1 /* 2 * net/sunrpc/rpc_pipe.c 3 * 4 * Userland/kernel interface for rpcauth_gss. 5 * Code shamelessly plagiarized from fs/nfsd/nfsctl.c 6 * and fs/sysfs/inode.c 7 * 8 * Copyright (c) 2002, Trond Myklebust <trond.myklebust@fys.uio.no> 9 * 10 */ 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/pagemap.h> 15 #include <linux/mount.h> 16 #include <linux/namei.h> 17 #include <linux/fsnotify.h> 18 #include <linux/kernel.h> 19 20 #include <asm/ioctls.h> 21 #include <linux/fs.h> 22 #include <linux/poll.h> 23 #include <linux/wait.h> 24 #include <linux/seq_file.h> 25 26 #include <linux/sunrpc/clnt.h> 27 #include <linux/workqueue.h> 28 #include <linux/sunrpc/rpc_pipe_fs.h> 29 #include <linux/sunrpc/cache.h> 30 31 static struct vfsmount *rpc_mount __read_mostly; 32 static int rpc_mount_count; 33 34 static struct file_system_type rpc_pipe_fs_type; 35 36 37 static struct kmem_cache *rpc_inode_cachep __read_mostly; 38 39 #define RPC_UPCALL_TIMEOUT (30*HZ) 40 41 static void rpc_purge_list(struct rpc_inode *rpci, struct list_head *head, 42 void (*destroy_msg)(struct rpc_pipe_msg *), int err) 43 { 44 struct rpc_pipe_msg *msg; 45 46 if (list_empty(head)) 47 return; 48 do { 49 msg = list_entry(head->next, struct rpc_pipe_msg, list); 50 list_del(&msg->list); 51 msg->errno = err; 52 destroy_msg(msg); 53 } while (!list_empty(head)); 54 wake_up(&rpci->waitq); 55 } 56 57 static void 58 rpc_timeout_upcall_queue(struct work_struct *work) 59 { 60 LIST_HEAD(free_list); 61 struct rpc_inode *rpci = 62 container_of(work, struct rpc_inode, queue_timeout.work); 63 struct inode *inode = &rpci->vfs_inode; 64 void (*destroy_msg)(struct rpc_pipe_msg *); 65 66 spin_lock(&inode->i_lock); 67 if (rpci->ops == NULL) { 68 spin_unlock(&inode->i_lock); 69 return; 70 } 71 destroy_msg = rpci->ops->destroy_msg; 72 if (rpci->nreaders == 0) { 73 list_splice_init(&rpci->pipe, &free_list); 74 rpci->pipelen = 0; 75 } 76 spin_unlock(&inode->i_lock); 77 rpc_purge_list(rpci, &free_list, destroy_msg, -ETIMEDOUT); 78 } 79 80 /** 81 * rpc_queue_upcall 82 * @inode: inode of upcall pipe on which to queue given message 83 * @msg: message to queue 84 * 85 * Call with an @inode created by rpc_mkpipe() to queue an upcall. 86 * A userspace process may then later read the upcall by performing a 87 * read on an open file for this inode. It is up to the caller to 88 * initialize the fields of @msg (other than @msg->list) appropriately. 89 */ 90 int 91 rpc_queue_upcall(struct inode *inode, struct rpc_pipe_msg *msg) 92 { 93 struct rpc_inode *rpci = RPC_I(inode); 94 int res = -EPIPE; 95 96 spin_lock(&inode->i_lock); 97 if (rpci->ops == NULL) 98 goto out; 99 if (rpci->nreaders) { 100 list_add_tail(&msg->list, &rpci->pipe); 101 rpci->pipelen += msg->len; 102 res = 0; 103 } else if (rpci->flags & RPC_PIPE_WAIT_FOR_OPEN) { 104 if (list_empty(&rpci->pipe)) 105 queue_delayed_work(rpciod_workqueue, 106 &rpci->queue_timeout, 107 RPC_UPCALL_TIMEOUT); 108 list_add_tail(&msg->list, &rpci->pipe); 109 rpci->pipelen += msg->len; 110 res = 0; 111 } 112 out: 113 spin_unlock(&inode->i_lock); 114 wake_up(&rpci->waitq); 115 return res; 116 } 117 EXPORT_SYMBOL_GPL(rpc_queue_upcall); 118 119 static inline void 120 rpc_inode_setowner(struct inode *inode, void *private) 121 { 122 RPC_I(inode)->private = private; 123 } 124 125 static void 126 rpc_close_pipes(struct inode *inode) 127 { 128 struct rpc_inode *rpci = RPC_I(inode); 129 const struct rpc_pipe_ops *ops; 130 int need_release; 131 132 mutex_lock(&inode->i_mutex); 133 ops = rpci->ops; 134 if (ops != NULL) { 135 LIST_HEAD(free_list); 136 spin_lock(&inode->i_lock); 137 need_release = rpci->nreaders != 0 || rpci->nwriters != 0; 138 rpci->nreaders = 0; 139 list_splice_init(&rpci->in_upcall, &free_list); 140 list_splice_init(&rpci->pipe, &free_list); 141 rpci->pipelen = 0; 142 rpci->ops = NULL; 143 spin_unlock(&inode->i_lock); 144 rpc_purge_list(rpci, &free_list, ops->destroy_msg, -EPIPE); 145 rpci->nwriters = 0; 146 if (need_release && ops->release_pipe) 147 ops->release_pipe(inode); 148 cancel_delayed_work_sync(&rpci->queue_timeout); 149 } 150 rpc_inode_setowner(inode, NULL); 151 mutex_unlock(&inode->i_mutex); 152 } 153 154 static struct inode * 155 rpc_alloc_inode(struct super_block *sb) 156 { 157 struct rpc_inode *rpci; 158 rpci = (struct rpc_inode *)kmem_cache_alloc(rpc_inode_cachep, GFP_KERNEL); 159 if (!rpci) 160 return NULL; 161 return &rpci->vfs_inode; 162 } 163 164 static void 165 rpc_destroy_inode(struct inode *inode) 166 { 167 kmem_cache_free(rpc_inode_cachep, RPC_I(inode)); 168 } 169 170 static int 171 rpc_pipe_open(struct inode *inode, struct file *filp) 172 { 173 struct rpc_inode *rpci = RPC_I(inode); 174 int first_open; 175 int res = -ENXIO; 176 177 mutex_lock(&inode->i_mutex); 178 if (rpci->ops == NULL) 179 goto out; 180 first_open = rpci->nreaders == 0 && rpci->nwriters == 0; 181 if (first_open && rpci->ops->open_pipe) { 182 res = rpci->ops->open_pipe(inode); 183 if (res) 184 goto out; 185 } 186 if (filp->f_mode & FMODE_READ) 187 rpci->nreaders++; 188 if (filp->f_mode & FMODE_WRITE) 189 rpci->nwriters++; 190 res = 0; 191 out: 192 mutex_unlock(&inode->i_mutex); 193 return res; 194 } 195 196 static int 197 rpc_pipe_release(struct inode *inode, struct file *filp) 198 { 199 struct rpc_inode *rpci = RPC_I(inode); 200 struct rpc_pipe_msg *msg; 201 int last_close; 202 203 mutex_lock(&inode->i_mutex); 204 if (rpci->ops == NULL) 205 goto out; 206 msg = (struct rpc_pipe_msg *)filp->private_data; 207 if (msg != NULL) { 208 spin_lock(&inode->i_lock); 209 msg->errno = -EAGAIN; 210 list_del(&msg->list); 211 spin_unlock(&inode->i_lock); 212 rpci->ops->destroy_msg(msg); 213 } 214 if (filp->f_mode & FMODE_WRITE) 215 rpci->nwriters --; 216 if (filp->f_mode & FMODE_READ) { 217 rpci->nreaders --; 218 if (rpci->nreaders == 0) { 219 LIST_HEAD(free_list); 220 spin_lock(&inode->i_lock); 221 list_splice_init(&rpci->pipe, &free_list); 222 rpci->pipelen = 0; 223 spin_unlock(&inode->i_lock); 224 rpc_purge_list(rpci, &free_list, 225 rpci->ops->destroy_msg, -EAGAIN); 226 } 227 } 228 last_close = rpci->nwriters == 0 && rpci->nreaders == 0; 229 if (last_close && rpci->ops->release_pipe) 230 rpci->ops->release_pipe(inode); 231 out: 232 mutex_unlock(&inode->i_mutex); 233 return 0; 234 } 235 236 static ssize_t 237 rpc_pipe_read(struct file *filp, char __user *buf, size_t len, loff_t *offset) 238 { 239 struct inode *inode = filp->f_path.dentry->d_inode; 240 struct rpc_inode *rpci = RPC_I(inode); 241 struct rpc_pipe_msg *msg; 242 int res = 0; 243 244 mutex_lock(&inode->i_mutex); 245 if (rpci->ops == NULL) { 246 res = -EPIPE; 247 goto out_unlock; 248 } 249 msg = filp->private_data; 250 if (msg == NULL) { 251 spin_lock(&inode->i_lock); 252 if (!list_empty(&rpci->pipe)) { 253 msg = list_entry(rpci->pipe.next, 254 struct rpc_pipe_msg, 255 list); 256 list_move(&msg->list, &rpci->in_upcall); 257 rpci->pipelen -= msg->len; 258 filp->private_data = msg; 259 msg->copied = 0; 260 } 261 spin_unlock(&inode->i_lock); 262 if (msg == NULL) 263 goto out_unlock; 264 } 265 /* NOTE: it is up to the callback to update msg->copied */ 266 res = rpci->ops->upcall(filp, msg, buf, len); 267 if (res < 0 || msg->len == msg->copied) { 268 filp->private_data = NULL; 269 spin_lock(&inode->i_lock); 270 list_del(&msg->list); 271 spin_unlock(&inode->i_lock); 272 rpci->ops->destroy_msg(msg); 273 } 274 out_unlock: 275 mutex_unlock(&inode->i_mutex); 276 return res; 277 } 278 279 static ssize_t 280 rpc_pipe_write(struct file *filp, const char __user *buf, size_t len, loff_t *offset) 281 { 282 struct inode *inode = filp->f_path.dentry->d_inode; 283 struct rpc_inode *rpci = RPC_I(inode); 284 int res; 285 286 mutex_lock(&inode->i_mutex); 287 res = -EPIPE; 288 if (rpci->ops != NULL) 289 res = rpci->ops->downcall(filp, buf, len); 290 mutex_unlock(&inode->i_mutex); 291 return res; 292 } 293 294 static unsigned int 295 rpc_pipe_poll(struct file *filp, struct poll_table_struct *wait) 296 { 297 struct rpc_inode *rpci; 298 unsigned int mask = 0; 299 300 rpci = RPC_I(filp->f_path.dentry->d_inode); 301 poll_wait(filp, &rpci->waitq, wait); 302 303 mask = POLLOUT | POLLWRNORM; 304 if (rpci->ops == NULL) 305 mask |= POLLERR | POLLHUP; 306 if (filp->private_data || !list_empty(&rpci->pipe)) 307 mask |= POLLIN | POLLRDNORM; 308 return mask; 309 } 310 311 static int 312 rpc_pipe_ioctl(struct inode *ino, struct file *filp, 313 unsigned int cmd, unsigned long arg) 314 { 315 struct rpc_inode *rpci = RPC_I(filp->f_path.dentry->d_inode); 316 int len; 317 318 switch (cmd) { 319 case FIONREAD: 320 if (rpci->ops == NULL) 321 return -EPIPE; 322 len = rpci->pipelen; 323 if (filp->private_data) { 324 struct rpc_pipe_msg *msg; 325 msg = (struct rpc_pipe_msg *)filp->private_data; 326 len += msg->len - msg->copied; 327 } 328 return put_user(len, (int __user *)arg); 329 default: 330 return -EINVAL; 331 } 332 } 333 334 static const struct file_operations rpc_pipe_fops = { 335 .owner = THIS_MODULE, 336 .llseek = no_llseek, 337 .read = rpc_pipe_read, 338 .write = rpc_pipe_write, 339 .poll = rpc_pipe_poll, 340 .ioctl = rpc_pipe_ioctl, 341 .open = rpc_pipe_open, 342 .release = rpc_pipe_release, 343 }; 344 345 static int 346 rpc_show_info(struct seq_file *m, void *v) 347 { 348 struct rpc_clnt *clnt = m->private; 349 350 seq_printf(m, "RPC server: %s\n", clnt->cl_server); 351 seq_printf(m, "service: %s (%d) version %d\n", clnt->cl_protname, 352 clnt->cl_prog, clnt->cl_vers); 353 seq_printf(m, "address: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR)); 354 seq_printf(m, "protocol: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PROTO)); 355 seq_printf(m, "port: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PORT)); 356 return 0; 357 } 358 359 static int 360 rpc_info_open(struct inode *inode, struct file *file) 361 { 362 struct rpc_clnt *clnt; 363 int ret = single_open(file, rpc_show_info, NULL); 364 365 if (!ret) { 366 struct seq_file *m = file->private_data; 367 mutex_lock(&inode->i_mutex); 368 clnt = RPC_I(inode)->private; 369 if (clnt) { 370 kref_get(&clnt->cl_kref); 371 m->private = clnt; 372 } else { 373 single_release(inode, file); 374 ret = -EINVAL; 375 } 376 mutex_unlock(&inode->i_mutex); 377 } 378 return ret; 379 } 380 381 static int 382 rpc_info_release(struct inode *inode, struct file *file) 383 { 384 struct seq_file *m = file->private_data; 385 struct rpc_clnt *clnt = (struct rpc_clnt *)m->private; 386 387 if (clnt) 388 rpc_release_client(clnt); 389 return single_release(inode, file); 390 } 391 392 static const struct file_operations rpc_info_operations = { 393 .owner = THIS_MODULE, 394 .open = rpc_info_open, 395 .read = seq_read, 396 .llseek = seq_lseek, 397 .release = rpc_info_release, 398 }; 399 400 401 /* 402 * Description of fs contents. 403 */ 404 struct rpc_filelist { 405 const char *name; 406 const struct file_operations *i_fop; 407 umode_t mode; 408 }; 409 410 struct vfsmount *rpc_get_mount(void) 411 { 412 int err; 413 414 err = simple_pin_fs(&rpc_pipe_fs_type, &rpc_mount, &rpc_mount_count); 415 if (err != 0) 416 return ERR_PTR(err); 417 return rpc_mount; 418 } 419 EXPORT_SYMBOL_GPL(rpc_get_mount); 420 421 void rpc_put_mount(void) 422 { 423 simple_release_fs(&rpc_mount, &rpc_mount_count); 424 } 425 EXPORT_SYMBOL_GPL(rpc_put_mount); 426 427 static int rpc_delete_dentry(struct dentry *dentry) 428 { 429 return 1; 430 } 431 432 static const struct dentry_operations rpc_dentry_operations = { 433 .d_delete = rpc_delete_dentry, 434 }; 435 436 static struct inode * 437 rpc_get_inode(struct super_block *sb, umode_t mode) 438 { 439 struct inode *inode = new_inode(sb); 440 if (!inode) 441 return NULL; 442 inode->i_mode = mode; 443 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 444 switch(mode & S_IFMT) { 445 case S_IFDIR: 446 inode->i_fop = &simple_dir_operations; 447 inode->i_op = &simple_dir_inode_operations; 448 inc_nlink(inode); 449 default: 450 break; 451 } 452 return inode; 453 } 454 455 static int __rpc_create_common(struct inode *dir, struct dentry *dentry, 456 umode_t mode, 457 const struct file_operations *i_fop, 458 void *private) 459 { 460 struct inode *inode; 461 462 BUG_ON(!d_unhashed(dentry)); 463 inode = rpc_get_inode(dir->i_sb, mode); 464 if (!inode) 465 goto out_err; 466 inode->i_ino = iunique(dir->i_sb, 100); 467 if (i_fop) 468 inode->i_fop = i_fop; 469 if (private) 470 rpc_inode_setowner(inode, private); 471 d_add(dentry, inode); 472 return 0; 473 out_err: 474 printk(KERN_WARNING "%s: %s failed to allocate inode for dentry %s\n", 475 __FILE__, __func__, dentry->d_name.name); 476 dput(dentry); 477 return -ENOMEM; 478 } 479 480 static int __rpc_create(struct inode *dir, struct dentry *dentry, 481 umode_t mode, 482 const struct file_operations *i_fop, 483 void *private) 484 { 485 int err; 486 487 err = __rpc_create_common(dir, dentry, S_IFREG | mode, i_fop, private); 488 if (err) 489 return err; 490 fsnotify_create(dir, dentry); 491 return 0; 492 } 493 494 static int __rpc_mkdir(struct inode *dir, struct dentry *dentry, 495 umode_t mode, 496 const struct file_operations *i_fop, 497 void *private) 498 { 499 int err; 500 501 err = __rpc_create_common(dir, dentry, S_IFDIR | mode, i_fop, private); 502 if (err) 503 return err; 504 inc_nlink(dir); 505 fsnotify_mkdir(dir, dentry); 506 return 0; 507 } 508 509 static int __rpc_mkpipe(struct inode *dir, struct dentry *dentry, 510 umode_t mode, 511 const struct file_operations *i_fop, 512 void *private, 513 const struct rpc_pipe_ops *ops, 514 int flags) 515 { 516 struct rpc_inode *rpci; 517 int err; 518 519 err = __rpc_create_common(dir, dentry, S_IFIFO | mode, i_fop, private); 520 if (err) 521 return err; 522 rpci = RPC_I(dentry->d_inode); 523 rpci->nkern_readwriters = 1; 524 rpci->private = private; 525 rpci->flags = flags; 526 rpci->ops = ops; 527 fsnotify_create(dir, dentry); 528 return 0; 529 } 530 531 static int __rpc_rmdir(struct inode *dir, struct dentry *dentry) 532 { 533 int ret; 534 535 dget(dentry); 536 ret = simple_rmdir(dir, dentry); 537 d_delete(dentry); 538 dput(dentry); 539 return ret; 540 } 541 542 static int __rpc_unlink(struct inode *dir, struct dentry *dentry) 543 { 544 int ret; 545 546 dget(dentry); 547 ret = simple_unlink(dir, dentry); 548 d_delete(dentry); 549 dput(dentry); 550 return ret; 551 } 552 553 static int __rpc_rmpipe(struct inode *dir, struct dentry *dentry) 554 { 555 struct inode *inode = dentry->d_inode; 556 struct rpc_inode *rpci = RPC_I(inode); 557 558 rpci->nkern_readwriters--; 559 if (rpci->nkern_readwriters != 0) 560 return 0; 561 rpc_close_pipes(inode); 562 return __rpc_unlink(dir, dentry); 563 } 564 565 static struct dentry *__rpc_lookup_create(struct dentry *parent, 566 struct qstr *name) 567 { 568 struct dentry *dentry; 569 570 dentry = d_lookup(parent, name); 571 if (!dentry) { 572 dentry = d_alloc(parent, name); 573 if (!dentry) { 574 dentry = ERR_PTR(-ENOMEM); 575 goto out_err; 576 } 577 } 578 if (!dentry->d_inode) 579 dentry->d_op = &rpc_dentry_operations; 580 out_err: 581 return dentry; 582 } 583 584 static struct dentry *__rpc_lookup_create_exclusive(struct dentry *parent, 585 struct qstr *name) 586 { 587 struct dentry *dentry; 588 589 dentry = __rpc_lookup_create(parent, name); 590 if (dentry->d_inode == NULL) 591 return dentry; 592 dput(dentry); 593 return ERR_PTR(-EEXIST); 594 } 595 596 /* 597 * FIXME: This probably has races. 598 */ 599 static void __rpc_depopulate(struct dentry *parent, 600 const struct rpc_filelist *files, 601 int start, int eof) 602 { 603 struct inode *dir = parent->d_inode; 604 struct dentry *dentry; 605 struct qstr name; 606 int i; 607 608 for (i = start; i < eof; i++) { 609 name.name = files[i].name; 610 name.len = strlen(files[i].name); 611 name.hash = full_name_hash(name.name, name.len); 612 dentry = d_lookup(parent, &name); 613 614 if (dentry == NULL) 615 continue; 616 if (dentry->d_inode == NULL) 617 goto next; 618 switch (dentry->d_inode->i_mode & S_IFMT) { 619 default: 620 BUG(); 621 case S_IFREG: 622 __rpc_unlink(dir, dentry); 623 break; 624 case S_IFDIR: 625 __rpc_rmdir(dir, dentry); 626 } 627 next: 628 dput(dentry); 629 } 630 } 631 632 static void rpc_depopulate(struct dentry *parent, 633 const struct rpc_filelist *files, 634 int start, int eof) 635 { 636 struct inode *dir = parent->d_inode; 637 638 mutex_lock_nested(&dir->i_mutex, I_MUTEX_CHILD); 639 __rpc_depopulate(parent, files, start, eof); 640 mutex_unlock(&dir->i_mutex); 641 } 642 643 static int rpc_populate(struct dentry *parent, 644 const struct rpc_filelist *files, 645 int start, int eof, 646 void *private) 647 { 648 struct inode *dir = parent->d_inode; 649 struct dentry *dentry; 650 int i, err; 651 652 mutex_lock(&dir->i_mutex); 653 for (i = start; i < eof; i++) { 654 struct qstr q; 655 656 q.name = files[i].name; 657 q.len = strlen(files[i].name); 658 q.hash = full_name_hash(q.name, q.len); 659 dentry = __rpc_lookup_create_exclusive(parent, &q); 660 err = PTR_ERR(dentry); 661 if (IS_ERR(dentry)) 662 goto out_bad; 663 switch (files[i].mode & S_IFMT) { 664 default: 665 BUG(); 666 case S_IFREG: 667 err = __rpc_create(dir, dentry, 668 files[i].mode, 669 files[i].i_fop, 670 private); 671 break; 672 case S_IFDIR: 673 err = __rpc_mkdir(dir, dentry, 674 files[i].mode, 675 NULL, 676 private); 677 } 678 if (err != 0) 679 goto out_bad; 680 } 681 mutex_unlock(&dir->i_mutex); 682 return 0; 683 out_bad: 684 __rpc_depopulate(parent, files, start, eof); 685 mutex_unlock(&dir->i_mutex); 686 printk(KERN_WARNING "%s: %s failed to populate directory %s\n", 687 __FILE__, __func__, parent->d_name.name); 688 return err; 689 } 690 691 static struct dentry *rpc_mkdir_populate(struct dentry *parent, 692 struct qstr *name, umode_t mode, void *private, 693 int (*populate)(struct dentry *, void *), void *args_populate) 694 { 695 struct dentry *dentry; 696 struct inode *dir = parent->d_inode; 697 int error; 698 699 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 700 dentry = __rpc_lookup_create_exclusive(parent, name); 701 if (IS_ERR(dentry)) 702 goto out; 703 error = __rpc_mkdir(dir, dentry, mode, NULL, private); 704 if (error != 0) 705 goto out_err; 706 if (populate != NULL) { 707 error = populate(dentry, args_populate); 708 if (error) 709 goto err_rmdir; 710 } 711 out: 712 mutex_unlock(&dir->i_mutex); 713 return dentry; 714 err_rmdir: 715 __rpc_rmdir(dir, dentry); 716 out_err: 717 dentry = ERR_PTR(error); 718 goto out; 719 } 720 721 static int rpc_rmdir_depopulate(struct dentry *dentry, 722 void (*depopulate)(struct dentry *)) 723 { 724 struct dentry *parent; 725 struct inode *dir; 726 int error; 727 728 parent = dget_parent(dentry); 729 dir = parent->d_inode; 730 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 731 if (depopulate != NULL) 732 depopulate(dentry); 733 error = __rpc_rmdir(dir, dentry); 734 mutex_unlock(&dir->i_mutex); 735 dput(parent); 736 return error; 737 } 738 739 /** 740 * rpc_mkpipe - make an rpc_pipefs file for kernel<->userspace communication 741 * @parent: dentry of directory to create new "pipe" in 742 * @name: name of pipe 743 * @private: private data to associate with the pipe, for the caller's use 744 * @ops: operations defining the behavior of the pipe: upcall, downcall, 745 * release_pipe, open_pipe, and destroy_msg. 746 * @flags: rpc_inode flags 747 * 748 * Data is made available for userspace to read by calls to 749 * rpc_queue_upcall(). The actual reads will result in calls to 750 * @ops->upcall, which will be called with the file pointer, 751 * message, and userspace buffer to copy to. 752 * 753 * Writes can come at any time, and do not necessarily have to be 754 * responses to upcalls. They will result in calls to @msg->downcall. 755 * 756 * The @private argument passed here will be available to all these methods 757 * from the file pointer, via RPC_I(file->f_dentry->d_inode)->private. 758 */ 759 struct dentry *rpc_mkpipe(struct dentry *parent, const char *name, 760 void *private, const struct rpc_pipe_ops *ops, 761 int flags) 762 { 763 struct dentry *dentry; 764 struct inode *dir = parent->d_inode; 765 umode_t umode = S_IFIFO | S_IRUSR | S_IWUSR; 766 struct qstr q; 767 int err; 768 769 if (ops->upcall == NULL) 770 umode &= ~S_IRUGO; 771 if (ops->downcall == NULL) 772 umode &= ~S_IWUGO; 773 774 q.name = name; 775 q.len = strlen(name); 776 q.hash = full_name_hash(q.name, q.len), 777 778 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 779 dentry = __rpc_lookup_create(parent, &q); 780 if (IS_ERR(dentry)) 781 goto out; 782 if (dentry->d_inode) { 783 struct rpc_inode *rpci = RPC_I(dentry->d_inode); 784 if (rpci->private != private || 785 rpci->ops != ops || 786 rpci->flags != flags) { 787 dput (dentry); 788 err = -EBUSY; 789 goto out_err; 790 } 791 rpci->nkern_readwriters++; 792 goto out; 793 } 794 795 err = __rpc_mkpipe(dir, dentry, umode, &rpc_pipe_fops, 796 private, ops, flags); 797 if (err) 798 goto out_err; 799 out: 800 mutex_unlock(&dir->i_mutex); 801 return dentry; 802 out_err: 803 dentry = ERR_PTR(err); 804 printk(KERN_WARNING "%s: %s() failed to create pipe %s/%s (errno = %d)\n", 805 __FILE__, __func__, parent->d_name.name, name, 806 err); 807 goto out; 808 } 809 EXPORT_SYMBOL_GPL(rpc_mkpipe); 810 811 /** 812 * rpc_unlink - remove a pipe 813 * @dentry: dentry for the pipe, as returned from rpc_mkpipe 814 * 815 * After this call, lookups will no longer find the pipe, and any 816 * attempts to read or write using preexisting opens of the pipe will 817 * return -EPIPE. 818 */ 819 int 820 rpc_unlink(struct dentry *dentry) 821 { 822 struct dentry *parent; 823 struct inode *dir; 824 int error = 0; 825 826 parent = dget_parent(dentry); 827 dir = parent->d_inode; 828 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 829 error = __rpc_rmpipe(dir, dentry); 830 mutex_unlock(&dir->i_mutex); 831 dput(parent); 832 return error; 833 } 834 EXPORT_SYMBOL_GPL(rpc_unlink); 835 836 enum { 837 RPCAUTH_info, 838 RPCAUTH_EOF 839 }; 840 841 static const struct rpc_filelist authfiles[] = { 842 [RPCAUTH_info] = { 843 .name = "info", 844 .i_fop = &rpc_info_operations, 845 .mode = S_IFREG | S_IRUSR, 846 }, 847 }; 848 849 static int rpc_clntdir_populate(struct dentry *dentry, void *private) 850 { 851 return rpc_populate(dentry, 852 authfiles, RPCAUTH_info, RPCAUTH_EOF, 853 private); 854 } 855 856 static void rpc_clntdir_depopulate(struct dentry *dentry) 857 { 858 rpc_depopulate(dentry, authfiles, RPCAUTH_info, RPCAUTH_EOF); 859 } 860 861 /** 862 * rpc_create_client_dir - Create a new rpc_client directory in rpc_pipefs 863 * @dentry: dentry from the rpc_pipefs root to the new directory 864 * @name: &struct qstr for the name 865 * @rpc_client: rpc client to associate with this directory 866 * 867 * This creates a directory at the given @path associated with 868 * @rpc_clnt, which will contain a file named "info" with some basic 869 * information about the client, together with any "pipes" that may 870 * later be created using rpc_mkpipe(). 871 */ 872 struct dentry *rpc_create_client_dir(struct dentry *dentry, 873 struct qstr *name, 874 struct rpc_clnt *rpc_client) 875 { 876 return rpc_mkdir_populate(dentry, name, S_IRUGO | S_IXUGO, NULL, 877 rpc_clntdir_populate, rpc_client); 878 } 879 880 /** 881 * rpc_remove_client_dir - Remove a directory created with rpc_create_client_dir() 882 * @dentry: directory to remove 883 */ 884 int rpc_remove_client_dir(struct dentry *dentry) 885 { 886 return rpc_rmdir_depopulate(dentry, rpc_clntdir_depopulate); 887 } 888 889 static const struct rpc_filelist cache_pipefs_files[3] = { 890 [0] = { 891 .name = "channel", 892 .i_fop = &cache_file_operations_pipefs, 893 .mode = S_IFREG|S_IRUSR|S_IWUSR, 894 }, 895 [1] = { 896 .name = "content", 897 .i_fop = &content_file_operations_pipefs, 898 .mode = S_IFREG|S_IRUSR, 899 }, 900 [2] = { 901 .name = "flush", 902 .i_fop = &cache_flush_operations_pipefs, 903 .mode = S_IFREG|S_IRUSR|S_IWUSR, 904 }, 905 }; 906 907 static int rpc_cachedir_populate(struct dentry *dentry, void *private) 908 { 909 return rpc_populate(dentry, 910 cache_pipefs_files, 0, 3, 911 private); 912 } 913 914 static void rpc_cachedir_depopulate(struct dentry *dentry) 915 { 916 rpc_depopulate(dentry, cache_pipefs_files, 0, 3); 917 } 918 919 struct dentry *rpc_create_cache_dir(struct dentry *parent, struct qstr *name, 920 mode_t umode, struct cache_detail *cd) 921 { 922 return rpc_mkdir_populate(parent, name, umode, NULL, 923 rpc_cachedir_populate, cd); 924 } 925 926 void rpc_remove_cache_dir(struct dentry *dentry) 927 { 928 rpc_rmdir_depopulate(dentry, rpc_cachedir_depopulate); 929 } 930 931 /* 932 * populate the filesystem 933 */ 934 static const struct super_operations s_ops = { 935 .alloc_inode = rpc_alloc_inode, 936 .destroy_inode = rpc_destroy_inode, 937 .statfs = simple_statfs, 938 }; 939 940 #define RPCAUTH_GSSMAGIC 0x67596969 941 942 /* 943 * We have a single directory with 1 node in it. 944 */ 945 enum { 946 RPCAUTH_lockd, 947 RPCAUTH_mount, 948 RPCAUTH_nfs, 949 RPCAUTH_portmap, 950 RPCAUTH_statd, 951 RPCAUTH_nfsd4_cb, 952 RPCAUTH_cache, 953 RPCAUTH_RootEOF 954 }; 955 956 static const struct rpc_filelist files[] = { 957 [RPCAUTH_lockd] = { 958 .name = "lockd", 959 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 960 }, 961 [RPCAUTH_mount] = { 962 .name = "mount", 963 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 964 }, 965 [RPCAUTH_nfs] = { 966 .name = "nfs", 967 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 968 }, 969 [RPCAUTH_portmap] = { 970 .name = "portmap", 971 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 972 }, 973 [RPCAUTH_statd] = { 974 .name = "statd", 975 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 976 }, 977 [RPCAUTH_nfsd4_cb] = { 978 .name = "nfsd4_cb", 979 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 980 }, 981 [RPCAUTH_cache] = { 982 .name = "cache", 983 .mode = S_IFDIR | S_IRUGO | S_IXUGO, 984 }, 985 }; 986 987 static int 988 rpc_fill_super(struct super_block *sb, void *data, int silent) 989 { 990 struct inode *inode; 991 struct dentry *root; 992 993 sb->s_blocksize = PAGE_CACHE_SIZE; 994 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 995 sb->s_magic = RPCAUTH_GSSMAGIC; 996 sb->s_op = &s_ops; 997 sb->s_time_gran = 1; 998 999 inode = rpc_get_inode(sb, S_IFDIR | 0755); 1000 if (!inode) 1001 return -ENOMEM; 1002 root = d_alloc_root(inode); 1003 if (!root) { 1004 iput(inode); 1005 return -ENOMEM; 1006 } 1007 if (rpc_populate(root, files, RPCAUTH_lockd, RPCAUTH_RootEOF, NULL)) 1008 goto out; 1009 sb->s_root = root; 1010 return 0; 1011 out: 1012 d_genocide(root); 1013 dput(root); 1014 return -ENOMEM; 1015 } 1016 1017 static int 1018 rpc_get_sb(struct file_system_type *fs_type, 1019 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 1020 { 1021 return get_sb_single(fs_type, flags, data, rpc_fill_super, mnt); 1022 } 1023 1024 static struct file_system_type rpc_pipe_fs_type = { 1025 .owner = THIS_MODULE, 1026 .name = "rpc_pipefs", 1027 .get_sb = rpc_get_sb, 1028 .kill_sb = kill_litter_super, 1029 }; 1030 1031 static void 1032 init_once(void *foo) 1033 { 1034 struct rpc_inode *rpci = (struct rpc_inode *) foo; 1035 1036 inode_init_once(&rpci->vfs_inode); 1037 rpci->private = NULL; 1038 rpci->nreaders = 0; 1039 rpci->nwriters = 0; 1040 INIT_LIST_HEAD(&rpci->in_upcall); 1041 INIT_LIST_HEAD(&rpci->in_downcall); 1042 INIT_LIST_HEAD(&rpci->pipe); 1043 rpci->pipelen = 0; 1044 init_waitqueue_head(&rpci->waitq); 1045 INIT_DELAYED_WORK(&rpci->queue_timeout, 1046 rpc_timeout_upcall_queue); 1047 rpci->ops = NULL; 1048 } 1049 1050 int register_rpc_pipefs(void) 1051 { 1052 int err; 1053 1054 rpc_inode_cachep = kmem_cache_create("rpc_inode_cache", 1055 sizeof(struct rpc_inode), 1056 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 1057 SLAB_MEM_SPREAD), 1058 init_once); 1059 if (!rpc_inode_cachep) 1060 return -ENOMEM; 1061 err = register_filesystem(&rpc_pipe_fs_type); 1062 if (err) { 1063 kmem_cache_destroy(rpc_inode_cachep); 1064 return err; 1065 } 1066 1067 return 0; 1068 } 1069 1070 void unregister_rpc_pipefs(void) 1071 { 1072 kmem_cache_destroy(rpc_inode_cachep); 1073 unregister_filesystem(&rpc_pipe_fs_type); 1074 } 1075