xref: /openbmc/linux/net/sunrpc/sched.c (revision 1f327613)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 
27 #include "sunrpc.h"
28 
29 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
30 #define RPCDBG_FACILITY		RPCDBG_SCHED
31 #endif
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/sunrpc.h>
35 
36 /*
37  * RPC slabs and memory pools
38  */
39 #define RPC_BUFFER_MAXSIZE	(2048)
40 #define RPC_BUFFER_POOLSIZE	(8)
41 #define RPC_TASK_POOLSIZE	(8)
42 static struct kmem_cache	*rpc_task_slabp __read_mostly;
43 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
44 static mempool_t	*rpc_task_mempool __read_mostly;
45 static mempool_t	*rpc_buffer_mempool __read_mostly;
46 
47 static void			rpc_async_schedule(struct work_struct *);
48 static void			 rpc_release_task(struct rpc_task *task);
49 static void __rpc_queue_timer_fn(struct timer_list *t);
50 
51 /*
52  * RPC tasks sit here while waiting for conditions to improve.
53  */
54 static struct rpc_wait_queue delay_queue;
55 
56 /*
57  * rpciod-related stuff
58  */
59 struct workqueue_struct *rpciod_workqueue __read_mostly;
60 struct workqueue_struct *xprtiod_workqueue __read_mostly;
61 
62 unsigned long
63 rpc_task_timeout(const struct rpc_task *task)
64 {
65 	unsigned long timeout = READ_ONCE(task->tk_timeout);
66 
67 	if (timeout != 0) {
68 		unsigned long now = jiffies;
69 		if (time_before(now, timeout))
70 			return timeout - now;
71 	}
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(rpc_task_timeout);
75 
76 /*
77  * Disable the timer for a given RPC task. Should be called with
78  * queue->lock and bh_disabled in order to avoid races within
79  * rpc_run_timer().
80  */
81 static void
82 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
83 {
84 	if (list_empty(&task->u.tk_wait.timer_list))
85 		return;
86 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
87 	task->tk_timeout = 0;
88 	list_del(&task->u.tk_wait.timer_list);
89 	if (list_empty(&queue->timer_list.list))
90 		del_timer(&queue->timer_list.timer);
91 }
92 
93 static void
94 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
95 {
96 	timer_reduce(&queue->timer_list.timer, expires);
97 }
98 
99 /*
100  * Set up a timer for the current task.
101  */
102 static void
103 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
104 		unsigned long timeout)
105 {
106 	dprintk("RPC: %5u setting alarm for %u ms\n",
107 		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
108 
109 	task->tk_timeout = timeout;
110 	rpc_set_queue_timer(queue, timeout);
111 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
112 }
113 
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116 	if (queue->priority != priority) {
117 		queue->priority = priority;
118 		queue->nr = 1U << priority;
119 	}
120 }
121 
122 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
123 {
124 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
125 }
126 
127 /*
128  * Add a request to a queue list
129  */
130 static void
131 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
132 {
133 	struct rpc_task *t;
134 
135 	list_for_each_entry(t, q, u.tk_wait.list) {
136 		if (t->tk_owner == task->tk_owner) {
137 			list_add_tail(&task->u.tk_wait.links,
138 					&t->u.tk_wait.links);
139 			/* Cache the queue head in task->u.tk_wait.list */
140 			task->u.tk_wait.list.next = q;
141 			task->u.tk_wait.list.prev = NULL;
142 			return;
143 		}
144 	}
145 	INIT_LIST_HEAD(&task->u.tk_wait.links);
146 	list_add_tail(&task->u.tk_wait.list, q);
147 }
148 
149 /*
150  * Remove request from a queue list
151  */
152 static void
153 __rpc_list_dequeue_task(struct rpc_task *task)
154 {
155 	struct list_head *q;
156 	struct rpc_task *t;
157 
158 	if (task->u.tk_wait.list.prev == NULL) {
159 		list_del(&task->u.tk_wait.links);
160 		return;
161 	}
162 	if (!list_empty(&task->u.tk_wait.links)) {
163 		t = list_first_entry(&task->u.tk_wait.links,
164 				struct rpc_task,
165 				u.tk_wait.links);
166 		/* Assume __rpc_list_enqueue_task() cached the queue head */
167 		q = t->u.tk_wait.list.next;
168 		list_add_tail(&t->u.tk_wait.list, q);
169 		list_del(&task->u.tk_wait.links);
170 	}
171 	list_del(&task->u.tk_wait.list);
172 }
173 
174 /*
175  * Add new request to a priority queue.
176  */
177 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
178 		struct rpc_task *task,
179 		unsigned char queue_priority)
180 {
181 	if (unlikely(queue_priority > queue->maxpriority))
182 		queue_priority = queue->maxpriority;
183 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
184 }
185 
186 /*
187  * Add new request to wait queue.
188  *
189  * Swapper tasks always get inserted at the head of the queue.
190  * This should avoid many nasty memory deadlocks and hopefully
191  * improve overall performance.
192  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
193  */
194 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
195 		struct rpc_task *task,
196 		unsigned char queue_priority)
197 {
198 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
199 	if (RPC_IS_QUEUED(task))
200 		return;
201 
202 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203 	if (RPC_IS_PRIORITY(queue))
204 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
205 	else if (RPC_IS_SWAPPER(task))
206 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
207 	else
208 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
209 	task->tk_waitqueue = queue;
210 	queue->qlen++;
211 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
212 	smp_wmb();
213 	rpc_set_queued(task);
214 
215 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
216 			task->tk_pid, queue, rpc_qname(queue));
217 }
218 
219 /*
220  * Remove request from a priority queue.
221  */
222 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
223 {
224 	__rpc_list_dequeue_task(task);
225 }
226 
227 /*
228  * Remove request from queue.
229  * Note: must be called with spin lock held.
230  */
231 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
232 {
233 	__rpc_disable_timer(queue, task);
234 	if (RPC_IS_PRIORITY(queue))
235 		__rpc_remove_wait_queue_priority(task);
236 	else
237 		list_del(&task->u.tk_wait.list);
238 	queue->qlen--;
239 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
240 			task->tk_pid, queue, rpc_qname(queue));
241 }
242 
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245 	int i;
246 
247 	spin_lock_init(&queue->lock);
248 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249 		INIT_LIST_HEAD(&queue->tasks[i]);
250 	queue->maxpriority = nr_queues - 1;
251 	rpc_reset_waitqueue_priority(queue);
252 	queue->qlen = 0;
253 	timer_setup(&queue->timer_list.timer,
254 			__rpc_queue_timer_fn,
255 			TIMER_DEFERRABLE);
256 	INIT_LIST_HEAD(&queue->timer_list.list);
257 	rpc_assign_waitqueue_name(queue, qname);
258 }
259 
260 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
261 {
262 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
263 }
264 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
265 
266 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
267 {
268 	__rpc_init_priority_wait_queue(queue, qname, 1);
269 }
270 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
271 
272 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
273 {
274 	del_timer_sync(&queue->timer_list.timer);
275 }
276 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
277 
278 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
279 {
280 	freezable_schedule_unsafe();
281 	if (signal_pending_state(mode, current))
282 		return -ERESTARTSYS;
283 	return 0;
284 }
285 
286 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
287 static void rpc_task_set_debuginfo(struct rpc_task *task)
288 {
289 	static atomic_t rpc_pid;
290 
291 	task->tk_pid = atomic_inc_return(&rpc_pid);
292 }
293 #else
294 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
295 {
296 }
297 #endif
298 
299 static void rpc_set_active(struct rpc_task *task)
300 {
301 	rpc_task_set_debuginfo(task);
302 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
303 	trace_rpc_task_begin(task, NULL);
304 }
305 
306 /*
307  * Mark an RPC call as having completed by clearing the 'active' bit
308  * and then waking up all tasks that were sleeping.
309  */
310 static int rpc_complete_task(struct rpc_task *task)
311 {
312 	void *m = &task->tk_runstate;
313 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
314 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
315 	unsigned long flags;
316 	int ret;
317 
318 	trace_rpc_task_complete(task, NULL);
319 
320 	spin_lock_irqsave(&wq->lock, flags);
321 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
322 	ret = atomic_dec_and_test(&task->tk_count);
323 	if (waitqueue_active(wq))
324 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
325 	spin_unlock_irqrestore(&wq->lock, flags);
326 	return ret;
327 }
328 
329 /*
330  * Allow callers to wait for completion of an RPC call
331  *
332  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
333  * to enforce taking of the wq->lock and hence avoid races with
334  * rpc_complete_task().
335  */
336 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
337 {
338 	if (action == NULL)
339 		action = rpc_wait_bit_killable;
340 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
341 			action, TASK_KILLABLE);
342 }
343 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
344 
345 /*
346  * Make an RPC task runnable.
347  *
348  * Note: If the task is ASYNC, and is being made runnable after sitting on an
349  * rpc_wait_queue, this must be called with the queue spinlock held to protect
350  * the wait queue operation.
351  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
352  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
353  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
354  * the RPC_TASK_RUNNING flag.
355  */
356 static void rpc_make_runnable(struct workqueue_struct *wq,
357 		struct rpc_task *task)
358 {
359 	bool need_wakeup = !rpc_test_and_set_running(task);
360 
361 	rpc_clear_queued(task);
362 	if (!need_wakeup)
363 		return;
364 	if (RPC_IS_ASYNC(task)) {
365 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
366 		queue_work(wq, &task->u.tk_work);
367 	} else
368 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
369 }
370 
371 /*
372  * Prepare for sleeping on a wait queue.
373  * By always appending tasks to the list we ensure FIFO behavior.
374  * NB: An RPC task will only receive interrupt-driven events as long
375  * as it's on a wait queue.
376  */
377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
378 		struct rpc_task *task,
379 		unsigned char queue_priority)
380 {
381 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
382 			task->tk_pid, rpc_qname(q), jiffies);
383 
384 	trace_rpc_task_sleep(task, q);
385 
386 	__rpc_add_wait_queue(q, task, queue_priority);
387 
388 }
389 
390 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
391 		struct rpc_task *task, unsigned long timeout,
392 		unsigned char queue_priority)
393 {
394 	if (time_is_after_jiffies(timeout)) {
395 		__rpc_sleep_on_priority(q, task, queue_priority);
396 		__rpc_add_timer(q, task, timeout);
397 	} else
398 		task->tk_status = -ETIMEDOUT;
399 }
400 
401 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
402 {
403 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
404 		task->tk_callback = action;
405 }
406 
407 static bool rpc_sleep_check_activated(struct rpc_task *task)
408 {
409 	/* We shouldn't ever put an inactive task to sleep */
410 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
411 		task->tk_status = -EIO;
412 		rpc_put_task_async(task);
413 		return false;
414 	}
415 	return true;
416 }
417 
418 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
419 				rpc_action action, unsigned long timeout)
420 {
421 	if (!rpc_sleep_check_activated(task))
422 		return;
423 
424 	rpc_set_tk_callback(task, action);
425 
426 	/*
427 	 * Protect the queue operations.
428 	 */
429 	spin_lock_bh(&q->lock);
430 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
431 	spin_unlock_bh(&q->lock);
432 }
433 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
434 
435 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
436 				rpc_action action)
437 {
438 	if (!rpc_sleep_check_activated(task))
439 		return;
440 
441 	rpc_set_tk_callback(task, action);
442 
443 	WARN_ON_ONCE(task->tk_timeout != 0);
444 	/*
445 	 * Protect the queue operations.
446 	 */
447 	spin_lock_bh(&q->lock);
448 	__rpc_sleep_on_priority(q, task, task->tk_priority);
449 	spin_unlock_bh(&q->lock);
450 }
451 EXPORT_SYMBOL_GPL(rpc_sleep_on);
452 
453 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
454 		struct rpc_task *task, unsigned long timeout, int priority)
455 {
456 	if (!rpc_sleep_check_activated(task))
457 		return;
458 
459 	priority -= RPC_PRIORITY_LOW;
460 	/*
461 	 * Protect the queue operations.
462 	 */
463 	spin_lock_bh(&q->lock);
464 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
465 	spin_unlock_bh(&q->lock);
466 }
467 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
468 
469 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
470 		int priority)
471 {
472 	if (!rpc_sleep_check_activated(task))
473 		return;
474 
475 	WARN_ON_ONCE(task->tk_timeout != 0);
476 	priority -= RPC_PRIORITY_LOW;
477 	/*
478 	 * Protect the queue operations.
479 	 */
480 	spin_lock_bh(&q->lock);
481 	__rpc_sleep_on_priority(q, task, priority);
482 	spin_unlock_bh(&q->lock);
483 }
484 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
485 
486 /**
487  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
488  * @wq: workqueue on which to run task
489  * @queue: wait queue
490  * @task: task to be woken up
491  *
492  * Caller must hold queue->lock, and have cleared the task queued flag.
493  */
494 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
495 		struct rpc_wait_queue *queue,
496 		struct rpc_task *task)
497 {
498 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
499 			task->tk_pid, jiffies);
500 
501 	/* Has the task been executed yet? If not, we cannot wake it up! */
502 	if (!RPC_IS_ACTIVATED(task)) {
503 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
504 		return;
505 	}
506 
507 	trace_rpc_task_wakeup(task, queue);
508 
509 	__rpc_remove_wait_queue(queue, task);
510 
511 	rpc_make_runnable(wq, task);
512 
513 	dprintk("RPC:       __rpc_wake_up_task done\n");
514 }
515 
516 /*
517  * Wake up a queued task while the queue lock is being held
518  */
519 static struct rpc_task *
520 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
521 		struct rpc_wait_queue *queue, struct rpc_task *task,
522 		bool (*action)(struct rpc_task *, void *), void *data)
523 {
524 	if (RPC_IS_QUEUED(task)) {
525 		smp_rmb();
526 		if (task->tk_waitqueue == queue) {
527 			if (action == NULL || action(task, data)) {
528 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
529 				return task;
530 			}
531 		}
532 	}
533 	return NULL;
534 }
535 
536 static void
537 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
538 		struct rpc_wait_queue *queue, struct rpc_task *task)
539 {
540 	rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
541 }
542 
543 /*
544  * Wake up a queued task while the queue lock is being held
545  */
546 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
547 {
548 	rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
549 }
550 
551 /*
552  * Wake up a task on a specific queue
553  */
554 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
555 		struct rpc_wait_queue *queue,
556 		struct rpc_task *task)
557 {
558 	if (!RPC_IS_QUEUED(task))
559 		return;
560 	spin_lock_bh(&queue->lock);
561 	rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
562 	spin_unlock_bh(&queue->lock);
563 }
564 
565 /*
566  * Wake up a task on a specific queue
567  */
568 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
569 {
570 	if (!RPC_IS_QUEUED(task))
571 		return;
572 	spin_lock_bh(&queue->lock);
573 	rpc_wake_up_task_queue_locked(queue, task);
574 	spin_unlock_bh(&queue->lock);
575 }
576 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
577 
578 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
579 {
580 	task->tk_status = *(int *)status;
581 	return true;
582 }
583 
584 static void
585 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
586 		struct rpc_task *task, int status)
587 {
588 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
589 			task, rpc_task_action_set_status, &status);
590 }
591 
592 /**
593  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
594  * @queue: pointer to rpc_wait_queue
595  * @task: pointer to rpc_task
596  * @status: integer error value
597  *
598  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
599  * set to the value of @status.
600  */
601 void
602 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
603 		struct rpc_task *task, int status)
604 {
605 	if (!RPC_IS_QUEUED(task))
606 		return;
607 	spin_lock_bh(&queue->lock);
608 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
609 	spin_unlock_bh(&queue->lock);
610 }
611 
612 /*
613  * Wake up the next task on a priority queue.
614  */
615 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
616 {
617 	struct list_head *q;
618 	struct rpc_task *task;
619 
620 	/*
621 	 * Service a batch of tasks from a single owner.
622 	 */
623 	q = &queue->tasks[queue->priority];
624 	if (!list_empty(q) && --queue->nr) {
625 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
626 		goto out;
627 	}
628 
629 	/*
630 	 * Service the next queue.
631 	 */
632 	do {
633 		if (q == &queue->tasks[0])
634 			q = &queue->tasks[queue->maxpriority];
635 		else
636 			q = q - 1;
637 		if (!list_empty(q)) {
638 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
639 			goto new_queue;
640 		}
641 	} while (q != &queue->tasks[queue->priority]);
642 
643 	rpc_reset_waitqueue_priority(queue);
644 	return NULL;
645 
646 new_queue:
647 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
648 out:
649 	return task;
650 }
651 
652 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
653 {
654 	if (RPC_IS_PRIORITY(queue))
655 		return __rpc_find_next_queued_priority(queue);
656 	if (!list_empty(&queue->tasks[0]))
657 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
658 	return NULL;
659 }
660 
661 /*
662  * Wake up the first task on the wait queue.
663  */
664 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
665 		struct rpc_wait_queue *queue,
666 		bool (*func)(struct rpc_task *, void *), void *data)
667 {
668 	struct rpc_task	*task = NULL;
669 
670 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
671 			queue, rpc_qname(queue));
672 	spin_lock_bh(&queue->lock);
673 	task = __rpc_find_next_queued(queue);
674 	if (task != NULL)
675 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
676 				task, func, data);
677 	spin_unlock_bh(&queue->lock);
678 
679 	return task;
680 }
681 
682 /*
683  * Wake up the first task on the wait queue.
684  */
685 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
686 		bool (*func)(struct rpc_task *, void *), void *data)
687 {
688 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
689 }
690 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
691 
692 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
693 {
694 	return true;
695 }
696 
697 /*
698  * Wake up the next task on the wait queue.
699 */
700 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
701 {
702 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
703 }
704 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
705 
706 /**
707  * rpc_wake_up - wake up all rpc_tasks
708  * @queue: rpc_wait_queue on which the tasks are sleeping
709  *
710  * Grabs queue->lock
711  */
712 void rpc_wake_up(struct rpc_wait_queue *queue)
713 {
714 	struct list_head *head;
715 
716 	spin_lock_bh(&queue->lock);
717 	head = &queue->tasks[queue->maxpriority];
718 	for (;;) {
719 		while (!list_empty(head)) {
720 			struct rpc_task *task;
721 			task = list_first_entry(head,
722 					struct rpc_task,
723 					u.tk_wait.list);
724 			rpc_wake_up_task_queue_locked(queue, task);
725 		}
726 		if (head == &queue->tasks[0])
727 			break;
728 		head--;
729 	}
730 	spin_unlock_bh(&queue->lock);
731 }
732 EXPORT_SYMBOL_GPL(rpc_wake_up);
733 
734 /**
735  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
736  * @queue: rpc_wait_queue on which the tasks are sleeping
737  * @status: status value to set
738  *
739  * Grabs queue->lock
740  */
741 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
742 {
743 	struct list_head *head;
744 
745 	spin_lock_bh(&queue->lock);
746 	head = &queue->tasks[queue->maxpriority];
747 	for (;;) {
748 		while (!list_empty(head)) {
749 			struct rpc_task *task;
750 			task = list_first_entry(head,
751 					struct rpc_task,
752 					u.tk_wait.list);
753 			task->tk_status = status;
754 			rpc_wake_up_task_queue_locked(queue, task);
755 		}
756 		if (head == &queue->tasks[0])
757 			break;
758 		head--;
759 	}
760 	spin_unlock_bh(&queue->lock);
761 }
762 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
763 
764 static void __rpc_queue_timer_fn(struct timer_list *t)
765 {
766 	struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
767 	struct rpc_task *task, *n;
768 	unsigned long expires, now, timeo;
769 
770 	spin_lock(&queue->lock);
771 	expires = now = jiffies;
772 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
773 		timeo = task->tk_timeout;
774 		if (time_after_eq(now, timeo)) {
775 			dprintk("RPC: %5u timeout\n", task->tk_pid);
776 			task->tk_status = -ETIMEDOUT;
777 			rpc_wake_up_task_queue_locked(queue, task);
778 			continue;
779 		}
780 		if (expires == now || time_after(expires, timeo))
781 			expires = timeo;
782 	}
783 	if (!list_empty(&queue->timer_list.list))
784 		rpc_set_queue_timer(queue, expires);
785 	spin_unlock(&queue->lock);
786 }
787 
788 static void __rpc_atrun(struct rpc_task *task)
789 {
790 	if (task->tk_status == -ETIMEDOUT)
791 		task->tk_status = 0;
792 }
793 
794 /*
795  * Run a task at a later time
796  */
797 void rpc_delay(struct rpc_task *task, unsigned long delay)
798 {
799 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
800 }
801 EXPORT_SYMBOL_GPL(rpc_delay);
802 
803 /*
804  * Helper to call task->tk_ops->rpc_call_prepare
805  */
806 void rpc_prepare_task(struct rpc_task *task)
807 {
808 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
809 }
810 
811 static void
812 rpc_init_task_statistics(struct rpc_task *task)
813 {
814 	/* Initialize retry counters */
815 	task->tk_garb_retry = 2;
816 	task->tk_cred_retry = 2;
817 	task->tk_rebind_retry = 2;
818 
819 	/* starting timestamp */
820 	task->tk_start = ktime_get();
821 }
822 
823 static void
824 rpc_reset_task_statistics(struct rpc_task *task)
825 {
826 	task->tk_timeouts = 0;
827 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
828 	rpc_init_task_statistics(task);
829 }
830 
831 /*
832  * Helper that calls task->tk_ops->rpc_call_done if it exists
833  */
834 void rpc_exit_task(struct rpc_task *task)
835 {
836 	task->tk_action = NULL;
837 	if (task->tk_ops->rpc_call_done != NULL) {
838 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
839 		if (task->tk_action != NULL) {
840 			/* Always release the RPC slot and buffer memory */
841 			xprt_release(task);
842 			rpc_reset_task_statistics(task);
843 		}
844 	}
845 }
846 
847 void rpc_signal_task(struct rpc_task *task)
848 {
849 	struct rpc_wait_queue *queue;
850 
851 	if (!RPC_IS_ACTIVATED(task))
852 		return;
853 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
854 	smp_mb__after_atomic();
855 	queue = READ_ONCE(task->tk_waitqueue);
856 	if (queue)
857 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
858 }
859 
860 void rpc_exit(struct rpc_task *task, int status)
861 {
862 	task->tk_status = status;
863 	task->tk_action = rpc_exit_task;
864 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
865 }
866 EXPORT_SYMBOL_GPL(rpc_exit);
867 
868 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
869 {
870 	if (ops->rpc_release != NULL)
871 		ops->rpc_release(calldata);
872 }
873 
874 /*
875  * This is the RPC `scheduler' (or rather, the finite state machine).
876  */
877 static void __rpc_execute(struct rpc_task *task)
878 {
879 	struct rpc_wait_queue *queue;
880 	int task_is_async = RPC_IS_ASYNC(task);
881 	int status = 0;
882 
883 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
884 			task->tk_pid, task->tk_flags);
885 
886 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
887 	if (RPC_IS_QUEUED(task))
888 		return;
889 
890 	for (;;) {
891 		void (*do_action)(struct rpc_task *);
892 
893 		/*
894 		 * Perform the next FSM step or a pending callback.
895 		 *
896 		 * tk_action may be NULL if the task has been killed.
897 		 * In particular, note that rpc_killall_tasks may
898 		 * do this at any time, so beware when dereferencing.
899 		 */
900 		do_action = task->tk_action;
901 		if (task->tk_callback) {
902 			do_action = task->tk_callback;
903 			task->tk_callback = NULL;
904 		}
905 		if (!do_action)
906 			break;
907 		trace_rpc_task_run_action(task, do_action);
908 		do_action(task);
909 
910 		/*
911 		 * Lockless check for whether task is sleeping or not.
912 		 */
913 		if (!RPC_IS_QUEUED(task))
914 			continue;
915 
916 		/*
917 		 * Signalled tasks should exit rather than sleep.
918 		 */
919 		if (RPC_SIGNALLED(task))
920 			rpc_exit(task, -ERESTARTSYS);
921 
922 		/*
923 		 * The queue->lock protects against races with
924 		 * rpc_make_runnable().
925 		 *
926 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
927 		 * rpc_task, rpc_make_runnable() can assign it to a
928 		 * different workqueue. We therefore cannot assume that the
929 		 * rpc_task pointer may still be dereferenced.
930 		 */
931 		queue = task->tk_waitqueue;
932 		spin_lock_bh(&queue->lock);
933 		if (!RPC_IS_QUEUED(task)) {
934 			spin_unlock_bh(&queue->lock);
935 			continue;
936 		}
937 		rpc_clear_running(task);
938 		spin_unlock_bh(&queue->lock);
939 		if (task_is_async)
940 			return;
941 
942 		/* sync task: sleep here */
943 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
944 		status = out_of_line_wait_on_bit(&task->tk_runstate,
945 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
946 				TASK_KILLABLE);
947 		if (status < 0) {
948 			/*
949 			 * When a sync task receives a signal, it exits with
950 			 * -ERESTARTSYS. In order to catch any callbacks that
951 			 * clean up after sleeping on some queue, we don't
952 			 * break the loop here, but go around once more.
953 			 */
954 			dprintk("RPC: %5u got signal\n", task->tk_pid);
955 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
956 			rpc_exit(task, -ERESTARTSYS);
957 		}
958 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
959 	}
960 
961 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
962 			task->tk_status);
963 	/* Release all resources associated with the task */
964 	rpc_release_task(task);
965 }
966 
967 /*
968  * User-visible entry point to the scheduler.
969  *
970  * This may be called recursively if e.g. an async NFS task updates
971  * the attributes and finds that dirty pages must be flushed.
972  * NOTE: Upon exit of this function the task is guaranteed to be
973  *	 released. In particular note that tk_release() will have
974  *	 been called, so your task memory may have been freed.
975  */
976 void rpc_execute(struct rpc_task *task)
977 {
978 	bool is_async = RPC_IS_ASYNC(task);
979 
980 	rpc_set_active(task);
981 	rpc_make_runnable(rpciod_workqueue, task);
982 	if (!is_async)
983 		__rpc_execute(task);
984 }
985 
986 static void rpc_async_schedule(struct work_struct *work)
987 {
988 	unsigned int pflags = memalloc_nofs_save();
989 
990 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
991 	memalloc_nofs_restore(pflags);
992 }
993 
994 /**
995  * rpc_malloc - allocate RPC buffer resources
996  * @task: RPC task
997  *
998  * A single memory region is allocated, which is split between the
999  * RPC call and RPC reply that this task is being used for. When
1000  * this RPC is retired, the memory is released by calling rpc_free.
1001  *
1002  * To prevent rpciod from hanging, this allocator never sleeps,
1003  * returning -ENOMEM and suppressing warning if the request cannot
1004  * be serviced immediately. The caller can arrange to sleep in a
1005  * way that is safe for rpciod.
1006  *
1007  * Most requests are 'small' (under 2KiB) and can be serviced from a
1008  * mempool, ensuring that NFS reads and writes can always proceed,
1009  * and that there is good locality of reference for these buffers.
1010  */
1011 int rpc_malloc(struct rpc_task *task)
1012 {
1013 	struct rpc_rqst *rqst = task->tk_rqstp;
1014 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1015 	struct rpc_buffer *buf;
1016 	gfp_t gfp = GFP_NOFS;
1017 
1018 	if (RPC_IS_SWAPPER(task))
1019 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1020 
1021 	size += sizeof(struct rpc_buffer);
1022 	if (size <= RPC_BUFFER_MAXSIZE)
1023 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1024 	else
1025 		buf = kmalloc(size, gfp);
1026 
1027 	if (!buf)
1028 		return -ENOMEM;
1029 
1030 	buf->len = size;
1031 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1032 			task->tk_pid, size, buf);
1033 	rqst->rq_buffer = buf->data;
1034 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1035 	return 0;
1036 }
1037 EXPORT_SYMBOL_GPL(rpc_malloc);
1038 
1039 /**
1040  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1041  * @task: RPC task
1042  *
1043  */
1044 void rpc_free(struct rpc_task *task)
1045 {
1046 	void *buffer = task->tk_rqstp->rq_buffer;
1047 	size_t size;
1048 	struct rpc_buffer *buf;
1049 
1050 	buf = container_of(buffer, struct rpc_buffer, data);
1051 	size = buf->len;
1052 
1053 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1054 			size, buf);
1055 
1056 	if (size <= RPC_BUFFER_MAXSIZE)
1057 		mempool_free(buf, rpc_buffer_mempool);
1058 	else
1059 		kfree(buf);
1060 }
1061 EXPORT_SYMBOL_GPL(rpc_free);
1062 
1063 /*
1064  * Creation and deletion of RPC task structures
1065  */
1066 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1067 {
1068 	memset(task, 0, sizeof(*task));
1069 	atomic_set(&task->tk_count, 1);
1070 	task->tk_flags  = task_setup_data->flags;
1071 	task->tk_ops = task_setup_data->callback_ops;
1072 	task->tk_calldata = task_setup_data->callback_data;
1073 	INIT_LIST_HEAD(&task->tk_task);
1074 
1075 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1076 	task->tk_owner = current->tgid;
1077 
1078 	/* Initialize workqueue for async tasks */
1079 	task->tk_workqueue = task_setup_data->workqueue;
1080 
1081 	task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1082 
1083 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1084 
1085 	if (task->tk_ops->rpc_call_prepare != NULL)
1086 		task->tk_action = rpc_prepare_task;
1087 
1088 	rpc_init_task_statistics(task);
1089 
1090 	dprintk("RPC:       new task initialized, procpid %u\n",
1091 				task_pid_nr(current));
1092 }
1093 
1094 static struct rpc_task *
1095 rpc_alloc_task(void)
1096 {
1097 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1098 }
1099 
1100 /*
1101  * Create a new task for the specified client.
1102  */
1103 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1104 {
1105 	struct rpc_task	*task = setup_data->task;
1106 	unsigned short flags = 0;
1107 
1108 	if (task == NULL) {
1109 		task = rpc_alloc_task();
1110 		flags = RPC_TASK_DYNAMIC;
1111 	}
1112 
1113 	rpc_init_task(task, setup_data);
1114 	task->tk_flags |= flags;
1115 	dprintk("RPC:       allocated task %p\n", task);
1116 	return task;
1117 }
1118 
1119 /*
1120  * rpc_free_task - release rpc task and perform cleanups
1121  *
1122  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1123  * in order to work around a workqueue dependency issue.
1124  *
1125  * Tejun Heo states:
1126  * "Workqueue currently considers two work items to be the same if they're
1127  * on the same address and won't execute them concurrently - ie. it
1128  * makes a work item which is queued again while being executed wait
1129  * for the previous execution to complete.
1130  *
1131  * If a work function frees the work item, and then waits for an event
1132  * which should be performed by another work item and *that* work item
1133  * recycles the freed work item, it can create a false dependency loop.
1134  * There really is no reliable way to detect this short of verifying
1135  * every memory free."
1136  *
1137  */
1138 static void rpc_free_task(struct rpc_task *task)
1139 {
1140 	unsigned short tk_flags = task->tk_flags;
1141 
1142 	put_rpccred(task->tk_op_cred);
1143 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1144 
1145 	if (tk_flags & RPC_TASK_DYNAMIC) {
1146 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1147 		mempool_free(task, rpc_task_mempool);
1148 	}
1149 }
1150 
1151 static void rpc_async_release(struct work_struct *work)
1152 {
1153 	unsigned int pflags = memalloc_nofs_save();
1154 
1155 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1156 	memalloc_nofs_restore(pflags);
1157 }
1158 
1159 static void rpc_release_resources_task(struct rpc_task *task)
1160 {
1161 	xprt_release(task);
1162 	if (task->tk_msg.rpc_cred) {
1163 		put_cred(task->tk_msg.rpc_cred);
1164 		task->tk_msg.rpc_cred = NULL;
1165 	}
1166 	rpc_task_release_client(task);
1167 }
1168 
1169 static void rpc_final_put_task(struct rpc_task *task,
1170 		struct workqueue_struct *q)
1171 {
1172 	if (q != NULL) {
1173 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1174 		queue_work(q, &task->u.tk_work);
1175 	} else
1176 		rpc_free_task(task);
1177 }
1178 
1179 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1180 {
1181 	if (atomic_dec_and_test(&task->tk_count)) {
1182 		rpc_release_resources_task(task);
1183 		rpc_final_put_task(task, q);
1184 	}
1185 }
1186 
1187 void rpc_put_task(struct rpc_task *task)
1188 {
1189 	rpc_do_put_task(task, NULL);
1190 }
1191 EXPORT_SYMBOL_GPL(rpc_put_task);
1192 
1193 void rpc_put_task_async(struct rpc_task *task)
1194 {
1195 	rpc_do_put_task(task, task->tk_workqueue);
1196 }
1197 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1198 
1199 static void rpc_release_task(struct rpc_task *task)
1200 {
1201 	dprintk("RPC: %5u release task\n", task->tk_pid);
1202 
1203 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1204 
1205 	rpc_release_resources_task(task);
1206 
1207 	/*
1208 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1209 	 * so it should be safe to use task->tk_count as a test for whether
1210 	 * or not any other processes still hold references to our rpc_task.
1211 	 */
1212 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1213 		/* Wake up anyone who may be waiting for task completion */
1214 		if (!rpc_complete_task(task))
1215 			return;
1216 	} else {
1217 		if (!atomic_dec_and_test(&task->tk_count))
1218 			return;
1219 	}
1220 	rpc_final_put_task(task, task->tk_workqueue);
1221 }
1222 
1223 int rpciod_up(void)
1224 {
1225 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1226 }
1227 
1228 void rpciod_down(void)
1229 {
1230 	module_put(THIS_MODULE);
1231 }
1232 
1233 /*
1234  * Start up the rpciod workqueue.
1235  */
1236 static int rpciod_start(void)
1237 {
1238 	struct workqueue_struct *wq;
1239 
1240 	/*
1241 	 * Create the rpciod thread and wait for it to start.
1242 	 */
1243 	dprintk("RPC:       creating workqueue rpciod\n");
1244 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1245 	if (!wq)
1246 		goto out_failed;
1247 	rpciod_workqueue = wq;
1248 	/* Note: highpri because network receive is latency sensitive */
1249 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1250 	if (!wq)
1251 		goto free_rpciod;
1252 	xprtiod_workqueue = wq;
1253 	return 1;
1254 free_rpciod:
1255 	wq = rpciod_workqueue;
1256 	rpciod_workqueue = NULL;
1257 	destroy_workqueue(wq);
1258 out_failed:
1259 	return 0;
1260 }
1261 
1262 static void rpciod_stop(void)
1263 {
1264 	struct workqueue_struct *wq = NULL;
1265 
1266 	if (rpciod_workqueue == NULL)
1267 		return;
1268 	dprintk("RPC:       destroying workqueue rpciod\n");
1269 
1270 	wq = rpciod_workqueue;
1271 	rpciod_workqueue = NULL;
1272 	destroy_workqueue(wq);
1273 	wq = xprtiod_workqueue;
1274 	xprtiod_workqueue = NULL;
1275 	destroy_workqueue(wq);
1276 }
1277 
1278 void
1279 rpc_destroy_mempool(void)
1280 {
1281 	rpciod_stop();
1282 	mempool_destroy(rpc_buffer_mempool);
1283 	mempool_destroy(rpc_task_mempool);
1284 	kmem_cache_destroy(rpc_task_slabp);
1285 	kmem_cache_destroy(rpc_buffer_slabp);
1286 	rpc_destroy_wait_queue(&delay_queue);
1287 }
1288 
1289 int
1290 rpc_init_mempool(void)
1291 {
1292 	/*
1293 	 * The following is not strictly a mempool initialisation,
1294 	 * but there is no harm in doing it here
1295 	 */
1296 	rpc_init_wait_queue(&delay_queue, "delayq");
1297 	if (!rpciod_start())
1298 		goto err_nomem;
1299 
1300 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1301 					     sizeof(struct rpc_task),
1302 					     0, SLAB_HWCACHE_ALIGN,
1303 					     NULL);
1304 	if (!rpc_task_slabp)
1305 		goto err_nomem;
1306 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1307 					     RPC_BUFFER_MAXSIZE,
1308 					     0, SLAB_HWCACHE_ALIGN,
1309 					     NULL);
1310 	if (!rpc_buffer_slabp)
1311 		goto err_nomem;
1312 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1313 						    rpc_task_slabp);
1314 	if (!rpc_task_mempool)
1315 		goto err_nomem;
1316 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1317 						      rpc_buffer_slabp);
1318 	if (!rpc_buffer_mempool)
1319 		goto err_nomem;
1320 	return 0;
1321 err_nomem:
1322 	rpc_destroy_mempool();
1323 	return -ENOMEM;
1324 }
1325