1 /* 2 * net/sunrpc/rpc_pipe.c 3 * 4 * Userland/kernel interface for rpcauth_gss. 5 * Code shamelessly plagiarized from fs/nfsd/nfsctl.c 6 * and fs/sysfs/inode.c 7 * 8 * Copyright (c) 2002, Trond Myklebust <trond.myklebust@fys.uio.no> 9 * 10 */ 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/pagemap.h> 15 #include <linux/mount.h> 16 #include <linux/namei.h> 17 #include <linux/fsnotify.h> 18 #include <linux/kernel.h> 19 20 #include <asm/ioctls.h> 21 #include <linux/fs.h> 22 #include <linux/poll.h> 23 #include <linux/wait.h> 24 #include <linux/seq_file.h> 25 26 #include <linux/sunrpc/clnt.h> 27 #include <linux/workqueue.h> 28 #include <linux/sunrpc/rpc_pipe_fs.h> 29 30 static struct vfsmount *rpc_mount __read_mostly; 31 static int rpc_mount_count; 32 33 static struct file_system_type rpc_pipe_fs_type; 34 35 36 static struct kmem_cache *rpc_inode_cachep __read_mostly; 37 38 #define RPC_UPCALL_TIMEOUT (30*HZ) 39 40 static void rpc_purge_list(struct rpc_inode *rpci, struct list_head *head, 41 void (*destroy_msg)(struct rpc_pipe_msg *), int err) 42 { 43 struct rpc_pipe_msg *msg; 44 45 if (list_empty(head)) 46 return; 47 do { 48 msg = list_entry(head->next, struct rpc_pipe_msg, list); 49 list_del(&msg->list); 50 msg->errno = err; 51 destroy_msg(msg); 52 } while (!list_empty(head)); 53 wake_up(&rpci->waitq); 54 } 55 56 static void 57 rpc_timeout_upcall_queue(struct work_struct *work) 58 { 59 LIST_HEAD(free_list); 60 struct rpc_inode *rpci = 61 container_of(work, struct rpc_inode, queue_timeout.work); 62 struct inode *inode = &rpci->vfs_inode; 63 void (*destroy_msg)(struct rpc_pipe_msg *); 64 65 spin_lock(&inode->i_lock); 66 if (rpci->ops == NULL) { 67 spin_unlock(&inode->i_lock); 68 return; 69 } 70 destroy_msg = rpci->ops->destroy_msg; 71 if (rpci->nreaders == 0) { 72 list_splice_init(&rpci->pipe, &free_list); 73 rpci->pipelen = 0; 74 } 75 spin_unlock(&inode->i_lock); 76 rpc_purge_list(rpci, &free_list, destroy_msg, -ETIMEDOUT); 77 } 78 79 /** 80 * rpc_queue_upcall 81 * @inode: inode of upcall pipe on which to queue given message 82 * @msg: message to queue 83 * 84 * Call with an @inode created by rpc_mkpipe() to queue an upcall. 85 * A userspace process may then later read the upcall by performing a 86 * read on an open file for this inode. It is up to the caller to 87 * initialize the fields of @msg (other than @msg->list) appropriately. 88 */ 89 int 90 rpc_queue_upcall(struct inode *inode, struct rpc_pipe_msg *msg) 91 { 92 struct rpc_inode *rpci = RPC_I(inode); 93 int res = -EPIPE; 94 95 spin_lock(&inode->i_lock); 96 if (rpci->ops == NULL) 97 goto out; 98 if (rpci->nreaders) { 99 list_add_tail(&msg->list, &rpci->pipe); 100 rpci->pipelen += msg->len; 101 res = 0; 102 } else if (rpci->flags & RPC_PIPE_WAIT_FOR_OPEN) { 103 if (list_empty(&rpci->pipe)) 104 queue_delayed_work(rpciod_workqueue, 105 &rpci->queue_timeout, 106 RPC_UPCALL_TIMEOUT); 107 list_add_tail(&msg->list, &rpci->pipe); 108 rpci->pipelen += msg->len; 109 res = 0; 110 } 111 out: 112 spin_unlock(&inode->i_lock); 113 wake_up(&rpci->waitq); 114 return res; 115 } 116 EXPORT_SYMBOL_GPL(rpc_queue_upcall); 117 118 static inline void 119 rpc_inode_setowner(struct inode *inode, void *private) 120 { 121 RPC_I(inode)->private = private; 122 } 123 124 static void 125 rpc_close_pipes(struct inode *inode) 126 { 127 struct rpc_inode *rpci = RPC_I(inode); 128 struct rpc_pipe_ops *ops; 129 int need_release; 130 131 mutex_lock(&inode->i_mutex); 132 ops = rpci->ops; 133 if (ops != NULL) { 134 LIST_HEAD(free_list); 135 spin_lock(&inode->i_lock); 136 need_release = rpci->nreaders != 0 || rpci->nwriters != 0; 137 rpci->nreaders = 0; 138 list_splice_init(&rpci->in_upcall, &free_list); 139 list_splice_init(&rpci->pipe, &free_list); 140 rpci->pipelen = 0; 141 rpci->ops = NULL; 142 spin_unlock(&inode->i_lock); 143 rpc_purge_list(rpci, &free_list, ops->destroy_msg, -EPIPE); 144 rpci->nwriters = 0; 145 if (need_release && ops->release_pipe) 146 ops->release_pipe(inode); 147 cancel_delayed_work_sync(&rpci->queue_timeout); 148 } 149 rpc_inode_setowner(inode, NULL); 150 mutex_unlock(&inode->i_mutex); 151 } 152 153 static struct inode * 154 rpc_alloc_inode(struct super_block *sb) 155 { 156 struct rpc_inode *rpci; 157 rpci = (struct rpc_inode *)kmem_cache_alloc(rpc_inode_cachep, GFP_KERNEL); 158 if (!rpci) 159 return NULL; 160 return &rpci->vfs_inode; 161 } 162 163 static void 164 rpc_destroy_inode(struct inode *inode) 165 { 166 kmem_cache_free(rpc_inode_cachep, RPC_I(inode)); 167 } 168 169 static int 170 rpc_pipe_open(struct inode *inode, struct file *filp) 171 { 172 struct rpc_inode *rpci = RPC_I(inode); 173 int first_open; 174 int res = -ENXIO; 175 176 mutex_lock(&inode->i_mutex); 177 if (rpci->ops == NULL) 178 goto out; 179 first_open = rpci->nreaders == 0 && rpci->nwriters == 0; 180 if (first_open && rpci->ops->open_pipe) { 181 res = rpci->ops->open_pipe(inode); 182 if (res) 183 goto out; 184 } 185 if (filp->f_mode & FMODE_READ) 186 rpci->nreaders++; 187 if (filp->f_mode & FMODE_WRITE) 188 rpci->nwriters++; 189 res = 0; 190 out: 191 mutex_unlock(&inode->i_mutex); 192 return res; 193 } 194 195 static int 196 rpc_pipe_release(struct inode *inode, struct file *filp) 197 { 198 struct rpc_inode *rpci = RPC_I(inode); 199 struct rpc_pipe_msg *msg; 200 int last_close; 201 202 mutex_lock(&inode->i_mutex); 203 if (rpci->ops == NULL) 204 goto out; 205 msg = (struct rpc_pipe_msg *)filp->private_data; 206 if (msg != NULL) { 207 spin_lock(&inode->i_lock); 208 msg->errno = -EAGAIN; 209 list_del(&msg->list); 210 spin_unlock(&inode->i_lock); 211 rpci->ops->destroy_msg(msg); 212 } 213 if (filp->f_mode & FMODE_WRITE) 214 rpci->nwriters --; 215 if (filp->f_mode & FMODE_READ) { 216 rpci->nreaders --; 217 if (rpci->nreaders == 0) { 218 LIST_HEAD(free_list); 219 spin_lock(&inode->i_lock); 220 list_splice_init(&rpci->pipe, &free_list); 221 rpci->pipelen = 0; 222 spin_unlock(&inode->i_lock); 223 rpc_purge_list(rpci, &free_list, 224 rpci->ops->destroy_msg, -EAGAIN); 225 } 226 } 227 last_close = rpci->nwriters == 0 && rpci->nreaders == 0; 228 if (last_close && rpci->ops->release_pipe) 229 rpci->ops->release_pipe(inode); 230 out: 231 mutex_unlock(&inode->i_mutex); 232 return 0; 233 } 234 235 static ssize_t 236 rpc_pipe_read(struct file *filp, char __user *buf, size_t len, loff_t *offset) 237 { 238 struct inode *inode = filp->f_path.dentry->d_inode; 239 struct rpc_inode *rpci = RPC_I(inode); 240 struct rpc_pipe_msg *msg; 241 int res = 0; 242 243 mutex_lock(&inode->i_mutex); 244 if (rpci->ops == NULL) { 245 res = -EPIPE; 246 goto out_unlock; 247 } 248 msg = filp->private_data; 249 if (msg == NULL) { 250 spin_lock(&inode->i_lock); 251 if (!list_empty(&rpci->pipe)) { 252 msg = list_entry(rpci->pipe.next, 253 struct rpc_pipe_msg, 254 list); 255 list_move(&msg->list, &rpci->in_upcall); 256 rpci->pipelen -= msg->len; 257 filp->private_data = msg; 258 msg->copied = 0; 259 } 260 spin_unlock(&inode->i_lock); 261 if (msg == NULL) 262 goto out_unlock; 263 } 264 /* NOTE: it is up to the callback to update msg->copied */ 265 res = rpci->ops->upcall(filp, msg, buf, len); 266 if (res < 0 || msg->len == msg->copied) { 267 filp->private_data = NULL; 268 spin_lock(&inode->i_lock); 269 list_del(&msg->list); 270 spin_unlock(&inode->i_lock); 271 rpci->ops->destroy_msg(msg); 272 } 273 out_unlock: 274 mutex_unlock(&inode->i_mutex); 275 return res; 276 } 277 278 static ssize_t 279 rpc_pipe_write(struct file *filp, const char __user *buf, size_t len, loff_t *offset) 280 { 281 struct inode *inode = filp->f_path.dentry->d_inode; 282 struct rpc_inode *rpci = RPC_I(inode); 283 int res; 284 285 mutex_lock(&inode->i_mutex); 286 res = -EPIPE; 287 if (rpci->ops != NULL) 288 res = rpci->ops->downcall(filp, buf, len); 289 mutex_unlock(&inode->i_mutex); 290 return res; 291 } 292 293 static unsigned int 294 rpc_pipe_poll(struct file *filp, struct poll_table_struct *wait) 295 { 296 struct rpc_inode *rpci; 297 unsigned int mask = 0; 298 299 rpci = RPC_I(filp->f_path.dentry->d_inode); 300 poll_wait(filp, &rpci->waitq, wait); 301 302 mask = POLLOUT | POLLWRNORM; 303 if (rpci->ops == NULL) 304 mask |= POLLERR | POLLHUP; 305 if (filp->private_data || !list_empty(&rpci->pipe)) 306 mask |= POLLIN | POLLRDNORM; 307 return mask; 308 } 309 310 static int 311 rpc_pipe_ioctl(struct inode *ino, struct file *filp, 312 unsigned int cmd, unsigned long arg) 313 { 314 struct rpc_inode *rpci = RPC_I(filp->f_path.dentry->d_inode); 315 int len; 316 317 switch (cmd) { 318 case FIONREAD: 319 if (rpci->ops == NULL) 320 return -EPIPE; 321 len = rpci->pipelen; 322 if (filp->private_data) { 323 struct rpc_pipe_msg *msg; 324 msg = (struct rpc_pipe_msg *)filp->private_data; 325 len += msg->len - msg->copied; 326 } 327 return put_user(len, (int __user *)arg); 328 default: 329 return -EINVAL; 330 } 331 } 332 333 static const struct file_operations rpc_pipe_fops = { 334 .owner = THIS_MODULE, 335 .llseek = no_llseek, 336 .read = rpc_pipe_read, 337 .write = rpc_pipe_write, 338 .poll = rpc_pipe_poll, 339 .ioctl = rpc_pipe_ioctl, 340 .open = rpc_pipe_open, 341 .release = rpc_pipe_release, 342 }; 343 344 static int 345 rpc_show_info(struct seq_file *m, void *v) 346 { 347 struct rpc_clnt *clnt = m->private; 348 349 seq_printf(m, "RPC server: %s\n", clnt->cl_server); 350 seq_printf(m, "service: %s (%d) version %d\n", clnt->cl_protname, 351 clnt->cl_prog, clnt->cl_vers); 352 seq_printf(m, "address: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR)); 353 seq_printf(m, "protocol: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PROTO)); 354 seq_printf(m, "port: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PORT)); 355 return 0; 356 } 357 358 static int 359 rpc_info_open(struct inode *inode, struct file *file) 360 { 361 struct rpc_clnt *clnt; 362 int ret = single_open(file, rpc_show_info, NULL); 363 364 if (!ret) { 365 struct seq_file *m = file->private_data; 366 mutex_lock(&inode->i_mutex); 367 clnt = RPC_I(inode)->private; 368 if (clnt) { 369 kref_get(&clnt->cl_kref); 370 m->private = clnt; 371 } else { 372 single_release(inode, file); 373 ret = -EINVAL; 374 } 375 mutex_unlock(&inode->i_mutex); 376 } 377 return ret; 378 } 379 380 static int 381 rpc_info_release(struct inode *inode, struct file *file) 382 { 383 struct seq_file *m = file->private_data; 384 struct rpc_clnt *clnt = (struct rpc_clnt *)m->private; 385 386 if (clnt) 387 rpc_release_client(clnt); 388 return single_release(inode, file); 389 } 390 391 static const struct file_operations rpc_info_operations = { 392 .owner = THIS_MODULE, 393 .open = rpc_info_open, 394 .read = seq_read, 395 .llseek = seq_lseek, 396 .release = rpc_info_release, 397 }; 398 399 400 /* 401 * We have a single directory with 1 node in it. 402 */ 403 enum { 404 RPCAUTH_Root = 1, 405 RPCAUTH_lockd, 406 RPCAUTH_mount, 407 RPCAUTH_nfs, 408 RPCAUTH_portmap, 409 RPCAUTH_statd, 410 RPCAUTH_nfsd4_cb, 411 RPCAUTH_RootEOF 412 }; 413 414 /* 415 * Description of fs contents. 416 */ 417 struct rpc_filelist { 418 char *name; 419 const struct file_operations *i_fop; 420 int mode; 421 }; 422 423 static struct rpc_filelist files[] = { 424 [RPCAUTH_lockd] = { 425 .name = "lockd", 426 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 427 }, 428 [RPCAUTH_mount] = { 429 .name = "mount", 430 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 431 }, 432 [RPCAUTH_nfs] = { 433 .name = "nfs", 434 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 435 }, 436 [RPCAUTH_portmap] = { 437 .name = "portmap", 438 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 439 }, 440 [RPCAUTH_statd] = { 441 .name = "statd", 442 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 443 }, 444 [RPCAUTH_nfsd4_cb] = { 445 .name = "nfsd4_cb", 446 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 447 }, 448 }; 449 450 enum { 451 RPCAUTH_info = 2, 452 RPCAUTH_EOF 453 }; 454 455 static struct rpc_filelist authfiles[] = { 456 [RPCAUTH_info] = { 457 .name = "info", 458 .i_fop = &rpc_info_operations, 459 .mode = S_IFREG | S_IRUSR, 460 }, 461 }; 462 463 struct vfsmount *rpc_get_mount(void) 464 { 465 int err; 466 467 err = simple_pin_fs(&rpc_pipe_fs_type, &rpc_mount, &rpc_mount_count); 468 if (err != 0) 469 return ERR_PTR(err); 470 return rpc_mount; 471 } 472 473 void rpc_put_mount(void) 474 { 475 simple_release_fs(&rpc_mount, &rpc_mount_count); 476 } 477 478 static int rpc_delete_dentry(struct dentry *dentry) 479 { 480 return 1; 481 } 482 483 static const struct dentry_operations rpc_dentry_operations = { 484 .d_delete = rpc_delete_dentry, 485 }; 486 487 static int 488 rpc_lookup_parent(char *path, struct nameidata *nd) 489 { 490 struct vfsmount *mnt; 491 492 if (path[0] == '\0') 493 return -ENOENT; 494 495 mnt = rpc_get_mount(); 496 if (IS_ERR(mnt)) { 497 printk(KERN_WARNING "%s: %s failed to mount " 498 "pseudofilesystem \n", __FILE__, __func__); 499 return PTR_ERR(mnt); 500 } 501 502 if (vfs_path_lookup(mnt->mnt_root, mnt, path, LOOKUP_PARENT, nd)) { 503 printk(KERN_WARNING "%s: %s failed to find path %s\n", 504 __FILE__, __func__, path); 505 rpc_put_mount(); 506 return -ENOENT; 507 } 508 return 0; 509 } 510 511 static void 512 rpc_release_path(struct nameidata *nd) 513 { 514 path_put(&nd->path); 515 rpc_put_mount(); 516 } 517 518 static struct inode * 519 rpc_get_inode(struct super_block *sb, int mode) 520 { 521 struct inode *inode = new_inode(sb); 522 if (!inode) 523 return NULL; 524 inode->i_mode = mode; 525 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 526 switch(mode & S_IFMT) { 527 case S_IFDIR: 528 inode->i_fop = &simple_dir_operations; 529 inode->i_op = &simple_dir_inode_operations; 530 inc_nlink(inode); 531 default: 532 break; 533 } 534 return inode; 535 } 536 537 /* 538 * FIXME: This probably has races. 539 */ 540 static void rpc_depopulate(struct dentry *parent, 541 unsigned long start, unsigned long eof) 542 { 543 struct inode *dir = parent->d_inode; 544 struct list_head *pos, *next; 545 struct dentry *dentry, *dvec[10]; 546 int n = 0; 547 548 mutex_lock_nested(&dir->i_mutex, I_MUTEX_CHILD); 549 repeat: 550 spin_lock(&dcache_lock); 551 list_for_each_safe(pos, next, &parent->d_subdirs) { 552 dentry = list_entry(pos, struct dentry, d_u.d_child); 553 if (!dentry->d_inode || 554 dentry->d_inode->i_ino < start || 555 dentry->d_inode->i_ino >= eof) 556 continue; 557 spin_lock(&dentry->d_lock); 558 if (!d_unhashed(dentry)) { 559 dget_locked(dentry); 560 __d_drop(dentry); 561 spin_unlock(&dentry->d_lock); 562 dvec[n++] = dentry; 563 if (n == ARRAY_SIZE(dvec)) 564 break; 565 } else 566 spin_unlock(&dentry->d_lock); 567 } 568 spin_unlock(&dcache_lock); 569 if (n) { 570 do { 571 dentry = dvec[--n]; 572 if (S_ISREG(dentry->d_inode->i_mode)) 573 simple_unlink(dir, dentry); 574 else if (S_ISDIR(dentry->d_inode->i_mode)) 575 simple_rmdir(dir, dentry); 576 d_delete(dentry); 577 dput(dentry); 578 } while (n); 579 goto repeat; 580 } 581 mutex_unlock(&dir->i_mutex); 582 } 583 584 static int 585 rpc_populate(struct dentry *parent, 586 struct rpc_filelist *files, 587 int start, int eof) 588 { 589 struct inode *inode, *dir = parent->d_inode; 590 void *private = RPC_I(dir)->private; 591 struct dentry *dentry; 592 int mode, i; 593 594 mutex_lock(&dir->i_mutex); 595 for (i = start; i < eof; i++) { 596 dentry = d_alloc_name(parent, files[i].name); 597 if (!dentry) 598 goto out_bad; 599 dentry->d_op = &rpc_dentry_operations; 600 mode = files[i].mode; 601 inode = rpc_get_inode(dir->i_sb, mode); 602 if (!inode) { 603 dput(dentry); 604 goto out_bad; 605 } 606 inode->i_ino = i; 607 if (files[i].i_fop) 608 inode->i_fop = files[i].i_fop; 609 if (private) 610 rpc_inode_setowner(inode, private); 611 if (S_ISDIR(mode)) 612 inc_nlink(dir); 613 d_add(dentry, inode); 614 fsnotify_create(dir, dentry); 615 } 616 mutex_unlock(&dir->i_mutex); 617 return 0; 618 out_bad: 619 mutex_unlock(&dir->i_mutex); 620 printk(KERN_WARNING "%s: %s failed to populate directory %s\n", 621 __FILE__, __func__, parent->d_name.name); 622 return -ENOMEM; 623 } 624 625 static int 626 __rpc_mkdir(struct inode *dir, struct dentry *dentry) 627 { 628 struct inode *inode; 629 630 inode = rpc_get_inode(dir->i_sb, S_IFDIR | S_IRUGO | S_IXUGO); 631 if (!inode) 632 goto out_err; 633 inode->i_ino = iunique(dir->i_sb, 100); 634 d_instantiate(dentry, inode); 635 inc_nlink(dir); 636 fsnotify_mkdir(dir, dentry); 637 return 0; 638 out_err: 639 printk(KERN_WARNING "%s: %s failed to allocate inode for dentry %s\n", 640 __FILE__, __func__, dentry->d_name.name); 641 return -ENOMEM; 642 } 643 644 static int 645 __rpc_rmdir(struct inode *dir, struct dentry *dentry) 646 { 647 int error; 648 error = simple_rmdir(dir, dentry); 649 if (!error) 650 d_delete(dentry); 651 return error; 652 } 653 654 static struct dentry * 655 rpc_lookup_create(struct dentry *parent, const char *name, int len, int exclusive) 656 { 657 struct inode *dir = parent->d_inode; 658 struct dentry *dentry; 659 660 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 661 dentry = lookup_one_len(name, parent, len); 662 if (IS_ERR(dentry)) 663 goto out_err; 664 if (!dentry->d_inode) 665 dentry->d_op = &rpc_dentry_operations; 666 else if (exclusive) { 667 dput(dentry); 668 dentry = ERR_PTR(-EEXIST); 669 goto out_err; 670 } 671 return dentry; 672 out_err: 673 mutex_unlock(&dir->i_mutex); 674 return dentry; 675 } 676 677 static struct dentry * 678 rpc_lookup_negative(char *path, struct nameidata *nd) 679 { 680 struct dentry *dentry; 681 int error; 682 683 if ((error = rpc_lookup_parent(path, nd)) != 0) 684 return ERR_PTR(error); 685 dentry = rpc_lookup_create(nd->path.dentry, nd->last.name, nd->last.len, 686 1); 687 if (IS_ERR(dentry)) 688 rpc_release_path(nd); 689 return dentry; 690 } 691 692 /** 693 * rpc_mkdir - Create a new directory in rpc_pipefs 694 * @path: path from the rpc_pipefs root to the new directory 695 * @rpc_client: rpc client to associate with this directory 696 * 697 * This creates a directory at the given @path associated with 698 * @rpc_clnt, which will contain a file named "info" with some basic 699 * information about the client, together with any "pipes" that may 700 * later be created using rpc_mkpipe(). 701 */ 702 struct dentry * 703 rpc_mkdir(char *path, struct rpc_clnt *rpc_client) 704 { 705 struct nameidata nd; 706 struct dentry *dentry; 707 struct inode *dir; 708 int error; 709 710 dentry = rpc_lookup_negative(path, &nd); 711 if (IS_ERR(dentry)) 712 return dentry; 713 dir = nd.path.dentry->d_inode; 714 if ((error = __rpc_mkdir(dir, dentry)) != 0) 715 goto err_dput; 716 RPC_I(dentry->d_inode)->private = rpc_client; 717 error = rpc_populate(dentry, authfiles, 718 RPCAUTH_info, RPCAUTH_EOF); 719 if (error) 720 goto err_depopulate; 721 dget(dentry); 722 out: 723 mutex_unlock(&dir->i_mutex); 724 rpc_release_path(&nd); 725 return dentry; 726 err_depopulate: 727 rpc_depopulate(dentry, RPCAUTH_info, RPCAUTH_EOF); 728 __rpc_rmdir(dir, dentry); 729 err_dput: 730 dput(dentry); 731 printk(KERN_WARNING "%s: %s() failed to create directory %s (errno = %d)\n", 732 __FILE__, __func__, path, error); 733 dentry = ERR_PTR(error); 734 goto out; 735 } 736 737 /** 738 * rpc_rmdir - Remove a directory created with rpc_mkdir() 739 * @dentry: directory to remove 740 */ 741 int 742 rpc_rmdir(struct dentry *dentry) 743 { 744 struct dentry *parent; 745 struct inode *dir; 746 int error; 747 748 parent = dget_parent(dentry); 749 dir = parent->d_inode; 750 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 751 rpc_depopulate(dentry, RPCAUTH_info, RPCAUTH_EOF); 752 error = __rpc_rmdir(dir, dentry); 753 dput(dentry); 754 mutex_unlock(&dir->i_mutex); 755 dput(parent); 756 return error; 757 } 758 759 /** 760 * rpc_mkpipe - make an rpc_pipefs file for kernel<->userspace communication 761 * @parent: dentry of directory to create new "pipe" in 762 * @name: name of pipe 763 * @private: private data to associate with the pipe, for the caller's use 764 * @ops: operations defining the behavior of the pipe: upcall, downcall, 765 * release_pipe, open_pipe, and destroy_msg. 766 * @flags: rpc_inode flags 767 * 768 * Data is made available for userspace to read by calls to 769 * rpc_queue_upcall(). The actual reads will result in calls to 770 * @ops->upcall, which will be called with the file pointer, 771 * message, and userspace buffer to copy to. 772 * 773 * Writes can come at any time, and do not necessarily have to be 774 * responses to upcalls. They will result in calls to @msg->downcall. 775 * 776 * The @private argument passed here will be available to all these methods 777 * from the file pointer, via RPC_I(file->f_dentry->d_inode)->private. 778 */ 779 struct dentry * 780 rpc_mkpipe(struct dentry *parent, const char *name, void *private, struct rpc_pipe_ops *ops, int flags) 781 { 782 struct dentry *dentry; 783 struct inode *dir, *inode; 784 struct rpc_inode *rpci; 785 786 dentry = rpc_lookup_create(parent, name, strlen(name), 0); 787 if (IS_ERR(dentry)) 788 return dentry; 789 dir = parent->d_inode; 790 if (dentry->d_inode) { 791 rpci = RPC_I(dentry->d_inode); 792 if (rpci->private != private || 793 rpci->ops != ops || 794 rpci->flags != flags) { 795 dput (dentry); 796 dentry = ERR_PTR(-EBUSY); 797 } 798 rpci->nkern_readwriters++; 799 goto out; 800 } 801 inode = rpc_get_inode(dir->i_sb, S_IFIFO | S_IRUSR | S_IWUSR); 802 if (!inode) 803 goto err_dput; 804 inode->i_ino = iunique(dir->i_sb, 100); 805 inode->i_fop = &rpc_pipe_fops; 806 d_instantiate(dentry, inode); 807 rpci = RPC_I(inode); 808 rpci->private = private; 809 rpci->flags = flags; 810 rpci->ops = ops; 811 rpci->nkern_readwriters = 1; 812 fsnotify_create(dir, dentry); 813 dget(dentry); 814 out: 815 mutex_unlock(&dir->i_mutex); 816 return dentry; 817 err_dput: 818 dput(dentry); 819 dentry = ERR_PTR(-ENOMEM); 820 printk(KERN_WARNING "%s: %s() failed to create pipe %s/%s (errno = %d)\n", 821 __FILE__, __func__, parent->d_name.name, name, 822 -ENOMEM); 823 goto out; 824 } 825 EXPORT_SYMBOL_GPL(rpc_mkpipe); 826 827 /** 828 * rpc_unlink - remove a pipe 829 * @dentry: dentry for the pipe, as returned from rpc_mkpipe 830 * 831 * After this call, lookups will no longer find the pipe, and any 832 * attempts to read or write using preexisting opens of the pipe will 833 * return -EPIPE. 834 */ 835 int 836 rpc_unlink(struct dentry *dentry) 837 { 838 struct dentry *parent; 839 struct inode *dir; 840 int error = 0; 841 842 parent = dget_parent(dentry); 843 dir = parent->d_inode; 844 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 845 if (--RPC_I(dentry->d_inode)->nkern_readwriters == 0) { 846 rpc_close_pipes(dentry->d_inode); 847 error = simple_unlink(dir, dentry); 848 if (!error) 849 d_delete(dentry); 850 } 851 dput(dentry); 852 mutex_unlock(&dir->i_mutex); 853 dput(parent); 854 return error; 855 } 856 EXPORT_SYMBOL_GPL(rpc_unlink); 857 858 /* 859 * populate the filesystem 860 */ 861 static struct super_operations s_ops = { 862 .alloc_inode = rpc_alloc_inode, 863 .destroy_inode = rpc_destroy_inode, 864 .statfs = simple_statfs, 865 }; 866 867 #define RPCAUTH_GSSMAGIC 0x67596969 868 869 static int 870 rpc_fill_super(struct super_block *sb, void *data, int silent) 871 { 872 struct inode *inode; 873 struct dentry *root; 874 875 sb->s_blocksize = PAGE_CACHE_SIZE; 876 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 877 sb->s_magic = RPCAUTH_GSSMAGIC; 878 sb->s_op = &s_ops; 879 sb->s_time_gran = 1; 880 881 inode = rpc_get_inode(sb, S_IFDIR | 0755); 882 if (!inode) 883 return -ENOMEM; 884 root = d_alloc_root(inode); 885 if (!root) { 886 iput(inode); 887 return -ENOMEM; 888 } 889 if (rpc_populate(root, files, RPCAUTH_Root + 1, RPCAUTH_RootEOF)) 890 goto out; 891 sb->s_root = root; 892 return 0; 893 out: 894 d_genocide(root); 895 dput(root); 896 return -ENOMEM; 897 } 898 899 static int 900 rpc_get_sb(struct file_system_type *fs_type, 901 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 902 { 903 return get_sb_single(fs_type, flags, data, rpc_fill_super, mnt); 904 } 905 906 static struct file_system_type rpc_pipe_fs_type = { 907 .owner = THIS_MODULE, 908 .name = "rpc_pipefs", 909 .get_sb = rpc_get_sb, 910 .kill_sb = kill_litter_super, 911 }; 912 913 static void 914 init_once(void *foo) 915 { 916 struct rpc_inode *rpci = (struct rpc_inode *) foo; 917 918 inode_init_once(&rpci->vfs_inode); 919 rpci->private = NULL; 920 rpci->nreaders = 0; 921 rpci->nwriters = 0; 922 INIT_LIST_HEAD(&rpci->in_upcall); 923 INIT_LIST_HEAD(&rpci->in_downcall); 924 INIT_LIST_HEAD(&rpci->pipe); 925 rpci->pipelen = 0; 926 init_waitqueue_head(&rpci->waitq); 927 INIT_DELAYED_WORK(&rpci->queue_timeout, 928 rpc_timeout_upcall_queue); 929 rpci->ops = NULL; 930 } 931 932 int register_rpc_pipefs(void) 933 { 934 int err; 935 936 rpc_inode_cachep = kmem_cache_create("rpc_inode_cache", 937 sizeof(struct rpc_inode), 938 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 939 SLAB_MEM_SPREAD), 940 init_once); 941 if (!rpc_inode_cachep) 942 return -ENOMEM; 943 err = register_filesystem(&rpc_pipe_fs_type); 944 if (err) { 945 kmem_cache_destroy(rpc_inode_cachep); 946 return err; 947 } 948 949 return 0; 950 } 951 952 void unregister_rpc_pipefs(void) 953 { 954 kmem_cache_destroy(rpc_inode_cachep); 955 unregister_filesystem(&rpc_pipe_fs_type); 956 } 957