xref: /openbmc/linux/net/sunrpc/rpc_pipe.c (revision 615c36f5)
1 /*
2  * net/sunrpc/rpc_pipe.c
3  *
4  * Userland/kernel interface for rpcauth_gss.
5  * Code shamelessly plagiarized from fs/nfsd/nfsctl.c
6  * and fs/sysfs/inode.c
7  *
8  * Copyright (c) 2002, Trond Myklebust <trond.myklebust@fys.uio.no>
9  *
10  */
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include <linux/pagemap.h>
15 #include <linux/mount.h>
16 #include <linux/namei.h>
17 #include <linux/fsnotify.h>
18 #include <linux/kernel.h>
19 
20 #include <asm/ioctls.h>
21 #include <linux/fs.h>
22 #include <linux/poll.h>
23 #include <linux/wait.h>
24 #include <linux/seq_file.h>
25 
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/workqueue.h>
28 #include <linux/sunrpc/rpc_pipe_fs.h>
29 #include <linux/sunrpc/cache.h>
30 
31 static struct vfsmount *rpc_mnt __read_mostly;
32 static int rpc_mount_count;
33 
34 static struct file_system_type rpc_pipe_fs_type;
35 
36 
37 static struct kmem_cache *rpc_inode_cachep __read_mostly;
38 
39 #define RPC_UPCALL_TIMEOUT (30*HZ)
40 
41 static void rpc_purge_list(struct rpc_inode *rpci, struct list_head *head,
42 		void (*destroy_msg)(struct rpc_pipe_msg *), int err)
43 {
44 	struct rpc_pipe_msg *msg;
45 
46 	if (list_empty(head))
47 		return;
48 	do {
49 		msg = list_entry(head->next, struct rpc_pipe_msg, list);
50 		list_del_init(&msg->list);
51 		msg->errno = err;
52 		destroy_msg(msg);
53 	} while (!list_empty(head));
54 	wake_up(&rpci->waitq);
55 }
56 
57 static void
58 rpc_timeout_upcall_queue(struct work_struct *work)
59 {
60 	LIST_HEAD(free_list);
61 	struct rpc_inode *rpci =
62 		container_of(work, struct rpc_inode, queue_timeout.work);
63 	struct inode *inode = &rpci->vfs_inode;
64 	void (*destroy_msg)(struct rpc_pipe_msg *);
65 
66 	spin_lock(&inode->i_lock);
67 	if (rpci->ops == NULL) {
68 		spin_unlock(&inode->i_lock);
69 		return;
70 	}
71 	destroy_msg = rpci->ops->destroy_msg;
72 	if (rpci->nreaders == 0) {
73 		list_splice_init(&rpci->pipe, &free_list);
74 		rpci->pipelen = 0;
75 	}
76 	spin_unlock(&inode->i_lock);
77 	rpc_purge_list(rpci, &free_list, destroy_msg, -ETIMEDOUT);
78 }
79 
80 ssize_t rpc_pipe_generic_upcall(struct file *filp, struct rpc_pipe_msg *msg,
81 				char __user *dst, size_t buflen)
82 {
83 	char *data = (char *)msg->data + msg->copied;
84 	size_t mlen = min(msg->len - msg->copied, buflen);
85 	unsigned long left;
86 
87 	left = copy_to_user(dst, data, mlen);
88 	if (left == mlen) {
89 		msg->errno = -EFAULT;
90 		return -EFAULT;
91 	}
92 
93 	mlen -= left;
94 	msg->copied += mlen;
95 	msg->errno = 0;
96 	return mlen;
97 }
98 EXPORT_SYMBOL_GPL(rpc_pipe_generic_upcall);
99 
100 /**
101  * rpc_queue_upcall - queue an upcall message to userspace
102  * @inode: inode of upcall pipe on which to queue given message
103  * @msg: message to queue
104  *
105  * Call with an @inode created by rpc_mkpipe() to queue an upcall.
106  * A userspace process may then later read the upcall by performing a
107  * read on an open file for this inode.  It is up to the caller to
108  * initialize the fields of @msg (other than @msg->list) appropriately.
109  */
110 int
111 rpc_queue_upcall(struct inode *inode, struct rpc_pipe_msg *msg)
112 {
113 	struct rpc_inode *rpci = RPC_I(inode);
114 	int res = -EPIPE;
115 
116 	spin_lock(&inode->i_lock);
117 	if (rpci->ops == NULL)
118 		goto out;
119 	if (rpci->nreaders) {
120 		list_add_tail(&msg->list, &rpci->pipe);
121 		rpci->pipelen += msg->len;
122 		res = 0;
123 	} else if (rpci->flags & RPC_PIPE_WAIT_FOR_OPEN) {
124 		if (list_empty(&rpci->pipe))
125 			queue_delayed_work(rpciod_workqueue,
126 					&rpci->queue_timeout,
127 					RPC_UPCALL_TIMEOUT);
128 		list_add_tail(&msg->list, &rpci->pipe);
129 		rpci->pipelen += msg->len;
130 		res = 0;
131 	}
132 out:
133 	spin_unlock(&inode->i_lock);
134 	wake_up(&rpci->waitq);
135 	return res;
136 }
137 EXPORT_SYMBOL_GPL(rpc_queue_upcall);
138 
139 static inline void
140 rpc_inode_setowner(struct inode *inode, void *private)
141 {
142 	RPC_I(inode)->private = private;
143 }
144 
145 static void
146 rpc_close_pipes(struct inode *inode)
147 {
148 	struct rpc_inode *rpci = RPC_I(inode);
149 	const struct rpc_pipe_ops *ops;
150 	int need_release;
151 
152 	mutex_lock(&inode->i_mutex);
153 	ops = rpci->ops;
154 	if (ops != NULL) {
155 		LIST_HEAD(free_list);
156 		spin_lock(&inode->i_lock);
157 		need_release = rpci->nreaders != 0 || rpci->nwriters != 0;
158 		rpci->nreaders = 0;
159 		list_splice_init(&rpci->in_upcall, &free_list);
160 		list_splice_init(&rpci->pipe, &free_list);
161 		rpci->pipelen = 0;
162 		rpci->ops = NULL;
163 		spin_unlock(&inode->i_lock);
164 		rpc_purge_list(rpci, &free_list, ops->destroy_msg, -EPIPE);
165 		rpci->nwriters = 0;
166 		if (need_release && ops->release_pipe)
167 			ops->release_pipe(inode);
168 		cancel_delayed_work_sync(&rpci->queue_timeout);
169 	}
170 	rpc_inode_setowner(inode, NULL);
171 	mutex_unlock(&inode->i_mutex);
172 }
173 
174 static struct inode *
175 rpc_alloc_inode(struct super_block *sb)
176 {
177 	struct rpc_inode *rpci;
178 	rpci = (struct rpc_inode *)kmem_cache_alloc(rpc_inode_cachep, GFP_KERNEL);
179 	if (!rpci)
180 		return NULL;
181 	return &rpci->vfs_inode;
182 }
183 
184 static void
185 rpc_i_callback(struct rcu_head *head)
186 {
187 	struct inode *inode = container_of(head, struct inode, i_rcu);
188 	INIT_LIST_HEAD(&inode->i_dentry);
189 	kmem_cache_free(rpc_inode_cachep, RPC_I(inode));
190 }
191 
192 static void
193 rpc_destroy_inode(struct inode *inode)
194 {
195 	call_rcu(&inode->i_rcu, rpc_i_callback);
196 }
197 
198 static int
199 rpc_pipe_open(struct inode *inode, struct file *filp)
200 {
201 	struct rpc_inode *rpci = RPC_I(inode);
202 	int first_open;
203 	int res = -ENXIO;
204 
205 	mutex_lock(&inode->i_mutex);
206 	if (rpci->ops == NULL)
207 		goto out;
208 	first_open = rpci->nreaders == 0 && rpci->nwriters == 0;
209 	if (first_open && rpci->ops->open_pipe) {
210 		res = rpci->ops->open_pipe(inode);
211 		if (res)
212 			goto out;
213 	}
214 	if (filp->f_mode & FMODE_READ)
215 		rpci->nreaders++;
216 	if (filp->f_mode & FMODE_WRITE)
217 		rpci->nwriters++;
218 	res = 0;
219 out:
220 	mutex_unlock(&inode->i_mutex);
221 	return res;
222 }
223 
224 static int
225 rpc_pipe_release(struct inode *inode, struct file *filp)
226 {
227 	struct rpc_inode *rpci = RPC_I(inode);
228 	struct rpc_pipe_msg *msg;
229 	int last_close;
230 
231 	mutex_lock(&inode->i_mutex);
232 	if (rpci->ops == NULL)
233 		goto out;
234 	msg = filp->private_data;
235 	if (msg != NULL) {
236 		spin_lock(&inode->i_lock);
237 		msg->errno = -EAGAIN;
238 		list_del_init(&msg->list);
239 		spin_unlock(&inode->i_lock);
240 		rpci->ops->destroy_msg(msg);
241 	}
242 	if (filp->f_mode & FMODE_WRITE)
243 		rpci->nwriters --;
244 	if (filp->f_mode & FMODE_READ) {
245 		rpci->nreaders --;
246 		if (rpci->nreaders == 0) {
247 			LIST_HEAD(free_list);
248 			spin_lock(&inode->i_lock);
249 			list_splice_init(&rpci->pipe, &free_list);
250 			rpci->pipelen = 0;
251 			spin_unlock(&inode->i_lock);
252 			rpc_purge_list(rpci, &free_list,
253 					rpci->ops->destroy_msg, -EAGAIN);
254 		}
255 	}
256 	last_close = rpci->nwriters == 0 && rpci->nreaders == 0;
257 	if (last_close && rpci->ops->release_pipe)
258 		rpci->ops->release_pipe(inode);
259 out:
260 	mutex_unlock(&inode->i_mutex);
261 	return 0;
262 }
263 
264 static ssize_t
265 rpc_pipe_read(struct file *filp, char __user *buf, size_t len, loff_t *offset)
266 {
267 	struct inode *inode = filp->f_path.dentry->d_inode;
268 	struct rpc_inode *rpci = RPC_I(inode);
269 	struct rpc_pipe_msg *msg;
270 	int res = 0;
271 
272 	mutex_lock(&inode->i_mutex);
273 	if (rpci->ops == NULL) {
274 		res = -EPIPE;
275 		goto out_unlock;
276 	}
277 	msg = filp->private_data;
278 	if (msg == NULL) {
279 		spin_lock(&inode->i_lock);
280 		if (!list_empty(&rpci->pipe)) {
281 			msg = list_entry(rpci->pipe.next,
282 					struct rpc_pipe_msg,
283 					list);
284 			list_move(&msg->list, &rpci->in_upcall);
285 			rpci->pipelen -= msg->len;
286 			filp->private_data = msg;
287 			msg->copied = 0;
288 		}
289 		spin_unlock(&inode->i_lock);
290 		if (msg == NULL)
291 			goto out_unlock;
292 	}
293 	/* NOTE: it is up to the callback to update msg->copied */
294 	res = rpci->ops->upcall(filp, msg, buf, len);
295 	if (res < 0 || msg->len == msg->copied) {
296 		filp->private_data = NULL;
297 		spin_lock(&inode->i_lock);
298 		list_del_init(&msg->list);
299 		spin_unlock(&inode->i_lock);
300 		rpci->ops->destroy_msg(msg);
301 	}
302 out_unlock:
303 	mutex_unlock(&inode->i_mutex);
304 	return res;
305 }
306 
307 static ssize_t
308 rpc_pipe_write(struct file *filp, const char __user *buf, size_t len, loff_t *offset)
309 {
310 	struct inode *inode = filp->f_path.dentry->d_inode;
311 	struct rpc_inode *rpci = RPC_I(inode);
312 	int res;
313 
314 	mutex_lock(&inode->i_mutex);
315 	res = -EPIPE;
316 	if (rpci->ops != NULL)
317 		res = rpci->ops->downcall(filp, buf, len);
318 	mutex_unlock(&inode->i_mutex);
319 	return res;
320 }
321 
322 static unsigned int
323 rpc_pipe_poll(struct file *filp, struct poll_table_struct *wait)
324 {
325 	struct rpc_inode *rpci;
326 	unsigned int mask = 0;
327 
328 	rpci = RPC_I(filp->f_path.dentry->d_inode);
329 	poll_wait(filp, &rpci->waitq, wait);
330 
331 	mask = POLLOUT | POLLWRNORM;
332 	if (rpci->ops == NULL)
333 		mask |= POLLERR | POLLHUP;
334 	if (filp->private_data || !list_empty(&rpci->pipe))
335 		mask |= POLLIN | POLLRDNORM;
336 	return mask;
337 }
338 
339 static long
340 rpc_pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
341 {
342 	struct inode *inode = filp->f_path.dentry->d_inode;
343 	struct rpc_inode *rpci = RPC_I(inode);
344 	int len;
345 
346 	switch (cmd) {
347 	case FIONREAD:
348 		spin_lock(&inode->i_lock);
349 		if (rpci->ops == NULL) {
350 			spin_unlock(&inode->i_lock);
351 			return -EPIPE;
352 		}
353 		len = rpci->pipelen;
354 		if (filp->private_data) {
355 			struct rpc_pipe_msg *msg;
356 			msg = filp->private_data;
357 			len += msg->len - msg->copied;
358 		}
359 		spin_unlock(&inode->i_lock);
360 		return put_user(len, (int __user *)arg);
361 	default:
362 		return -EINVAL;
363 	}
364 }
365 
366 static const struct file_operations rpc_pipe_fops = {
367 	.owner		= THIS_MODULE,
368 	.llseek		= no_llseek,
369 	.read		= rpc_pipe_read,
370 	.write		= rpc_pipe_write,
371 	.poll		= rpc_pipe_poll,
372 	.unlocked_ioctl	= rpc_pipe_ioctl,
373 	.open		= rpc_pipe_open,
374 	.release	= rpc_pipe_release,
375 };
376 
377 static int
378 rpc_show_info(struct seq_file *m, void *v)
379 {
380 	struct rpc_clnt *clnt = m->private;
381 
382 	seq_printf(m, "RPC server: %s\n", clnt->cl_server);
383 	seq_printf(m, "service: %s (%d) version %d\n", clnt->cl_protname,
384 			clnt->cl_prog, clnt->cl_vers);
385 	seq_printf(m, "address: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR));
386 	seq_printf(m, "protocol: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PROTO));
387 	seq_printf(m, "port: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PORT));
388 	return 0;
389 }
390 
391 static int
392 rpc_info_open(struct inode *inode, struct file *file)
393 {
394 	struct rpc_clnt *clnt = NULL;
395 	int ret = single_open(file, rpc_show_info, NULL);
396 
397 	if (!ret) {
398 		struct seq_file *m = file->private_data;
399 
400 		spin_lock(&file->f_path.dentry->d_lock);
401 		if (!d_unhashed(file->f_path.dentry))
402 			clnt = RPC_I(inode)->private;
403 		if (clnt != NULL && atomic_inc_not_zero(&clnt->cl_count)) {
404 			spin_unlock(&file->f_path.dentry->d_lock);
405 			m->private = clnt;
406 		} else {
407 			spin_unlock(&file->f_path.dentry->d_lock);
408 			single_release(inode, file);
409 			ret = -EINVAL;
410 		}
411 	}
412 	return ret;
413 }
414 
415 static int
416 rpc_info_release(struct inode *inode, struct file *file)
417 {
418 	struct seq_file *m = file->private_data;
419 	struct rpc_clnt *clnt = (struct rpc_clnt *)m->private;
420 
421 	if (clnt)
422 		rpc_release_client(clnt);
423 	return single_release(inode, file);
424 }
425 
426 static const struct file_operations rpc_info_operations = {
427 	.owner		= THIS_MODULE,
428 	.open		= rpc_info_open,
429 	.read		= seq_read,
430 	.llseek		= seq_lseek,
431 	.release	= rpc_info_release,
432 };
433 
434 
435 /*
436  * Description of fs contents.
437  */
438 struct rpc_filelist {
439 	const char *name;
440 	const struct file_operations *i_fop;
441 	umode_t mode;
442 };
443 
444 struct vfsmount *rpc_get_mount(void)
445 {
446 	int err;
447 
448 	err = simple_pin_fs(&rpc_pipe_fs_type, &rpc_mnt, &rpc_mount_count);
449 	if (err != 0)
450 		return ERR_PTR(err);
451 	return rpc_mnt;
452 }
453 EXPORT_SYMBOL_GPL(rpc_get_mount);
454 
455 void rpc_put_mount(void)
456 {
457 	simple_release_fs(&rpc_mnt, &rpc_mount_count);
458 }
459 EXPORT_SYMBOL_GPL(rpc_put_mount);
460 
461 static int rpc_delete_dentry(const struct dentry *dentry)
462 {
463 	return 1;
464 }
465 
466 static const struct dentry_operations rpc_dentry_operations = {
467 	.d_delete = rpc_delete_dentry,
468 };
469 
470 static struct inode *
471 rpc_get_inode(struct super_block *sb, umode_t mode)
472 {
473 	struct inode *inode = new_inode(sb);
474 	if (!inode)
475 		return NULL;
476 	inode->i_ino = get_next_ino();
477 	inode->i_mode = mode;
478 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
479 	switch (mode & S_IFMT) {
480 	case S_IFDIR:
481 		inode->i_fop = &simple_dir_operations;
482 		inode->i_op = &simple_dir_inode_operations;
483 		inc_nlink(inode);
484 	default:
485 		break;
486 	}
487 	return inode;
488 }
489 
490 static int __rpc_create_common(struct inode *dir, struct dentry *dentry,
491 			       umode_t mode,
492 			       const struct file_operations *i_fop,
493 			       void *private)
494 {
495 	struct inode *inode;
496 
497 	d_drop(dentry);
498 	inode = rpc_get_inode(dir->i_sb, mode);
499 	if (!inode)
500 		goto out_err;
501 	inode->i_ino = iunique(dir->i_sb, 100);
502 	if (i_fop)
503 		inode->i_fop = i_fop;
504 	if (private)
505 		rpc_inode_setowner(inode, private);
506 	d_add(dentry, inode);
507 	return 0;
508 out_err:
509 	printk(KERN_WARNING "%s: %s failed to allocate inode for dentry %s\n",
510 			__FILE__, __func__, dentry->d_name.name);
511 	dput(dentry);
512 	return -ENOMEM;
513 }
514 
515 static int __rpc_create(struct inode *dir, struct dentry *dentry,
516 			umode_t mode,
517 			const struct file_operations *i_fop,
518 			void *private)
519 {
520 	int err;
521 
522 	err = __rpc_create_common(dir, dentry, S_IFREG | mode, i_fop, private);
523 	if (err)
524 		return err;
525 	fsnotify_create(dir, dentry);
526 	return 0;
527 }
528 
529 static int __rpc_mkdir(struct inode *dir, struct dentry *dentry,
530 		       umode_t mode,
531 		       const struct file_operations *i_fop,
532 		       void *private)
533 {
534 	int err;
535 
536 	err = __rpc_create_common(dir, dentry, S_IFDIR | mode, i_fop, private);
537 	if (err)
538 		return err;
539 	inc_nlink(dir);
540 	fsnotify_mkdir(dir, dentry);
541 	return 0;
542 }
543 
544 static int __rpc_mkpipe(struct inode *dir, struct dentry *dentry,
545 			umode_t mode,
546 			const struct file_operations *i_fop,
547 			void *private,
548 			const struct rpc_pipe_ops *ops,
549 			int flags)
550 {
551 	struct rpc_inode *rpci;
552 	int err;
553 
554 	err = __rpc_create_common(dir, dentry, S_IFIFO | mode, i_fop, private);
555 	if (err)
556 		return err;
557 	rpci = RPC_I(dentry->d_inode);
558 	rpci->nkern_readwriters = 1;
559 	rpci->private = private;
560 	rpci->flags = flags;
561 	rpci->ops = ops;
562 	fsnotify_create(dir, dentry);
563 	return 0;
564 }
565 
566 static int __rpc_rmdir(struct inode *dir, struct dentry *dentry)
567 {
568 	int ret;
569 
570 	dget(dentry);
571 	ret = simple_rmdir(dir, dentry);
572 	d_delete(dentry);
573 	dput(dentry);
574 	return ret;
575 }
576 
577 static int __rpc_unlink(struct inode *dir, struct dentry *dentry)
578 {
579 	int ret;
580 
581 	dget(dentry);
582 	ret = simple_unlink(dir, dentry);
583 	d_delete(dentry);
584 	dput(dentry);
585 	return ret;
586 }
587 
588 static int __rpc_rmpipe(struct inode *dir, struct dentry *dentry)
589 {
590 	struct inode *inode = dentry->d_inode;
591 	struct rpc_inode *rpci = RPC_I(inode);
592 
593 	rpci->nkern_readwriters--;
594 	if (rpci->nkern_readwriters != 0)
595 		return 0;
596 	rpc_close_pipes(inode);
597 	return __rpc_unlink(dir, dentry);
598 }
599 
600 static struct dentry *__rpc_lookup_create(struct dentry *parent,
601 					  struct qstr *name)
602 {
603 	struct dentry *dentry;
604 
605 	dentry = d_lookup(parent, name);
606 	if (!dentry) {
607 		dentry = d_alloc(parent, name);
608 		if (!dentry) {
609 			dentry = ERR_PTR(-ENOMEM);
610 			goto out_err;
611 		}
612 	}
613 	if (!dentry->d_inode)
614 		d_set_d_op(dentry, &rpc_dentry_operations);
615 out_err:
616 	return dentry;
617 }
618 
619 static struct dentry *__rpc_lookup_create_exclusive(struct dentry *parent,
620 					  struct qstr *name)
621 {
622 	struct dentry *dentry;
623 
624 	dentry = __rpc_lookup_create(parent, name);
625 	if (IS_ERR(dentry))
626 		return dentry;
627 	if (dentry->d_inode == NULL)
628 		return dentry;
629 	dput(dentry);
630 	return ERR_PTR(-EEXIST);
631 }
632 
633 /*
634  * FIXME: This probably has races.
635  */
636 static void __rpc_depopulate(struct dentry *parent,
637 			     const struct rpc_filelist *files,
638 			     int start, int eof)
639 {
640 	struct inode *dir = parent->d_inode;
641 	struct dentry *dentry;
642 	struct qstr name;
643 	int i;
644 
645 	for (i = start; i < eof; i++) {
646 		name.name = files[i].name;
647 		name.len = strlen(files[i].name);
648 		name.hash = full_name_hash(name.name, name.len);
649 		dentry = d_lookup(parent, &name);
650 
651 		if (dentry == NULL)
652 			continue;
653 		if (dentry->d_inode == NULL)
654 			goto next;
655 		switch (dentry->d_inode->i_mode & S_IFMT) {
656 			default:
657 				BUG();
658 			case S_IFREG:
659 				__rpc_unlink(dir, dentry);
660 				break;
661 			case S_IFDIR:
662 				__rpc_rmdir(dir, dentry);
663 		}
664 next:
665 		dput(dentry);
666 	}
667 }
668 
669 static void rpc_depopulate(struct dentry *parent,
670 			   const struct rpc_filelist *files,
671 			   int start, int eof)
672 {
673 	struct inode *dir = parent->d_inode;
674 
675 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_CHILD);
676 	__rpc_depopulate(parent, files, start, eof);
677 	mutex_unlock(&dir->i_mutex);
678 }
679 
680 static int rpc_populate(struct dentry *parent,
681 			const struct rpc_filelist *files,
682 			int start, int eof,
683 			void *private)
684 {
685 	struct inode *dir = parent->d_inode;
686 	struct dentry *dentry;
687 	int i, err;
688 
689 	mutex_lock(&dir->i_mutex);
690 	for (i = start; i < eof; i++) {
691 		struct qstr q;
692 
693 		q.name = files[i].name;
694 		q.len = strlen(files[i].name);
695 		q.hash = full_name_hash(q.name, q.len);
696 		dentry = __rpc_lookup_create_exclusive(parent, &q);
697 		err = PTR_ERR(dentry);
698 		if (IS_ERR(dentry))
699 			goto out_bad;
700 		switch (files[i].mode & S_IFMT) {
701 			default:
702 				BUG();
703 			case S_IFREG:
704 				err = __rpc_create(dir, dentry,
705 						files[i].mode,
706 						files[i].i_fop,
707 						private);
708 				break;
709 			case S_IFDIR:
710 				err = __rpc_mkdir(dir, dentry,
711 						files[i].mode,
712 						NULL,
713 						private);
714 		}
715 		if (err != 0)
716 			goto out_bad;
717 	}
718 	mutex_unlock(&dir->i_mutex);
719 	return 0;
720 out_bad:
721 	__rpc_depopulate(parent, files, start, eof);
722 	mutex_unlock(&dir->i_mutex);
723 	printk(KERN_WARNING "%s: %s failed to populate directory %s\n",
724 			__FILE__, __func__, parent->d_name.name);
725 	return err;
726 }
727 
728 static struct dentry *rpc_mkdir_populate(struct dentry *parent,
729 		struct qstr *name, umode_t mode, void *private,
730 		int (*populate)(struct dentry *, void *), void *args_populate)
731 {
732 	struct dentry *dentry;
733 	struct inode *dir = parent->d_inode;
734 	int error;
735 
736 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
737 	dentry = __rpc_lookup_create_exclusive(parent, name);
738 	if (IS_ERR(dentry))
739 		goto out;
740 	error = __rpc_mkdir(dir, dentry, mode, NULL, private);
741 	if (error != 0)
742 		goto out_err;
743 	if (populate != NULL) {
744 		error = populate(dentry, args_populate);
745 		if (error)
746 			goto err_rmdir;
747 	}
748 out:
749 	mutex_unlock(&dir->i_mutex);
750 	return dentry;
751 err_rmdir:
752 	__rpc_rmdir(dir, dentry);
753 out_err:
754 	dentry = ERR_PTR(error);
755 	goto out;
756 }
757 
758 static int rpc_rmdir_depopulate(struct dentry *dentry,
759 		void (*depopulate)(struct dentry *))
760 {
761 	struct dentry *parent;
762 	struct inode *dir;
763 	int error;
764 
765 	parent = dget_parent(dentry);
766 	dir = parent->d_inode;
767 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
768 	if (depopulate != NULL)
769 		depopulate(dentry);
770 	error = __rpc_rmdir(dir, dentry);
771 	mutex_unlock(&dir->i_mutex);
772 	dput(parent);
773 	return error;
774 }
775 
776 /**
777  * rpc_mkpipe - make an rpc_pipefs file for kernel<->userspace communication
778  * @parent: dentry of directory to create new "pipe" in
779  * @name: name of pipe
780  * @private: private data to associate with the pipe, for the caller's use
781  * @ops: operations defining the behavior of the pipe: upcall, downcall,
782  *	release_pipe, open_pipe, and destroy_msg.
783  * @flags: rpc_inode flags
784  *
785  * Data is made available for userspace to read by calls to
786  * rpc_queue_upcall().  The actual reads will result in calls to
787  * @ops->upcall, which will be called with the file pointer,
788  * message, and userspace buffer to copy to.
789  *
790  * Writes can come at any time, and do not necessarily have to be
791  * responses to upcalls.  They will result in calls to @msg->downcall.
792  *
793  * The @private argument passed here will be available to all these methods
794  * from the file pointer, via RPC_I(file->f_dentry->d_inode)->private.
795  */
796 struct dentry *rpc_mkpipe(struct dentry *parent, const char *name,
797 			  void *private, const struct rpc_pipe_ops *ops,
798 			  int flags)
799 {
800 	struct dentry *dentry;
801 	struct inode *dir = parent->d_inode;
802 	umode_t umode = S_IFIFO | S_IRUSR | S_IWUSR;
803 	struct qstr q;
804 	int err;
805 
806 	if (ops->upcall == NULL)
807 		umode &= ~S_IRUGO;
808 	if (ops->downcall == NULL)
809 		umode &= ~S_IWUGO;
810 
811 	q.name = name;
812 	q.len = strlen(name);
813 	q.hash = full_name_hash(q.name, q.len),
814 
815 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
816 	dentry = __rpc_lookup_create(parent, &q);
817 	if (IS_ERR(dentry))
818 		goto out;
819 	if (dentry->d_inode) {
820 		struct rpc_inode *rpci = RPC_I(dentry->d_inode);
821 		if (rpci->private != private ||
822 				rpci->ops != ops ||
823 				rpci->flags != flags) {
824 			dput (dentry);
825 			err = -EBUSY;
826 			goto out_err;
827 		}
828 		rpci->nkern_readwriters++;
829 		goto out;
830 	}
831 
832 	err = __rpc_mkpipe(dir, dentry, umode, &rpc_pipe_fops,
833 			   private, ops, flags);
834 	if (err)
835 		goto out_err;
836 out:
837 	mutex_unlock(&dir->i_mutex);
838 	return dentry;
839 out_err:
840 	dentry = ERR_PTR(err);
841 	printk(KERN_WARNING "%s: %s() failed to create pipe %s/%s (errno = %d)\n",
842 			__FILE__, __func__, parent->d_name.name, name,
843 			err);
844 	goto out;
845 }
846 EXPORT_SYMBOL_GPL(rpc_mkpipe);
847 
848 /**
849  * rpc_unlink - remove a pipe
850  * @dentry: dentry for the pipe, as returned from rpc_mkpipe
851  *
852  * After this call, lookups will no longer find the pipe, and any
853  * attempts to read or write using preexisting opens of the pipe will
854  * return -EPIPE.
855  */
856 int
857 rpc_unlink(struct dentry *dentry)
858 {
859 	struct dentry *parent;
860 	struct inode *dir;
861 	int error = 0;
862 
863 	parent = dget_parent(dentry);
864 	dir = parent->d_inode;
865 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
866 	error = __rpc_rmpipe(dir, dentry);
867 	mutex_unlock(&dir->i_mutex);
868 	dput(parent);
869 	return error;
870 }
871 EXPORT_SYMBOL_GPL(rpc_unlink);
872 
873 enum {
874 	RPCAUTH_info,
875 	RPCAUTH_EOF
876 };
877 
878 static const struct rpc_filelist authfiles[] = {
879 	[RPCAUTH_info] = {
880 		.name = "info",
881 		.i_fop = &rpc_info_operations,
882 		.mode = S_IFREG | S_IRUSR,
883 	},
884 };
885 
886 static int rpc_clntdir_populate(struct dentry *dentry, void *private)
887 {
888 	return rpc_populate(dentry,
889 			    authfiles, RPCAUTH_info, RPCAUTH_EOF,
890 			    private);
891 }
892 
893 static void rpc_clntdir_depopulate(struct dentry *dentry)
894 {
895 	rpc_depopulate(dentry, authfiles, RPCAUTH_info, RPCAUTH_EOF);
896 }
897 
898 /**
899  * rpc_create_client_dir - Create a new rpc_client directory in rpc_pipefs
900  * @dentry: dentry from the rpc_pipefs root to the new directory
901  * @name: &struct qstr for the name
902  * @rpc_client: rpc client to associate with this directory
903  *
904  * This creates a directory at the given @path associated with
905  * @rpc_clnt, which will contain a file named "info" with some basic
906  * information about the client, together with any "pipes" that may
907  * later be created using rpc_mkpipe().
908  */
909 struct dentry *rpc_create_client_dir(struct dentry *dentry,
910 				   struct qstr *name,
911 				   struct rpc_clnt *rpc_client)
912 {
913 	return rpc_mkdir_populate(dentry, name, S_IRUGO | S_IXUGO, NULL,
914 			rpc_clntdir_populate, rpc_client);
915 }
916 
917 /**
918  * rpc_remove_client_dir - Remove a directory created with rpc_create_client_dir()
919  * @dentry: directory to remove
920  */
921 int rpc_remove_client_dir(struct dentry *dentry)
922 {
923 	return rpc_rmdir_depopulate(dentry, rpc_clntdir_depopulate);
924 }
925 
926 static const struct rpc_filelist cache_pipefs_files[3] = {
927 	[0] = {
928 		.name = "channel",
929 		.i_fop = &cache_file_operations_pipefs,
930 		.mode = S_IFREG|S_IRUSR|S_IWUSR,
931 	},
932 	[1] = {
933 		.name = "content",
934 		.i_fop = &content_file_operations_pipefs,
935 		.mode = S_IFREG|S_IRUSR,
936 	},
937 	[2] = {
938 		.name = "flush",
939 		.i_fop = &cache_flush_operations_pipefs,
940 		.mode = S_IFREG|S_IRUSR|S_IWUSR,
941 	},
942 };
943 
944 static int rpc_cachedir_populate(struct dentry *dentry, void *private)
945 {
946 	return rpc_populate(dentry,
947 			    cache_pipefs_files, 0, 3,
948 			    private);
949 }
950 
951 static void rpc_cachedir_depopulate(struct dentry *dentry)
952 {
953 	rpc_depopulate(dentry, cache_pipefs_files, 0, 3);
954 }
955 
956 struct dentry *rpc_create_cache_dir(struct dentry *parent, struct qstr *name,
957 				    mode_t umode, struct cache_detail *cd)
958 {
959 	return rpc_mkdir_populate(parent, name, umode, NULL,
960 			rpc_cachedir_populate, cd);
961 }
962 
963 void rpc_remove_cache_dir(struct dentry *dentry)
964 {
965 	rpc_rmdir_depopulate(dentry, rpc_cachedir_depopulate);
966 }
967 
968 /*
969  * populate the filesystem
970  */
971 static const struct super_operations s_ops = {
972 	.alloc_inode	= rpc_alloc_inode,
973 	.destroy_inode	= rpc_destroy_inode,
974 	.statfs		= simple_statfs,
975 };
976 
977 #define RPCAUTH_GSSMAGIC 0x67596969
978 
979 /*
980  * We have a single directory with 1 node in it.
981  */
982 enum {
983 	RPCAUTH_lockd,
984 	RPCAUTH_mount,
985 	RPCAUTH_nfs,
986 	RPCAUTH_portmap,
987 	RPCAUTH_statd,
988 	RPCAUTH_nfsd4_cb,
989 	RPCAUTH_cache,
990 	RPCAUTH_RootEOF
991 };
992 
993 static const struct rpc_filelist files[] = {
994 	[RPCAUTH_lockd] = {
995 		.name = "lockd",
996 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
997 	},
998 	[RPCAUTH_mount] = {
999 		.name = "mount",
1000 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
1001 	},
1002 	[RPCAUTH_nfs] = {
1003 		.name = "nfs",
1004 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
1005 	},
1006 	[RPCAUTH_portmap] = {
1007 		.name = "portmap",
1008 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
1009 	},
1010 	[RPCAUTH_statd] = {
1011 		.name = "statd",
1012 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
1013 	},
1014 	[RPCAUTH_nfsd4_cb] = {
1015 		.name = "nfsd4_cb",
1016 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
1017 	},
1018 	[RPCAUTH_cache] = {
1019 		.name = "cache",
1020 		.mode = S_IFDIR | S_IRUGO | S_IXUGO,
1021 	},
1022 };
1023 
1024 static int
1025 rpc_fill_super(struct super_block *sb, void *data, int silent)
1026 {
1027 	struct inode *inode;
1028 	struct dentry *root;
1029 
1030 	sb->s_blocksize = PAGE_CACHE_SIZE;
1031 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1032 	sb->s_magic = RPCAUTH_GSSMAGIC;
1033 	sb->s_op = &s_ops;
1034 	sb->s_time_gran = 1;
1035 
1036 	inode = rpc_get_inode(sb, S_IFDIR | 0755);
1037 	if (!inode)
1038 		return -ENOMEM;
1039 	sb->s_root = root = d_alloc_root(inode);
1040 	if (!root) {
1041 		iput(inode);
1042 		return -ENOMEM;
1043 	}
1044 	if (rpc_populate(root, files, RPCAUTH_lockd, RPCAUTH_RootEOF, NULL))
1045 		return -ENOMEM;
1046 	return 0;
1047 }
1048 
1049 static struct dentry *
1050 rpc_mount(struct file_system_type *fs_type,
1051 		int flags, const char *dev_name, void *data)
1052 {
1053 	return mount_single(fs_type, flags, data, rpc_fill_super);
1054 }
1055 
1056 static struct file_system_type rpc_pipe_fs_type = {
1057 	.owner		= THIS_MODULE,
1058 	.name		= "rpc_pipefs",
1059 	.mount		= rpc_mount,
1060 	.kill_sb	= kill_litter_super,
1061 };
1062 
1063 static void
1064 init_once(void *foo)
1065 {
1066 	struct rpc_inode *rpci = (struct rpc_inode *) foo;
1067 
1068 	inode_init_once(&rpci->vfs_inode);
1069 	rpci->private = NULL;
1070 	rpci->nreaders = 0;
1071 	rpci->nwriters = 0;
1072 	INIT_LIST_HEAD(&rpci->in_upcall);
1073 	INIT_LIST_HEAD(&rpci->in_downcall);
1074 	INIT_LIST_HEAD(&rpci->pipe);
1075 	rpci->pipelen = 0;
1076 	init_waitqueue_head(&rpci->waitq);
1077 	INIT_DELAYED_WORK(&rpci->queue_timeout,
1078 			    rpc_timeout_upcall_queue);
1079 	rpci->ops = NULL;
1080 }
1081 
1082 int register_rpc_pipefs(void)
1083 {
1084 	int err;
1085 
1086 	rpc_inode_cachep = kmem_cache_create("rpc_inode_cache",
1087 				sizeof(struct rpc_inode),
1088 				0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
1089 						SLAB_MEM_SPREAD),
1090 				init_once);
1091 	if (!rpc_inode_cachep)
1092 		return -ENOMEM;
1093 	err = register_filesystem(&rpc_pipe_fs_type);
1094 	if (err) {
1095 		kmem_cache_destroy(rpc_inode_cachep);
1096 		return err;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 void unregister_rpc_pipefs(void)
1103 {
1104 	kmem_cache_destroy(rpc_inode_cachep);
1105 	unregister_filesystem(&rpc_pipe_fs_type);
1106 }
1107 
1108 /* Make 'mount -t rpc_pipefs ...' autoload this module. */
1109 MODULE_ALIAS("rpc_pipefs");
1110