1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 #include <linux/sched/mm.h> 23 24 #include <linux/sunrpc/clnt.h> 25 26 #include "sunrpc.h" 27 28 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 29 #define RPCDBG_FACILITY RPCDBG_SCHED 30 #endif 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/sunrpc.h> 34 35 /* 36 * RPC slabs and memory pools 37 */ 38 #define RPC_BUFFER_MAXSIZE (2048) 39 #define RPC_BUFFER_POOLSIZE (8) 40 #define RPC_TASK_POOLSIZE (8) 41 static struct kmem_cache *rpc_task_slabp __read_mostly; 42 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 43 static mempool_t *rpc_task_mempool __read_mostly; 44 static mempool_t *rpc_buffer_mempool __read_mostly; 45 46 static void rpc_async_schedule(struct work_struct *); 47 static void rpc_release_task(struct rpc_task *task); 48 static void __rpc_queue_timer_fn(struct timer_list *t); 49 50 /* 51 * RPC tasks sit here while waiting for conditions to improve. 52 */ 53 static struct rpc_wait_queue delay_queue; 54 55 /* 56 * rpciod-related stuff 57 */ 58 struct workqueue_struct *rpciod_workqueue __read_mostly; 59 struct workqueue_struct *xprtiod_workqueue __read_mostly; 60 61 unsigned long 62 rpc_task_timeout(const struct rpc_task *task) 63 { 64 unsigned long timeout = READ_ONCE(task->tk_timeout); 65 66 if (timeout != 0) { 67 unsigned long now = jiffies; 68 if (time_before(now, timeout)) 69 return timeout - now; 70 } 71 return 0; 72 } 73 EXPORT_SYMBOL_GPL(rpc_task_timeout); 74 75 /* 76 * Disable the timer for a given RPC task. Should be called with 77 * queue->lock and bh_disabled in order to avoid races within 78 * rpc_run_timer(). 79 */ 80 static void 81 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 82 { 83 if (list_empty(&task->u.tk_wait.timer_list)) 84 return; 85 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 86 task->tk_timeout = 0; 87 list_del(&task->u.tk_wait.timer_list); 88 if (list_empty(&queue->timer_list.list)) 89 del_timer(&queue->timer_list.timer); 90 } 91 92 static void 93 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 94 { 95 timer_reduce(&queue->timer_list.timer, expires); 96 } 97 98 /* 99 * Set up a timer for the current task. 100 */ 101 static void 102 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 103 unsigned long timeout) 104 { 105 dprintk("RPC: %5u setting alarm for %u ms\n", 106 task->tk_pid, jiffies_to_msecs(timeout - jiffies)); 107 108 task->tk_timeout = timeout; 109 rpc_set_queue_timer(queue, timeout); 110 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 111 } 112 113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 114 { 115 if (queue->priority != priority) { 116 queue->priority = priority; 117 queue->nr = 1U << priority; 118 } 119 } 120 121 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 122 { 123 rpc_set_waitqueue_priority(queue, queue->maxpriority); 124 } 125 126 /* 127 * Add a request to a queue list 128 */ 129 static void 130 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 131 { 132 struct rpc_task *t; 133 134 list_for_each_entry(t, q, u.tk_wait.list) { 135 if (t->tk_owner == task->tk_owner) { 136 list_add_tail(&task->u.tk_wait.links, 137 &t->u.tk_wait.links); 138 /* Cache the queue head in task->u.tk_wait.list */ 139 task->u.tk_wait.list.next = q; 140 task->u.tk_wait.list.prev = NULL; 141 return; 142 } 143 } 144 INIT_LIST_HEAD(&task->u.tk_wait.links); 145 list_add_tail(&task->u.tk_wait.list, q); 146 } 147 148 /* 149 * Remove request from a queue list 150 */ 151 static void 152 __rpc_list_dequeue_task(struct rpc_task *task) 153 { 154 struct list_head *q; 155 struct rpc_task *t; 156 157 if (task->u.tk_wait.list.prev == NULL) { 158 list_del(&task->u.tk_wait.links); 159 return; 160 } 161 if (!list_empty(&task->u.tk_wait.links)) { 162 t = list_first_entry(&task->u.tk_wait.links, 163 struct rpc_task, 164 u.tk_wait.links); 165 /* Assume __rpc_list_enqueue_task() cached the queue head */ 166 q = t->u.tk_wait.list.next; 167 list_add_tail(&t->u.tk_wait.list, q); 168 list_del(&task->u.tk_wait.links); 169 } 170 list_del(&task->u.tk_wait.list); 171 } 172 173 /* 174 * Add new request to a priority queue. 175 */ 176 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 177 struct rpc_task *task, 178 unsigned char queue_priority) 179 { 180 if (unlikely(queue_priority > queue->maxpriority)) 181 queue_priority = queue->maxpriority; 182 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 183 } 184 185 /* 186 * Add new request to wait queue. 187 * 188 * Swapper tasks always get inserted at the head of the queue. 189 * This should avoid many nasty memory deadlocks and hopefully 190 * improve overall performance. 191 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 192 */ 193 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 194 struct rpc_task *task, 195 unsigned char queue_priority) 196 { 197 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 198 if (RPC_IS_QUEUED(task)) 199 return; 200 201 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 202 if (RPC_IS_PRIORITY(queue)) 203 __rpc_add_wait_queue_priority(queue, task, queue_priority); 204 else if (RPC_IS_SWAPPER(task)) 205 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 206 else 207 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 208 task->tk_waitqueue = queue; 209 queue->qlen++; 210 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 211 smp_wmb(); 212 rpc_set_queued(task); 213 214 dprintk("RPC: %5u added to queue %p \"%s\"\n", 215 task->tk_pid, queue, rpc_qname(queue)); 216 } 217 218 /* 219 * Remove request from a priority queue. 220 */ 221 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 222 { 223 __rpc_list_dequeue_task(task); 224 } 225 226 /* 227 * Remove request from queue. 228 * Note: must be called with spin lock held. 229 */ 230 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 231 { 232 __rpc_disable_timer(queue, task); 233 if (RPC_IS_PRIORITY(queue)) 234 __rpc_remove_wait_queue_priority(task); 235 else 236 list_del(&task->u.tk_wait.list); 237 queue->qlen--; 238 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 239 task->tk_pid, queue, rpc_qname(queue)); 240 } 241 242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 243 { 244 int i; 245 246 spin_lock_init(&queue->lock); 247 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 248 INIT_LIST_HEAD(&queue->tasks[i]); 249 queue->maxpriority = nr_queues - 1; 250 rpc_reset_waitqueue_priority(queue); 251 queue->qlen = 0; 252 timer_setup(&queue->timer_list.timer, 253 __rpc_queue_timer_fn, 254 TIMER_DEFERRABLE); 255 INIT_LIST_HEAD(&queue->timer_list.list); 256 rpc_assign_waitqueue_name(queue, qname); 257 } 258 259 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 260 { 261 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 262 } 263 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 264 265 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 266 { 267 __rpc_init_priority_wait_queue(queue, qname, 1); 268 } 269 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 270 271 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 272 { 273 del_timer_sync(&queue->timer_list.timer); 274 } 275 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 276 277 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 278 { 279 freezable_schedule_unsafe(); 280 if (signal_pending_state(mode, current)) 281 return -ERESTARTSYS; 282 return 0; 283 } 284 285 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 286 static void rpc_task_set_debuginfo(struct rpc_task *task) 287 { 288 static atomic_t rpc_pid; 289 290 task->tk_pid = atomic_inc_return(&rpc_pid); 291 } 292 #else 293 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 294 { 295 } 296 #endif 297 298 static void rpc_set_active(struct rpc_task *task) 299 { 300 rpc_task_set_debuginfo(task); 301 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 302 trace_rpc_task_begin(task, NULL); 303 } 304 305 /* 306 * Mark an RPC call as having completed by clearing the 'active' bit 307 * and then waking up all tasks that were sleeping. 308 */ 309 static int rpc_complete_task(struct rpc_task *task) 310 { 311 void *m = &task->tk_runstate; 312 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 313 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 314 unsigned long flags; 315 int ret; 316 317 trace_rpc_task_complete(task, NULL); 318 319 spin_lock_irqsave(&wq->lock, flags); 320 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 321 ret = atomic_dec_and_test(&task->tk_count); 322 if (waitqueue_active(wq)) 323 __wake_up_locked_key(wq, TASK_NORMAL, &k); 324 spin_unlock_irqrestore(&wq->lock, flags); 325 return ret; 326 } 327 328 /* 329 * Allow callers to wait for completion of an RPC call 330 * 331 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 332 * to enforce taking of the wq->lock and hence avoid races with 333 * rpc_complete_task(). 334 */ 335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 336 { 337 if (action == NULL) 338 action = rpc_wait_bit_killable; 339 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 340 action, TASK_KILLABLE); 341 } 342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 343 344 /* 345 * Make an RPC task runnable. 346 * 347 * Note: If the task is ASYNC, and is being made runnable after sitting on an 348 * rpc_wait_queue, this must be called with the queue spinlock held to protect 349 * the wait queue operation. 350 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 351 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 352 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 353 * the RPC_TASK_RUNNING flag. 354 */ 355 static void rpc_make_runnable(struct workqueue_struct *wq, 356 struct rpc_task *task) 357 { 358 bool need_wakeup = !rpc_test_and_set_running(task); 359 360 rpc_clear_queued(task); 361 if (!need_wakeup) 362 return; 363 if (RPC_IS_ASYNC(task)) { 364 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 365 queue_work(wq, &task->u.tk_work); 366 } else 367 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 368 } 369 370 /* 371 * Prepare for sleeping on a wait queue. 372 * By always appending tasks to the list we ensure FIFO behavior. 373 * NB: An RPC task will only receive interrupt-driven events as long 374 * as it's on a wait queue. 375 */ 376 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 377 struct rpc_task *task, 378 unsigned char queue_priority) 379 { 380 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 381 task->tk_pid, rpc_qname(q), jiffies); 382 383 trace_rpc_task_sleep(task, q); 384 385 __rpc_add_wait_queue(q, task, queue_priority); 386 387 } 388 389 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 390 struct rpc_task *task, unsigned long timeout, 391 unsigned char queue_priority) 392 { 393 if (time_is_after_jiffies(timeout)) { 394 __rpc_sleep_on_priority(q, task, queue_priority); 395 __rpc_add_timer(q, task, timeout); 396 } else 397 task->tk_status = -ETIMEDOUT; 398 } 399 400 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 401 { 402 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 403 task->tk_callback = action; 404 } 405 406 static bool rpc_sleep_check_activated(struct rpc_task *task) 407 { 408 /* We shouldn't ever put an inactive task to sleep */ 409 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 410 task->tk_status = -EIO; 411 rpc_put_task_async(task); 412 return false; 413 } 414 return true; 415 } 416 417 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 418 rpc_action action, unsigned long timeout) 419 { 420 if (!rpc_sleep_check_activated(task)) 421 return; 422 423 rpc_set_tk_callback(task, action); 424 425 /* 426 * Protect the queue operations. 427 */ 428 spin_lock_bh(&q->lock); 429 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 430 spin_unlock_bh(&q->lock); 431 } 432 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 433 434 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 435 rpc_action action) 436 { 437 if (!rpc_sleep_check_activated(task)) 438 return; 439 440 rpc_set_tk_callback(task, action); 441 442 WARN_ON_ONCE(task->tk_timeout != 0); 443 /* 444 * Protect the queue operations. 445 */ 446 spin_lock_bh(&q->lock); 447 __rpc_sleep_on_priority(q, task, task->tk_priority); 448 spin_unlock_bh(&q->lock); 449 } 450 EXPORT_SYMBOL_GPL(rpc_sleep_on); 451 452 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 453 struct rpc_task *task, unsigned long timeout, int priority) 454 { 455 if (!rpc_sleep_check_activated(task)) 456 return; 457 458 priority -= RPC_PRIORITY_LOW; 459 /* 460 * Protect the queue operations. 461 */ 462 spin_lock_bh(&q->lock); 463 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 464 spin_unlock_bh(&q->lock); 465 } 466 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 467 468 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 469 int priority) 470 { 471 if (!rpc_sleep_check_activated(task)) 472 return; 473 474 WARN_ON_ONCE(task->tk_timeout != 0); 475 priority -= RPC_PRIORITY_LOW; 476 /* 477 * Protect the queue operations. 478 */ 479 spin_lock_bh(&q->lock); 480 __rpc_sleep_on_priority(q, task, priority); 481 spin_unlock_bh(&q->lock); 482 } 483 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 484 485 /** 486 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 487 * @wq: workqueue on which to run task 488 * @queue: wait queue 489 * @task: task to be woken up 490 * 491 * Caller must hold queue->lock, and have cleared the task queued flag. 492 */ 493 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 494 struct rpc_wait_queue *queue, 495 struct rpc_task *task) 496 { 497 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 498 task->tk_pid, jiffies); 499 500 /* Has the task been executed yet? If not, we cannot wake it up! */ 501 if (!RPC_IS_ACTIVATED(task)) { 502 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 503 return; 504 } 505 506 trace_rpc_task_wakeup(task, queue); 507 508 __rpc_remove_wait_queue(queue, task); 509 510 rpc_make_runnable(wq, task); 511 512 dprintk("RPC: __rpc_wake_up_task done\n"); 513 } 514 515 /* 516 * Wake up a queued task while the queue lock is being held 517 */ 518 static struct rpc_task * 519 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 520 struct rpc_wait_queue *queue, struct rpc_task *task, 521 bool (*action)(struct rpc_task *, void *), void *data) 522 { 523 if (RPC_IS_QUEUED(task)) { 524 smp_rmb(); 525 if (task->tk_waitqueue == queue) { 526 if (action == NULL || action(task, data)) { 527 __rpc_do_wake_up_task_on_wq(wq, queue, task); 528 return task; 529 } 530 } 531 } 532 return NULL; 533 } 534 535 static void 536 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq, 537 struct rpc_wait_queue *queue, struct rpc_task *task) 538 { 539 rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL); 540 } 541 542 /* 543 * Wake up a queued task while the queue lock is being held 544 */ 545 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 546 { 547 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task); 548 } 549 550 /* 551 * Wake up a task on a specific queue 552 */ 553 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq, 554 struct rpc_wait_queue *queue, 555 struct rpc_task *task) 556 { 557 if (!RPC_IS_QUEUED(task)) 558 return; 559 spin_lock_bh(&queue->lock); 560 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 561 spin_unlock_bh(&queue->lock); 562 } 563 564 /* 565 * Wake up a task on a specific queue 566 */ 567 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 568 { 569 if (!RPC_IS_QUEUED(task)) 570 return; 571 spin_lock_bh(&queue->lock); 572 rpc_wake_up_task_queue_locked(queue, task); 573 spin_unlock_bh(&queue->lock); 574 } 575 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 576 577 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 578 { 579 task->tk_status = *(int *)status; 580 return true; 581 } 582 583 static void 584 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 585 struct rpc_task *task, int status) 586 { 587 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 588 task, rpc_task_action_set_status, &status); 589 } 590 591 /** 592 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 593 * @queue: pointer to rpc_wait_queue 594 * @task: pointer to rpc_task 595 * @status: integer error value 596 * 597 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 598 * set to the value of @status. 599 */ 600 void 601 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 602 struct rpc_task *task, int status) 603 { 604 if (!RPC_IS_QUEUED(task)) 605 return; 606 spin_lock_bh(&queue->lock); 607 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 608 spin_unlock_bh(&queue->lock); 609 } 610 611 /* 612 * Wake up the next task on a priority queue. 613 */ 614 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 615 { 616 struct list_head *q; 617 struct rpc_task *task; 618 619 /* 620 * Service a batch of tasks from a single owner. 621 */ 622 q = &queue->tasks[queue->priority]; 623 if (!list_empty(q) && --queue->nr) { 624 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 625 goto out; 626 } 627 628 /* 629 * Service the next queue. 630 */ 631 do { 632 if (q == &queue->tasks[0]) 633 q = &queue->tasks[queue->maxpriority]; 634 else 635 q = q - 1; 636 if (!list_empty(q)) { 637 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 638 goto new_queue; 639 } 640 } while (q != &queue->tasks[queue->priority]); 641 642 rpc_reset_waitqueue_priority(queue); 643 return NULL; 644 645 new_queue: 646 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 647 out: 648 return task; 649 } 650 651 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 652 { 653 if (RPC_IS_PRIORITY(queue)) 654 return __rpc_find_next_queued_priority(queue); 655 if (!list_empty(&queue->tasks[0])) 656 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 657 return NULL; 658 } 659 660 /* 661 * Wake up the first task on the wait queue. 662 */ 663 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 664 struct rpc_wait_queue *queue, 665 bool (*func)(struct rpc_task *, void *), void *data) 666 { 667 struct rpc_task *task = NULL; 668 669 dprintk("RPC: wake_up_first(%p \"%s\")\n", 670 queue, rpc_qname(queue)); 671 spin_lock_bh(&queue->lock); 672 task = __rpc_find_next_queued(queue); 673 if (task != NULL) 674 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 675 task, func, data); 676 spin_unlock_bh(&queue->lock); 677 678 return task; 679 } 680 681 /* 682 * Wake up the first task on the wait queue. 683 */ 684 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 685 bool (*func)(struct rpc_task *, void *), void *data) 686 { 687 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 688 } 689 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 690 691 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 692 { 693 return true; 694 } 695 696 /* 697 * Wake up the next task on the wait queue. 698 */ 699 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 700 { 701 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 702 } 703 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 704 705 /** 706 * rpc_wake_up - wake up all rpc_tasks 707 * @queue: rpc_wait_queue on which the tasks are sleeping 708 * 709 * Grabs queue->lock 710 */ 711 void rpc_wake_up(struct rpc_wait_queue *queue) 712 { 713 struct list_head *head; 714 715 spin_lock_bh(&queue->lock); 716 head = &queue->tasks[queue->maxpriority]; 717 for (;;) { 718 while (!list_empty(head)) { 719 struct rpc_task *task; 720 task = list_first_entry(head, 721 struct rpc_task, 722 u.tk_wait.list); 723 rpc_wake_up_task_queue_locked(queue, task); 724 } 725 if (head == &queue->tasks[0]) 726 break; 727 head--; 728 } 729 spin_unlock_bh(&queue->lock); 730 } 731 EXPORT_SYMBOL_GPL(rpc_wake_up); 732 733 /** 734 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 735 * @queue: rpc_wait_queue on which the tasks are sleeping 736 * @status: status value to set 737 * 738 * Grabs queue->lock 739 */ 740 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 741 { 742 struct list_head *head; 743 744 spin_lock_bh(&queue->lock); 745 head = &queue->tasks[queue->maxpriority]; 746 for (;;) { 747 while (!list_empty(head)) { 748 struct rpc_task *task; 749 task = list_first_entry(head, 750 struct rpc_task, 751 u.tk_wait.list); 752 task->tk_status = status; 753 rpc_wake_up_task_queue_locked(queue, task); 754 } 755 if (head == &queue->tasks[0]) 756 break; 757 head--; 758 } 759 spin_unlock_bh(&queue->lock); 760 } 761 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 762 763 static void __rpc_queue_timer_fn(struct timer_list *t) 764 { 765 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer); 766 struct rpc_task *task, *n; 767 unsigned long expires, now, timeo; 768 769 spin_lock(&queue->lock); 770 expires = now = jiffies; 771 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 772 timeo = task->tk_timeout; 773 if (time_after_eq(now, timeo)) { 774 dprintk("RPC: %5u timeout\n", task->tk_pid); 775 task->tk_status = -ETIMEDOUT; 776 rpc_wake_up_task_queue_locked(queue, task); 777 continue; 778 } 779 if (expires == now || time_after(expires, timeo)) 780 expires = timeo; 781 } 782 if (!list_empty(&queue->timer_list.list)) 783 rpc_set_queue_timer(queue, expires); 784 spin_unlock(&queue->lock); 785 } 786 787 static void __rpc_atrun(struct rpc_task *task) 788 { 789 if (task->tk_status == -ETIMEDOUT) 790 task->tk_status = 0; 791 } 792 793 /* 794 * Run a task at a later time 795 */ 796 void rpc_delay(struct rpc_task *task, unsigned long delay) 797 { 798 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 799 } 800 EXPORT_SYMBOL_GPL(rpc_delay); 801 802 /* 803 * Helper to call task->tk_ops->rpc_call_prepare 804 */ 805 void rpc_prepare_task(struct rpc_task *task) 806 { 807 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 808 } 809 810 static void 811 rpc_init_task_statistics(struct rpc_task *task) 812 { 813 /* Initialize retry counters */ 814 task->tk_garb_retry = 2; 815 task->tk_cred_retry = 2; 816 task->tk_rebind_retry = 2; 817 818 /* starting timestamp */ 819 task->tk_start = ktime_get(); 820 } 821 822 static void 823 rpc_reset_task_statistics(struct rpc_task *task) 824 { 825 task->tk_timeouts = 0; 826 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 827 rpc_init_task_statistics(task); 828 } 829 830 /* 831 * Helper that calls task->tk_ops->rpc_call_done if it exists 832 */ 833 void rpc_exit_task(struct rpc_task *task) 834 { 835 task->tk_action = NULL; 836 if (task->tk_ops->rpc_call_done != NULL) { 837 task->tk_ops->rpc_call_done(task, task->tk_calldata); 838 if (task->tk_action != NULL) { 839 /* Always release the RPC slot and buffer memory */ 840 xprt_release(task); 841 rpc_reset_task_statistics(task); 842 } 843 } 844 } 845 846 void rpc_signal_task(struct rpc_task *task) 847 { 848 struct rpc_wait_queue *queue; 849 850 if (!RPC_IS_ACTIVATED(task)) 851 return; 852 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 853 smp_mb__after_atomic(); 854 queue = READ_ONCE(task->tk_waitqueue); 855 if (queue) 856 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS); 857 } 858 859 void rpc_exit(struct rpc_task *task, int status) 860 { 861 task->tk_status = status; 862 task->tk_action = rpc_exit_task; 863 rpc_wake_up_queued_task(task->tk_waitqueue, task); 864 } 865 EXPORT_SYMBOL_GPL(rpc_exit); 866 867 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 868 { 869 if (ops->rpc_release != NULL) 870 ops->rpc_release(calldata); 871 } 872 873 /* 874 * This is the RPC `scheduler' (or rather, the finite state machine). 875 */ 876 static void __rpc_execute(struct rpc_task *task) 877 { 878 struct rpc_wait_queue *queue; 879 int task_is_async = RPC_IS_ASYNC(task); 880 int status = 0; 881 882 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 883 task->tk_pid, task->tk_flags); 884 885 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 886 if (RPC_IS_QUEUED(task)) 887 return; 888 889 for (;;) { 890 void (*do_action)(struct rpc_task *); 891 892 /* 893 * Perform the next FSM step or a pending callback. 894 * 895 * tk_action may be NULL if the task has been killed. 896 * In particular, note that rpc_killall_tasks may 897 * do this at any time, so beware when dereferencing. 898 */ 899 do_action = task->tk_action; 900 if (task->tk_callback) { 901 do_action = task->tk_callback; 902 task->tk_callback = NULL; 903 } 904 if (!do_action) 905 break; 906 trace_rpc_task_run_action(task, do_action); 907 do_action(task); 908 909 /* 910 * Lockless check for whether task is sleeping or not. 911 */ 912 if (!RPC_IS_QUEUED(task)) 913 continue; 914 915 /* 916 * Signalled tasks should exit rather than sleep. 917 */ 918 if (RPC_SIGNALLED(task)) 919 rpc_exit(task, -ERESTARTSYS); 920 921 /* 922 * The queue->lock protects against races with 923 * rpc_make_runnable(). 924 * 925 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 926 * rpc_task, rpc_make_runnable() can assign it to a 927 * different workqueue. We therefore cannot assume that the 928 * rpc_task pointer may still be dereferenced. 929 */ 930 queue = task->tk_waitqueue; 931 spin_lock_bh(&queue->lock); 932 if (!RPC_IS_QUEUED(task)) { 933 spin_unlock_bh(&queue->lock); 934 continue; 935 } 936 rpc_clear_running(task); 937 spin_unlock_bh(&queue->lock); 938 if (task_is_async) 939 return; 940 941 /* sync task: sleep here */ 942 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 943 status = out_of_line_wait_on_bit(&task->tk_runstate, 944 RPC_TASK_QUEUED, rpc_wait_bit_killable, 945 TASK_KILLABLE); 946 if (status < 0) { 947 /* 948 * When a sync task receives a signal, it exits with 949 * -ERESTARTSYS. In order to catch any callbacks that 950 * clean up after sleeping on some queue, we don't 951 * break the loop here, but go around once more. 952 */ 953 dprintk("RPC: %5u got signal\n", task->tk_pid); 954 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 955 rpc_exit(task, -ERESTARTSYS); 956 } 957 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 958 } 959 960 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 961 task->tk_status); 962 /* Release all resources associated with the task */ 963 rpc_release_task(task); 964 } 965 966 /* 967 * User-visible entry point to the scheduler. 968 * 969 * This may be called recursively if e.g. an async NFS task updates 970 * the attributes and finds that dirty pages must be flushed. 971 * NOTE: Upon exit of this function the task is guaranteed to be 972 * released. In particular note that tk_release() will have 973 * been called, so your task memory may have been freed. 974 */ 975 void rpc_execute(struct rpc_task *task) 976 { 977 bool is_async = RPC_IS_ASYNC(task); 978 979 rpc_set_active(task); 980 rpc_make_runnable(rpciod_workqueue, task); 981 if (!is_async) 982 __rpc_execute(task); 983 } 984 985 static void rpc_async_schedule(struct work_struct *work) 986 { 987 unsigned int pflags = memalloc_nofs_save(); 988 989 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 990 memalloc_nofs_restore(pflags); 991 } 992 993 /** 994 * rpc_malloc - allocate RPC buffer resources 995 * @task: RPC task 996 * 997 * A single memory region is allocated, which is split between the 998 * RPC call and RPC reply that this task is being used for. When 999 * this RPC is retired, the memory is released by calling rpc_free. 1000 * 1001 * To prevent rpciod from hanging, this allocator never sleeps, 1002 * returning -ENOMEM and suppressing warning if the request cannot 1003 * be serviced immediately. The caller can arrange to sleep in a 1004 * way that is safe for rpciod. 1005 * 1006 * Most requests are 'small' (under 2KiB) and can be serviced from a 1007 * mempool, ensuring that NFS reads and writes can always proceed, 1008 * and that there is good locality of reference for these buffers. 1009 */ 1010 int rpc_malloc(struct rpc_task *task) 1011 { 1012 struct rpc_rqst *rqst = task->tk_rqstp; 1013 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1014 struct rpc_buffer *buf; 1015 gfp_t gfp = GFP_NOFS; 1016 1017 if (RPC_IS_SWAPPER(task)) 1018 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 1019 1020 size += sizeof(struct rpc_buffer); 1021 if (size <= RPC_BUFFER_MAXSIZE) 1022 buf = mempool_alloc(rpc_buffer_mempool, gfp); 1023 else 1024 buf = kmalloc(size, gfp); 1025 1026 if (!buf) 1027 return -ENOMEM; 1028 1029 buf->len = size; 1030 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 1031 task->tk_pid, size, buf); 1032 rqst->rq_buffer = buf->data; 1033 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1034 return 0; 1035 } 1036 EXPORT_SYMBOL_GPL(rpc_malloc); 1037 1038 /** 1039 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1040 * @task: RPC task 1041 * 1042 */ 1043 void rpc_free(struct rpc_task *task) 1044 { 1045 void *buffer = task->tk_rqstp->rq_buffer; 1046 size_t size; 1047 struct rpc_buffer *buf; 1048 1049 buf = container_of(buffer, struct rpc_buffer, data); 1050 size = buf->len; 1051 1052 dprintk("RPC: freeing buffer of size %zu at %p\n", 1053 size, buf); 1054 1055 if (size <= RPC_BUFFER_MAXSIZE) 1056 mempool_free(buf, rpc_buffer_mempool); 1057 else 1058 kfree(buf); 1059 } 1060 EXPORT_SYMBOL_GPL(rpc_free); 1061 1062 /* 1063 * Creation and deletion of RPC task structures 1064 */ 1065 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1066 { 1067 memset(task, 0, sizeof(*task)); 1068 atomic_set(&task->tk_count, 1); 1069 task->tk_flags = task_setup_data->flags; 1070 task->tk_ops = task_setup_data->callback_ops; 1071 task->tk_calldata = task_setup_data->callback_data; 1072 INIT_LIST_HEAD(&task->tk_task); 1073 1074 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1075 task->tk_owner = current->tgid; 1076 1077 /* Initialize workqueue for async tasks */ 1078 task->tk_workqueue = task_setup_data->workqueue; 1079 1080 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt); 1081 1082 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1083 1084 if (task->tk_ops->rpc_call_prepare != NULL) 1085 task->tk_action = rpc_prepare_task; 1086 1087 rpc_init_task_statistics(task); 1088 1089 dprintk("RPC: new task initialized, procpid %u\n", 1090 task_pid_nr(current)); 1091 } 1092 1093 static struct rpc_task * 1094 rpc_alloc_task(void) 1095 { 1096 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 1097 } 1098 1099 /* 1100 * Create a new task for the specified client. 1101 */ 1102 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1103 { 1104 struct rpc_task *task = setup_data->task; 1105 unsigned short flags = 0; 1106 1107 if (task == NULL) { 1108 task = rpc_alloc_task(); 1109 flags = RPC_TASK_DYNAMIC; 1110 } 1111 1112 rpc_init_task(task, setup_data); 1113 task->tk_flags |= flags; 1114 dprintk("RPC: allocated task %p\n", task); 1115 return task; 1116 } 1117 1118 /* 1119 * rpc_free_task - release rpc task and perform cleanups 1120 * 1121 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1122 * in order to work around a workqueue dependency issue. 1123 * 1124 * Tejun Heo states: 1125 * "Workqueue currently considers two work items to be the same if they're 1126 * on the same address and won't execute them concurrently - ie. it 1127 * makes a work item which is queued again while being executed wait 1128 * for the previous execution to complete. 1129 * 1130 * If a work function frees the work item, and then waits for an event 1131 * which should be performed by another work item and *that* work item 1132 * recycles the freed work item, it can create a false dependency loop. 1133 * There really is no reliable way to detect this short of verifying 1134 * every memory free." 1135 * 1136 */ 1137 static void rpc_free_task(struct rpc_task *task) 1138 { 1139 unsigned short tk_flags = task->tk_flags; 1140 1141 put_rpccred(task->tk_op_cred); 1142 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1143 1144 if (tk_flags & RPC_TASK_DYNAMIC) { 1145 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1146 mempool_free(task, rpc_task_mempool); 1147 } 1148 } 1149 1150 static void rpc_async_release(struct work_struct *work) 1151 { 1152 unsigned int pflags = memalloc_nofs_save(); 1153 1154 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1155 memalloc_nofs_restore(pflags); 1156 } 1157 1158 static void rpc_release_resources_task(struct rpc_task *task) 1159 { 1160 xprt_release(task); 1161 if (task->tk_msg.rpc_cred) { 1162 put_cred(task->tk_msg.rpc_cred); 1163 task->tk_msg.rpc_cred = NULL; 1164 } 1165 rpc_task_release_client(task); 1166 } 1167 1168 static void rpc_final_put_task(struct rpc_task *task, 1169 struct workqueue_struct *q) 1170 { 1171 if (q != NULL) { 1172 INIT_WORK(&task->u.tk_work, rpc_async_release); 1173 queue_work(q, &task->u.tk_work); 1174 } else 1175 rpc_free_task(task); 1176 } 1177 1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1179 { 1180 if (atomic_dec_and_test(&task->tk_count)) { 1181 rpc_release_resources_task(task); 1182 rpc_final_put_task(task, q); 1183 } 1184 } 1185 1186 void rpc_put_task(struct rpc_task *task) 1187 { 1188 rpc_do_put_task(task, NULL); 1189 } 1190 EXPORT_SYMBOL_GPL(rpc_put_task); 1191 1192 void rpc_put_task_async(struct rpc_task *task) 1193 { 1194 rpc_do_put_task(task, task->tk_workqueue); 1195 } 1196 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1197 1198 static void rpc_release_task(struct rpc_task *task) 1199 { 1200 dprintk("RPC: %5u release task\n", task->tk_pid); 1201 1202 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1203 1204 rpc_release_resources_task(task); 1205 1206 /* 1207 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1208 * so it should be safe to use task->tk_count as a test for whether 1209 * or not any other processes still hold references to our rpc_task. 1210 */ 1211 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1212 /* Wake up anyone who may be waiting for task completion */ 1213 if (!rpc_complete_task(task)) 1214 return; 1215 } else { 1216 if (!atomic_dec_and_test(&task->tk_count)) 1217 return; 1218 } 1219 rpc_final_put_task(task, task->tk_workqueue); 1220 } 1221 1222 int rpciod_up(void) 1223 { 1224 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1225 } 1226 1227 void rpciod_down(void) 1228 { 1229 module_put(THIS_MODULE); 1230 } 1231 1232 /* 1233 * Start up the rpciod workqueue. 1234 */ 1235 static int rpciod_start(void) 1236 { 1237 struct workqueue_struct *wq; 1238 1239 /* 1240 * Create the rpciod thread and wait for it to start. 1241 */ 1242 dprintk("RPC: creating workqueue rpciod\n"); 1243 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1244 if (!wq) 1245 goto out_failed; 1246 rpciod_workqueue = wq; 1247 /* Note: highpri because network receive is latency sensitive */ 1248 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0); 1249 if (!wq) 1250 goto free_rpciod; 1251 xprtiod_workqueue = wq; 1252 return 1; 1253 free_rpciod: 1254 wq = rpciod_workqueue; 1255 rpciod_workqueue = NULL; 1256 destroy_workqueue(wq); 1257 out_failed: 1258 return 0; 1259 } 1260 1261 static void rpciod_stop(void) 1262 { 1263 struct workqueue_struct *wq = NULL; 1264 1265 if (rpciod_workqueue == NULL) 1266 return; 1267 dprintk("RPC: destroying workqueue rpciod\n"); 1268 1269 wq = rpciod_workqueue; 1270 rpciod_workqueue = NULL; 1271 destroy_workqueue(wq); 1272 wq = xprtiod_workqueue; 1273 xprtiod_workqueue = NULL; 1274 destroy_workqueue(wq); 1275 } 1276 1277 void 1278 rpc_destroy_mempool(void) 1279 { 1280 rpciod_stop(); 1281 mempool_destroy(rpc_buffer_mempool); 1282 mempool_destroy(rpc_task_mempool); 1283 kmem_cache_destroy(rpc_task_slabp); 1284 kmem_cache_destroy(rpc_buffer_slabp); 1285 rpc_destroy_wait_queue(&delay_queue); 1286 } 1287 1288 int 1289 rpc_init_mempool(void) 1290 { 1291 /* 1292 * The following is not strictly a mempool initialisation, 1293 * but there is no harm in doing it here 1294 */ 1295 rpc_init_wait_queue(&delay_queue, "delayq"); 1296 if (!rpciod_start()) 1297 goto err_nomem; 1298 1299 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1300 sizeof(struct rpc_task), 1301 0, SLAB_HWCACHE_ALIGN, 1302 NULL); 1303 if (!rpc_task_slabp) 1304 goto err_nomem; 1305 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1306 RPC_BUFFER_MAXSIZE, 1307 0, SLAB_HWCACHE_ALIGN, 1308 NULL); 1309 if (!rpc_buffer_slabp) 1310 goto err_nomem; 1311 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1312 rpc_task_slabp); 1313 if (!rpc_task_mempool) 1314 goto err_nomem; 1315 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1316 rpc_buffer_slabp); 1317 if (!rpc_buffer_mempool) 1318 goto err_nomem; 1319 return 0; 1320 err_nomem: 1321 rpc_destroy_mempool(); 1322 return -ENOMEM; 1323 } 1324