYMBOL_GPL(rpc_exit); 872 873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 874 { 875 if (ops->rpc_release != NULL) 876 ops->rpc_release(calldata); 877 } 878 879 /* 880 * This is the RPC `scheduler' (or rather, the finite state machine). 881 */ 882 static void __rpc_execute(struct rpc_task *task) 883 { 884 struct rpc_wait_queue *queue; 885 int task_is_async = RPC_IS_ASYNC(task); 886 int status = 0; 887 888 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 889 if (RPC_IS_QUEUED(task)) 890 return; 891 892 for (;;) { 893 void (*do_action)(struct rpc_task *); 894 895 /* 896 * Perform the next FSM step or a pending callback. 897 * 898 * tk_action may be NULL if the task has been killed. 899 * In particular, note that rpc_killall_tasks may 900 * do this at any time, so beware when dereferencing. 901 */ 902 do_action = task->tk_action; 903 if (task->tk_callback) { 904 do_action = task->tk_callback; 905 task->tk_callback = NULL; 906 } 907 if (!do_action) 908 break; 909 trace_rpc_task_run_action(task, do_action); 910 do_action(task); 911 912 /* 913 * Lockless check for whether task is sleeping or not. 914 */ 915 if (!RPC_IS_QUEUED(task)) { 916 cond_resched(); 917 continue; 918 } 919 920 /* 921 * Signalled tasks should exit rather than sleep. 922 */ 923 if (RPC_SIGNALLED(task)) { 924 task->tk_rpc_status = -ERESTARTSYS; 925 rpc_exit(task, -ERESTARTSYS); 926 } 927 928 /* 929 * The queue->lock protects against races with 930 * rpc_make_runnable(). 931 * 932 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 933 * rpc_task, rpc_make_runnable() can assign it to a 934 * different workqueue. We therefore cannot assume that the 935 * rpc_task pointer may still be dereferenced. 936 */ 937 queue = task->tk_waitqueue; 938 spin_lock(&queue->lock); 939 if (!RPC_IS_QUEUED(task)) { 940 spin_unlock(&queue->lock); 941 continue; 942 } 943 rpc_clear_running(task); 944 spin_unlock(&queue->lock); 945 if (task_is_async) 946 return; 947 948 /* sync task: sleep here */ 949 trace_rpc_task_sync_sleep(task, task->tk_action); 950 status = out_of_line_wait_on_bit(&task->tk_runstate, 951 RPC_TASK_QUEUED, rpc_wait_bit_killable, 952 TASK_KILLABLE); 953 if (status < 0) { 954 /* 955 * When a sync task receives a signal, it exits with 956 * -ERESTARTSYS. In order to catch any callbacks that 957 * clean up after sleeping on some queue, we don't 958 * break the loop here, but go around once more. 959 */ 960 trace_rpc_task_signalled(task, task->tk_action); 961 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 962 task->tk_rpc_status = -ERESTARTSYS; 963 rpc_exit(task, -ERESTARTSYS); 964 } 965 trace_rpc_task_sync_wake(task, task->tk_action); 966 } 967 968 /* Release all resources associated with the task */ 969 rpc_release_task(task); 970 } 971 972 /* 973 * User-visible entry point to the scheduler. 974 * 975 * This may be called recursively if e.g. an async NFS task updates 976 * the attributes and finds that dirty pages must be flushed. 977 * NOTE: Upon exit of this function the task is guaranteed to be 978 * released. In particular note that tk_release() will have 979 * been called, so your task memory may have been freed. 980 */ 981 void rpc_execute(struct rpc_task *task) 982 { 983 bool is_async = RPC_IS_ASYNC(task); 984 985 rpc_set_active(task); 986 rpc_make_runnable(rpciod_workqueue, task); 987 if (!is_async) { 988 unsigned int pflags = memalloc_nofs_save(); 989 __rpc_execute(task); 990 memalloc_nofs_restore(pflags); 991 } 992 } 993 994 static void rpc_async_schedule(struct work_struct *work) 995 { 996 unsigned int pflags = memalloc_nofs_save(); 997 998 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 999 memalloc_nofs_restore(pflags); 1000 } 1001 1002 /** 1003 * rpc_malloc - allocate RPC buffer resources 1004 * @task: RPC task 1005 * 1006 * A single memory region is allocated, which is split between the 1007 * RPC call and RPC reply that this task is being used for. When 1008 * this RPC is retired, the memory is released by calling rpc_free. 1009 * 1010 * To prevent rpciod from hanging, this allocator never sleeps, 1011 * returning -ENOMEM and suppressing warning if the request cannot 1012 * be serviced immediately. The caller can arrange to sleep in a 1013 * way that is safe for rpciod. 1014 * 1015 * Most requests are 'small' (under 2KiB) and can be serviced from a 1016 * mempool, ensuring that NFS reads and writes can always proceed, 1017 * and that there is good locality of reference for these buffers. 1018 */ 1019 int rpc_malloc(struct rpc_task *task) 1020 { 1021 struct rpc_rqst *rqst = task->tk_rqstp; 1022 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1023 struct rpc_buffer *buf; 1024 gfp_t gfp = GFP_NOFS; 1025 1026 if (RPC_IS_SWAPPER(task)) 1027 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 1028 1029 size += sizeof(struct rpc_buffer); 1030 if (size <= RPC_BUFFER_MAXSIZE) 1031 buf = mempool_alloc(rpc_buffer_mempool, gfp); 1032 else 1033 buf = kmalloc(size, gfp); 1034 1035 if (!buf) 1036 return -ENOMEM; 1037 1038 buf->len = size; 1039 rqst->rq_buffer = buf->data; 1040 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1041 return 0; 1042 } 1043 EXPORT_SYMBOL_GPL(rpc_malloc); 1044 1045 /** 1046 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1047 * @task: RPC task 1048 * 1049 */ 1050 void rpc_free(struct rpc_task *task) 1051 { 1052 void *buffer = task->tk_rqstp->rq_buffer; 1053 size_t size; 1054 struct rpc_buffer *buf; 1055 1056 buf = container_of(buffer, struct rpc_buffer, data); 1057 size = buf->len; 1058 1059 if (size <= RPC_BUFFER_MAXSIZE) 1060 mempool_free(buf, rpc_buffer_mempool); 1061 else 1062 kfree(buf); 1063 } 1064 EXPORT_SYMBOL_GPL(rpc_free); 1065 1066 /* 1067 * Creation and deletion of RPC task structures 1068 */ 1069 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1070 { 1071 memset(task, 0, sizeof(*task)); 1072 atomic_set(&task->tk_count, 1); 1073 task->tk_flags = task_setup_data->flags; 1074 task->tk_ops = task_setup_data->callback_ops; 1075 task->tk_calldata = task_setup_data->callback_data; 1076 INIT_LIST_HEAD(&task->tk_task); 1077 1078 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1079 task->tk_owner = current->tgid; 1080 1081 /* Initialize workqueue for async tasks */ 1082 task->tk_workqueue = task_setup_data->workqueue; 1083 1084 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client, 1085 xprt_get(task_setup_data->rpc_xprt)); 1086 1087 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1088 1089 if (task->tk_ops->rpc_call_prepare != NULL) 1090 task->tk_action = rpc_prepare_task; 1091 1092 rpc_init_task_statistics(task); 1093 } 1094 1095 static struct rpc_task * 1096 rpc_alloc_task(void) 1097 { 1098 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 1099 } 1100 1101 /* 1102 * Create a new task for the specified client. 1103 */ 1104 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1105 { 1106 struct rpc_task *task = setup_data->task; 1107 unsigned short flags = 0; 1108 1109 if (task == NULL) { 1110 task = rpc_alloc_task(); 1111 flags = RPC_TASK_DYNAMIC; 1112 } 1113 1114 rpc_init_task(task, setup_data); 1115 task->tk_flags |= flags; 1116 return task; 1117 } 1118 1119 /* 1120 * rpc_free_task - release rpc task and perform cleanups 1121 * 1122 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1123 * in order to work around a workqueue dependency issue. 1124 * 1125 * Tejun Heo states: 1126 * "Workqueue currently considers two work items to be the same if they're 1127 * on the same address and won't execute them concurrently - ie. it 1128 * makes a work item which is queued again while being executed wait 1129 * for the previous execution to complete. 1130 * 1131 * If a work function frees the work item, and then waits for an event 1132 * which should be performed by another work item and *that* work item 1133 * recycles the freed work item, it can create a false dependency loop. 1134 * There really is no reliable way to detect this short of verifying 1135 * every memory free." 1136 * 1137 */ 1138 static void rpc_free_task(struct rpc_task *task) 1139 { 1140 unsigned short tk_flags = task->tk_flags; 1141 1142 put_rpccred(task->tk_op_cred); 1143 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1144 1145 if (tk_flags & RPC_TASK_DYNAMIC) 1146 mempool_free(task, rpc_task_mempool); 1147 } 1148 1149 static void rpc_async_release(struct work_struct *work) 1150 { 1151 unsigned int pflags = memalloc_nofs_save(); 1152 1153 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1154 memalloc_nofs_restore(pflags); 1155 } 1156 1157 static void rpc_release_resources_task(struct rpc_task *task) 1158 { 1159 xprt_release(task); 1160 if (task->tk_msg.rpc_cred) { 1161 if (!(task->tk_flags & RPC_TASK_CRED_NOREF)) 1162 put_cred(task->tk_msg.rpc_cred); 1163 task->tk_msg.rpc_cred = NULL; 1164 } 1165 rpc_task_release_client(task); 1166 } 1167 1168 static void rpc_final_put_task(struct rpc_task *task, 1169 struct workqueue_struct *q) 1170 { 1171 if (q != NULL) { 1172 INIT_WORK(&task->u.tk_work, rpc_async_release); 1173 queue_work(q, &task->u.tk_work); 1174 } else 1175 rpc_free_task(task); 1176 } 1177 1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1179 { 1180 if (atomic_dec_and_test(&task->tk_count)) { 1181 rpc_release_resources_task(task); 1182 rpc_final_put_task(task, q); 1183 } 1184 } 1185 1186 void rpc_put_task(struct rpc_task *task) 1187 { 1188 rpc_do_put_task(task, NULL); 1189 } 1190 EXPORT_SYMBOL_GPL(rpc_put_task); 1191 1192 void rpc_put_task_async(struct rpc_task *task) 1193 { 1194 rpc_do_put_task(task, task->tk_workqueue); 1195 } 1196 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1197 1198 static void rpc_release_task(struct rpc_task *task) 1199 { 1200 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1201 1202 rpc_release_resources_task(task); 1203 1204 /* 1205 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1206 * so it should be safe to use task->tk_count as a test for whether 1207 * or not any other processes still hold references to our rpc_task. 1208 */ 1209 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1210 /* Wake up anyone who may be waiting for task completion */ 1211 if (!rpc_complete_task(task)) 1212 return; 1213 } else { 1214 if (!atomic_dec_and_test(&task->tk_count)) 1215 return; 1216 } 1217 rpc_final_put_task(task, task->tk_workqueue); 1218 } 1219 1220 int rpciod_up(void) 1221 { 1222 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1223 } 1224 1225 void rpciod_down(void) 1226 { 1227 module_put(THIS_MODULE); 1228 } 1229 1230 /* 1231 * Start up the rpciod workqueue. 1232 */ 1233 static int rpciod_start(void) 1234 { 1235 struct workqueue_struct *wq; 1236 1237 /* 1238 * Create the rpciod thread and wait for it to start. 1239 */ 1240 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1241 if (!wq) 1242 goto out_failed; 1243 rpciod_workqueue = wq; 1244 wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 1245 if (!wq) 1246 goto free_rpciod; 1247 xprtiod_workqueue = wq; 1248 return 1; 1249 free_rpciod: 1250 wq = rpciod_workqueue; 1251 rpciod_workqueue = NULL; 1252 destroy_workqueue(wq); 1253 out_failed: 1254 return 0; 1255 } 1256 1257 static void rpciod_stop(void) 1258 { 1259 struct workqueue_struct *wq = NULL; 1260 1261 if (rpciod_workqueue == NULL) 1262 return; 1263 1264 wq = rpciod_workqueue; 1265 rpciod_workqueue = NULL; 1266 destroy_workqueue(wq); 1267 wq = xprtiod_workqueue; 1268 xprtiod_workqueue = NULL; 1269 destroy_workqueue(wq); 1270 } 1271 1272 void 1273 rpc_destroy_mempool(void) 1274 { 1275 rpciod_stop(); 1276 mempool_destroy(rpc_buffer_mempool); 1277 mempool_destroy(rpc_task_mempool); 1278 kmem_cache_destroy(rpc_task_slabp); 1279 kmem_cache_destroy(rpc_buffer_slabp); 1280 rpc_destroy_wait_queue(&delay_queue); 1281 } 1282 1283 int 1284 rpc_init_mempool(void) 1285 { 1286 /* 1287 * The following is not strictly a mempool initialisation, 1288 * but there is no harm in doing it here 1289 */ 1290 rpc_init_wait_queue(&delay_queue, "delayq"); 1291 if (!rpciod_start()) 1292 goto err_nomem; 1293 1294 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1295 sizeof(struct rpc_task), 1296 0, SLAB_HWCACHE_ALIGN, 1297 NULL); 1298 if (!rpc_task_slabp) 1299 goto err_nomem; 1300 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1301 RPC_BUFFER_MAXSIZE, 1302 0, SLAB_HWCACHE_ALIGN, 1303 NULL); 1304 if (!rpc_buffer_slabp) 1305 goto err_nomem; 1306 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1307 rpc_task_slabp); 1308 if (!rpc_task_mempool) 1309 goto err_nomem; 1310 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1311 rpc_buffer_slabp); 1312 if (!rpc_buffer_mempool) 1313 goto err_nomem; 1314 return 0; 1315 err_nomem: 1316 rpc_destroy_mempool(); 1317 return -ENOMEM; 1318 } 1319