1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #include "sunrpc.h" 26 27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 28 #define RPCDBG_FACILITY RPCDBG_SCHED 29 #endif 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/sunrpc.h> 33 34 /* 35 * RPC slabs and memory pools 36 */ 37 #define RPC_BUFFER_MAXSIZE (2048) 38 #define RPC_BUFFER_POOLSIZE (8) 39 #define RPC_TASK_POOLSIZE (8) 40 static struct kmem_cache *rpc_task_slabp __read_mostly; 41 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 42 static mempool_t *rpc_task_mempool __read_mostly; 43 static mempool_t *rpc_buffer_mempool __read_mostly; 44 45 static void rpc_async_schedule(struct work_struct *); 46 static void rpc_release_task(struct rpc_task *task); 47 static void __rpc_queue_timer_fn(struct timer_list *t); 48 49 /* 50 * RPC tasks sit here while waiting for conditions to improve. 51 */ 52 static struct rpc_wait_queue delay_queue; 53 54 /* 55 * rpciod-related stuff 56 */ 57 struct workqueue_struct *rpciod_workqueue __read_mostly; 58 struct workqueue_struct *xprtiod_workqueue __read_mostly; 59 60 /* 61 * Disable the timer for a given RPC task. Should be called with 62 * queue->lock and bh_disabled in order to avoid races within 63 * rpc_run_timer(). 64 */ 65 static void 66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 67 { 68 if (task->tk_timeout == 0) 69 return; 70 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 71 task->tk_timeout = 0; 72 list_del(&task->u.tk_wait.timer_list); 73 if (list_empty(&queue->timer_list.list)) 74 del_timer(&queue->timer_list.timer); 75 } 76 77 static void 78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 79 { 80 queue->timer_list.expires = expires; 81 mod_timer(&queue->timer_list.timer, expires); 82 } 83 84 /* 85 * Set up a timer for the current task. 86 */ 87 static void 88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 89 { 90 if (!task->tk_timeout) 91 return; 92 93 dprintk("RPC: %5u setting alarm for %u ms\n", 94 task->tk_pid, jiffies_to_msecs(task->tk_timeout)); 95 96 task->u.tk_wait.expires = jiffies + task->tk_timeout; 97 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 98 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 99 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 100 } 101 102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue) 103 { 104 struct list_head *q = &queue->tasks[queue->priority]; 105 struct rpc_task *task; 106 107 if (!list_empty(q)) { 108 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 109 if (task->tk_owner == queue->owner) 110 list_move_tail(&task->u.tk_wait.list, q); 111 } 112 } 113 114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 115 { 116 if (queue->priority != priority) { 117 /* Fairness: rotate the list when changing priority */ 118 rpc_rotate_queue_owner(queue); 119 queue->priority = priority; 120 } 121 } 122 123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 124 { 125 queue->owner = pid; 126 queue->nr = RPC_BATCH_COUNT; 127 } 128 129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 130 { 131 rpc_set_waitqueue_priority(queue, queue->maxpriority); 132 rpc_set_waitqueue_owner(queue, 0); 133 } 134 135 /* 136 * Add new request to a priority queue. 137 */ 138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 139 struct rpc_task *task, 140 unsigned char queue_priority) 141 { 142 struct list_head *q; 143 struct rpc_task *t; 144 145 INIT_LIST_HEAD(&task->u.tk_wait.links); 146 if (unlikely(queue_priority > queue->maxpriority)) 147 queue_priority = queue->maxpriority; 148 if (queue_priority > queue->priority) 149 rpc_set_waitqueue_priority(queue, queue_priority); 150 q = &queue->tasks[queue_priority]; 151 list_for_each_entry(t, q, u.tk_wait.list) { 152 if (t->tk_owner == task->tk_owner) { 153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 154 return; 155 } 156 } 157 list_add_tail(&task->u.tk_wait.list, q); 158 } 159 160 /* 161 * Add new request to wait queue. 162 * 163 * Swapper tasks always get inserted at the head of the queue. 164 * This should avoid many nasty memory deadlocks and hopefully 165 * improve overall performance. 166 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 167 */ 168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 169 struct rpc_task *task, 170 unsigned char queue_priority) 171 { 172 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 173 if (RPC_IS_QUEUED(task)) 174 return; 175 176 if (RPC_IS_PRIORITY(queue)) 177 __rpc_add_wait_queue_priority(queue, task, queue_priority); 178 else if (RPC_IS_SWAPPER(task)) 179 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 180 else 181 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 182 task->tk_waitqueue = queue; 183 queue->qlen++; 184 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 185 smp_wmb(); 186 rpc_set_queued(task); 187 188 dprintk("RPC: %5u added to queue %p \"%s\"\n", 189 task->tk_pid, queue, rpc_qname(queue)); 190 } 191 192 /* 193 * Remove request from a priority queue. 194 */ 195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 196 { 197 struct rpc_task *t; 198 199 if (!list_empty(&task->u.tk_wait.links)) { 200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 203 } 204 } 205 206 /* 207 * Remove request from queue. 208 * Note: must be called with spin lock held. 209 */ 210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 211 { 212 __rpc_disable_timer(queue, task); 213 if (RPC_IS_PRIORITY(queue)) 214 __rpc_remove_wait_queue_priority(task); 215 list_del(&task->u.tk_wait.list); 216 queue->qlen--; 217 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 218 task->tk_pid, queue, rpc_qname(queue)); 219 } 220 221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 222 { 223 int i; 224 225 spin_lock_init(&queue->lock); 226 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 227 INIT_LIST_HEAD(&queue->tasks[i]); 228 queue->maxpriority = nr_queues - 1; 229 rpc_reset_waitqueue_priority(queue); 230 queue->qlen = 0; 231 timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0); 232 INIT_LIST_HEAD(&queue->timer_list.list); 233 rpc_assign_waitqueue_name(queue, qname); 234 } 235 236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 237 { 238 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 239 } 240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 241 242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 243 { 244 __rpc_init_priority_wait_queue(queue, qname, 1); 245 } 246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 247 248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 249 { 250 del_timer_sync(&queue->timer_list.timer); 251 } 252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 253 254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 255 { 256 freezable_schedule_unsafe(); 257 if (signal_pending_state(mode, current)) 258 return -ERESTARTSYS; 259 return 0; 260 } 261 262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 263 static void rpc_task_set_debuginfo(struct rpc_task *task) 264 { 265 static atomic_t rpc_pid; 266 267 task->tk_pid = atomic_inc_return(&rpc_pid); 268 } 269 #else 270 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 271 { 272 } 273 #endif 274 275 static void rpc_set_active(struct rpc_task *task) 276 { 277 rpc_task_set_debuginfo(task); 278 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 279 trace_rpc_task_begin(task->tk_client, task, NULL); 280 } 281 282 /* 283 * Mark an RPC call as having completed by clearing the 'active' bit 284 * and then waking up all tasks that were sleeping. 285 */ 286 static int rpc_complete_task(struct rpc_task *task) 287 { 288 void *m = &task->tk_runstate; 289 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 290 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 291 unsigned long flags; 292 int ret; 293 294 trace_rpc_task_complete(task->tk_client, task, NULL); 295 296 spin_lock_irqsave(&wq->lock, flags); 297 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 298 ret = atomic_dec_and_test(&task->tk_count); 299 if (waitqueue_active(wq)) 300 __wake_up_locked_key(wq, TASK_NORMAL, &k); 301 spin_unlock_irqrestore(&wq->lock, flags); 302 return ret; 303 } 304 305 /* 306 * Allow callers to wait for completion of an RPC call 307 * 308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 309 * to enforce taking of the wq->lock and hence avoid races with 310 * rpc_complete_task(). 311 */ 312 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 313 { 314 if (action == NULL) 315 action = rpc_wait_bit_killable; 316 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 317 action, TASK_KILLABLE); 318 } 319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 320 321 /* 322 * Make an RPC task runnable. 323 * 324 * Note: If the task is ASYNC, and is being made runnable after sitting on an 325 * rpc_wait_queue, this must be called with the queue spinlock held to protect 326 * the wait queue operation. 327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 330 * the RPC_TASK_RUNNING flag. 331 */ 332 static void rpc_make_runnable(struct workqueue_struct *wq, 333 struct rpc_task *task) 334 { 335 bool need_wakeup = !rpc_test_and_set_running(task); 336 337 rpc_clear_queued(task); 338 if (!need_wakeup) 339 return; 340 if (RPC_IS_ASYNC(task)) { 341 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 342 queue_work(wq, &task->u.tk_work); 343 } else 344 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 345 } 346 347 /* 348 * Prepare for sleeping on a wait queue. 349 * By always appending tasks to the list we ensure FIFO behavior. 350 * NB: An RPC task will only receive interrupt-driven events as long 351 * as it's on a wait queue. 352 */ 353 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 354 struct rpc_task *task, 355 rpc_action action, 356 unsigned char queue_priority) 357 { 358 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 359 task->tk_pid, rpc_qname(q), jiffies); 360 361 trace_rpc_task_sleep(task->tk_client, task, q); 362 363 __rpc_add_wait_queue(q, task, queue_priority); 364 365 WARN_ON_ONCE(task->tk_callback != NULL); 366 task->tk_callback = action; 367 __rpc_add_timer(q, task); 368 } 369 370 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 371 rpc_action action) 372 { 373 /* We shouldn't ever put an inactive task to sleep */ 374 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 375 if (!RPC_IS_ACTIVATED(task)) { 376 task->tk_status = -EIO; 377 rpc_put_task_async(task); 378 return; 379 } 380 381 /* 382 * Protect the queue operations. 383 */ 384 spin_lock_bh(&q->lock); 385 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 386 spin_unlock_bh(&q->lock); 387 } 388 EXPORT_SYMBOL_GPL(rpc_sleep_on); 389 390 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 391 rpc_action action, int priority) 392 { 393 /* We shouldn't ever put an inactive task to sleep */ 394 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 395 if (!RPC_IS_ACTIVATED(task)) { 396 task->tk_status = -EIO; 397 rpc_put_task_async(task); 398 return; 399 } 400 401 /* 402 * Protect the queue operations. 403 */ 404 spin_lock_bh(&q->lock); 405 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 406 spin_unlock_bh(&q->lock); 407 } 408 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 409 410 /** 411 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 412 * @wq: workqueue on which to run task 413 * @queue: wait queue 414 * @task: task to be woken up 415 * 416 * Caller must hold queue->lock, and have cleared the task queued flag. 417 */ 418 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 419 struct rpc_wait_queue *queue, 420 struct rpc_task *task) 421 { 422 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 423 task->tk_pid, jiffies); 424 425 /* Has the task been executed yet? If not, we cannot wake it up! */ 426 if (!RPC_IS_ACTIVATED(task)) { 427 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 428 return; 429 } 430 431 trace_rpc_task_wakeup(task->tk_client, task, queue); 432 433 __rpc_remove_wait_queue(queue, task); 434 435 rpc_make_runnable(wq, task); 436 437 dprintk("RPC: __rpc_wake_up_task done\n"); 438 } 439 440 /* 441 * Wake up a queued task while the queue lock is being held 442 */ 443 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq, 444 struct rpc_wait_queue *queue, struct rpc_task *task) 445 { 446 if (RPC_IS_QUEUED(task)) { 447 smp_rmb(); 448 if (task->tk_waitqueue == queue) 449 __rpc_do_wake_up_task_on_wq(wq, queue, task); 450 } 451 } 452 453 /* 454 * Wake up a queued task while the queue lock is being held 455 */ 456 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 457 { 458 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task); 459 } 460 461 /* 462 * Wake up a task on a specific queue 463 */ 464 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq, 465 struct rpc_wait_queue *queue, 466 struct rpc_task *task) 467 { 468 spin_lock_bh(&queue->lock); 469 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 470 spin_unlock_bh(&queue->lock); 471 } 472 473 /* 474 * Wake up a task on a specific queue 475 */ 476 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 477 { 478 spin_lock_bh(&queue->lock); 479 rpc_wake_up_task_queue_locked(queue, task); 480 spin_unlock_bh(&queue->lock); 481 } 482 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 483 484 /* 485 * Wake up the next task on a priority queue. 486 */ 487 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 488 { 489 struct list_head *q; 490 struct rpc_task *task; 491 492 /* 493 * Service a batch of tasks from a single owner. 494 */ 495 q = &queue->tasks[queue->priority]; 496 if (!list_empty(q)) { 497 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 498 if (queue->owner == task->tk_owner) { 499 if (--queue->nr) 500 goto out; 501 list_move_tail(&task->u.tk_wait.list, q); 502 } 503 /* 504 * Check if we need to switch queues. 505 */ 506 goto new_owner; 507 } 508 509 /* 510 * Service the next queue. 511 */ 512 do { 513 if (q == &queue->tasks[0]) 514 q = &queue->tasks[queue->maxpriority]; 515 else 516 q = q - 1; 517 if (!list_empty(q)) { 518 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 519 goto new_queue; 520 } 521 } while (q != &queue->tasks[queue->priority]); 522 523 rpc_reset_waitqueue_priority(queue); 524 return NULL; 525 526 new_queue: 527 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 528 new_owner: 529 rpc_set_waitqueue_owner(queue, task->tk_owner); 530 out: 531 return task; 532 } 533 534 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 535 { 536 if (RPC_IS_PRIORITY(queue)) 537 return __rpc_find_next_queued_priority(queue); 538 if (!list_empty(&queue->tasks[0])) 539 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 540 return NULL; 541 } 542 543 /* 544 * Wake up the first task on the wait queue. 545 */ 546 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 547 struct rpc_wait_queue *queue, 548 bool (*func)(struct rpc_task *, void *), void *data) 549 { 550 struct rpc_task *task = NULL; 551 552 dprintk("RPC: wake_up_first(%p \"%s\")\n", 553 queue, rpc_qname(queue)); 554 spin_lock_bh(&queue->lock); 555 task = __rpc_find_next_queued(queue); 556 if (task != NULL) { 557 if (func(task, data)) 558 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 559 else 560 task = NULL; 561 } 562 spin_unlock_bh(&queue->lock); 563 564 return task; 565 } 566 567 /* 568 * Wake up the first task on the wait queue. 569 */ 570 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 571 bool (*func)(struct rpc_task *, void *), void *data) 572 { 573 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 574 } 575 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 576 577 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 578 { 579 return true; 580 } 581 582 /* 583 * Wake up the next task on the wait queue. 584 */ 585 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 586 { 587 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 588 } 589 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 590 591 /** 592 * rpc_wake_up - wake up all rpc_tasks 593 * @queue: rpc_wait_queue on which the tasks are sleeping 594 * 595 * Grabs queue->lock 596 */ 597 void rpc_wake_up(struct rpc_wait_queue *queue) 598 { 599 struct list_head *head; 600 601 spin_lock_bh(&queue->lock); 602 head = &queue->tasks[queue->maxpriority]; 603 for (;;) { 604 while (!list_empty(head)) { 605 struct rpc_task *task; 606 task = list_first_entry(head, 607 struct rpc_task, 608 u.tk_wait.list); 609 rpc_wake_up_task_queue_locked(queue, task); 610 } 611 if (head == &queue->tasks[0]) 612 break; 613 head--; 614 } 615 spin_unlock_bh(&queue->lock); 616 } 617 EXPORT_SYMBOL_GPL(rpc_wake_up); 618 619 /** 620 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 621 * @queue: rpc_wait_queue on which the tasks are sleeping 622 * @status: status value to set 623 * 624 * Grabs queue->lock 625 */ 626 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 627 { 628 struct list_head *head; 629 630 spin_lock_bh(&queue->lock); 631 head = &queue->tasks[queue->maxpriority]; 632 for (;;) { 633 while (!list_empty(head)) { 634 struct rpc_task *task; 635 task = list_first_entry(head, 636 struct rpc_task, 637 u.tk_wait.list); 638 task->tk_status = status; 639 rpc_wake_up_task_queue_locked(queue, task); 640 } 641 if (head == &queue->tasks[0]) 642 break; 643 head--; 644 } 645 spin_unlock_bh(&queue->lock); 646 } 647 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 648 649 static void __rpc_queue_timer_fn(struct timer_list *t) 650 { 651 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer); 652 struct rpc_task *task, *n; 653 unsigned long expires, now, timeo; 654 655 spin_lock(&queue->lock); 656 expires = now = jiffies; 657 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 658 timeo = task->u.tk_wait.expires; 659 if (time_after_eq(now, timeo)) { 660 dprintk("RPC: %5u timeout\n", task->tk_pid); 661 task->tk_status = -ETIMEDOUT; 662 rpc_wake_up_task_queue_locked(queue, task); 663 continue; 664 } 665 if (expires == now || time_after(expires, timeo)) 666 expires = timeo; 667 } 668 if (!list_empty(&queue->timer_list.list)) 669 rpc_set_queue_timer(queue, expires); 670 spin_unlock(&queue->lock); 671 } 672 673 static void __rpc_atrun(struct rpc_task *task) 674 { 675 if (task->tk_status == -ETIMEDOUT) 676 task->tk_status = 0; 677 } 678 679 /* 680 * Run a task at a later time 681 */ 682 void rpc_delay(struct rpc_task *task, unsigned long delay) 683 { 684 task->tk_timeout = delay; 685 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 686 } 687 EXPORT_SYMBOL_GPL(rpc_delay); 688 689 /* 690 * Helper to call task->tk_ops->rpc_call_prepare 691 */ 692 void rpc_prepare_task(struct rpc_task *task) 693 { 694 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 695 } 696 697 static void 698 rpc_init_task_statistics(struct rpc_task *task) 699 { 700 /* Initialize retry counters */ 701 task->tk_garb_retry = 2; 702 task->tk_cred_retry = 2; 703 task->tk_rebind_retry = 2; 704 705 /* starting timestamp */ 706 task->tk_start = ktime_get(); 707 } 708 709 static void 710 rpc_reset_task_statistics(struct rpc_task *task) 711 { 712 task->tk_timeouts = 0; 713 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); 714 715 rpc_init_task_statistics(task); 716 } 717 718 /* 719 * Helper that calls task->tk_ops->rpc_call_done if it exists 720 */ 721 void rpc_exit_task(struct rpc_task *task) 722 { 723 task->tk_action = NULL; 724 if (task->tk_ops->rpc_call_done != NULL) { 725 task->tk_ops->rpc_call_done(task, task->tk_calldata); 726 if (task->tk_action != NULL) { 727 WARN_ON(RPC_ASSASSINATED(task)); 728 /* Always release the RPC slot and buffer memory */ 729 xprt_release(task); 730 rpc_reset_task_statistics(task); 731 } 732 } 733 } 734 735 void rpc_exit(struct rpc_task *task, int status) 736 { 737 task->tk_status = status; 738 task->tk_action = rpc_exit_task; 739 if (RPC_IS_QUEUED(task)) 740 rpc_wake_up_queued_task(task->tk_waitqueue, task); 741 } 742 EXPORT_SYMBOL_GPL(rpc_exit); 743 744 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 745 { 746 if (ops->rpc_release != NULL) 747 ops->rpc_release(calldata); 748 } 749 750 /* 751 * This is the RPC `scheduler' (or rather, the finite state machine). 752 */ 753 static void __rpc_execute(struct rpc_task *task) 754 { 755 struct rpc_wait_queue *queue; 756 int task_is_async = RPC_IS_ASYNC(task); 757 int status = 0; 758 759 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 760 task->tk_pid, task->tk_flags); 761 762 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 763 if (RPC_IS_QUEUED(task)) 764 return; 765 766 for (;;) { 767 void (*do_action)(struct rpc_task *); 768 769 /* 770 * Perform the next FSM step or a pending callback. 771 * 772 * tk_action may be NULL if the task has been killed. 773 * In particular, note that rpc_killall_tasks may 774 * do this at any time, so beware when dereferencing. 775 */ 776 do_action = task->tk_action; 777 if (task->tk_callback) { 778 do_action = task->tk_callback; 779 task->tk_callback = NULL; 780 } 781 if (!do_action) 782 break; 783 trace_rpc_task_run_action(task->tk_client, task, do_action); 784 do_action(task); 785 786 /* 787 * Lockless check for whether task is sleeping or not. 788 */ 789 if (!RPC_IS_QUEUED(task)) 790 continue; 791 /* 792 * The queue->lock protects against races with 793 * rpc_make_runnable(). 794 * 795 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 796 * rpc_task, rpc_make_runnable() can assign it to a 797 * different workqueue. We therefore cannot assume that the 798 * rpc_task pointer may still be dereferenced. 799 */ 800 queue = task->tk_waitqueue; 801 spin_lock_bh(&queue->lock); 802 if (!RPC_IS_QUEUED(task)) { 803 spin_unlock_bh(&queue->lock); 804 continue; 805 } 806 rpc_clear_running(task); 807 spin_unlock_bh(&queue->lock); 808 if (task_is_async) 809 return; 810 811 /* sync task: sleep here */ 812 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 813 status = out_of_line_wait_on_bit(&task->tk_runstate, 814 RPC_TASK_QUEUED, rpc_wait_bit_killable, 815 TASK_KILLABLE); 816 if (status == -ERESTARTSYS) { 817 /* 818 * When a sync task receives a signal, it exits with 819 * -ERESTARTSYS. In order to catch any callbacks that 820 * clean up after sleeping on some queue, we don't 821 * break the loop here, but go around once more. 822 */ 823 dprintk("RPC: %5u got signal\n", task->tk_pid); 824 task->tk_flags |= RPC_TASK_KILLED; 825 rpc_exit(task, -ERESTARTSYS); 826 } 827 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 828 } 829 830 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 831 task->tk_status); 832 /* Release all resources associated with the task */ 833 rpc_release_task(task); 834 } 835 836 /* 837 * User-visible entry point to the scheduler. 838 * 839 * This may be called recursively if e.g. an async NFS task updates 840 * the attributes and finds that dirty pages must be flushed. 841 * NOTE: Upon exit of this function the task is guaranteed to be 842 * released. In particular note that tk_release() will have 843 * been called, so your task memory may have been freed. 844 */ 845 void rpc_execute(struct rpc_task *task) 846 { 847 bool is_async = RPC_IS_ASYNC(task); 848 849 rpc_set_active(task); 850 rpc_make_runnable(rpciod_workqueue, task); 851 if (!is_async) 852 __rpc_execute(task); 853 } 854 855 static void rpc_async_schedule(struct work_struct *work) 856 { 857 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 858 } 859 860 /** 861 * rpc_malloc - allocate RPC buffer resources 862 * @task: RPC task 863 * 864 * A single memory region is allocated, which is split between the 865 * RPC call and RPC reply that this task is being used for. When 866 * this RPC is retired, the memory is released by calling rpc_free. 867 * 868 * To prevent rpciod from hanging, this allocator never sleeps, 869 * returning -ENOMEM and suppressing warning if the request cannot 870 * be serviced immediately. The caller can arrange to sleep in a 871 * way that is safe for rpciod. 872 * 873 * Most requests are 'small' (under 2KiB) and can be serviced from a 874 * mempool, ensuring that NFS reads and writes can always proceed, 875 * and that there is good locality of reference for these buffers. 876 * 877 * In order to avoid memory starvation triggering more writebacks of 878 * NFS requests, we avoid using GFP_KERNEL. 879 */ 880 int rpc_malloc(struct rpc_task *task) 881 { 882 struct rpc_rqst *rqst = task->tk_rqstp; 883 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 884 struct rpc_buffer *buf; 885 gfp_t gfp = GFP_NOIO | __GFP_NOWARN; 886 887 if (RPC_IS_SWAPPER(task)) 888 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 889 890 size += sizeof(struct rpc_buffer); 891 if (size <= RPC_BUFFER_MAXSIZE) 892 buf = mempool_alloc(rpc_buffer_mempool, gfp); 893 else 894 buf = kmalloc(size, gfp); 895 896 if (!buf) 897 return -ENOMEM; 898 899 buf->len = size; 900 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 901 task->tk_pid, size, buf); 902 rqst->rq_buffer = buf->data; 903 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(rpc_malloc); 907 908 /** 909 * rpc_free - free RPC buffer resources allocated via rpc_malloc 910 * @task: RPC task 911 * 912 */ 913 void rpc_free(struct rpc_task *task) 914 { 915 void *buffer = task->tk_rqstp->rq_buffer; 916 size_t size; 917 struct rpc_buffer *buf; 918 919 buf = container_of(buffer, struct rpc_buffer, data); 920 size = buf->len; 921 922 dprintk("RPC: freeing buffer of size %zu at %p\n", 923 size, buf); 924 925 if (size <= RPC_BUFFER_MAXSIZE) 926 mempool_free(buf, rpc_buffer_mempool); 927 else 928 kfree(buf); 929 } 930 EXPORT_SYMBOL_GPL(rpc_free); 931 932 /* 933 * Creation and deletion of RPC task structures 934 */ 935 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 936 { 937 memset(task, 0, sizeof(*task)); 938 atomic_set(&task->tk_count, 1); 939 task->tk_flags = task_setup_data->flags; 940 task->tk_ops = task_setup_data->callback_ops; 941 task->tk_calldata = task_setup_data->callback_data; 942 INIT_LIST_HEAD(&task->tk_task); 943 944 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 945 task->tk_owner = current->tgid; 946 947 /* Initialize workqueue for async tasks */ 948 task->tk_workqueue = task_setup_data->workqueue; 949 950 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt); 951 952 if (task->tk_ops->rpc_call_prepare != NULL) 953 task->tk_action = rpc_prepare_task; 954 955 rpc_init_task_statistics(task); 956 957 dprintk("RPC: new task initialized, procpid %u\n", 958 task_pid_nr(current)); 959 } 960 961 static struct rpc_task * 962 rpc_alloc_task(void) 963 { 964 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO); 965 } 966 967 /* 968 * Create a new task for the specified client. 969 */ 970 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 971 { 972 struct rpc_task *task = setup_data->task; 973 unsigned short flags = 0; 974 975 if (task == NULL) { 976 task = rpc_alloc_task(); 977 flags = RPC_TASK_DYNAMIC; 978 } 979 980 rpc_init_task(task, setup_data); 981 task->tk_flags |= flags; 982 dprintk("RPC: allocated task %p\n", task); 983 return task; 984 } 985 986 /* 987 * rpc_free_task - release rpc task and perform cleanups 988 * 989 * Note that we free up the rpc_task _after_ rpc_release_calldata() 990 * in order to work around a workqueue dependency issue. 991 * 992 * Tejun Heo states: 993 * "Workqueue currently considers two work items to be the same if they're 994 * on the same address and won't execute them concurrently - ie. it 995 * makes a work item which is queued again while being executed wait 996 * for the previous execution to complete. 997 * 998 * If a work function frees the work item, and then waits for an event 999 * which should be performed by another work item and *that* work item 1000 * recycles the freed work item, it can create a false dependency loop. 1001 * There really is no reliable way to detect this short of verifying 1002 * every memory free." 1003 * 1004 */ 1005 static void rpc_free_task(struct rpc_task *task) 1006 { 1007 unsigned short tk_flags = task->tk_flags; 1008 1009 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1010 1011 if (tk_flags & RPC_TASK_DYNAMIC) { 1012 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1013 mempool_free(task, rpc_task_mempool); 1014 } 1015 } 1016 1017 static void rpc_async_release(struct work_struct *work) 1018 { 1019 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1020 } 1021 1022 static void rpc_release_resources_task(struct rpc_task *task) 1023 { 1024 xprt_release(task); 1025 if (task->tk_msg.rpc_cred) { 1026 put_rpccred(task->tk_msg.rpc_cred); 1027 task->tk_msg.rpc_cred = NULL; 1028 } 1029 rpc_task_release_client(task); 1030 } 1031 1032 static void rpc_final_put_task(struct rpc_task *task, 1033 struct workqueue_struct *q) 1034 { 1035 if (q != NULL) { 1036 INIT_WORK(&task->u.tk_work, rpc_async_release); 1037 queue_work(q, &task->u.tk_work); 1038 } else 1039 rpc_free_task(task); 1040 } 1041 1042 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1043 { 1044 if (atomic_dec_and_test(&task->tk_count)) { 1045 rpc_release_resources_task(task); 1046 rpc_final_put_task(task, q); 1047 } 1048 } 1049 1050 void rpc_put_task(struct rpc_task *task) 1051 { 1052 rpc_do_put_task(task, NULL); 1053 } 1054 EXPORT_SYMBOL_GPL(rpc_put_task); 1055 1056 void rpc_put_task_async(struct rpc_task *task) 1057 { 1058 rpc_do_put_task(task, task->tk_workqueue); 1059 } 1060 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1061 1062 static void rpc_release_task(struct rpc_task *task) 1063 { 1064 dprintk("RPC: %5u release task\n", task->tk_pid); 1065 1066 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1067 1068 rpc_release_resources_task(task); 1069 1070 /* 1071 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1072 * so it should be safe to use task->tk_count as a test for whether 1073 * or not any other processes still hold references to our rpc_task. 1074 */ 1075 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1076 /* Wake up anyone who may be waiting for task completion */ 1077 if (!rpc_complete_task(task)) 1078 return; 1079 } else { 1080 if (!atomic_dec_and_test(&task->tk_count)) 1081 return; 1082 } 1083 rpc_final_put_task(task, task->tk_workqueue); 1084 } 1085 1086 int rpciod_up(void) 1087 { 1088 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1089 } 1090 1091 void rpciod_down(void) 1092 { 1093 module_put(THIS_MODULE); 1094 } 1095 1096 /* 1097 * Start up the rpciod workqueue. 1098 */ 1099 static int rpciod_start(void) 1100 { 1101 struct workqueue_struct *wq; 1102 1103 /* 1104 * Create the rpciod thread and wait for it to start. 1105 */ 1106 dprintk("RPC: creating workqueue rpciod\n"); 1107 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1108 if (!wq) 1109 goto out_failed; 1110 rpciod_workqueue = wq; 1111 /* Note: highpri because network receive is latency sensitive */ 1112 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0); 1113 if (!wq) 1114 goto free_rpciod; 1115 xprtiod_workqueue = wq; 1116 return 1; 1117 free_rpciod: 1118 wq = rpciod_workqueue; 1119 rpciod_workqueue = NULL; 1120 destroy_workqueue(wq); 1121 out_failed: 1122 return 0; 1123 } 1124 1125 static void rpciod_stop(void) 1126 { 1127 struct workqueue_struct *wq = NULL; 1128 1129 if (rpciod_workqueue == NULL) 1130 return; 1131 dprintk("RPC: destroying workqueue rpciod\n"); 1132 1133 wq = rpciod_workqueue; 1134 rpciod_workqueue = NULL; 1135 destroy_workqueue(wq); 1136 wq = xprtiod_workqueue; 1137 xprtiod_workqueue = NULL; 1138 destroy_workqueue(wq); 1139 } 1140 1141 void 1142 rpc_destroy_mempool(void) 1143 { 1144 rpciod_stop(); 1145 mempool_destroy(rpc_buffer_mempool); 1146 mempool_destroy(rpc_task_mempool); 1147 kmem_cache_destroy(rpc_task_slabp); 1148 kmem_cache_destroy(rpc_buffer_slabp); 1149 rpc_destroy_wait_queue(&delay_queue); 1150 } 1151 1152 int 1153 rpc_init_mempool(void) 1154 { 1155 /* 1156 * The following is not strictly a mempool initialisation, 1157 * but there is no harm in doing it here 1158 */ 1159 rpc_init_wait_queue(&delay_queue, "delayq"); 1160 if (!rpciod_start()) 1161 goto err_nomem; 1162 1163 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1164 sizeof(struct rpc_task), 1165 0, SLAB_HWCACHE_ALIGN, 1166 NULL); 1167 if (!rpc_task_slabp) 1168 goto err_nomem; 1169 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1170 RPC_BUFFER_MAXSIZE, 1171 0, SLAB_HWCACHE_ALIGN, 1172 NULL); 1173 if (!rpc_buffer_slabp) 1174 goto err_nomem; 1175 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1176 rpc_task_slabp); 1177 if (!rpc_task_mempool) 1178 goto err_nomem; 1179 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1180 rpc_buffer_slabp); 1181 if (!rpc_buffer_mempool) 1182 goto err_nomem; 1183 return 0; 1184 err_nomem: 1185 rpc_destroy_mempool(); 1186 return -ENOMEM; 1187 } 1188