xref: /openbmc/linux/net/sunrpc/sched.c (revision 1fa0a7dc)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 #include <linux/sched/mm.h>
23 
24 #include <linux/sunrpc/clnt.h>
25 
26 #include "sunrpc.h"
27 
28 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
29 #define RPCDBG_FACILITY		RPCDBG_SCHED
30 #endif
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/sunrpc.h>
34 
35 /*
36  * RPC slabs and memory pools
37  */
38 #define RPC_BUFFER_MAXSIZE	(2048)
39 #define RPC_BUFFER_POOLSIZE	(8)
40 #define RPC_TASK_POOLSIZE	(8)
41 static struct kmem_cache	*rpc_task_slabp __read_mostly;
42 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
43 static mempool_t	*rpc_task_mempool __read_mostly;
44 static mempool_t	*rpc_buffer_mempool __read_mostly;
45 
46 static void			rpc_async_schedule(struct work_struct *);
47 static void			 rpc_release_task(struct rpc_task *task);
48 static void __rpc_queue_timer_fn(struct timer_list *t);
49 
50 /*
51  * RPC tasks sit here while waiting for conditions to improve.
52  */
53 static struct rpc_wait_queue delay_queue;
54 
55 /*
56  * rpciod-related stuff
57  */
58 struct workqueue_struct *rpciod_workqueue __read_mostly;
59 struct workqueue_struct *xprtiod_workqueue __read_mostly;
60 
61 unsigned long
62 rpc_task_timeout(const struct rpc_task *task)
63 {
64 	unsigned long timeout = READ_ONCE(task->tk_timeout);
65 
66 	if (timeout != 0) {
67 		unsigned long now = jiffies;
68 		if (time_before(now, timeout))
69 			return timeout - now;
70 	}
71 	return 0;
72 }
73 EXPORT_SYMBOL_GPL(rpc_task_timeout);
74 
75 /*
76  * Disable the timer for a given RPC task. Should be called with
77  * queue->lock and bh_disabled in order to avoid races within
78  * rpc_run_timer().
79  */
80 static void
81 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
82 {
83 	if (list_empty(&task->u.tk_wait.timer_list))
84 		return;
85 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
86 	task->tk_timeout = 0;
87 	list_del(&task->u.tk_wait.timer_list);
88 	if (list_empty(&queue->timer_list.list))
89 		del_timer(&queue->timer_list.timer);
90 }
91 
92 static void
93 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
94 {
95 	timer_reduce(&queue->timer_list.timer, expires);
96 }
97 
98 /*
99  * Set up a timer for the current task.
100  */
101 static void
102 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
103 		unsigned long timeout)
104 {
105 	dprintk("RPC: %5u setting alarm for %u ms\n",
106 		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
107 
108 	task->tk_timeout = timeout;
109 	rpc_set_queue_timer(queue, timeout);
110 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
111 }
112 
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 	if (queue->priority != priority) {
116 		queue->priority = priority;
117 		queue->nr = 1U << priority;
118 	}
119 }
120 
121 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
122 {
123 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
124 }
125 
126 /*
127  * Add a request to a queue list
128  */
129 static void
130 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
131 {
132 	struct rpc_task *t;
133 
134 	list_for_each_entry(t, q, u.tk_wait.list) {
135 		if (t->tk_owner == task->tk_owner) {
136 			list_add_tail(&task->u.tk_wait.links,
137 					&t->u.tk_wait.links);
138 			/* Cache the queue head in task->u.tk_wait.list */
139 			task->u.tk_wait.list.next = q;
140 			task->u.tk_wait.list.prev = NULL;
141 			return;
142 		}
143 	}
144 	INIT_LIST_HEAD(&task->u.tk_wait.links);
145 	list_add_tail(&task->u.tk_wait.list, q);
146 }
147 
148 /*
149  * Remove request from a queue list
150  */
151 static void
152 __rpc_list_dequeue_task(struct rpc_task *task)
153 {
154 	struct list_head *q;
155 	struct rpc_task *t;
156 
157 	if (task->u.tk_wait.list.prev == NULL) {
158 		list_del(&task->u.tk_wait.links);
159 		return;
160 	}
161 	if (!list_empty(&task->u.tk_wait.links)) {
162 		t = list_first_entry(&task->u.tk_wait.links,
163 				struct rpc_task,
164 				u.tk_wait.links);
165 		/* Assume __rpc_list_enqueue_task() cached the queue head */
166 		q = t->u.tk_wait.list.next;
167 		list_add_tail(&t->u.tk_wait.list, q);
168 		list_del(&task->u.tk_wait.links);
169 	}
170 	list_del(&task->u.tk_wait.list);
171 }
172 
173 /*
174  * Add new request to a priority queue.
175  */
176 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
177 		struct rpc_task *task,
178 		unsigned char queue_priority)
179 {
180 	if (unlikely(queue_priority > queue->maxpriority))
181 		queue_priority = queue->maxpriority;
182 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
183 }
184 
185 /*
186  * Add new request to wait queue.
187  *
188  * Swapper tasks always get inserted at the head of the queue.
189  * This should avoid many nasty memory deadlocks and hopefully
190  * improve overall performance.
191  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
192  */
193 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
194 		struct rpc_task *task,
195 		unsigned char queue_priority)
196 {
197 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
198 	if (RPC_IS_QUEUED(task))
199 		return;
200 
201 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
202 	if (RPC_IS_PRIORITY(queue))
203 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
204 	else if (RPC_IS_SWAPPER(task))
205 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
206 	else
207 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
208 	task->tk_waitqueue = queue;
209 	queue->qlen++;
210 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
211 	smp_wmb();
212 	rpc_set_queued(task);
213 
214 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
215 			task->tk_pid, queue, rpc_qname(queue));
216 }
217 
218 /*
219  * Remove request from a priority queue.
220  */
221 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
222 {
223 	__rpc_list_dequeue_task(task);
224 }
225 
226 /*
227  * Remove request from queue.
228  * Note: must be called with spin lock held.
229  */
230 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
231 {
232 	__rpc_disable_timer(queue, task);
233 	if (RPC_IS_PRIORITY(queue))
234 		__rpc_remove_wait_queue_priority(task);
235 	else
236 		list_del(&task->u.tk_wait.list);
237 	queue->qlen--;
238 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
239 			task->tk_pid, queue, rpc_qname(queue));
240 }
241 
242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
243 {
244 	int i;
245 
246 	spin_lock_init(&queue->lock);
247 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
248 		INIT_LIST_HEAD(&queue->tasks[i]);
249 	queue->maxpriority = nr_queues - 1;
250 	rpc_reset_waitqueue_priority(queue);
251 	queue->qlen = 0;
252 	timer_setup(&queue->timer_list.timer,
253 			__rpc_queue_timer_fn,
254 			TIMER_DEFERRABLE);
255 	INIT_LIST_HEAD(&queue->timer_list.list);
256 	rpc_assign_waitqueue_name(queue, qname);
257 }
258 
259 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260 {
261 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
262 }
263 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
264 
265 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
266 {
267 	__rpc_init_priority_wait_queue(queue, qname, 1);
268 }
269 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
270 
271 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
272 {
273 	del_timer_sync(&queue->timer_list.timer);
274 }
275 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
276 
277 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
278 {
279 	freezable_schedule_unsafe();
280 	if (signal_pending_state(mode, current))
281 		return -ERESTARTSYS;
282 	return 0;
283 }
284 
285 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
286 static void rpc_task_set_debuginfo(struct rpc_task *task)
287 {
288 	static atomic_t rpc_pid;
289 
290 	task->tk_pid = atomic_inc_return(&rpc_pid);
291 }
292 #else
293 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
294 {
295 }
296 #endif
297 
298 static void rpc_set_active(struct rpc_task *task)
299 {
300 	rpc_task_set_debuginfo(task);
301 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
302 	trace_rpc_task_begin(task, NULL);
303 }
304 
305 /*
306  * Mark an RPC call as having completed by clearing the 'active' bit
307  * and then waking up all tasks that were sleeping.
308  */
309 static int rpc_complete_task(struct rpc_task *task)
310 {
311 	void *m = &task->tk_runstate;
312 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
313 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
314 	unsigned long flags;
315 	int ret;
316 
317 	trace_rpc_task_complete(task, NULL);
318 
319 	spin_lock_irqsave(&wq->lock, flags);
320 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
321 	ret = atomic_dec_and_test(&task->tk_count);
322 	if (waitqueue_active(wq))
323 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
324 	spin_unlock_irqrestore(&wq->lock, flags);
325 	return ret;
326 }
327 
328 /*
329  * Allow callers to wait for completion of an RPC call
330  *
331  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
332  * to enforce taking of the wq->lock and hence avoid races with
333  * rpc_complete_task().
334  */
335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
336 {
337 	if (action == NULL)
338 		action = rpc_wait_bit_killable;
339 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
340 			action, TASK_KILLABLE);
341 }
342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
343 
344 /*
345  * Make an RPC task runnable.
346  *
347  * Note: If the task is ASYNC, and is being made runnable after sitting on an
348  * rpc_wait_queue, this must be called with the queue spinlock held to protect
349  * the wait queue operation.
350  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
351  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
352  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
353  * the RPC_TASK_RUNNING flag.
354  */
355 static void rpc_make_runnable(struct workqueue_struct *wq,
356 		struct rpc_task *task)
357 {
358 	bool need_wakeup = !rpc_test_and_set_running(task);
359 
360 	rpc_clear_queued(task);
361 	if (!need_wakeup)
362 		return;
363 	if (RPC_IS_ASYNC(task)) {
364 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
365 		queue_work(wq, &task->u.tk_work);
366 	} else
367 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
368 }
369 
370 /*
371  * Prepare for sleeping on a wait queue.
372  * By always appending tasks to the list we ensure FIFO behavior.
373  * NB: An RPC task will only receive interrupt-driven events as long
374  * as it's on a wait queue.
375  */
376 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
377 		struct rpc_task *task,
378 		unsigned char queue_priority)
379 {
380 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
381 			task->tk_pid, rpc_qname(q), jiffies);
382 
383 	trace_rpc_task_sleep(task, q);
384 
385 	__rpc_add_wait_queue(q, task, queue_priority);
386 
387 }
388 
389 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
390 		struct rpc_task *task, unsigned long timeout,
391 		unsigned char queue_priority)
392 {
393 	if (time_is_after_jiffies(timeout)) {
394 		__rpc_sleep_on_priority(q, task, queue_priority);
395 		__rpc_add_timer(q, task, timeout);
396 	} else
397 		task->tk_status = -ETIMEDOUT;
398 }
399 
400 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
401 {
402 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
403 		task->tk_callback = action;
404 }
405 
406 static bool rpc_sleep_check_activated(struct rpc_task *task)
407 {
408 	/* We shouldn't ever put an inactive task to sleep */
409 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
410 		task->tk_status = -EIO;
411 		rpc_put_task_async(task);
412 		return false;
413 	}
414 	return true;
415 }
416 
417 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
418 				rpc_action action, unsigned long timeout)
419 {
420 	if (!rpc_sleep_check_activated(task))
421 		return;
422 
423 	rpc_set_tk_callback(task, action);
424 
425 	/*
426 	 * Protect the queue operations.
427 	 */
428 	spin_lock_bh(&q->lock);
429 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
430 	spin_unlock_bh(&q->lock);
431 }
432 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
433 
434 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
435 				rpc_action action)
436 {
437 	if (!rpc_sleep_check_activated(task))
438 		return;
439 
440 	rpc_set_tk_callback(task, action);
441 
442 	WARN_ON_ONCE(task->tk_timeout != 0);
443 	/*
444 	 * Protect the queue operations.
445 	 */
446 	spin_lock_bh(&q->lock);
447 	__rpc_sleep_on_priority(q, task, task->tk_priority);
448 	spin_unlock_bh(&q->lock);
449 }
450 EXPORT_SYMBOL_GPL(rpc_sleep_on);
451 
452 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
453 		struct rpc_task *task, unsigned long timeout, int priority)
454 {
455 	if (!rpc_sleep_check_activated(task))
456 		return;
457 
458 	priority -= RPC_PRIORITY_LOW;
459 	/*
460 	 * Protect the queue operations.
461 	 */
462 	spin_lock_bh(&q->lock);
463 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
464 	spin_unlock_bh(&q->lock);
465 }
466 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
467 
468 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
469 		int priority)
470 {
471 	if (!rpc_sleep_check_activated(task))
472 		return;
473 
474 	WARN_ON_ONCE(task->tk_timeout != 0);
475 	priority -= RPC_PRIORITY_LOW;
476 	/*
477 	 * Protect the queue operations.
478 	 */
479 	spin_lock_bh(&q->lock);
480 	__rpc_sleep_on_priority(q, task, priority);
481 	spin_unlock_bh(&q->lock);
482 }
483 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
484 
485 /**
486  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
487  * @wq: workqueue on which to run task
488  * @queue: wait queue
489  * @task: task to be woken up
490  *
491  * Caller must hold queue->lock, and have cleared the task queued flag.
492  */
493 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
494 		struct rpc_wait_queue *queue,
495 		struct rpc_task *task)
496 {
497 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
498 			task->tk_pid, jiffies);
499 
500 	/* Has the task been executed yet? If not, we cannot wake it up! */
501 	if (!RPC_IS_ACTIVATED(task)) {
502 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
503 		return;
504 	}
505 
506 	trace_rpc_task_wakeup(task, queue);
507 
508 	__rpc_remove_wait_queue(queue, task);
509 
510 	rpc_make_runnable(wq, task);
511 
512 	dprintk("RPC:       __rpc_wake_up_task done\n");
513 }
514 
515 /*
516  * Wake up a queued task while the queue lock is being held
517  */
518 static struct rpc_task *
519 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
520 		struct rpc_wait_queue *queue, struct rpc_task *task,
521 		bool (*action)(struct rpc_task *, void *), void *data)
522 {
523 	if (RPC_IS_QUEUED(task)) {
524 		smp_rmb();
525 		if (task->tk_waitqueue == queue) {
526 			if (action == NULL || action(task, data)) {
527 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
528 				return task;
529 			}
530 		}
531 	}
532 	return NULL;
533 }
534 
535 static void
536 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
537 		struct rpc_wait_queue *queue, struct rpc_task *task)
538 {
539 	rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
540 }
541 
542 /*
543  * Wake up a queued task while the queue lock is being held
544  */
545 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
546 {
547 	rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
548 }
549 
550 /*
551  * Wake up a task on a specific queue
552  */
553 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
554 		struct rpc_wait_queue *queue,
555 		struct rpc_task *task)
556 {
557 	if (!RPC_IS_QUEUED(task))
558 		return;
559 	spin_lock_bh(&queue->lock);
560 	rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
561 	spin_unlock_bh(&queue->lock);
562 }
563 
564 /*
565  * Wake up a task on a specific queue
566  */
567 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
568 {
569 	if (!RPC_IS_QUEUED(task))
570 		return;
571 	spin_lock_bh(&queue->lock);
572 	rpc_wake_up_task_queue_locked(queue, task);
573 	spin_unlock_bh(&queue->lock);
574 }
575 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
576 
577 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
578 {
579 	task->tk_status = *(int *)status;
580 	return true;
581 }
582 
583 static void
584 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
585 		struct rpc_task *task, int status)
586 {
587 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
588 			task, rpc_task_action_set_status, &status);
589 }
590 
591 /**
592  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
593  * @queue: pointer to rpc_wait_queue
594  * @task: pointer to rpc_task
595  * @status: integer error value
596  *
597  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
598  * set to the value of @status.
599  */
600 void
601 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
602 		struct rpc_task *task, int status)
603 {
604 	if (!RPC_IS_QUEUED(task))
605 		return;
606 	spin_lock_bh(&queue->lock);
607 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
608 	spin_unlock_bh(&queue->lock);
609 }
610 
611 /*
612  * Wake up the next task on a priority queue.
613  */
614 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
615 {
616 	struct list_head *q;
617 	struct rpc_task *task;
618 
619 	/*
620 	 * Service a batch of tasks from a single owner.
621 	 */
622 	q = &queue->tasks[queue->priority];
623 	if (!list_empty(q) && --queue->nr) {
624 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
625 		goto out;
626 	}
627 
628 	/*
629 	 * Service the next queue.
630 	 */
631 	do {
632 		if (q == &queue->tasks[0])
633 			q = &queue->tasks[queue->maxpriority];
634 		else
635 			q = q - 1;
636 		if (!list_empty(q)) {
637 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
638 			goto new_queue;
639 		}
640 	} while (q != &queue->tasks[queue->priority]);
641 
642 	rpc_reset_waitqueue_priority(queue);
643 	return NULL;
644 
645 new_queue:
646 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
647 out:
648 	return task;
649 }
650 
651 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
652 {
653 	if (RPC_IS_PRIORITY(queue))
654 		return __rpc_find_next_queued_priority(queue);
655 	if (!list_empty(&queue->tasks[0]))
656 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
657 	return NULL;
658 }
659 
660 /*
661  * Wake up the first task on the wait queue.
662  */
663 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
664 		struct rpc_wait_queue *queue,
665 		bool (*func)(struct rpc_task *, void *), void *data)
666 {
667 	struct rpc_task	*task = NULL;
668 
669 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
670 			queue, rpc_qname(queue));
671 	spin_lock_bh(&queue->lock);
672 	task = __rpc_find_next_queued(queue);
673 	if (task != NULL)
674 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
675 				task, func, data);
676 	spin_unlock_bh(&queue->lock);
677 
678 	return task;
679 }
680 
681 /*
682  * Wake up the first task on the wait queue.
683  */
684 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
685 		bool (*func)(struct rpc_task *, void *), void *data)
686 {
687 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
688 }
689 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
690 
691 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
692 {
693 	return true;
694 }
695 
696 /*
697  * Wake up the next task on the wait queue.
698 */
699 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
700 {
701 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
702 }
703 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
704 
705 /**
706  * rpc_wake_up - wake up all rpc_tasks
707  * @queue: rpc_wait_queue on which the tasks are sleeping
708  *
709  * Grabs queue->lock
710  */
711 void rpc_wake_up(struct rpc_wait_queue *queue)
712 {
713 	struct list_head *head;
714 
715 	spin_lock_bh(&queue->lock);
716 	head = &queue->tasks[queue->maxpriority];
717 	for (;;) {
718 		while (!list_empty(head)) {
719 			struct rpc_task *task;
720 			task = list_first_entry(head,
721 					struct rpc_task,
722 					u.tk_wait.list);
723 			rpc_wake_up_task_queue_locked(queue, task);
724 		}
725 		if (head == &queue->tasks[0])
726 			break;
727 		head--;
728 	}
729 	spin_unlock_bh(&queue->lock);
730 }
731 EXPORT_SYMBOL_GPL(rpc_wake_up);
732 
733 /**
734  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
735  * @queue: rpc_wait_queue on which the tasks are sleeping
736  * @status: status value to set
737  *
738  * Grabs queue->lock
739  */
740 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
741 {
742 	struct list_head *head;
743 
744 	spin_lock_bh(&queue->lock);
745 	head = &queue->tasks[queue->maxpriority];
746 	for (;;) {
747 		while (!list_empty(head)) {
748 			struct rpc_task *task;
749 			task = list_first_entry(head,
750 					struct rpc_task,
751 					u.tk_wait.list);
752 			task->tk_status = status;
753 			rpc_wake_up_task_queue_locked(queue, task);
754 		}
755 		if (head == &queue->tasks[0])
756 			break;
757 		head--;
758 	}
759 	spin_unlock_bh(&queue->lock);
760 }
761 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
762 
763 static void __rpc_queue_timer_fn(struct timer_list *t)
764 {
765 	struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
766 	struct rpc_task *task, *n;
767 	unsigned long expires, now, timeo;
768 
769 	spin_lock(&queue->lock);
770 	expires = now = jiffies;
771 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
772 		timeo = task->tk_timeout;
773 		if (time_after_eq(now, timeo)) {
774 			dprintk("RPC: %5u timeout\n", task->tk_pid);
775 			task->tk_status = -ETIMEDOUT;
776 			rpc_wake_up_task_queue_locked(queue, task);
777 			continue;
778 		}
779 		if (expires == now || time_after(expires, timeo))
780 			expires = timeo;
781 	}
782 	if (!list_empty(&queue->timer_list.list))
783 		rpc_set_queue_timer(queue, expires);
784 	spin_unlock(&queue->lock);
785 }
786 
787 static void __rpc_atrun(struct rpc_task *task)
788 {
789 	if (task->tk_status == -ETIMEDOUT)
790 		task->tk_status = 0;
791 }
792 
793 /*
794  * Run a task at a later time
795  */
796 void rpc_delay(struct rpc_task *task, unsigned long delay)
797 {
798 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
799 }
800 EXPORT_SYMBOL_GPL(rpc_delay);
801 
802 /*
803  * Helper to call task->tk_ops->rpc_call_prepare
804  */
805 void rpc_prepare_task(struct rpc_task *task)
806 {
807 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
808 }
809 
810 static void
811 rpc_init_task_statistics(struct rpc_task *task)
812 {
813 	/* Initialize retry counters */
814 	task->tk_garb_retry = 2;
815 	task->tk_cred_retry = 2;
816 	task->tk_rebind_retry = 2;
817 
818 	/* starting timestamp */
819 	task->tk_start = ktime_get();
820 }
821 
822 static void
823 rpc_reset_task_statistics(struct rpc_task *task)
824 {
825 	task->tk_timeouts = 0;
826 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
827 	rpc_init_task_statistics(task);
828 }
829 
830 /*
831  * Helper that calls task->tk_ops->rpc_call_done if it exists
832  */
833 void rpc_exit_task(struct rpc_task *task)
834 {
835 	task->tk_action = NULL;
836 	if (task->tk_ops->rpc_call_done != NULL) {
837 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
838 		if (task->tk_action != NULL) {
839 			/* Always release the RPC slot and buffer memory */
840 			xprt_release(task);
841 			rpc_reset_task_statistics(task);
842 		}
843 	}
844 }
845 
846 void rpc_signal_task(struct rpc_task *task)
847 {
848 	struct rpc_wait_queue *queue;
849 
850 	if (!RPC_IS_ACTIVATED(task))
851 		return;
852 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
853 	smp_mb__after_atomic();
854 	queue = READ_ONCE(task->tk_waitqueue);
855 	if (queue)
856 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
857 }
858 
859 void rpc_exit(struct rpc_task *task, int status)
860 {
861 	task->tk_status = status;
862 	task->tk_action = rpc_exit_task;
863 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
864 }
865 EXPORT_SYMBOL_GPL(rpc_exit);
866 
867 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
868 {
869 	if (ops->rpc_release != NULL)
870 		ops->rpc_release(calldata);
871 }
872 
873 /*
874  * This is the RPC `scheduler' (or rather, the finite state machine).
875  */
876 static void __rpc_execute(struct rpc_task *task)
877 {
878 	struct rpc_wait_queue *queue;
879 	int task_is_async = RPC_IS_ASYNC(task);
880 	int status = 0;
881 
882 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
883 			task->tk_pid, task->tk_flags);
884 
885 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
886 	if (RPC_IS_QUEUED(task))
887 		return;
888 
889 	for (;;) {
890 		void (*do_action)(struct rpc_task *);
891 
892 		/*
893 		 * Perform the next FSM step or a pending callback.
894 		 *
895 		 * tk_action may be NULL if the task has been killed.
896 		 * In particular, note that rpc_killall_tasks may
897 		 * do this at any time, so beware when dereferencing.
898 		 */
899 		do_action = task->tk_action;
900 		if (task->tk_callback) {
901 			do_action = task->tk_callback;
902 			task->tk_callback = NULL;
903 		}
904 		if (!do_action)
905 			break;
906 		trace_rpc_task_run_action(task, do_action);
907 		do_action(task);
908 
909 		/*
910 		 * Lockless check for whether task is sleeping or not.
911 		 */
912 		if (!RPC_IS_QUEUED(task))
913 			continue;
914 
915 		/*
916 		 * Signalled tasks should exit rather than sleep.
917 		 */
918 		if (RPC_SIGNALLED(task))
919 			rpc_exit(task, -ERESTARTSYS);
920 
921 		/*
922 		 * The queue->lock protects against races with
923 		 * rpc_make_runnable().
924 		 *
925 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
926 		 * rpc_task, rpc_make_runnable() can assign it to a
927 		 * different workqueue. We therefore cannot assume that the
928 		 * rpc_task pointer may still be dereferenced.
929 		 */
930 		queue = task->tk_waitqueue;
931 		spin_lock_bh(&queue->lock);
932 		if (!RPC_IS_QUEUED(task)) {
933 			spin_unlock_bh(&queue->lock);
934 			continue;
935 		}
936 		rpc_clear_running(task);
937 		spin_unlock_bh(&queue->lock);
938 		if (task_is_async)
939 			return;
940 
941 		/* sync task: sleep here */
942 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
943 		status = out_of_line_wait_on_bit(&task->tk_runstate,
944 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
945 				TASK_KILLABLE);
946 		if (status < 0) {
947 			/*
948 			 * When a sync task receives a signal, it exits with
949 			 * -ERESTARTSYS. In order to catch any callbacks that
950 			 * clean up after sleeping on some queue, we don't
951 			 * break the loop here, but go around once more.
952 			 */
953 			dprintk("RPC: %5u got signal\n", task->tk_pid);
954 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
955 			rpc_exit(task, -ERESTARTSYS);
956 		}
957 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
958 	}
959 
960 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
961 			task->tk_status);
962 	/* Release all resources associated with the task */
963 	rpc_release_task(task);
964 }
965 
966 /*
967  * User-visible entry point to the scheduler.
968  *
969  * This may be called recursively if e.g. an async NFS task updates
970  * the attributes and finds that dirty pages must be flushed.
971  * NOTE: Upon exit of this function the task is guaranteed to be
972  *	 released. In particular note that tk_release() will have
973  *	 been called, so your task memory may have been freed.
974  */
975 void rpc_execute(struct rpc_task *task)
976 {
977 	bool is_async = RPC_IS_ASYNC(task);
978 
979 	rpc_set_active(task);
980 	rpc_make_runnable(rpciod_workqueue, task);
981 	if (!is_async)
982 		__rpc_execute(task);
983 }
984 
985 static void rpc_async_schedule(struct work_struct *work)
986 {
987 	unsigned int pflags = memalloc_nofs_save();
988 
989 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
990 	memalloc_nofs_restore(pflags);
991 }
992 
993 /**
994  * rpc_malloc - allocate RPC buffer resources
995  * @task: RPC task
996  *
997  * A single memory region is allocated, which is split between the
998  * RPC call and RPC reply that this task is being used for. When
999  * this RPC is retired, the memory is released by calling rpc_free.
1000  *
1001  * To prevent rpciod from hanging, this allocator never sleeps,
1002  * returning -ENOMEM and suppressing warning if the request cannot
1003  * be serviced immediately. The caller can arrange to sleep in a
1004  * way that is safe for rpciod.
1005  *
1006  * Most requests are 'small' (under 2KiB) and can be serviced from a
1007  * mempool, ensuring that NFS reads and writes can always proceed,
1008  * and that there is good locality of reference for these buffers.
1009  */
1010 int rpc_malloc(struct rpc_task *task)
1011 {
1012 	struct rpc_rqst *rqst = task->tk_rqstp;
1013 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1014 	struct rpc_buffer *buf;
1015 	gfp_t gfp = GFP_NOFS;
1016 
1017 	if (RPC_IS_SWAPPER(task))
1018 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1019 
1020 	size += sizeof(struct rpc_buffer);
1021 	if (size <= RPC_BUFFER_MAXSIZE)
1022 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1023 	else
1024 		buf = kmalloc(size, gfp);
1025 
1026 	if (!buf)
1027 		return -ENOMEM;
1028 
1029 	buf->len = size;
1030 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1031 			task->tk_pid, size, buf);
1032 	rqst->rq_buffer = buf->data;
1033 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1034 	return 0;
1035 }
1036 EXPORT_SYMBOL_GPL(rpc_malloc);
1037 
1038 /**
1039  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1040  * @task: RPC task
1041  *
1042  */
1043 void rpc_free(struct rpc_task *task)
1044 {
1045 	void *buffer = task->tk_rqstp->rq_buffer;
1046 	size_t size;
1047 	struct rpc_buffer *buf;
1048 
1049 	buf = container_of(buffer, struct rpc_buffer, data);
1050 	size = buf->len;
1051 
1052 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1053 			size, buf);
1054 
1055 	if (size <= RPC_BUFFER_MAXSIZE)
1056 		mempool_free(buf, rpc_buffer_mempool);
1057 	else
1058 		kfree(buf);
1059 }
1060 EXPORT_SYMBOL_GPL(rpc_free);
1061 
1062 /*
1063  * Creation and deletion of RPC task structures
1064  */
1065 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1066 {
1067 	memset(task, 0, sizeof(*task));
1068 	atomic_set(&task->tk_count, 1);
1069 	task->tk_flags  = task_setup_data->flags;
1070 	task->tk_ops = task_setup_data->callback_ops;
1071 	task->tk_calldata = task_setup_data->callback_data;
1072 	INIT_LIST_HEAD(&task->tk_task);
1073 
1074 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1075 	task->tk_owner = current->tgid;
1076 
1077 	/* Initialize workqueue for async tasks */
1078 	task->tk_workqueue = task_setup_data->workqueue;
1079 
1080 	task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1081 
1082 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1083 
1084 	if (task->tk_ops->rpc_call_prepare != NULL)
1085 		task->tk_action = rpc_prepare_task;
1086 
1087 	rpc_init_task_statistics(task);
1088 
1089 	dprintk("RPC:       new task initialized, procpid %u\n",
1090 				task_pid_nr(current));
1091 }
1092 
1093 static struct rpc_task *
1094 rpc_alloc_task(void)
1095 {
1096 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1097 }
1098 
1099 /*
1100  * Create a new task for the specified client.
1101  */
1102 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1103 {
1104 	struct rpc_task	*task = setup_data->task;
1105 	unsigned short flags = 0;
1106 
1107 	if (task == NULL) {
1108 		task = rpc_alloc_task();
1109 		flags = RPC_TASK_DYNAMIC;
1110 	}
1111 
1112 	rpc_init_task(task, setup_data);
1113 	task->tk_flags |= flags;
1114 	dprintk("RPC:       allocated task %p\n", task);
1115 	return task;
1116 }
1117 
1118 /*
1119  * rpc_free_task - release rpc task and perform cleanups
1120  *
1121  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1122  * in order to work around a workqueue dependency issue.
1123  *
1124  * Tejun Heo states:
1125  * "Workqueue currently considers two work items to be the same if they're
1126  * on the same address and won't execute them concurrently - ie. it
1127  * makes a work item which is queued again while being executed wait
1128  * for the previous execution to complete.
1129  *
1130  * If a work function frees the work item, and then waits for an event
1131  * which should be performed by another work item and *that* work item
1132  * recycles the freed work item, it can create a false dependency loop.
1133  * There really is no reliable way to detect this short of verifying
1134  * every memory free."
1135  *
1136  */
1137 static void rpc_free_task(struct rpc_task *task)
1138 {
1139 	unsigned short tk_flags = task->tk_flags;
1140 
1141 	put_rpccred(task->tk_op_cred);
1142 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1143 
1144 	if (tk_flags & RPC_TASK_DYNAMIC) {
1145 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1146 		mempool_free(task, rpc_task_mempool);
1147 	}
1148 }
1149 
1150 static void rpc_async_release(struct work_struct *work)
1151 {
1152 	unsigned int pflags = memalloc_nofs_save();
1153 
1154 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1155 	memalloc_nofs_restore(pflags);
1156 }
1157 
1158 static void rpc_release_resources_task(struct rpc_task *task)
1159 {
1160 	xprt_release(task);
1161 	if (task->tk_msg.rpc_cred) {
1162 		put_cred(task->tk_msg.rpc_cred);
1163 		task->tk_msg.rpc_cred = NULL;
1164 	}
1165 	rpc_task_release_client(task);
1166 }
1167 
1168 static void rpc_final_put_task(struct rpc_task *task,
1169 		struct workqueue_struct *q)
1170 {
1171 	if (q != NULL) {
1172 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1173 		queue_work(q, &task->u.tk_work);
1174 	} else
1175 		rpc_free_task(task);
1176 }
1177 
1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179 {
1180 	if (atomic_dec_and_test(&task->tk_count)) {
1181 		rpc_release_resources_task(task);
1182 		rpc_final_put_task(task, q);
1183 	}
1184 }
1185 
1186 void rpc_put_task(struct rpc_task *task)
1187 {
1188 	rpc_do_put_task(task, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(rpc_put_task);
1191 
1192 void rpc_put_task_async(struct rpc_task *task)
1193 {
1194 	rpc_do_put_task(task, task->tk_workqueue);
1195 }
1196 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197 
1198 static void rpc_release_task(struct rpc_task *task)
1199 {
1200 	dprintk("RPC: %5u release task\n", task->tk_pid);
1201 
1202 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1203 
1204 	rpc_release_resources_task(task);
1205 
1206 	/*
1207 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1208 	 * so it should be safe to use task->tk_count as a test for whether
1209 	 * or not any other processes still hold references to our rpc_task.
1210 	 */
1211 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1212 		/* Wake up anyone who may be waiting for task completion */
1213 		if (!rpc_complete_task(task))
1214 			return;
1215 	} else {
1216 		if (!atomic_dec_and_test(&task->tk_count))
1217 			return;
1218 	}
1219 	rpc_final_put_task(task, task->tk_workqueue);
1220 }
1221 
1222 int rpciod_up(void)
1223 {
1224 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1225 }
1226 
1227 void rpciod_down(void)
1228 {
1229 	module_put(THIS_MODULE);
1230 }
1231 
1232 /*
1233  * Start up the rpciod workqueue.
1234  */
1235 static int rpciod_start(void)
1236 {
1237 	struct workqueue_struct *wq;
1238 
1239 	/*
1240 	 * Create the rpciod thread and wait for it to start.
1241 	 */
1242 	dprintk("RPC:       creating workqueue rpciod\n");
1243 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1244 	if (!wq)
1245 		goto out_failed;
1246 	rpciod_workqueue = wq;
1247 	/* Note: highpri because network receive is latency sensitive */
1248 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1249 	if (!wq)
1250 		goto free_rpciod;
1251 	xprtiod_workqueue = wq;
1252 	return 1;
1253 free_rpciod:
1254 	wq = rpciod_workqueue;
1255 	rpciod_workqueue = NULL;
1256 	destroy_workqueue(wq);
1257 out_failed:
1258 	return 0;
1259 }
1260 
1261 static void rpciod_stop(void)
1262 {
1263 	struct workqueue_struct *wq = NULL;
1264 
1265 	if (rpciod_workqueue == NULL)
1266 		return;
1267 	dprintk("RPC:       destroying workqueue rpciod\n");
1268 
1269 	wq = rpciod_workqueue;
1270 	rpciod_workqueue = NULL;
1271 	destroy_workqueue(wq);
1272 	wq = xprtiod_workqueue;
1273 	xprtiod_workqueue = NULL;
1274 	destroy_workqueue(wq);
1275 }
1276 
1277 void
1278 rpc_destroy_mempool(void)
1279 {
1280 	rpciod_stop();
1281 	mempool_destroy(rpc_buffer_mempool);
1282 	mempool_destroy(rpc_task_mempool);
1283 	kmem_cache_destroy(rpc_task_slabp);
1284 	kmem_cache_destroy(rpc_buffer_slabp);
1285 	rpc_destroy_wait_queue(&delay_queue);
1286 }
1287 
1288 int
1289 rpc_init_mempool(void)
1290 {
1291 	/*
1292 	 * The following is not strictly a mempool initialisation,
1293 	 * but there is no harm in doing it here
1294 	 */
1295 	rpc_init_wait_queue(&delay_queue, "delayq");
1296 	if (!rpciod_start())
1297 		goto err_nomem;
1298 
1299 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1300 					     sizeof(struct rpc_task),
1301 					     0, SLAB_HWCACHE_ALIGN,
1302 					     NULL);
1303 	if (!rpc_task_slabp)
1304 		goto err_nomem;
1305 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1306 					     RPC_BUFFER_MAXSIZE,
1307 					     0, SLAB_HWCACHE_ALIGN,
1308 					     NULL);
1309 	if (!rpc_buffer_slabp)
1310 		goto err_nomem;
1311 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1312 						    rpc_task_slabp);
1313 	if (!rpc_task_mempool)
1314 		goto err_nomem;
1315 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1316 						      rpc_buffer_slabp);
1317 	if (!rpc_buffer_mempool)
1318 		goto err_nomem;
1319 	return 0;
1320 err_nomem:
1321 	rpc_destroy_mempool();
1322 	return -ENOMEM;
1323 }
1324