1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/smp_lock.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #ifdef RPC_DEBUG 26 #define RPCDBG_FACILITY RPCDBG_SCHED 27 #define RPC_TASK_MAGIC_ID 0xf00baa 28 #endif 29 30 /* 31 * RPC slabs and memory pools 32 */ 33 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_TASK_POOLSIZE (8) 36 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_buffer_mempool __read_mostly; 40 41 static void rpc_async_schedule(struct work_struct *); 42 static void rpc_release_task(struct rpc_task *task); 43 static void __rpc_queue_timer_fn(unsigned long ptr); 44 45 /* 46 * RPC tasks sit here while waiting for conditions to improve. 47 */ 48 static struct rpc_wait_queue delay_queue; 49 50 /* 51 * rpciod-related stuff 52 */ 53 struct workqueue_struct *rpciod_workqueue; 54 55 /* 56 * Disable the timer for a given RPC task. Should be called with 57 * queue->lock and bh_disabled in order to avoid races within 58 * rpc_run_timer(). 59 */ 60 static void 61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 62 { 63 if (task->tk_timeout == 0) 64 return; 65 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 66 task->tk_timeout = 0; 67 list_del(&task->u.tk_wait.timer_list); 68 if (list_empty(&queue->timer_list.list)) 69 del_timer(&queue->timer_list.timer); 70 } 71 72 static void 73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 74 { 75 queue->timer_list.expires = expires; 76 mod_timer(&queue->timer_list.timer, expires); 77 } 78 79 /* 80 * Set up a timer for the current task. 81 */ 82 static void 83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 84 { 85 if (!task->tk_timeout) 86 return; 87 88 dprintk("RPC: %5u setting alarm for %lu ms\n", 89 task->tk_pid, task->tk_timeout * 1000 / HZ); 90 91 task->u.tk_wait.expires = jiffies + task->tk_timeout; 92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 93 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 95 } 96 97 /* 98 * Add new request to a priority queue. 99 */ 100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 101 { 102 struct list_head *q; 103 struct rpc_task *t; 104 105 INIT_LIST_HEAD(&task->u.tk_wait.links); 106 q = &queue->tasks[task->tk_priority]; 107 if (unlikely(task->tk_priority > queue->maxpriority)) 108 q = &queue->tasks[queue->maxpriority]; 109 list_for_each_entry(t, q, u.tk_wait.list) { 110 if (t->tk_owner == task->tk_owner) { 111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 112 return; 113 } 114 } 115 list_add_tail(&task->u.tk_wait.list, q); 116 } 117 118 /* 119 * Add new request to wait queue. 120 * 121 * Swapper tasks always get inserted at the head of the queue. 122 * This should avoid many nasty memory deadlocks and hopefully 123 * improve overall performance. 124 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 125 */ 126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 127 { 128 BUG_ON (RPC_IS_QUEUED(task)); 129 130 if (RPC_IS_PRIORITY(queue)) 131 __rpc_add_wait_queue_priority(queue, task); 132 else if (RPC_IS_SWAPPER(task)) 133 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 134 else 135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 136 task->tk_waitqueue = queue; 137 queue->qlen++; 138 rpc_set_queued(task); 139 140 dprintk("RPC: %5u added to queue %p \"%s\"\n", 141 task->tk_pid, queue, rpc_qname(queue)); 142 } 143 144 /* 145 * Remove request from a priority queue. 146 */ 147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 148 { 149 struct rpc_task *t; 150 151 if (!list_empty(&task->u.tk_wait.links)) { 152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 155 } 156 } 157 158 /* 159 * Remove request from queue. 160 * Note: must be called with spin lock held. 161 */ 162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 163 { 164 __rpc_disable_timer(queue, task); 165 if (RPC_IS_PRIORITY(queue)) 166 __rpc_remove_wait_queue_priority(task); 167 list_del(&task->u.tk_wait.list); 168 queue->qlen--; 169 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 170 task->tk_pid, queue, rpc_qname(queue)); 171 } 172 173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 174 { 175 queue->priority = priority; 176 queue->count = 1 << (priority * 2); 177 } 178 179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 180 { 181 queue->owner = pid; 182 queue->nr = RPC_BATCH_COUNT; 183 } 184 185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 186 { 187 rpc_set_waitqueue_priority(queue, queue->maxpriority); 188 rpc_set_waitqueue_owner(queue, 0); 189 } 190 191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 192 { 193 int i; 194 195 spin_lock_init(&queue->lock); 196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 197 INIT_LIST_HEAD(&queue->tasks[i]); 198 queue->maxpriority = nr_queues - 1; 199 rpc_reset_waitqueue_priority(queue); 200 queue->qlen = 0; 201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 202 INIT_LIST_HEAD(&queue->timer_list.list); 203 #ifdef RPC_DEBUG 204 queue->name = qname; 205 #endif 206 } 207 208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 209 { 210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 211 } 212 213 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 214 { 215 __rpc_init_priority_wait_queue(queue, qname, 1); 216 } 217 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 218 219 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 220 { 221 del_timer_sync(&queue->timer_list.timer); 222 } 223 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 224 225 static int rpc_wait_bit_killable(void *word) 226 { 227 if (fatal_signal_pending(current)) 228 return -ERESTARTSYS; 229 schedule(); 230 return 0; 231 } 232 233 #ifdef RPC_DEBUG 234 static void rpc_task_set_debuginfo(struct rpc_task *task) 235 { 236 static atomic_t rpc_pid; 237 238 task->tk_magic = RPC_TASK_MAGIC_ID; 239 task->tk_pid = atomic_inc_return(&rpc_pid); 240 } 241 #else 242 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 243 { 244 } 245 #endif 246 247 static void rpc_set_active(struct rpc_task *task) 248 { 249 struct rpc_clnt *clnt; 250 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 251 return; 252 rpc_task_set_debuginfo(task); 253 /* Add to global list of all tasks */ 254 clnt = task->tk_client; 255 if (clnt != NULL) { 256 spin_lock(&clnt->cl_lock); 257 list_add_tail(&task->tk_task, &clnt->cl_tasks); 258 spin_unlock(&clnt->cl_lock); 259 } 260 } 261 262 /* 263 * Mark an RPC call as having completed by clearing the 'active' bit 264 */ 265 static void rpc_mark_complete_task(struct rpc_task *task) 266 { 267 smp_mb__before_clear_bit(); 268 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 269 smp_mb__after_clear_bit(); 270 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 271 } 272 273 /* 274 * Allow callers to wait for completion of an RPC call 275 */ 276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 277 { 278 if (action == NULL) 279 action = rpc_wait_bit_killable; 280 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 281 action, TASK_KILLABLE); 282 } 283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 284 285 /* 286 * Make an RPC task runnable. 287 * 288 * Note: If the task is ASYNC, this must be called with 289 * the spinlock held to protect the wait queue operation. 290 */ 291 static void rpc_make_runnable(struct rpc_task *task) 292 { 293 rpc_clear_queued(task); 294 if (rpc_test_and_set_running(task)) 295 return; 296 /* We might have raced */ 297 if (RPC_IS_QUEUED(task)) { 298 rpc_clear_running(task); 299 return; 300 } 301 if (RPC_IS_ASYNC(task)) { 302 int status; 303 304 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 305 status = queue_work(rpciod_workqueue, &task->u.tk_work); 306 if (status < 0) { 307 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 308 task->tk_status = status; 309 return; 310 } 311 } else 312 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 313 } 314 315 /* 316 * Prepare for sleeping on a wait queue. 317 * By always appending tasks to the list we ensure FIFO behavior. 318 * NB: An RPC task will only receive interrupt-driven events as long 319 * as it's on a wait queue. 320 */ 321 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 322 rpc_action action) 323 { 324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 325 task->tk_pid, rpc_qname(q), jiffies); 326 327 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 328 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 329 return; 330 } 331 332 __rpc_add_wait_queue(q, task); 333 334 BUG_ON(task->tk_callback != NULL); 335 task->tk_callback = action; 336 __rpc_add_timer(q, task); 337 } 338 339 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 340 rpc_action action) 341 { 342 /* Mark the task as being activated if so needed */ 343 rpc_set_active(task); 344 345 /* 346 * Protect the queue operations. 347 */ 348 spin_lock_bh(&q->lock); 349 __rpc_sleep_on(q, task, action); 350 spin_unlock_bh(&q->lock); 351 } 352 EXPORT_SYMBOL_GPL(rpc_sleep_on); 353 354 /** 355 * __rpc_do_wake_up_task - wake up a single rpc_task 356 * @queue: wait queue 357 * @task: task to be woken up 358 * 359 * Caller must hold queue->lock, and have cleared the task queued flag. 360 */ 361 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 362 { 363 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 364 task->tk_pid, jiffies); 365 366 #ifdef RPC_DEBUG 367 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 368 #endif 369 /* Has the task been executed yet? If not, we cannot wake it up! */ 370 if (!RPC_IS_ACTIVATED(task)) { 371 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 372 return; 373 } 374 375 __rpc_remove_wait_queue(queue, task); 376 377 rpc_make_runnable(task); 378 379 dprintk("RPC: __rpc_wake_up_task done\n"); 380 } 381 382 /* 383 * Wake up a queued task while the queue lock is being held 384 */ 385 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 386 { 387 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 388 __rpc_do_wake_up_task(queue, task); 389 } 390 391 /* 392 * Wake up a task on a specific queue 393 */ 394 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 395 { 396 spin_lock_bh(&queue->lock); 397 rpc_wake_up_task_queue_locked(queue, task); 398 spin_unlock_bh(&queue->lock); 399 } 400 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 401 402 /* 403 * Wake up the specified task 404 */ 405 static void rpc_wake_up_task(struct rpc_task *task) 406 { 407 rpc_wake_up_queued_task(task->tk_waitqueue, task); 408 } 409 410 /* 411 * Wake up the next task on a priority queue. 412 */ 413 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 414 { 415 struct list_head *q; 416 struct rpc_task *task; 417 418 /* 419 * Service a batch of tasks from a single owner. 420 */ 421 q = &queue->tasks[queue->priority]; 422 if (!list_empty(q)) { 423 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 424 if (queue->owner == task->tk_owner) { 425 if (--queue->nr) 426 goto out; 427 list_move_tail(&task->u.tk_wait.list, q); 428 } 429 /* 430 * Check if we need to switch queues. 431 */ 432 if (--queue->count) 433 goto new_owner; 434 } 435 436 /* 437 * Service the next queue. 438 */ 439 do { 440 if (q == &queue->tasks[0]) 441 q = &queue->tasks[queue->maxpriority]; 442 else 443 q = q - 1; 444 if (!list_empty(q)) { 445 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 446 goto new_queue; 447 } 448 } while (q != &queue->tasks[queue->priority]); 449 450 rpc_reset_waitqueue_priority(queue); 451 return NULL; 452 453 new_queue: 454 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 455 new_owner: 456 rpc_set_waitqueue_owner(queue, task->tk_owner); 457 out: 458 rpc_wake_up_task_queue_locked(queue, task); 459 return task; 460 } 461 462 /* 463 * Wake up the next task on the wait queue. 464 */ 465 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 466 { 467 struct rpc_task *task = NULL; 468 469 dprintk("RPC: wake_up_next(%p \"%s\")\n", 470 queue, rpc_qname(queue)); 471 spin_lock_bh(&queue->lock); 472 if (RPC_IS_PRIORITY(queue)) 473 task = __rpc_wake_up_next_priority(queue); 474 else { 475 task_for_first(task, &queue->tasks[0]) 476 rpc_wake_up_task_queue_locked(queue, task); 477 } 478 spin_unlock_bh(&queue->lock); 479 480 return task; 481 } 482 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 483 484 /** 485 * rpc_wake_up - wake up all rpc_tasks 486 * @queue: rpc_wait_queue on which the tasks are sleeping 487 * 488 * Grabs queue->lock 489 */ 490 void rpc_wake_up(struct rpc_wait_queue *queue) 491 { 492 struct rpc_task *task, *next; 493 struct list_head *head; 494 495 spin_lock_bh(&queue->lock); 496 head = &queue->tasks[queue->maxpriority]; 497 for (;;) { 498 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 499 rpc_wake_up_task_queue_locked(queue, task); 500 if (head == &queue->tasks[0]) 501 break; 502 head--; 503 } 504 spin_unlock_bh(&queue->lock); 505 } 506 EXPORT_SYMBOL_GPL(rpc_wake_up); 507 508 /** 509 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 510 * @queue: rpc_wait_queue on which the tasks are sleeping 511 * @status: status value to set 512 * 513 * Grabs queue->lock 514 */ 515 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 516 { 517 struct rpc_task *task, *next; 518 struct list_head *head; 519 520 spin_lock_bh(&queue->lock); 521 head = &queue->tasks[queue->maxpriority]; 522 for (;;) { 523 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 524 task->tk_status = status; 525 rpc_wake_up_task_queue_locked(queue, task); 526 } 527 if (head == &queue->tasks[0]) 528 break; 529 head--; 530 } 531 spin_unlock_bh(&queue->lock); 532 } 533 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 534 535 static void __rpc_queue_timer_fn(unsigned long ptr) 536 { 537 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 538 struct rpc_task *task, *n; 539 unsigned long expires, now, timeo; 540 541 spin_lock(&queue->lock); 542 expires = now = jiffies; 543 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 544 timeo = task->u.tk_wait.expires; 545 if (time_after_eq(now, timeo)) { 546 dprintk("RPC: %5u timeout\n", task->tk_pid); 547 task->tk_status = -ETIMEDOUT; 548 rpc_wake_up_task_queue_locked(queue, task); 549 continue; 550 } 551 if (expires == now || time_after(expires, timeo)) 552 expires = timeo; 553 } 554 if (!list_empty(&queue->timer_list.list)) 555 rpc_set_queue_timer(queue, expires); 556 spin_unlock(&queue->lock); 557 } 558 559 static void __rpc_atrun(struct rpc_task *task) 560 { 561 task->tk_status = 0; 562 } 563 564 /* 565 * Run a task at a later time 566 */ 567 void rpc_delay(struct rpc_task *task, unsigned long delay) 568 { 569 task->tk_timeout = delay; 570 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 571 } 572 EXPORT_SYMBOL_GPL(rpc_delay); 573 574 /* 575 * Helper to call task->tk_ops->rpc_call_prepare 576 */ 577 static void rpc_prepare_task(struct rpc_task *task) 578 { 579 lock_kernel(); 580 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 581 unlock_kernel(); 582 } 583 584 /* 585 * Helper that calls task->tk_ops->rpc_call_done if it exists 586 */ 587 void rpc_exit_task(struct rpc_task *task) 588 { 589 task->tk_action = NULL; 590 if (task->tk_ops->rpc_call_done != NULL) { 591 lock_kernel(); 592 task->tk_ops->rpc_call_done(task, task->tk_calldata); 593 unlock_kernel(); 594 if (task->tk_action != NULL) { 595 WARN_ON(RPC_ASSASSINATED(task)); 596 /* Always release the RPC slot and buffer memory */ 597 xprt_release(task); 598 } 599 } 600 } 601 EXPORT_SYMBOL_GPL(rpc_exit_task); 602 603 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 604 { 605 if (ops->rpc_release != NULL) { 606 lock_kernel(); 607 ops->rpc_release(calldata); 608 unlock_kernel(); 609 } 610 } 611 612 /* 613 * This is the RPC `scheduler' (or rather, the finite state machine). 614 */ 615 static void __rpc_execute(struct rpc_task *task) 616 { 617 int status = 0; 618 619 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 620 task->tk_pid, task->tk_flags); 621 622 BUG_ON(RPC_IS_QUEUED(task)); 623 624 for (;;) { 625 626 /* 627 * Execute any pending callback. 628 */ 629 if (RPC_DO_CALLBACK(task)) { 630 /* Define a callback save pointer */ 631 void (*save_callback)(struct rpc_task *); 632 633 /* 634 * If a callback exists, save it, reset it, 635 * call it. 636 * The save is needed to stop from resetting 637 * another callback set within the callback handler 638 * - Dave 639 */ 640 save_callback=task->tk_callback; 641 task->tk_callback=NULL; 642 save_callback(task); 643 } 644 645 /* 646 * Perform the next FSM step. 647 * tk_action may be NULL when the task has been killed 648 * by someone else. 649 */ 650 if (!RPC_IS_QUEUED(task)) { 651 if (task->tk_action == NULL) 652 break; 653 task->tk_action(task); 654 } 655 656 /* 657 * Lockless check for whether task is sleeping or not. 658 */ 659 if (!RPC_IS_QUEUED(task)) 660 continue; 661 rpc_clear_running(task); 662 if (RPC_IS_ASYNC(task)) { 663 /* Careful! we may have raced... */ 664 if (RPC_IS_QUEUED(task)) 665 return; 666 if (rpc_test_and_set_running(task)) 667 return; 668 continue; 669 } 670 671 /* sync task: sleep here */ 672 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 673 status = out_of_line_wait_on_bit(&task->tk_runstate, 674 RPC_TASK_QUEUED, rpc_wait_bit_killable, 675 TASK_KILLABLE); 676 if (status == -ERESTARTSYS) { 677 /* 678 * When a sync task receives a signal, it exits with 679 * -ERESTARTSYS. In order to catch any callbacks that 680 * clean up after sleeping on some queue, we don't 681 * break the loop here, but go around once more. 682 */ 683 dprintk("RPC: %5u got signal\n", task->tk_pid); 684 task->tk_flags |= RPC_TASK_KILLED; 685 rpc_exit(task, -ERESTARTSYS); 686 rpc_wake_up_task(task); 687 } 688 rpc_set_running(task); 689 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 690 } 691 692 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 693 task->tk_status); 694 /* Release all resources associated with the task */ 695 rpc_release_task(task); 696 } 697 698 /* 699 * User-visible entry point to the scheduler. 700 * 701 * This may be called recursively if e.g. an async NFS task updates 702 * the attributes and finds that dirty pages must be flushed. 703 * NOTE: Upon exit of this function the task is guaranteed to be 704 * released. In particular note that tk_release() will have 705 * been called, so your task memory may have been freed. 706 */ 707 void rpc_execute(struct rpc_task *task) 708 { 709 rpc_set_active(task); 710 rpc_set_running(task); 711 __rpc_execute(task); 712 } 713 714 static void rpc_async_schedule(struct work_struct *work) 715 { 716 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 717 } 718 719 struct rpc_buffer { 720 size_t len; 721 char data[]; 722 }; 723 724 /** 725 * rpc_malloc - allocate an RPC buffer 726 * @task: RPC task that will use this buffer 727 * @size: requested byte size 728 * 729 * To prevent rpciod from hanging, this allocator never sleeps, 730 * returning NULL if the request cannot be serviced immediately. 731 * The caller can arrange to sleep in a way that is safe for rpciod. 732 * 733 * Most requests are 'small' (under 2KiB) and can be serviced from a 734 * mempool, ensuring that NFS reads and writes can always proceed, 735 * and that there is good locality of reference for these buffers. 736 * 737 * In order to avoid memory starvation triggering more writebacks of 738 * NFS requests, we avoid using GFP_KERNEL. 739 */ 740 void *rpc_malloc(struct rpc_task *task, size_t size) 741 { 742 struct rpc_buffer *buf; 743 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 744 745 size += sizeof(struct rpc_buffer); 746 if (size <= RPC_BUFFER_MAXSIZE) 747 buf = mempool_alloc(rpc_buffer_mempool, gfp); 748 else 749 buf = kmalloc(size, gfp); 750 751 if (!buf) 752 return NULL; 753 754 buf->len = size; 755 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 756 task->tk_pid, size, buf); 757 return &buf->data; 758 } 759 EXPORT_SYMBOL_GPL(rpc_malloc); 760 761 /** 762 * rpc_free - free buffer allocated via rpc_malloc 763 * @buffer: buffer to free 764 * 765 */ 766 void rpc_free(void *buffer) 767 { 768 size_t size; 769 struct rpc_buffer *buf; 770 771 if (!buffer) 772 return; 773 774 buf = container_of(buffer, struct rpc_buffer, data); 775 size = buf->len; 776 777 dprintk("RPC: freeing buffer of size %zu at %p\n", 778 size, buf); 779 780 if (size <= RPC_BUFFER_MAXSIZE) 781 mempool_free(buf, rpc_buffer_mempool); 782 else 783 kfree(buf); 784 } 785 EXPORT_SYMBOL_GPL(rpc_free); 786 787 /* 788 * Creation and deletion of RPC task structures 789 */ 790 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 791 { 792 memset(task, 0, sizeof(*task)); 793 atomic_set(&task->tk_count, 1); 794 task->tk_flags = task_setup_data->flags; 795 task->tk_ops = task_setup_data->callback_ops; 796 task->tk_calldata = task_setup_data->callback_data; 797 INIT_LIST_HEAD(&task->tk_task); 798 799 /* Initialize retry counters */ 800 task->tk_garb_retry = 2; 801 task->tk_cred_retry = 2; 802 803 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 804 task->tk_owner = current->tgid; 805 806 /* Initialize workqueue for async tasks */ 807 task->tk_workqueue = task_setup_data->workqueue; 808 809 task->tk_client = task_setup_data->rpc_client; 810 if (task->tk_client != NULL) { 811 kref_get(&task->tk_client->cl_kref); 812 if (task->tk_client->cl_softrtry) 813 task->tk_flags |= RPC_TASK_SOFT; 814 } 815 816 if (task->tk_ops->rpc_call_prepare != NULL) 817 task->tk_action = rpc_prepare_task; 818 819 if (task_setup_data->rpc_message != NULL) { 820 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc; 821 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp; 822 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp; 823 /* Bind the user cred */ 824 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags); 825 if (task->tk_action == NULL) 826 rpc_call_start(task); 827 } 828 829 /* starting timestamp */ 830 task->tk_start = jiffies; 831 832 dprintk("RPC: new task initialized, procpid %u\n", 833 task_pid_nr(current)); 834 } 835 836 static struct rpc_task * 837 rpc_alloc_task(void) 838 { 839 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 840 } 841 842 /* 843 * Create a new task for the specified client. 844 */ 845 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 846 { 847 struct rpc_task *task = setup_data->task; 848 unsigned short flags = 0; 849 850 if (task == NULL) { 851 task = rpc_alloc_task(); 852 if (task == NULL) 853 goto out; 854 flags = RPC_TASK_DYNAMIC; 855 } 856 857 rpc_init_task(task, setup_data); 858 859 task->tk_flags |= flags; 860 dprintk("RPC: allocated task %p\n", task); 861 out: 862 return task; 863 } 864 865 static void rpc_free_task(struct rpc_task *task) 866 { 867 const struct rpc_call_ops *tk_ops = task->tk_ops; 868 void *calldata = task->tk_calldata; 869 870 if (task->tk_flags & RPC_TASK_DYNAMIC) { 871 dprintk("RPC: %5u freeing task\n", task->tk_pid); 872 mempool_free(task, rpc_task_mempool); 873 } 874 rpc_release_calldata(tk_ops, calldata); 875 } 876 877 static void rpc_async_release(struct work_struct *work) 878 { 879 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 880 } 881 882 void rpc_put_task(struct rpc_task *task) 883 { 884 if (!atomic_dec_and_test(&task->tk_count)) 885 return; 886 /* Release resources */ 887 if (task->tk_rqstp) 888 xprt_release(task); 889 if (task->tk_msg.rpc_cred) 890 rpcauth_unbindcred(task); 891 if (task->tk_client) { 892 rpc_release_client(task->tk_client); 893 task->tk_client = NULL; 894 } 895 if (task->tk_workqueue != NULL) { 896 INIT_WORK(&task->u.tk_work, rpc_async_release); 897 queue_work(task->tk_workqueue, &task->u.tk_work); 898 } else 899 rpc_free_task(task); 900 } 901 EXPORT_SYMBOL_GPL(rpc_put_task); 902 903 static void rpc_release_task(struct rpc_task *task) 904 { 905 #ifdef RPC_DEBUG 906 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 907 #endif 908 dprintk("RPC: %5u release task\n", task->tk_pid); 909 910 if (!list_empty(&task->tk_task)) { 911 struct rpc_clnt *clnt = task->tk_client; 912 /* Remove from client task list */ 913 spin_lock(&clnt->cl_lock); 914 list_del(&task->tk_task); 915 spin_unlock(&clnt->cl_lock); 916 } 917 BUG_ON (RPC_IS_QUEUED(task)); 918 919 #ifdef RPC_DEBUG 920 task->tk_magic = 0; 921 #endif 922 /* Wake up anyone who is waiting for task completion */ 923 rpc_mark_complete_task(task); 924 925 rpc_put_task(task); 926 } 927 928 /* 929 * Kill all tasks for the given client. 930 * XXX: kill their descendants as well? 931 */ 932 void rpc_killall_tasks(struct rpc_clnt *clnt) 933 { 934 struct rpc_task *rovr; 935 936 937 if (list_empty(&clnt->cl_tasks)) 938 return; 939 dprintk("RPC: killing all tasks for client %p\n", clnt); 940 /* 941 * Spin lock all_tasks to prevent changes... 942 */ 943 spin_lock(&clnt->cl_lock); 944 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 945 if (! RPC_IS_ACTIVATED(rovr)) 946 continue; 947 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 948 rovr->tk_flags |= RPC_TASK_KILLED; 949 rpc_exit(rovr, -EIO); 950 rpc_wake_up_task(rovr); 951 } 952 } 953 spin_unlock(&clnt->cl_lock); 954 } 955 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 956 957 int rpciod_up(void) 958 { 959 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 960 } 961 962 void rpciod_down(void) 963 { 964 module_put(THIS_MODULE); 965 } 966 967 /* 968 * Start up the rpciod workqueue. 969 */ 970 static int rpciod_start(void) 971 { 972 struct workqueue_struct *wq; 973 974 /* 975 * Create the rpciod thread and wait for it to start. 976 */ 977 dprintk("RPC: creating workqueue rpciod\n"); 978 wq = create_workqueue("rpciod"); 979 rpciod_workqueue = wq; 980 return rpciod_workqueue != NULL; 981 } 982 983 static void rpciod_stop(void) 984 { 985 struct workqueue_struct *wq = NULL; 986 987 if (rpciod_workqueue == NULL) 988 return; 989 dprintk("RPC: destroying workqueue rpciod\n"); 990 991 wq = rpciod_workqueue; 992 rpciod_workqueue = NULL; 993 destroy_workqueue(wq); 994 } 995 996 void 997 rpc_destroy_mempool(void) 998 { 999 rpciod_stop(); 1000 if (rpc_buffer_mempool) 1001 mempool_destroy(rpc_buffer_mempool); 1002 if (rpc_task_mempool) 1003 mempool_destroy(rpc_task_mempool); 1004 if (rpc_task_slabp) 1005 kmem_cache_destroy(rpc_task_slabp); 1006 if (rpc_buffer_slabp) 1007 kmem_cache_destroy(rpc_buffer_slabp); 1008 rpc_destroy_wait_queue(&delay_queue); 1009 } 1010 1011 int 1012 rpc_init_mempool(void) 1013 { 1014 /* 1015 * The following is not strictly a mempool initialisation, 1016 * but there is no harm in doing it here 1017 */ 1018 rpc_init_wait_queue(&delay_queue, "delayq"); 1019 if (!rpciod_start()) 1020 goto err_nomem; 1021 1022 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1023 sizeof(struct rpc_task), 1024 0, SLAB_HWCACHE_ALIGN, 1025 NULL); 1026 if (!rpc_task_slabp) 1027 goto err_nomem; 1028 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1029 RPC_BUFFER_MAXSIZE, 1030 0, SLAB_HWCACHE_ALIGN, 1031 NULL); 1032 if (!rpc_buffer_slabp) 1033 goto err_nomem; 1034 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1035 rpc_task_slabp); 1036 if (!rpc_task_mempool) 1037 goto err_nomem; 1038 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1039 rpc_buffer_slabp); 1040 if (!rpc_buffer_mempool) 1041 goto err_nomem; 1042 return 0; 1043 err_nomem: 1044 rpc_destroy_mempool(); 1045 return -ENOMEM; 1046 } 1047