1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/clnt.c 4 * 5 * This file contains the high-level RPC interface. 6 * It is modeled as a finite state machine to support both synchronous 7 * and asynchronous requests. 8 * 9 * - RPC header generation and argument serialization. 10 * - Credential refresh. 11 * - TCP connect handling. 12 * - Retry of operation when it is suspected the operation failed because 13 * of uid squashing on the server, or when the credentials were stale 14 * and need to be refreshed, or when a packet was damaged in transit. 15 * This may be have to be moved to the VFS layer. 16 * 17 * Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com> 18 * Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de> 19 */ 20 21 22 #include <linux/module.h> 23 #include <linux/types.h> 24 #include <linux/kallsyms.h> 25 #include <linux/mm.h> 26 #include <linux/namei.h> 27 #include <linux/mount.h> 28 #include <linux/slab.h> 29 #include <linux/rcupdate.h> 30 #include <linux/utsname.h> 31 #include <linux/workqueue.h> 32 #include <linux/in.h> 33 #include <linux/in6.h> 34 #include <linux/un.h> 35 36 #include <linux/sunrpc/clnt.h> 37 #include <linux/sunrpc/addr.h> 38 #include <linux/sunrpc/rpc_pipe_fs.h> 39 #include <linux/sunrpc/metrics.h> 40 #include <linux/sunrpc/bc_xprt.h> 41 #include <trace/events/sunrpc.h> 42 43 #include "sunrpc.h" 44 #include "sysfs.h" 45 #include "netns.h" 46 47 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 48 # define RPCDBG_FACILITY RPCDBG_CALL 49 #endif 50 51 /* 52 * All RPC clients are linked into this list 53 */ 54 55 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait); 56 57 58 static void call_start(struct rpc_task *task); 59 static void call_reserve(struct rpc_task *task); 60 static void call_reserveresult(struct rpc_task *task); 61 static void call_allocate(struct rpc_task *task); 62 static void call_encode(struct rpc_task *task); 63 static void call_decode(struct rpc_task *task); 64 static void call_bind(struct rpc_task *task); 65 static void call_bind_status(struct rpc_task *task); 66 static void call_transmit(struct rpc_task *task); 67 static void call_status(struct rpc_task *task); 68 static void call_transmit_status(struct rpc_task *task); 69 static void call_refresh(struct rpc_task *task); 70 static void call_refreshresult(struct rpc_task *task); 71 static void call_connect(struct rpc_task *task); 72 static void call_connect_status(struct rpc_task *task); 73 74 static int rpc_encode_header(struct rpc_task *task, 75 struct xdr_stream *xdr); 76 static int rpc_decode_header(struct rpc_task *task, 77 struct xdr_stream *xdr); 78 static int rpc_ping(struct rpc_clnt *clnt); 79 static void rpc_check_timeout(struct rpc_task *task); 80 81 static void rpc_register_client(struct rpc_clnt *clnt) 82 { 83 struct net *net = rpc_net_ns(clnt); 84 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 85 86 spin_lock(&sn->rpc_client_lock); 87 list_add(&clnt->cl_clients, &sn->all_clients); 88 spin_unlock(&sn->rpc_client_lock); 89 } 90 91 static void rpc_unregister_client(struct rpc_clnt *clnt) 92 { 93 struct net *net = rpc_net_ns(clnt); 94 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 95 96 spin_lock(&sn->rpc_client_lock); 97 list_del(&clnt->cl_clients); 98 spin_unlock(&sn->rpc_client_lock); 99 } 100 101 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 102 { 103 rpc_remove_client_dir(clnt); 104 } 105 106 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 107 { 108 struct net *net = rpc_net_ns(clnt); 109 struct super_block *pipefs_sb; 110 111 pipefs_sb = rpc_get_sb_net(net); 112 if (pipefs_sb) { 113 __rpc_clnt_remove_pipedir(clnt); 114 rpc_put_sb_net(net); 115 } 116 } 117 118 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb, 119 struct rpc_clnt *clnt) 120 { 121 static uint32_t clntid; 122 const char *dir_name = clnt->cl_program->pipe_dir_name; 123 char name[15]; 124 struct dentry *dir, *dentry; 125 126 dir = rpc_d_lookup_sb(sb, dir_name); 127 if (dir == NULL) { 128 pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name); 129 return dir; 130 } 131 for (;;) { 132 snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++); 133 name[sizeof(name) - 1] = '\0'; 134 dentry = rpc_create_client_dir(dir, name, clnt); 135 if (!IS_ERR(dentry)) 136 break; 137 if (dentry == ERR_PTR(-EEXIST)) 138 continue; 139 printk(KERN_INFO "RPC: Couldn't create pipefs entry" 140 " %s/%s, error %ld\n", 141 dir_name, name, PTR_ERR(dentry)); 142 break; 143 } 144 dput(dir); 145 return dentry; 146 } 147 148 static int 149 rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt) 150 { 151 struct dentry *dentry; 152 153 if (clnt->cl_program->pipe_dir_name != NULL) { 154 dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt); 155 if (IS_ERR(dentry)) 156 return PTR_ERR(dentry); 157 } 158 return 0; 159 } 160 161 static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event) 162 { 163 if (clnt->cl_program->pipe_dir_name == NULL) 164 return 1; 165 166 switch (event) { 167 case RPC_PIPEFS_MOUNT: 168 if (clnt->cl_pipedir_objects.pdh_dentry != NULL) 169 return 1; 170 if (atomic_read(&clnt->cl_count) == 0) 171 return 1; 172 break; 173 case RPC_PIPEFS_UMOUNT: 174 if (clnt->cl_pipedir_objects.pdh_dentry == NULL) 175 return 1; 176 break; 177 } 178 return 0; 179 } 180 181 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event, 182 struct super_block *sb) 183 { 184 struct dentry *dentry; 185 186 switch (event) { 187 case RPC_PIPEFS_MOUNT: 188 dentry = rpc_setup_pipedir_sb(sb, clnt); 189 if (!dentry) 190 return -ENOENT; 191 if (IS_ERR(dentry)) 192 return PTR_ERR(dentry); 193 break; 194 case RPC_PIPEFS_UMOUNT: 195 __rpc_clnt_remove_pipedir(clnt); 196 break; 197 default: 198 printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event); 199 return -ENOTSUPP; 200 } 201 return 0; 202 } 203 204 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event, 205 struct super_block *sb) 206 { 207 int error = 0; 208 209 for (;; clnt = clnt->cl_parent) { 210 if (!rpc_clnt_skip_event(clnt, event)) 211 error = __rpc_clnt_handle_event(clnt, event, sb); 212 if (error || clnt == clnt->cl_parent) 213 break; 214 } 215 return error; 216 } 217 218 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event) 219 { 220 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 221 struct rpc_clnt *clnt; 222 223 spin_lock(&sn->rpc_client_lock); 224 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 225 if (rpc_clnt_skip_event(clnt, event)) 226 continue; 227 spin_unlock(&sn->rpc_client_lock); 228 return clnt; 229 } 230 spin_unlock(&sn->rpc_client_lock); 231 return NULL; 232 } 233 234 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event, 235 void *ptr) 236 { 237 struct super_block *sb = ptr; 238 struct rpc_clnt *clnt; 239 int error = 0; 240 241 while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) { 242 error = __rpc_pipefs_event(clnt, event, sb); 243 if (error) 244 break; 245 } 246 return error; 247 } 248 249 static struct notifier_block rpc_clients_block = { 250 .notifier_call = rpc_pipefs_event, 251 .priority = SUNRPC_PIPEFS_RPC_PRIO, 252 }; 253 254 int rpc_clients_notifier_register(void) 255 { 256 return rpc_pipefs_notifier_register(&rpc_clients_block); 257 } 258 259 void rpc_clients_notifier_unregister(void) 260 { 261 return rpc_pipefs_notifier_unregister(&rpc_clients_block); 262 } 263 264 static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt, 265 struct rpc_xprt *xprt, 266 const struct rpc_timeout *timeout) 267 { 268 struct rpc_xprt *old; 269 270 spin_lock(&clnt->cl_lock); 271 old = rcu_dereference_protected(clnt->cl_xprt, 272 lockdep_is_held(&clnt->cl_lock)); 273 274 if (!xprt_bound(xprt)) 275 clnt->cl_autobind = 1; 276 277 clnt->cl_timeout = timeout; 278 rcu_assign_pointer(clnt->cl_xprt, xprt); 279 spin_unlock(&clnt->cl_lock); 280 281 return old; 282 } 283 284 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename) 285 { 286 clnt->cl_nodelen = strlcpy(clnt->cl_nodename, 287 nodename, sizeof(clnt->cl_nodename)); 288 } 289 290 static int rpc_client_register(struct rpc_clnt *clnt, 291 rpc_authflavor_t pseudoflavor, 292 const char *client_name) 293 { 294 struct rpc_auth_create_args auth_args = { 295 .pseudoflavor = pseudoflavor, 296 .target_name = client_name, 297 }; 298 struct rpc_auth *auth; 299 struct net *net = rpc_net_ns(clnt); 300 struct super_block *pipefs_sb; 301 int err; 302 303 rpc_clnt_debugfs_register(clnt); 304 305 pipefs_sb = rpc_get_sb_net(net); 306 if (pipefs_sb) { 307 err = rpc_setup_pipedir(pipefs_sb, clnt); 308 if (err) 309 goto out; 310 } 311 312 rpc_register_client(clnt); 313 if (pipefs_sb) 314 rpc_put_sb_net(net); 315 316 auth = rpcauth_create(&auth_args, clnt); 317 if (IS_ERR(auth)) { 318 dprintk("RPC: Couldn't create auth handle (flavor %u)\n", 319 pseudoflavor); 320 err = PTR_ERR(auth); 321 goto err_auth; 322 } 323 return 0; 324 err_auth: 325 pipefs_sb = rpc_get_sb_net(net); 326 rpc_unregister_client(clnt); 327 __rpc_clnt_remove_pipedir(clnt); 328 out: 329 if (pipefs_sb) 330 rpc_put_sb_net(net); 331 rpc_sysfs_client_destroy(clnt); 332 rpc_clnt_debugfs_unregister(clnt); 333 return err; 334 } 335 336 static DEFINE_IDA(rpc_clids); 337 338 void rpc_cleanup_clids(void) 339 { 340 ida_destroy(&rpc_clids); 341 } 342 343 static int rpc_alloc_clid(struct rpc_clnt *clnt) 344 { 345 int clid; 346 347 clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL); 348 if (clid < 0) 349 return clid; 350 clnt->cl_clid = clid; 351 return 0; 352 } 353 354 static void rpc_free_clid(struct rpc_clnt *clnt) 355 { 356 ida_simple_remove(&rpc_clids, clnt->cl_clid); 357 } 358 359 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args, 360 struct rpc_xprt_switch *xps, 361 struct rpc_xprt *xprt, 362 struct rpc_clnt *parent) 363 { 364 const struct rpc_program *program = args->program; 365 const struct rpc_version *version; 366 struct rpc_clnt *clnt = NULL; 367 const struct rpc_timeout *timeout; 368 const char *nodename = args->nodename; 369 int err; 370 371 err = rpciod_up(); 372 if (err) 373 goto out_no_rpciod; 374 375 err = -EINVAL; 376 if (args->version >= program->nrvers) 377 goto out_err; 378 version = program->version[args->version]; 379 if (version == NULL) 380 goto out_err; 381 382 err = -ENOMEM; 383 clnt = kzalloc(sizeof(*clnt), GFP_KERNEL); 384 if (!clnt) 385 goto out_err; 386 clnt->cl_parent = parent ? : clnt; 387 388 err = rpc_alloc_clid(clnt); 389 if (err) 390 goto out_no_clid; 391 392 clnt->cl_cred = get_cred(args->cred); 393 clnt->cl_procinfo = version->procs; 394 clnt->cl_maxproc = version->nrprocs; 395 clnt->cl_prog = args->prognumber ? : program->number; 396 clnt->cl_vers = version->number; 397 clnt->cl_stats = program->stats; 398 clnt->cl_metrics = rpc_alloc_iostats(clnt); 399 rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects); 400 err = -ENOMEM; 401 if (clnt->cl_metrics == NULL) 402 goto out_no_stats; 403 clnt->cl_program = program; 404 INIT_LIST_HEAD(&clnt->cl_tasks); 405 spin_lock_init(&clnt->cl_lock); 406 407 timeout = xprt->timeout; 408 if (args->timeout != NULL) { 409 memcpy(&clnt->cl_timeout_default, args->timeout, 410 sizeof(clnt->cl_timeout_default)); 411 timeout = &clnt->cl_timeout_default; 412 } 413 414 rpc_clnt_set_transport(clnt, xprt, timeout); 415 xprt->main = true; 416 xprt_iter_init(&clnt->cl_xpi, xps); 417 xprt_switch_put(xps); 418 419 clnt->cl_rtt = &clnt->cl_rtt_default; 420 rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval); 421 422 atomic_set(&clnt->cl_count, 1); 423 424 if (nodename == NULL) 425 nodename = utsname()->nodename; 426 /* save the nodename */ 427 rpc_clnt_set_nodename(clnt, nodename); 428 429 rpc_sysfs_client_setup(clnt, xps, rpc_net_ns(clnt)); 430 err = rpc_client_register(clnt, args->authflavor, args->client_name); 431 if (err) 432 goto out_no_path; 433 if (parent) 434 atomic_inc(&parent->cl_count); 435 436 trace_rpc_clnt_new(clnt, xprt, program->name, args->servername); 437 return clnt; 438 439 out_no_path: 440 rpc_free_iostats(clnt->cl_metrics); 441 out_no_stats: 442 put_cred(clnt->cl_cred); 443 rpc_free_clid(clnt); 444 out_no_clid: 445 kfree(clnt); 446 out_err: 447 rpciod_down(); 448 out_no_rpciod: 449 xprt_switch_put(xps); 450 xprt_put(xprt); 451 trace_rpc_clnt_new_err(program->name, args->servername, err); 452 return ERR_PTR(err); 453 } 454 455 static struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args, 456 struct rpc_xprt *xprt) 457 { 458 struct rpc_clnt *clnt = NULL; 459 struct rpc_xprt_switch *xps; 460 461 if (args->bc_xprt && args->bc_xprt->xpt_bc_xps) { 462 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); 463 xps = args->bc_xprt->xpt_bc_xps; 464 xprt_switch_get(xps); 465 } else { 466 xps = xprt_switch_alloc(xprt, GFP_KERNEL); 467 if (xps == NULL) { 468 xprt_put(xprt); 469 return ERR_PTR(-ENOMEM); 470 } 471 if (xprt->bc_xprt) { 472 xprt_switch_get(xps); 473 xprt->bc_xprt->xpt_bc_xps = xps; 474 } 475 } 476 clnt = rpc_new_client(args, xps, xprt, NULL); 477 if (IS_ERR(clnt)) 478 return clnt; 479 480 if (!(args->flags & RPC_CLNT_CREATE_NOPING)) { 481 int err = rpc_ping(clnt); 482 if (err != 0) { 483 rpc_shutdown_client(clnt); 484 return ERR_PTR(err); 485 } 486 } 487 488 clnt->cl_softrtry = 1; 489 if (args->flags & (RPC_CLNT_CREATE_HARDRTRY|RPC_CLNT_CREATE_SOFTERR)) { 490 clnt->cl_softrtry = 0; 491 if (args->flags & RPC_CLNT_CREATE_SOFTERR) 492 clnt->cl_softerr = 1; 493 } 494 495 if (args->flags & RPC_CLNT_CREATE_AUTOBIND) 496 clnt->cl_autobind = 1; 497 if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT) 498 clnt->cl_noretranstimeo = 1; 499 if (args->flags & RPC_CLNT_CREATE_DISCRTRY) 500 clnt->cl_discrtry = 1; 501 if (!(args->flags & RPC_CLNT_CREATE_QUIET)) 502 clnt->cl_chatty = 1; 503 504 return clnt; 505 } 506 507 /** 508 * rpc_create - create an RPC client and transport with one call 509 * @args: rpc_clnt create argument structure 510 * 511 * Creates and initializes an RPC transport and an RPC client. 512 * 513 * It can ping the server in order to determine if it is up, and to see if 514 * it supports this program and version. RPC_CLNT_CREATE_NOPING disables 515 * this behavior so asynchronous tasks can also use rpc_create. 516 */ 517 struct rpc_clnt *rpc_create(struct rpc_create_args *args) 518 { 519 struct rpc_xprt *xprt; 520 struct xprt_create xprtargs = { 521 .net = args->net, 522 .ident = args->protocol, 523 .srcaddr = args->saddress, 524 .dstaddr = args->address, 525 .addrlen = args->addrsize, 526 .servername = args->servername, 527 .bc_xprt = args->bc_xprt, 528 }; 529 char servername[48]; 530 struct rpc_clnt *clnt; 531 int i; 532 533 if (args->bc_xprt) { 534 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); 535 xprt = args->bc_xprt->xpt_bc_xprt; 536 if (xprt) { 537 xprt_get(xprt); 538 return rpc_create_xprt(args, xprt); 539 } 540 } 541 542 if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS) 543 xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS; 544 if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT) 545 xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT; 546 /* 547 * If the caller chooses not to specify a hostname, whip 548 * up a string representation of the passed-in address. 549 */ 550 if (xprtargs.servername == NULL) { 551 struct sockaddr_un *sun = 552 (struct sockaddr_un *)args->address; 553 struct sockaddr_in *sin = 554 (struct sockaddr_in *)args->address; 555 struct sockaddr_in6 *sin6 = 556 (struct sockaddr_in6 *)args->address; 557 558 servername[0] = '\0'; 559 switch (args->address->sa_family) { 560 case AF_LOCAL: 561 snprintf(servername, sizeof(servername), "%s", 562 sun->sun_path); 563 break; 564 case AF_INET: 565 snprintf(servername, sizeof(servername), "%pI4", 566 &sin->sin_addr.s_addr); 567 break; 568 case AF_INET6: 569 snprintf(servername, sizeof(servername), "%pI6", 570 &sin6->sin6_addr); 571 break; 572 default: 573 /* caller wants default server name, but 574 * address family isn't recognized. */ 575 return ERR_PTR(-EINVAL); 576 } 577 xprtargs.servername = servername; 578 } 579 580 xprt = xprt_create_transport(&xprtargs); 581 if (IS_ERR(xprt)) 582 return (struct rpc_clnt *)xprt; 583 584 /* 585 * By default, kernel RPC client connects from a reserved port. 586 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters, 587 * but it is always enabled for rpciod, which handles the connect 588 * operation. 589 */ 590 xprt->resvport = 1; 591 if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT) 592 xprt->resvport = 0; 593 xprt->reuseport = 0; 594 if (args->flags & RPC_CLNT_CREATE_REUSEPORT) 595 xprt->reuseport = 1; 596 597 clnt = rpc_create_xprt(args, xprt); 598 if (IS_ERR(clnt) || args->nconnect <= 1) 599 return clnt; 600 601 for (i = 0; i < args->nconnect - 1; i++) { 602 if (rpc_clnt_add_xprt(clnt, &xprtargs, NULL, NULL) < 0) 603 break; 604 } 605 return clnt; 606 } 607 EXPORT_SYMBOL_GPL(rpc_create); 608 609 /* 610 * This function clones the RPC client structure. It allows us to share the 611 * same transport while varying parameters such as the authentication 612 * flavour. 613 */ 614 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args, 615 struct rpc_clnt *clnt) 616 { 617 struct rpc_xprt_switch *xps; 618 struct rpc_xprt *xprt; 619 struct rpc_clnt *new; 620 int err; 621 622 err = -ENOMEM; 623 rcu_read_lock(); 624 xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); 625 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 626 rcu_read_unlock(); 627 if (xprt == NULL || xps == NULL) { 628 xprt_put(xprt); 629 xprt_switch_put(xps); 630 goto out_err; 631 } 632 args->servername = xprt->servername; 633 args->nodename = clnt->cl_nodename; 634 635 new = rpc_new_client(args, xps, xprt, clnt); 636 if (IS_ERR(new)) 637 return new; 638 639 /* Turn off autobind on clones */ 640 new->cl_autobind = 0; 641 new->cl_softrtry = clnt->cl_softrtry; 642 new->cl_softerr = clnt->cl_softerr; 643 new->cl_noretranstimeo = clnt->cl_noretranstimeo; 644 new->cl_discrtry = clnt->cl_discrtry; 645 new->cl_chatty = clnt->cl_chatty; 646 new->cl_principal = clnt->cl_principal; 647 return new; 648 649 out_err: 650 trace_rpc_clnt_clone_err(clnt, err); 651 return ERR_PTR(err); 652 } 653 654 /** 655 * rpc_clone_client - Clone an RPC client structure 656 * 657 * @clnt: RPC client whose parameters are copied 658 * 659 * Returns a fresh RPC client or an ERR_PTR. 660 */ 661 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt) 662 { 663 struct rpc_create_args args = { 664 .program = clnt->cl_program, 665 .prognumber = clnt->cl_prog, 666 .version = clnt->cl_vers, 667 .authflavor = clnt->cl_auth->au_flavor, 668 .cred = clnt->cl_cred, 669 }; 670 return __rpc_clone_client(&args, clnt); 671 } 672 EXPORT_SYMBOL_GPL(rpc_clone_client); 673 674 /** 675 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth 676 * 677 * @clnt: RPC client whose parameters are copied 678 * @flavor: security flavor for new client 679 * 680 * Returns a fresh RPC client or an ERR_PTR. 681 */ 682 struct rpc_clnt * 683 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 684 { 685 struct rpc_create_args args = { 686 .program = clnt->cl_program, 687 .prognumber = clnt->cl_prog, 688 .version = clnt->cl_vers, 689 .authflavor = flavor, 690 .cred = clnt->cl_cred, 691 }; 692 return __rpc_clone_client(&args, clnt); 693 } 694 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth); 695 696 /** 697 * rpc_switch_client_transport: switch the RPC transport on the fly 698 * @clnt: pointer to a struct rpc_clnt 699 * @args: pointer to the new transport arguments 700 * @timeout: pointer to the new timeout parameters 701 * 702 * This function allows the caller to switch the RPC transport for the 703 * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS 704 * server, for instance. It assumes that the caller has ensured that 705 * there are no active RPC tasks by using some form of locking. 706 * 707 * Returns zero if "clnt" is now using the new xprt. Otherwise a 708 * negative errno is returned, and "clnt" continues to use the old 709 * xprt. 710 */ 711 int rpc_switch_client_transport(struct rpc_clnt *clnt, 712 struct xprt_create *args, 713 const struct rpc_timeout *timeout) 714 { 715 const struct rpc_timeout *old_timeo; 716 rpc_authflavor_t pseudoflavor; 717 struct rpc_xprt_switch *xps, *oldxps; 718 struct rpc_xprt *xprt, *old; 719 struct rpc_clnt *parent; 720 int err; 721 722 xprt = xprt_create_transport(args); 723 if (IS_ERR(xprt)) 724 return PTR_ERR(xprt); 725 726 xps = xprt_switch_alloc(xprt, GFP_KERNEL); 727 if (xps == NULL) { 728 xprt_put(xprt); 729 return -ENOMEM; 730 } 731 732 pseudoflavor = clnt->cl_auth->au_flavor; 733 734 old_timeo = clnt->cl_timeout; 735 old = rpc_clnt_set_transport(clnt, xprt, timeout); 736 oldxps = xprt_iter_xchg_switch(&clnt->cl_xpi, xps); 737 738 rpc_unregister_client(clnt); 739 __rpc_clnt_remove_pipedir(clnt); 740 rpc_sysfs_client_destroy(clnt); 741 rpc_clnt_debugfs_unregister(clnt); 742 743 /* 744 * A new transport was created. "clnt" therefore 745 * becomes the root of a new cl_parent tree. clnt's 746 * children, if it has any, still point to the old xprt. 747 */ 748 parent = clnt->cl_parent; 749 clnt->cl_parent = clnt; 750 751 /* 752 * The old rpc_auth cache cannot be re-used. GSS 753 * contexts in particular are between a single 754 * client and server. 755 */ 756 err = rpc_client_register(clnt, pseudoflavor, NULL); 757 if (err) 758 goto out_revert; 759 760 synchronize_rcu(); 761 if (parent != clnt) 762 rpc_release_client(parent); 763 xprt_switch_put(oldxps); 764 xprt_put(old); 765 trace_rpc_clnt_replace_xprt(clnt); 766 return 0; 767 768 out_revert: 769 xps = xprt_iter_xchg_switch(&clnt->cl_xpi, oldxps); 770 rpc_clnt_set_transport(clnt, old, old_timeo); 771 clnt->cl_parent = parent; 772 rpc_client_register(clnt, pseudoflavor, NULL); 773 xprt_switch_put(xps); 774 xprt_put(xprt); 775 trace_rpc_clnt_replace_xprt_err(clnt); 776 return err; 777 } 778 EXPORT_SYMBOL_GPL(rpc_switch_client_transport); 779 780 static 781 int rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi) 782 { 783 struct rpc_xprt_switch *xps; 784 785 rcu_read_lock(); 786 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 787 rcu_read_unlock(); 788 if (xps == NULL) 789 return -EAGAIN; 790 xprt_iter_init_listall(xpi, xps); 791 xprt_switch_put(xps); 792 return 0; 793 } 794 795 /** 796 * rpc_clnt_iterate_for_each_xprt - Apply a function to all transports 797 * @clnt: pointer to client 798 * @fn: function to apply 799 * @data: void pointer to function data 800 * 801 * Iterates through the list of RPC transports currently attached to the 802 * client and applies the function fn(clnt, xprt, data). 803 * 804 * On error, the iteration stops, and the function returns the error value. 805 */ 806 int rpc_clnt_iterate_for_each_xprt(struct rpc_clnt *clnt, 807 int (*fn)(struct rpc_clnt *, struct rpc_xprt *, void *), 808 void *data) 809 { 810 struct rpc_xprt_iter xpi; 811 int ret; 812 813 ret = rpc_clnt_xprt_iter_init(clnt, &xpi); 814 if (ret) 815 return ret; 816 for (;;) { 817 struct rpc_xprt *xprt = xprt_iter_get_next(&xpi); 818 819 if (!xprt) 820 break; 821 ret = fn(clnt, xprt, data); 822 xprt_put(xprt); 823 if (ret < 0) 824 break; 825 } 826 xprt_iter_destroy(&xpi); 827 return ret; 828 } 829 EXPORT_SYMBOL_GPL(rpc_clnt_iterate_for_each_xprt); 830 831 /* 832 * Kill all tasks for the given client. 833 * XXX: kill their descendants as well? 834 */ 835 void rpc_killall_tasks(struct rpc_clnt *clnt) 836 { 837 struct rpc_task *rovr; 838 839 840 if (list_empty(&clnt->cl_tasks)) 841 return; 842 843 /* 844 * Spin lock all_tasks to prevent changes... 845 */ 846 trace_rpc_clnt_killall(clnt); 847 spin_lock(&clnt->cl_lock); 848 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) 849 rpc_signal_task(rovr); 850 spin_unlock(&clnt->cl_lock); 851 } 852 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 853 854 /* 855 * Properly shut down an RPC client, terminating all outstanding 856 * requests. 857 */ 858 void rpc_shutdown_client(struct rpc_clnt *clnt) 859 { 860 might_sleep(); 861 862 trace_rpc_clnt_shutdown(clnt); 863 864 while (!list_empty(&clnt->cl_tasks)) { 865 rpc_killall_tasks(clnt); 866 wait_event_timeout(destroy_wait, 867 list_empty(&clnt->cl_tasks), 1*HZ); 868 } 869 870 rpc_release_client(clnt); 871 } 872 EXPORT_SYMBOL_GPL(rpc_shutdown_client); 873 874 /* 875 * Free an RPC client 876 */ 877 static void rpc_free_client_work(struct work_struct *work) 878 { 879 struct rpc_clnt *clnt = container_of(work, struct rpc_clnt, cl_work); 880 881 trace_rpc_clnt_free(clnt); 882 883 /* These might block on processes that might allocate memory, 884 * so they cannot be called in rpciod, so they are handled separately 885 * here. 886 */ 887 rpc_sysfs_client_destroy(clnt); 888 rpc_clnt_debugfs_unregister(clnt); 889 rpc_free_clid(clnt); 890 rpc_clnt_remove_pipedir(clnt); 891 xprt_put(rcu_dereference_raw(clnt->cl_xprt)); 892 893 kfree(clnt); 894 rpciod_down(); 895 } 896 static struct rpc_clnt * 897 rpc_free_client(struct rpc_clnt *clnt) 898 { 899 struct rpc_clnt *parent = NULL; 900 901 trace_rpc_clnt_release(clnt); 902 if (clnt->cl_parent != clnt) 903 parent = clnt->cl_parent; 904 rpc_unregister_client(clnt); 905 rpc_free_iostats(clnt->cl_metrics); 906 clnt->cl_metrics = NULL; 907 xprt_iter_destroy(&clnt->cl_xpi); 908 put_cred(clnt->cl_cred); 909 910 INIT_WORK(&clnt->cl_work, rpc_free_client_work); 911 schedule_work(&clnt->cl_work); 912 return parent; 913 } 914 915 /* 916 * Free an RPC client 917 */ 918 static struct rpc_clnt * 919 rpc_free_auth(struct rpc_clnt *clnt) 920 { 921 if (clnt->cl_auth == NULL) 922 return rpc_free_client(clnt); 923 924 /* 925 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to 926 * release remaining GSS contexts. This mechanism ensures 927 * that it can do so safely. 928 */ 929 atomic_inc(&clnt->cl_count); 930 rpcauth_release(clnt->cl_auth); 931 clnt->cl_auth = NULL; 932 if (atomic_dec_and_test(&clnt->cl_count)) 933 return rpc_free_client(clnt); 934 return NULL; 935 } 936 937 /* 938 * Release reference to the RPC client 939 */ 940 void 941 rpc_release_client(struct rpc_clnt *clnt) 942 { 943 do { 944 if (list_empty(&clnt->cl_tasks)) 945 wake_up(&destroy_wait); 946 if (!atomic_dec_and_test(&clnt->cl_count)) 947 break; 948 clnt = rpc_free_auth(clnt); 949 } while (clnt != NULL); 950 } 951 EXPORT_SYMBOL_GPL(rpc_release_client); 952 953 /** 954 * rpc_bind_new_program - bind a new RPC program to an existing client 955 * @old: old rpc_client 956 * @program: rpc program to set 957 * @vers: rpc program version 958 * 959 * Clones the rpc client and sets up a new RPC program. This is mainly 960 * of use for enabling different RPC programs to share the same transport. 961 * The Sun NFSv2/v3 ACL protocol can do this. 962 */ 963 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old, 964 const struct rpc_program *program, 965 u32 vers) 966 { 967 struct rpc_create_args args = { 968 .program = program, 969 .prognumber = program->number, 970 .version = vers, 971 .authflavor = old->cl_auth->au_flavor, 972 .cred = old->cl_cred, 973 }; 974 struct rpc_clnt *clnt; 975 int err; 976 977 clnt = __rpc_clone_client(&args, old); 978 if (IS_ERR(clnt)) 979 goto out; 980 err = rpc_ping(clnt); 981 if (err != 0) { 982 rpc_shutdown_client(clnt); 983 clnt = ERR_PTR(err); 984 } 985 out: 986 return clnt; 987 } 988 EXPORT_SYMBOL_GPL(rpc_bind_new_program); 989 990 struct rpc_xprt * 991 rpc_task_get_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) 992 { 993 struct rpc_xprt_switch *xps; 994 995 if (!xprt) 996 return NULL; 997 rcu_read_lock(); 998 xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); 999 atomic_long_inc(&xps->xps_queuelen); 1000 rcu_read_unlock(); 1001 atomic_long_inc(&xprt->queuelen); 1002 1003 return xprt; 1004 } 1005 1006 static void 1007 rpc_task_release_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) 1008 { 1009 struct rpc_xprt_switch *xps; 1010 1011 atomic_long_dec(&xprt->queuelen); 1012 rcu_read_lock(); 1013 xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); 1014 atomic_long_dec(&xps->xps_queuelen); 1015 rcu_read_unlock(); 1016 1017 xprt_put(xprt); 1018 } 1019 1020 void rpc_task_release_transport(struct rpc_task *task) 1021 { 1022 struct rpc_xprt *xprt = task->tk_xprt; 1023 1024 if (xprt) { 1025 task->tk_xprt = NULL; 1026 if (task->tk_client) 1027 rpc_task_release_xprt(task->tk_client, xprt); 1028 else 1029 xprt_put(xprt); 1030 } 1031 } 1032 EXPORT_SYMBOL_GPL(rpc_task_release_transport); 1033 1034 void rpc_task_release_client(struct rpc_task *task) 1035 { 1036 struct rpc_clnt *clnt = task->tk_client; 1037 1038 rpc_task_release_transport(task); 1039 if (clnt != NULL) { 1040 /* Remove from client task list */ 1041 spin_lock(&clnt->cl_lock); 1042 list_del(&task->tk_task); 1043 spin_unlock(&clnt->cl_lock); 1044 task->tk_client = NULL; 1045 1046 rpc_release_client(clnt); 1047 } 1048 } 1049 1050 static struct rpc_xprt * 1051 rpc_task_get_first_xprt(struct rpc_clnt *clnt) 1052 { 1053 struct rpc_xprt *xprt; 1054 1055 rcu_read_lock(); 1056 xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); 1057 rcu_read_unlock(); 1058 return rpc_task_get_xprt(clnt, xprt); 1059 } 1060 1061 static struct rpc_xprt * 1062 rpc_task_get_next_xprt(struct rpc_clnt *clnt) 1063 { 1064 return rpc_task_get_xprt(clnt, xprt_iter_get_next(&clnt->cl_xpi)); 1065 } 1066 1067 static 1068 void rpc_task_set_transport(struct rpc_task *task, struct rpc_clnt *clnt) 1069 { 1070 if (task->tk_xprt) 1071 return; 1072 if (task->tk_flags & RPC_TASK_NO_ROUND_ROBIN) 1073 task->tk_xprt = rpc_task_get_first_xprt(clnt); 1074 else 1075 task->tk_xprt = rpc_task_get_next_xprt(clnt); 1076 } 1077 1078 static 1079 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt) 1080 { 1081 1082 if (clnt != NULL) { 1083 rpc_task_set_transport(task, clnt); 1084 task->tk_client = clnt; 1085 atomic_inc(&clnt->cl_count); 1086 if (clnt->cl_softrtry) 1087 task->tk_flags |= RPC_TASK_SOFT; 1088 if (clnt->cl_softerr) 1089 task->tk_flags |= RPC_TASK_TIMEOUT; 1090 if (clnt->cl_noretranstimeo) 1091 task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT; 1092 if (atomic_read(&clnt->cl_swapper)) 1093 task->tk_flags |= RPC_TASK_SWAPPER; 1094 /* Add to the client's list of all tasks */ 1095 spin_lock(&clnt->cl_lock); 1096 list_add_tail(&task->tk_task, &clnt->cl_tasks); 1097 spin_unlock(&clnt->cl_lock); 1098 } 1099 } 1100 1101 static void 1102 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg) 1103 { 1104 if (msg != NULL) { 1105 task->tk_msg.rpc_proc = msg->rpc_proc; 1106 task->tk_msg.rpc_argp = msg->rpc_argp; 1107 task->tk_msg.rpc_resp = msg->rpc_resp; 1108 task->tk_msg.rpc_cred = msg->rpc_cred; 1109 if (!(task->tk_flags & RPC_TASK_CRED_NOREF)) 1110 get_cred(task->tk_msg.rpc_cred); 1111 } 1112 } 1113 1114 /* 1115 * Default callback for async RPC calls 1116 */ 1117 static void 1118 rpc_default_callback(struct rpc_task *task, void *data) 1119 { 1120 } 1121 1122 static const struct rpc_call_ops rpc_default_ops = { 1123 .rpc_call_done = rpc_default_callback, 1124 }; 1125 1126 /** 1127 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 1128 * @task_setup_data: pointer to task initialisation data 1129 */ 1130 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data) 1131 { 1132 struct rpc_task *task; 1133 1134 task = rpc_new_task(task_setup_data); 1135 1136 if (!RPC_IS_ASYNC(task)) 1137 task->tk_flags |= RPC_TASK_CRED_NOREF; 1138 1139 rpc_task_set_client(task, task_setup_data->rpc_client); 1140 rpc_task_set_rpc_message(task, task_setup_data->rpc_message); 1141 1142 if (task->tk_action == NULL) 1143 rpc_call_start(task); 1144 1145 atomic_inc(&task->tk_count); 1146 rpc_execute(task); 1147 return task; 1148 } 1149 EXPORT_SYMBOL_GPL(rpc_run_task); 1150 1151 /** 1152 * rpc_call_sync - Perform a synchronous RPC call 1153 * @clnt: pointer to RPC client 1154 * @msg: RPC call parameters 1155 * @flags: RPC call flags 1156 */ 1157 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags) 1158 { 1159 struct rpc_task *task; 1160 struct rpc_task_setup task_setup_data = { 1161 .rpc_client = clnt, 1162 .rpc_message = msg, 1163 .callback_ops = &rpc_default_ops, 1164 .flags = flags, 1165 }; 1166 int status; 1167 1168 WARN_ON_ONCE(flags & RPC_TASK_ASYNC); 1169 if (flags & RPC_TASK_ASYNC) { 1170 rpc_release_calldata(task_setup_data.callback_ops, 1171 task_setup_data.callback_data); 1172 return -EINVAL; 1173 } 1174 1175 task = rpc_run_task(&task_setup_data); 1176 if (IS_ERR(task)) 1177 return PTR_ERR(task); 1178 status = task->tk_status; 1179 rpc_put_task(task); 1180 return status; 1181 } 1182 EXPORT_SYMBOL_GPL(rpc_call_sync); 1183 1184 /** 1185 * rpc_call_async - Perform an asynchronous RPC call 1186 * @clnt: pointer to RPC client 1187 * @msg: RPC call parameters 1188 * @flags: RPC call flags 1189 * @tk_ops: RPC call ops 1190 * @data: user call data 1191 */ 1192 int 1193 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags, 1194 const struct rpc_call_ops *tk_ops, void *data) 1195 { 1196 struct rpc_task *task; 1197 struct rpc_task_setup task_setup_data = { 1198 .rpc_client = clnt, 1199 .rpc_message = msg, 1200 .callback_ops = tk_ops, 1201 .callback_data = data, 1202 .flags = flags|RPC_TASK_ASYNC, 1203 }; 1204 1205 task = rpc_run_task(&task_setup_data); 1206 if (IS_ERR(task)) 1207 return PTR_ERR(task); 1208 rpc_put_task(task); 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(rpc_call_async); 1212 1213 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1214 static void call_bc_encode(struct rpc_task *task); 1215 1216 /** 1217 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run 1218 * rpc_execute against it 1219 * @req: RPC request 1220 */ 1221 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req) 1222 { 1223 struct rpc_task *task; 1224 struct rpc_task_setup task_setup_data = { 1225 .callback_ops = &rpc_default_ops, 1226 .flags = RPC_TASK_SOFTCONN | 1227 RPC_TASK_NO_RETRANS_TIMEOUT, 1228 }; 1229 1230 dprintk("RPC: rpc_run_bc_task req= %p\n", req); 1231 /* 1232 * Create an rpc_task to send the data 1233 */ 1234 task = rpc_new_task(&task_setup_data); 1235 xprt_init_bc_request(req, task); 1236 1237 task->tk_action = call_bc_encode; 1238 atomic_inc(&task->tk_count); 1239 WARN_ON_ONCE(atomic_read(&task->tk_count) != 2); 1240 rpc_execute(task); 1241 1242 dprintk("RPC: rpc_run_bc_task: task= %p\n", task); 1243 return task; 1244 } 1245 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1246 1247 /** 1248 * rpc_prepare_reply_pages - Prepare to receive a reply data payload into pages 1249 * @req: RPC request to prepare 1250 * @pages: vector of struct page pointers 1251 * @base: offset in first page where receive should start, in bytes 1252 * @len: expected size of the upper layer data payload, in bytes 1253 * @hdrsize: expected size of upper layer reply header, in XDR words 1254 * 1255 */ 1256 void rpc_prepare_reply_pages(struct rpc_rqst *req, struct page **pages, 1257 unsigned int base, unsigned int len, 1258 unsigned int hdrsize) 1259 { 1260 hdrsize += RPC_REPHDRSIZE + req->rq_cred->cr_auth->au_ralign; 1261 1262 xdr_inline_pages(&req->rq_rcv_buf, hdrsize << 2, pages, base, len); 1263 trace_rpc_xdr_reply_pages(req->rq_task, &req->rq_rcv_buf); 1264 } 1265 EXPORT_SYMBOL_GPL(rpc_prepare_reply_pages); 1266 1267 void 1268 rpc_call_start(struct rpc_task *task) 1269 { 1270 task->tk_action = call_start; 1271 } 1272 EXPORT_SYMBOL_GPL(rpc_call_start); 1273 1274 /** 1275 * rpc_peeraddr - extract remote peer address from clnt's xprt 1276 * @clnt: RPC client structure 1277 * @buf: target buffer 1278 * @bufsize: length of target buffer 1279 * 1280 * Returns the number of bytes that are actually in the stored address. 1281 */ 1282 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize) 1283 { 1284 size_t bytes; 1285 struct rpc_xprt *xprt; 1286 1287 rcu_read_lock(); 1288 xprt = rcu_dereference(clnt->cl_xprt); 1289 1290 bytes = xprt->addrlen; 1291 if (bytes > bufsize) 1292 bytes = bufsize; 1293 memcpy(buf, &xprt->addr, bytes); 1294 rcu_read_unlock(); 1295 1296 return bytes; 1297 } 1298 EXPORT_SYMBOL_GPL(rpc_peeraddr); 1299 1300 /** 1301 * rpc_peeraddr2str - return remote peer address in printable format 1302 * @clnt: RPC client structure 1303 * @format: address format 1304 * 1305 * NB: the lifetime of the memory referenced by the returned pointer is 1306 * the same as the rpc_xprt itself. As long as the caller uses this 1307 * pointer, it must hold the RCU read lock. 1308 */ 1309 const char *rpc_peeraddr2str(struct rpc_clnt *clnt, 1310 enum rpc_display_format_t format) 1311 { 1312 struct rpc_xprt *xprt; 1313 1314 xprt = rcu_dereference(clnt->cl_xprt); 1315 1316 if (xprt->address_strings[format] != NULL) 1317 return xprt->address_strings[format]; 1318 else 1319 return "unprintable"; 1320 } 1321 EXPORT_SYMBOL_GPL(rpc_peeraddr2str); 1322 1323 static const struct sockaddr_in rpc_inaddr_loopback = { 1324 .sin_family = AF_INET, 1325 .sin_addr.s_addr = htonl(INADDR_ANY), 1326 }; 1327 1328 static const struct sockaddr_in6 rpc_in6addr_loopback = { 1329 .sin6_family = AF_INET6, 1330 .sin6_addr = IN6ADDR_ANY_INIT, 1331 }; 1332 1333 /* 1334 * Try a getsockname() on a connected datagram socket. Using a 1335 * connected datagram socket prevents leaving a socket in TIME_WAIT. 1336 * This conserves the ephemeral port number space. 1337 * 1338 * Returns zero and fills in "buf" if successful; otherwise, a 1339 * negative errno is returned. 1340 */ 1341 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen, 1342 struct sockaddr *buf) 1343 { 1344 struct socket *sock; 1345 int err; 1346 1347 err = __sock_create(net, sap->sa_family, 1348 SOCK_DGRAM, IPPROTO_UDP, &sock, 1); 1349 if (err < 0) { 1350 dprintk("RPC: can't create UDP socket (%d)\n", err); 1351 goto out; 1352 } 1353 1354 switch (sap->sa_family) { 1355 case AF_INET: 1356 err = kernel_bind(sock, 1357 (struct sockaddr *)&rpc_inaddr_loopback, 1358 sizeof(rpc_inaddr_loopback)); 1359 break; 1360 case AF_INET6: 1361 err = kernel_bind(sock, 1362 (struct sockaddr *)&rpc_in6addr_loopback, 1363 sizeof(rpc_in6addr_loopback)); 1364 break; 1365 default: 1366 err = -EAFNOSUPPORT; 1367 goto out; 1368 } 1369 if (err < 0) { 1370 dprintk("RPC: can't bind UDP socket (%d)\n", err); 1371 goto out_release; 1372 } 1373 1374 err = kernel_connect(sock, sap, salen, 0); 1375 if (err < 0) { 1376 dprintk("RPC: can't connect UDP socket (%d)\n", err); 1377 goto out_release; 1378 } 1379 1380 err = kernel_getsockname(sock, buf); 1381 if (err < 0) { 1382 dprintk("RPC: getsockname failed (%d)\n", err); 1383 goto out_release; 1384 } 1385 1386 err = 0; 1387 if (buf->sa_family == AF_INET6) { 1388 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf; 1389 sin6->sin6_scope_id = 0; 1390 } 1391 dprintk("RPC: %s succeeded\n", __func__); 1392 1393 out_release: 1394 sock_release(sock); 1395 out: 1396 return err; 1397 } 1398 1399 /* 1400 * Scraping a connected socket failed, so we don't have a useable 1401 * local address. Fallback: generate an address that will prevent 1402 * the server from calling us back. 1403 * 1404 * Returns zero and fills in "buf" if successful; otherwise, a 1405 * negative errno is returned. 1406 */ 1407 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen) 1408 { 1409 switch (family) { 1410 case AF_INET: 1411 if (buflen < sizeof(rpc_inaddr_loopback)) 1412 return -EINVAL; 1413 memcpy(buf, &rpc_inaddr_loopback, 1414 sizeof(rpc_inaddr_loopback)); 1415 break; 1416 case AF_INET6: 1417 if (buflen < sizeof(rpc_in6addr_loopback)) 1418 return -EINVAL; 1419 memcpy(buf, &rpc_in6addr_loopback, 1420 sizeof(rpc_in6addr_loopback)); 1421 break; 1422 default: 1423 dprintk("RPC: %s: address family not supported\n", 1424 __func__); 1425 return -EAFNOSUPPORT; 1426 } 1427 dprintk("RPC: %s: succeeded\n", __func__); 1428 return 0; 1429 } 1430 1431 /** 1432 * rpc_localaddr - discover local endpoint address for an RPC client 1433 * @clnt: RPC client structure 1434 * @buf: target buffer 1435 * @buflen: size of target buffer, in bytes 1436 * 1437 * Returns zero and fills in "buf" and "buflen" if successful; 1438 * otherwise, a negative errno is returned. 1439 * 1440 * This works even if the underlying transport is not currently connected, 1441 * or if the upper layer never previously provided a source address. 1442 * 1443 * The result of this function call is transient: multiple calls in 1444 * succession may give different results, depending on how local 1445 * networking configuration changes over time. 1446 */ 1447 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen) 1448 { 1449 struct sockaddr_storage address; 1450 struct sockaddr *sap = (struct sockaddr *)&address; 1451 struct rpc_xprt *xprt; 1452 struct net *net; 1453 size_t salen; 1454 int err; 1455 1456 rcu_read_lock(); 1457 xprt = rcu_dereference(clnt->cl_xprt); 1458 salen = xprt->addrlen; 1459 memcpy(sap, &xprt->addr, salen); 1460 net = get_net(xprt->xprt_net); 1461 rcu_read_unlock(); 1462 1463 rpc_set_port(sap, 0); 1464 err = rpc_sockname(net, sap, salen, buf); 1465 put_net(net); 1466 if (err != 0) 1467 /* Couldn't discover local address, return ANYADDR */ 1468 return rpc_anyaddr(sap->sa_family, buf, buflen); 1469 return 0; 1470 } 1471 EXPORT_SYMBOL_GPL(rpc_localaddr); 1472 1473 void 1474 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize) 1475 { 1476 struct rpc_xprt *xprt; 1477 1478 rcu_read_lock(); 1479 xprt = rcu_dereference(clnt->cl_xprt); 1480 if (xprt->ops->set_buffer_size) 1481 xprt->ops->set_buffer_size(xprt, sndsize, rcvsize); 1482 rcu_read_unlock(); 1483 } 1484 EXPORT_SYMBOL_GPL(rpc_setbufsize); 1485 1486 /** 1487 * rpc_net_ns - Get the network namespace for this RPC client 1488 * @clnt: RPC client to query 1489 * 1490 */ 1491 struct net *rpc_net_ns(struct rpc_clnt *clnt) 1492 { 1493 struct net *ret; 1494 1495 rcu_read_lock(); 1496 ret = rcu_dereference(clnt->cl_xprt)->xprt_net; 1497 rcu_read_unlock(); 1498 return ret; 1499 } 1500 EXPORT_SYMBOL_GPL(rpc_net_ns); 1501 1502 /** 1503 * rpc_max_payload - Get maximum payload size for a transport, in bytes 1504 * @clnt: RPC client to query 1505 * 1506 * For stream transports, this is one RPC record fragment (see RFC 1507 * 1831), as we don't support multi-record requests yet. For datagram 1508 * transports, this is the size of an IP packet minus the IP, UDP, and 1509 * RPC header sizes. 1510 */ 1511 size_t rpc_max_payload(struct rpc_clnt *clnt) 1512 { 1513 size_t ret; 1514 1515 rcu_read_lock(); 1516 ret = rcu_dereference(clnt->cl_xprt)->max_payload; 1517 rcu_read_unlock(); 1518 return ret; 1519 } 1520 EXPORT_SYMBOL_GPL(rpc_max_payload); 1521 1522 /** 1523 * rpc_max_bc_payload - Get maximum backchannel payload size, in bytes 1524 * @clnt: RPC client to query 1525 */ 1526 size_t rpc_max_bc_payload(struct rpc_clnt *clnt) 1527 { 1528 struct rpc_xprt *xprt; 1529 size_t ret; 1530 1531 rcu_read_lock(); 1532 xprt = rcu_dereference(clnt->cl_xprt); 1533 ret = xprt->ops->bc_maxpayload(xprt); 1534 rcu_read_unlock(); 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(rpc_max_bc_payload); 1538 1539 unsigned int rpc_num_bc_slots(struct rpc_clnt *clnt) 1540 { 1541 struct rpc_xprt *xprt; 1542 unsigned int ret; 1543 1544 rcu_read_lock(); 1545 xprt = rcu_dereference(clnt->cl_xprt); 1546 ret = xprt->ops->bc_num_slots(xprt); 1547 rcu_read_unlock(); 1548 return ret; 1549 } 1550 EXPORT_SYMBOL_GPL(rpc_num_bc_slots); 1551 1552 /** 1553 * rpc_force_rebind - force transport to check that remote port is unchanged 1554 * @clnt: client to rebind 1555 * 1556 */ 1557 void rpc_force_rebind(struct rpc_clnt *clnt) 1558 { 1559 if (clnt->cl_autobind) { 1560 rcu_read_lock(); 1561 xprt_clear_bound(rcu_dereference(clnt->cl_xprt)); 1562 rcu_read_unlock(); 1563 } 1564 } 1565 EXPORT_SYMBOL_GPL(rpc_force_rebind); 1566 1567 static int 1568 __rpc_restart_call(struct rpc_task *task, void (*action)(struct rpc_task *)) 1569 { 1570 task->tk_status = 0; 1571 task->tk_rpc_status = 0; 1572 task->tk_action = action; 1573 return 1; 1574 } 1575 1576 /* 1577 * Restart an (async) RPC call. Usually called from within the 1578 * exit handler. 1579 */ 1580 int 1581 rpc_restart_call(struct rpc_task *task) 1582 { 1583 return __rpc_restart_call(task, call_start); 1584 } 1585 EXPORT_SYMBOL_GPL(rpc_restart_call); 1586 1587 /* 1588 * Restart an (async) RPC call from the call_prepare state. 1589 * Usually called from within the exit handler. 1590 */ 1591 int 1592 rpc_restart_call_prepare(struct rpc_task *task) 1593 { 1594 if (task->tk_ops->rpc_call_prepare != NULL) 1595 return __rpc_restart_call(task, rpc_prepare_task); 1596 return rpc_restart_call(task); 1597 } 1598 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare); 1599 1600 const char 1601 *rpc_proc_name(const struct rpc_task *task) 1602 { 1603 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1604 1605 if (proc) { 1606 if (proc->p_name) 1607 return proc->p_name; 1608 else 1609 return "NULL"; 1610 } else 1611 return "no proc"; 1612 } 1613 1614 static void 1615 __rpc_call_rpcerror(struct rpc_task *task, int tk_status, int rpc_status) 1616 { 1617 trace_rpc_call_rpcerror(task, tk_status, rpc_status); 1618 task->tk_rpc_status = rpc_status; 1619 rpc_exit(task, tk_status); 1620 } 1621 1622 static void 1623 rpc_call_rpcerror(struct rpc_task *task, int status) 1624 { 1625 __rpc_call_rpcerror(task, status, status); 1626 } 1627 1628 /* 1629 * 0. Initial state 1630 * 1631 * Other FSM states can be visited zero or more times, but 1632 * this state is visited exactly once for each RPC. 1633 */ 1634 static void 1635 call_start(struct rpc_task *task) 1636 { 1637 struct rpc_clnt *clnt = task->tk_client; 1638 int idx = task->tk_msg.rpc_proc->p_statidx; 1639 1640 trace_rpc_request(task); 1641 1642 /* Increment call count (version might not be valid for ping) */ 1643 if (clnt->cl_program->version[clnt->cl_vers]) 1644 clnt->cl_program->version[clnt->cl_vers]->counts[idx]++; 1645 clnt->cl_stats->rpccnt++; 1646 task->tk_action = call_reserve; 1647 rpc_task_set_transport(task, clnt); 1648 } 1649 1650 /* 1651 * 1. Reserve an RPC call slot 1652 */ 1653 static void 1654 call_reserve(struct rpc_task *task) 1655 { 1656 task->tk_status = 0; 1657 task->tk_action = call_reserveresult; 1658 xprt_reserve(task); 1659 } 1660 1661 static void call_retry_reserve(struct rpc_task *task); 1662 1663 /* 1664 * 1b. Grok the result of xprt_reserve() 1665 */ 1666 static void 1667 call_reserveresult(struct rpc_task *task) 1668 { 1669 int status = task->tk_status; 1670 1671 /* 1672 * After a call to xprt_reserve(), we must have either 1673 * a request slot or else an error status. 1674 */ 1675 task->tk_status = 0; 1676 if (status >= 0) { 1677 if (task->tk_rqstp) { 1678 task->tk_action = call_refresh; 1679 return; 1680 } 1681 1682 rpc_call_rpcerror(task, -EIO); 1683 return; 1684 } 1685 1686 switch (status) { 1687 case -ENOMEM: 1688 rpc_delay(task, HZ >> 2); 1689 fallthrough; 1690 case -EAGAIN: /* woken up; retry */ 1691 task->tk_action = call_retry_reserve; 1692 return; 1693 default: 1694 rpc_call_rpcerror(task, status); 1695 } 1696 } 1697 1698 /* 1699 * 1c. Retry reserving an RPC call slot 1700 */ 1701 static void 1702 call_retry_reserve(struct rpc_task *task) 1703 { 1704 task->tk_status = 0; 1705 task->tk_action = call_reserveresult; 1706 xprt_retry_reserve(task); 1707 } 1708 1709 /* 1710 * 2. Bind and/or refresh the credentials 1711 */ 1712 static void 1713 call_refresh(struct rpc_task *task) 1714 { 1715 task->tk_action = call_refreshresult; 1716 task->tk_status = 0; 1717 task->tk_client->cl_stats->rpcauthrefresh++; 1718 rpcauth_refreshcred(task); 1719 } 1720 1721 /* 1722 * 2a. Process the results of a credential refresh 1723 */ 1724 static void 1725 call_refreshresult(struct rpc_task *task) 1726 { 1727 int status = task->tk_status; 1728 1729 task->tk_status = 0; 1730 task->tk_action = call_refresh; 1731 switch (status) { 1732 case 0: 1733 if (rpcauth_uptodatecred(task)) { 1734 task->tk_action = call_allocate; 1735 return; 1736 } 1737 /* Use rate-limiting and a max number of retries if refresh 1738 * had status 0 but failed to update the cred. 1739 */ 1740 fallthrough; 1741 case -ETIMEDOUT: 1742 rpc_delay(task, 3*HZ); 1743 fallthrough; 1744 case -EAGAIN: 1745 status = -EACCES; 1746 fallthrough; 1747 case -EKEYEXPIRED: 1748 if (!task->tk_cred_retry) 1749 break; 1750 task->tk_cred_retry--; 1751 trace_rpc_retry_refresh_status(task); 1752 return; 1753 } 1754 trace_rpc_refresh_status(task); 1755 rpc_call_rpcerror(task, status); 1756 } 1757 1758 /* 1759 * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc. 1760 * (Note: buffer memory is freed in xprt_release). 1761 */ 1762 static void 1763 call_allocate(struct rpc_task *task) 1764 { 1765 const struct rpc_auth *auth = task->tk_rqstp->rq_cred->cr_auth; 1766 struct rpc_rqst *req = task->tk_rqstp; 1767 struct rpc_xprt *xprt = req->rq_xprt; 1768 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1769 int status; 1770 1771 task->tk_status = 0; 1772 task->tk_action = call_encode; 1773 1774 if (req->rq_buffer) 1775 return; 1776 1777 if (proc->p_proc != 0) { 1778 BUG_ON(proc->p_arglen == 0); 1779 if (proc->p_decode != NULL) 1780 BUG_ON(proc->p_replen == 0); 1781 } 1782 1783 /* 1784 * Calculate the size (in quads) of the RPC call 1785 * and reply headers, and convert both values 1786 * to byte sizes. 1787 */ 1788 req->rq_callsize = RPC_CALLHDRSIZE + (auth->au_cslack << 1) + 1789 proc->p_arglen; 1790 req->rq_callsize <<= 2; 1791 /* 1792 * Note: the reply buffer must at minimum allocate enough space 1793 * for the 'struct accepted_reply' from RFC5531. 1794 */ 1795 req->rq_rcvsize = RPC_REPHDRSIZE + auth->au_rslack + \ 1796 max_t(size_t, proc->p_replen, 2); 1797 req->rq_rcvsize <<= 2; 1798 1799 status = xprt->ops->buf_alloc(task); 1800 trace_rpc_buf_alloc(task, status); 1801 if (status == 0) 1802 return; 1803 if (status != -ENOMEM) { 1804 rpc_call_rpcerror(task, status); 1805 return; 1806 } 1807 1808 if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) { 1809 task->tk_action = call_allocate; 1810 rpc_delay(task, HZ>>4); 1811 return; 1812 } 1813 1814 rpc_call_rpcerror(task, -ERESTARTSYS); 1815 } 1816 1817 static int 1818 rpc_task_need_encode(struct rpc_task *task) 1819 { 1820 return test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) == 0 && 1821 (!(task->tk_flags & RPC_TASK_SENT) || 1822 !(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) || 1823 xprt_request_need_retransmit(task)); 1824 } 1825 1826 static void 1827 rpc_xdr_encode(struct rpc_task *task) 1828 { 1829 struct rpc_rqst *req = task->tk_rqstp; 1830 struct xdr_stream xdr; 1831 1832 xdr_buf_init(&req->rq_snd_buf, 1833 req->rq_buffer, 1834 req->rq_callsize); 1835 xdr_buf_init(&req->rq_rcv_buf, 1836 req->rq_rbuffer, 1837 req->rq_rcvsize); 1838 1839 req->rq_reply_bytes_recvd = 0; 1840 req->rq_snd_buf.head[0].iov_len = 0; 1841 xdr_init_encode(&xdr, &req->rq_snd_buf, 1842 req->rq_snd_buf.head[0].iov_base, req); 1843 xdr_free_bvec(&req->rq_snd_buf); 1844 if (rpc_encode_header(task, &xdr)) 1845 return; 1846 1847 task->tk_status = rpcauth_wrap_req(task, &xdr); 1848 } 1849 1850 /* 1851 * 3. Encode arguments of an RPC call 1852 */ 1853 static void 1854 call_encode(struct rpc_task *task) 1855 { 1856 if (!rpc_task_need_encode(task)) 1857 goto out; 1858 1859 /* Dequeue task from the receive queue while we're encoding */ 1860 xprt_request_dequeue_xprt(task); 1861 /* Encode here so that rpcsec_gss can use correct sequence number. */ 1862 rpc_xdr_encode(task); 1863 /* Did the encode result in an error condition? */ 1864 if (task->tk_status != 0) { 1865 /* Was the error nonfatal? */ 1866 switch (task->tk_status) { 1867 case -EAGAIN: 1868 case -ENOMEM: 1869 rpc_delay(task, HZ >> 4); 1870 break; 1871 case -EKEYEXPIRED: 1872 if (!task->tk_cred_retry) { 1873 rpc_exit(task, task->tk_status); 1874 } else { 1875 task->tk_action = call_refresh; 1876 task->tk_cred_retry--; 1877 trace_rpc_retry_refresh_status(task); 1878 } 1879 break; 1880 default: 1881 rpc_call_rpcerror(task, task->tk_status); 1882 } 1883 return; 1884 } 1885 1886 /* Add task to reply queue before transmission to avoid races */ 1887 if (rpc_reply_expected(task)) 1888 xprt_request_enqueue_receive(task); 1889 xprt_request_enqueue_transmit(task); 1890 out: 1891 task->tk_action = call_transmit; 1892 /* Check that the connection is OK */ 1893 if (!xprt_bound(task->tk_xprt)) 1894 task->tk_action = call_bind; 1895 else if (!xprt_connected(task->tk_xprt)) 1896 task->tk_action = call_connect; 1897 } 1898 1899 /* 1900 * Helpers to check if the task was already transmitted, and 1901 * to take action when that is the case. 1902 */ 1903 static bool 1904 rpc_task_transmitted(struct rpc_task *task) 1905 { 1906 return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); 1907 } 1908 1909 static void 1910 rpc_task_handle_transmitted(struct rpc_task *task) 1911 { 1912 xprt_end_transmit(task); 1913 task->tk_action = call_transmit_status; 1914 } 1915 1916 /* 1917 * 4. Get the server port number if not yet set 1918 */ 1919 static void 1920 call_bind(struct rpc_task *task) 1921 { 1922 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1923 1924 if (rpc_task_transmitted(task)) { 1925 rpc_task_handle_transmitted(task); 1926 return; 1927 } 1928 1929 if (xprt_bound(xprt)) { 1930 task->tk_action = call_connect; 1931 return; 1932 } 1933 1934 task->tk_action = call_bind_status; 1935 if (!xprt_prepare_transmit(task)) 1936 return; 1937 1938 xprt->ops->rpcbind(task); 1939 } 1940 1941 /* 1942 * 4a. Sort out bind result 1943 */ 1944 static void 1945 call_bind_status(struct rpc_task *task) 1946 { 1947 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1948 int status = -EIO; 1949 1950 if (rpc_task_transmitted(task)) { 1951 rpc_task_handle_transmitted(task); 1952 return; 1953 } 1954 1955 if (task->tk_status >= 0) 1956 goto out_next; 1957 if (xprt_bound(xprt)) { 1958 task->tk_status = 0; 1959 goto out_next; 1960 } 1961 1962 switch (task->tk_status) { 1963 case -ENOMEM: 1964 rpc_delay(task, HZ >> 2); 1965 goto retry_timeout; 1966 case -EACCES: 1967 trace_rpcb_prog_unavail_err(task); 1968 /* fail immediately if this is an RPC ping */ 1969 if (task->tk_msg.rpc_proc->p_proc == 0) { 1970 status = -EOPNOTSUPP; 1971 break; 1972 } 1973 if (task->tk_rebind_retry == 0) 1974 break; 1975 task->tk_rebind_retry--; 1976 rpc_delay(task, 3*HZ); 1977 goto retry_timeout; 1978 case -ENOBUFS: 1979 rpc_delay(task, HZ >> 2); 1980 goto retry_timeout; 1981 case -EAGAIN: 1982 goto retry_timeout; 1983 case -ETIMEDOUT: 1984 trace_rpcb_timeout_err(task); 1985 goto retry_timeout; 1986 case -EPFNOSUPPORT: 1987 /* server doesn't support any rpcbind version we know of */ 1988 trace_rpcb_bind_version_err(task); 1989 break; 1990 case -EPROTONOSUPPORT: 1991 trace_rpcb_bind_version_err(task); 1992 goto retry_timeout; 1993 case -ECONNREFUSED: /* connection problems */ 1994 case -ECONNRESET: 1995 case -ECONNABORTED: 1996 case -ENOTCONN: 1997 case -EHOSTDOWN: 1998 case -ENETDOWN: 1999 case -EHOSTUNREACH: 2000 case -ENETUNREACH: 2001 case -EPIPE: 2002 trace_rpcb_unreachable_err(task); 2003 if (!RPC_IS_SOFTCONN(task)) { 2004 rpc_delay(task, 5*HZ); 2005 goto retry_timeout; 2006 } 2007 status = task->tk_status; 2008 break; 2009 default: 2010 trace_rpcb_unrecognized_err(task); 2011 } 2012 2013 rpc_call_rpcerror(task, status); 2014 return; 2015 out_next: 2016 task->tk_action = call_connect; 2017 return; 2018 retry_timeout: 2019 task->tk_status = 0; 2020 task->tk_action = call_bind; 2021 rpc_check_timeout(task); 2022 } 2023 2024 /* 2025 * 4b. Connect to the RPC server 2026 */ 2027 static void 2028 call_connect(struct rpc_task *task) 2029 { 2030 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 2031 2032 if (rpc_task_transmitted(task)) { 2033 rpc_task_handle_transmitted(task); 2034 return; 2035 } 2036 2037 if (xprt_connected(xprt)) { 2038 task->tk_action = call_transmit; 2039 return; 2040 } 2041 2042 task->tk_action = call_connect_status; 2043 if (task->tk_status < 0) 2044 return; 2045 if (task->tk_flags & RPC_TASK_NOCONNECT) { 2046 rpc_call_rpcerror(task, -ENOTCONN); 2047 return; 2048 } 2049 if (!xprt_prepare_transmit(task)) 2050 return; 2051 xprt_connect(task); 2052 } 2053 2054 /* 2055 * 4c. Sort out connect result 2056 */ 2057 static void 2058 call_connect_status(struct rpc_task *task) 2059 { 2060 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 2061 struct rpc_clnt *clnt = task->tk_client; 2062 int status = task->tk_status; 2063 2064 if (rpc_task_transmitted(task)) { 2065 rpc_task_handle_transmitted(task); 2066 return; 2067 } 2068 2069 trace_rpc_connect_status(task); 2070 2071 if (task->tk_status == 0) { 2072 clnt->cl_stats->netreconn++; 2073 goto out_next; 2074 } 2075 if (xprt_connected(xprt)) { 2076 task->tk_status = 0; 2077 goto out_next; 2078 } 2079 2080 task->tk_status = 0; 2081 switch (status) { 2082 case -ECONNREFUSED: 2083 /* A positive refusal suggests a rebind is needed. */ 2084 if (RPC_IS_SOFTCONN(task)) 2085 break; 2086 if (clnt->cl_autobind) { 2087 rpc_force_rebind(clnt); 2088 goto out_retry; 2089 } 2090 fallthrough; 2091 case -ECONNRESET: 2092 case -ECONNABORTED: 2093 case -ENETDOWN: 2094 case -ENETUNREACH: 2095 case -EHOSTUNREACH: 2096 case -EPIPE: 2097 case -EPROTO: 2098 xprt_conditional_disconnect(task->tk_rqstp->rq_xprt, 2099 task->tk_rqstp->rq_connect_cookie); 2100 if (RPC_IS_SOFTCONN(task)) 2101 break; 2102 /* retry with existing socket, after a delay */ 2103 rpc_delay(task, 3*HZ); 2104 fallthrough; 2105 case -EADDRINUSE: 2106 case -ENOTCONN: 2107 case -EAGAIN: 2108 case -ETIMEDOUT: 2109 if (!(task->tk_flags & RPC_TASK_NO_ROUND_ROBIN) && 2110 (task->tk_flags & RPC_TASK_MOVEABLE) && 2111 test_bit(XPRT_REMOVE, &xprt->state)) { 2112 struct rpc_xprt *saved = task->tk_xprt; 2113 struct rpc_xprt_switch *xps; 2114 2115 rcu_read_lock(); 2116 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2117 rcu_read_unlock(); 2118 if (xps->xps_nxprts > 1) { 2119 long value; 2120 2121 xprt_release(task); 2122 value = atomic_long_dec_return(&xprt->queuelen); 2123 if (value == 0) 2124 rpc_xprt_switch_remove_xprt(xps, saved); 2125 xprt_put(saved); 2126 task->tk_xprt = NULL; 2127 task->tk_action = call_start; 2128 } 2129 xprt_switch_put(xps); 2130 if (!task->tk_xprt) 2131 return; 2132 } 2133 goto out_retry; 2134 case -ENOBUFS: 2135 rpc_delay(task, HZ >> 2); 2136 goto out_retry; 2137 } 2138 rpc_call_rpcerror(task, status); 2139 return; 2140 out_next: 2141 task->tk_action = call_transmit; 2142 return; 2143 out_retry: 2144 /* Check for timeouts before looping back to call_bind */ 2145 task->tk_action = call_bind; 2146 rpc_check_timeout(task); 2147 } 2148 2149 /* 2150 * 5. Transmit the RPC request, and wait for reply 2151 */ 2152 static void 2153 call_transmit(struct rpc_task *task) 2154 { 2155 if (rpc_task_transmitted(task)) { 2156 rpc_task_handle_transmitted(task); 2157 return; 2158 } 2159 2160 task->tk_action = call_transmit_status; 2161 if (!xprt_prepare_transmit(task)) 2162 return; 2163 task->tk_status = 0; 2164 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) { 2165 if (!xprt_connected(task->tk_xprt)) { 2166 task->tk_status = -ENOTCONN; 2167 return; 2168 } 2169 xprt_transmit(task); 2170 } 2171 xprt_end_transmit(task); 2172 } 2173 2174 /* 2175 * 5a. Handle cleanup after a transmission 2176 */ 2177 static void 2178 call_transmit_status(struct rpc_task *task) 2179 { 2180 task->tk_action = call_status; 2181 2182 /* 2183 * Common case: success. Force the compiler to put this 2184 * test first. 2185 */ 2186 if (rpc_task_transmitted(task)) { 2187 task->tk_status = 0; 2188 xprt_request_wait_receive(task); 2189 return; 2190 } 2191 2192 switch (task->tk_status) { 2193 default: 2194 break; 2195 case -EBADMSG: 2196 task->tk_status = 0; 2197 task->tk_action = call_encode; 2198 break; 2199 /* 2200 * Special cases: if we've been waiting on the 2201 * socket's write_space() callback, or if the 2202 * socket just returned a connection error, 2203 * then hold onto the transport lock. 2204 */ 2205 case -ENOBUFS: 2206 rpc_delay(task, HZ>>2); 2207 fallthrough; 2208 case -EBADSLT: 2209 case -EAGAIN: 2210 task->tk_action = call_transmit; 2211 task->tk_status = 0; 2212 break; 2213 case -ECONNREFUSED: 2214 case -EHOSTDOWN: 2215 case -ENETDOWN: 2216 case -EHOSTUNREACH: 2217 case -ENETUNREACH: 2218 case -EPERM: 2219 if (RPC_IS_SOFTCONN(task)) { 2220 if (!task->tk_msg.rpc_proc->p_proc) 2221 trace_xprt_ping(task->tk_xprt, 2222 task->tk_status); 2223 rpc_call_rpcerror(task, task->tk_status); 2224 return; 2225 } 2226 fallthrough; 2227 case -ECONNRESET: 2228 case -ECONNABORTED: 2229 case -EADDRINUSE: 2230 case -ENOTCONN: 2231 case -EPIPE: 2232 task->tk_action = call_bind; 2233 task->tk_status = 0; 2234 break; 2235 } 2236 rpc_check_timeout(task); 2237 } 2238 2239 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 2240 static void call_bc_transmit(struct rpc_task *task); 2241 static void call_bc_transmit_status(struct rpc_task *task); 2242 2243 static void 2244 call_bc_encode(struct rpc_task *task) 2245 { 2246 xprt_request_enqueue_transmit(task); 2247 task->tk_action = call_bc_transmit; 2248 } 2249 2250 /* 2251 * 5b. Send the backchannel RPC reply. On error, drop the reply. In 2252 * addition, disconnect on connectivity errors. 2253 */ 2254 static void 2255 call_bc_transmit(struct rpc_task *task) 2256 { 2257 task->tk_action = call_bc_transmit_status; 2258 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) { 2259 if (!xprt_prepare_transmit(task)) 2260 return; 2261 task->tk_status = 0; 2262 xprt_transmit(task); 2263 } 2264 xprt_end_transmit(task); 2265 } 2266 2267 static void 2268 call_bc_transmit_status(struct rpc_task *task) 2269 { 2270 struct rpc_rqst *req = task->tk_rqstp; 2271 2272 if (rpc_task_transmitted(task)) 2273 task->tk_status = 0; 2274 2275 switch (task->tk_status) { 2276 case 0: 2277 /* Success */ 2278 case -ENETDOWN: 2279 case -EHOSTDOWN: 2280 case -EHOSTUNREACH: 2281 case -ENETUNREACH: 2282 case -ECONNRESET: 2283 case -ECONNREFUSED: 2284 case -EADDRINUSE: 2285 case -ENOTCONN: 2286 case -EPIPE: 2287 break; 2288 case -ENOBUFS: 2289 rpc_delay(task, HZ>>2); 2290 fallthrough; 2291 case -EBADSLT: 2292 case -EAGAIN: 2293 task->tk_status = 0; 2294 task->tk_action = call_bc_transmit; 2295 return; 2296 case -ETIMEDOUT: 2297 /* 2298 * Problem reaching the server. Disconnect and let the 2299 * forechannel reestablish the connection. The server will 2300 * have to retransmit the backchannel request and we'll 2301 * reprocess it. Since these ops are idempotent, there's no 2302 * need to cache our reply at this time. 2303 */ 2304 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2305 "error: %d\n", task->tk_status); 2306 xprt_conditional_disconnect(req->rq_xprt, 2307 req->rq_connect_cookie); 2308 break; 2309 default: 2310 /* 2311 * We were unable to reply and will have to drop the 2312 * request. The server should reconnect and retransmit. 2313 */ 2314 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2315 "error: %d\n", task->tk_status); 2316 break; 2317 } 2318 task->tk_action = rpc_exit_task; 2319 } 2320 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 2321 2322 /* 2323 * 6. Sort out the RPC call status 2324 */ 2325 static void 2326 call_status(struct rpc_task *task) 2327 { 2328 struct rpc_clnt *clnt = task->tk_client; 2329 int status; 2330 2331 if (!task->tk_msg.rpc_proc->p_proc) 2332 trace_xprt_ping(task->tk_xprt, task->tk_status); 2333 2334 status = task->tk_status; 2335 if (status >= 0) { 2336 task->tk_action = call_decode; 2337 return; 2338 } 2339 2340 trace_rpc_call_status(task); 2341 task->tk_status = 0; 2342 switch(status) { 2343 case -EHOSTDOWN: 2344 case -ENETDOWN: 2345 case -EHOSTUNREACH: 2346 case -ENETUNREACH: 2347 case -EPERM: 2348 if (RPC_IS_SOFTCONN(task)) 2349 goto out_exit; 2350 /* 2351 * Delay any retries for 3 seconds, then handle as if it 2352 * were a timeout. 2353 */ 2354 rpc_delay(task, 3*HZ); 2355 fallthrough; 2356 case -ETIMEDOUT: 2357 break; 2358 case -ECONNREFUSED: 2359 case -ECONNRESET: 2360 case -ECONNABORTED: 2361 case -ENOTCONN: 2362 rpc_force_rebind(clnt); 2363 break; 2364 case -EADDRINUSE: 2365 rpc_delay(task, 3*HZ); 2366 fallthrough; 2367 case -EPIPE: 2368 case -EAGAIN: 2369 break; 2370 case -EIO: 2371 /* shutdown or soft timeout */ 2372 goto out_exit; 2373 default: 2374 if (clnt->cl_chatty) 2375 printk("%s: RPC call returned error %d\n", 2376 clnt->cl_program->name, -status); 2377 goto out_exit; 2378 } 2379 task->tk_action = call_encode; 2380 if (status != -ECONNRESET && status != -ECONNABORTED) 2381 rpc_check_timeout(task); 2382 return; 2383 out_exit: 2384 rpc_call_rpcerror(task, status); 2385 } 2386 2387 static bool 2388 rpc_check_connected(const struct rpc_rqst *req) 2389 { 2390 /* No allocated request or transport? return true */ 2391 if (!req || !req->rq_xprt) 2392 return true; 2393 return xprt_connected(req->rq_xprt); 2394 } 2395 2396 static void 2397 rpc_check_timeout(struct rpc_task *task) 2398 { 2399 struct rpc_clnt *clnt = task->tk_client; 2400 2401 if (RPC_SIGNALLED(task)) { 2402 rpc_call_rpcerror(task, -ERESTARTSYS); 2403 return; 2404 } 2405 2406 if (xprt_adjust_timeout(task->tk_rqstp) == 0) 2407 return; 2408 2409 trace_rpc_timeout_status(task); 2410 task->tk_timeouts++; 2411 2412 if (RPC_IS_SOFTCONN(task) && !rpc_check_connected(task->tk_rqstp)) { 2413 rpc_call_rpcerror(task, -ETIMEDOUT); 2414 return; 2415 } 2416 2417 if (RPC_IS_SOFT(task)) { 2418 /* 2419 * Once a "no retrans timeout" soft tasks (a.k.a NFSv4) has 2420 * been sent, it should time out only if the transport 2421 * connection gets terminally broken. 2422 */ 2423 if ((task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) && 2424 rpc_check_connected(task->tk_rqstp)) 2425 return; 2426 2427 if (clnt->cl_chatty) { 2428 pr_notice_ratelimited( 2429 "%s: server %s not responding, timed out\n", 2430 clnt->cl_program->name, 2431 task->tk_xprt->servername); 2432 } 2433 if (task->tk_flags & RPC_TASK_TIMEOUT) 2434 rpc_call_rpcerror(task, -ETIMEDOUT); 2435 else 2436 __rpc_call_rpcerror(task, -EIO, -ETIMEDOUT); 2437 return; 2438 } 2439 2440 if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) { 2441 task->tk_flags |= RPC_CALL_MAJORSEEN; 2442 if (clnt->cl_chatty) { 2443 pr_notice_ratelimited( 2444 "%s: server %s not responding, still trying\n", 2445 clnt->cl_program->name, 2446 task->tk_xprt->servername); 2447 } 2448 } 2449 rpc_force_rebind(clnt); 2450 /* 2451 * Did our request time out due to an RPCSEC_GSS out-of-sequence 2452 * event? RFC2203 requires the server to drop all such requests. 2453 */ 2454 rpcauth_invalcred(task); 2455 } 2456 2457 /* 2458 * 7. Decode the RPC reply 2459 */ 2460 static void 2461 call_decode(struct rpc_task *task) 2462 { 2463 struct rpc_clnt *clnt = task->tk_client; 2464 struct rpc_rqst *req = task->tk_rqstp; 2465 struct xdr_stream xdr; 2466 int err; 2467 2468 if (!task->tk_msg.rpc_proc->p_decode) { 2469 task->tk_action = rpc_exit_task; 2470 return; 2471 } 2472 2473 if (task->tk_flags & RPC_CALL_MAJORSEEN) { 2474 if (clnt->cl_chatty) { 2475 pr_notice_ratelimited("%s: server %s OK\n", 2476 clnt->cl_program->name, 2477 task->tk_xprt->servername); 2478 } 2479 task->tk_flags &= ~RPC_CALL_MAJORSEEN; 2480 } 2481 2482 /* 2483 * Did we ever call xprt_complete_rqst()? If not, we should assume 2484 * the message is incomplete. 2485 */ 2486 err = -EAGAIN; 2487 if (!req->rq_reply_bytes_recvd) 2488 goto out; 2489 2490 /* Ensure that we see all writes made by xprt_complete_rqst() 2491 * before it changed req->rq_reply_bytes_recvd. 2492 */ 2493 smp_rmb(); 2494 2495 req->rq_rcv_buf.len = req->rq_private_buf.len; 2496 trace_rpc_xdr_recvfrom(task, &req->rq_rcv_buf); 2497 2498 /* Check that the softirq receive buffer is valid */ 2499 WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf, 2500 sizeof(req->rq_rcv_buf)) != 0); 2501 2502 xdr_init_decode(&xdr, &req->rq_rcv_buf, 2503 req->rq_rcv_buf.head[0].iov_base, req); 2504 err = rpc_decode_header(task, &xdr); 2505 out: 2506 switch (err) { 2507 case 0: 2508 task->tk_action = rpc_exit_task; 2509 task->tk_status = rpcauth_unwrap_resp(task, &xdr); 2510 return; 2511 case -EAGAIN: 2512 task->tk_status = 0; 2513 if (task->tk_client->cl_discrtry) 2514 xprt_conditional_disconnect(req->rq_xprt, 2515 req->rq_connect_cookie); 2516 task->tk_action = call_encode; 2517 rpc_check_timeout(task); 2518 break; 2519 case -EKEYREJECTED: 2520 task->tk_action = call_reserve; 2521 rpc_check_timeout(task); 2522 rpcauth_invalcred(task); 2523 /* Ensure we obtain a new XID if we retry! */ 2524 xprt_release(task); 2525 } 2526 } 2527 2528 static int 2529 rpc_encode_header(struct rpc_task *task, struct xdr_stream *xdr) 2530 { 2531 struct rpc_clnt *clnt = task->tk_client; 2532 struct rpc_rqst *req = task->tk_rqstp; 2533 __be32 *p; 2534 int error; 2535 2536 error = -EMSGSIZE; 2537 p = xdr_reserve_space(xdr, RPC_CALLHDRSIZE << 2); 2538 if (!p) 2539 goto out_fail; 2540 *p++ = req->rq_xid; 2541 *p++ = rpc_call; 2542 *p++ = cpu_to_be32(RPC_VERSION); 2543 *p++ = cpu_to_be32(clnt->cl_prog); 2544 *p++ = cpu_to_be32(clnt->cl_vers); 2545 *p = cpu_to_be32(task->tk_msg.rpc_proc->p_proc); 2546 2547 error = rpcauth_marshcred(task, xdr); 2548 if (error < 0) 2549 goto out_fail; 2550 return 0; 2551 out_fail: 2552 trace_rpc_bad_callhdr(task); 2553 rpc_call_rpcerror(task, error); 2554 return error; 2555 } 2556 2557 static noinline int 2558 rpc_decode_header(struct rpc_task *task, struct xdr_stream *xdr) 2559 { 2560 struct rpc_clnt *clnt = task->tk_client; 2561 int error; 2562 __be32 *p; 2563 2564 /* RFC-1014 says that the representation of XDR data must be a 2565 * multiple of four bytes 2566 * - if it isn't pointer subtraction in the NFS client may give 2567 * undefined results 2568 */ 2569 if (task->tk_rqstp->rq_rcv_buf.len & 3) 2570 goto out_unparsable; 2571 2572 p = xdr_inline_decode(xdr, 3 * sizeof(*p)); 2573 if (!p) 2574 goto out_unparsable; 2575 p++; /* skip XID */ 2576 if (*p++ != rpc_reply) 2577 goto out_unparsable; 2578 if (*p++ != rpc_msg_accepted) 2579 goto out_msg_denied; 2580 2581 error = rpcauth_checkverf(task, xdr); 2582 if (error) 2583 goto out_verifier; 2584 2585 p = xdr_inline_decode(xdr, sizeof(*p)); 2586 if (!p) 2587 goto out_unparsable; 2588 switch (*p) { 2589 case rpc_success: 2590 return 0; 2591 case rpc_prog_unavail: 2592 trace_rpc__prog_unavail(task); 2593 error = -EPFNOSUPPORT; 2594 goto out_err; 2595 case rpc_prog_mismatch: 2596 trace_rpc__prog_mismatch(task); 2597 error = -EPROTONOSUPPORT; 2598 goto out_err; 2599 case rpc_proc_unavail: 2600 trace_rpc__proc_unavail(task); 2601 error = -EOPNOTSUPP; 2602 goto out_err; 2603 case rpc_garbage_args: 2604 case rpc_system_err: 2605 trace_rpc__garbage_args(task); 2606 error = -EIO; 2607 break; 2608 default: 2609 goto out_unparsable; 2610 } 2611 2612 out_garbage: 2613 clnt->cl_stats->rpcgarbage++; 2614 if (task->tk_garb_retry) { 2615 task->tk_garb_retry--; 2616 task->tk_action = call_encode; 2617 return -EAGAIN; 2618 } 2619 out_err: 2620 rpc_call_rpcerror(task, error); 2621 return error; 2622 2623 out_unparsable: 2624 trace_rpc__unparsable(task); 2625 error = -EIO; 2626 goto out_garbage; 2627 2628 out_verifier: 2629 trace_rpc_bad_verifier(task); 2630 goto out_garbage; 2631 2632 out_msg_denied: 2633 error = -EACCES; 2634 p = xdr_inline_decode(xdr, sizeof(*p)); 2635 if (!p) 2636 goto out_unparsable; 2637 switch (*p++) { 2638 case rpc_auth_error: 2639 break; 2640 case rpc_mismatch: 2641 trace_rpc__mismatch(task); 2642 error = -EPROTONOSUPPORT; 2643 goto out_err; 2644 default: 2645 goto out_unparsable; 2646 } 2647 2648 p = xdr_inline_decode(xdr, sizeof(*p)); 2649 if (!p) 2650 goto out_unparsable; 2651 switch (*p++) { 2652 case rpc_autherr_rejectedcred: 2653 case rpc_autherr_rejectedverf: 2654 case rpcsec_gsserr_credproblem: 2655 case rpcsec_gsserr_ctxproblem: 2656 if (!task->tk_cred_retry) 2657 break; 2658 task->tk_cred_retry--; 2659 trace_rpc__stale_creds(task); 2660 return -EKEYREJECTED; 2661 case rpc_autherr_badcred: 2662 case rpc_autherr_badverf: 2663 /* possibly garbled cred/verf? */ 2664 if (!task->tk_garb_retry) 2665 break; 2666 task->tk_garb_retry--; 2667 trace_rpc__bad_creds(task); 2668 task->tk_action = call_encode; 2669 return -EAGAIN; 2670 case rpc_autherr_tooweak: 2671 trace_rpc__auth_tooweak(task); 2672 pr_warn("RPC: server %s requires stronger authentication.\n", 2673 task->tk_xprt->servername); 2674 break; 2675 default: 2676 goto out_unparsable; 2677 } 2678 goto out_err; 2679 } 2680 2681 static void rpcproc_encode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr, 2682 const void *obj) 2683 { 2684 } 2685 2686 static int rpcproc_decode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr, 2687 void *obj) 2688 { 2689 return 0; 2690 } 2691 2692 static const struct rpc_procinfo rpcproc_null = { 2693 .p_encode = rpcproc_encode_null, 2694 .p_decode = rpcproc_decode_null, 2695 }; 2696 2697 static int rpc_ping(struct rpc_clnt *clnt) 2698 { 2699 struct rpc_message msg = { 2700 .rpc_proc = &rpcproc_null, 2701 }; 2702 int err; 2703 err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN | 2704 RPC_TASK_NULLCREDS); 2705 return err; 2706 } 2707 2708 static 2709 struct rpc_task *rpc_call_null_helper(struct rpc_clnt *clnt, 2710 struct rpc_xprt *xprt, struct rpc_cred *cred, int flags, 2711 const struct rpc_call_ops *ops, void *data) 2712 { 2713 struct rpc_message msg = { 2714 .rpc_proc = &rpcproc_null, 2715 }; 2716 struct rpc_task_setup task_setup_data = { 2717 .rpc_client = clnt, 2718 .rpc_xprt = xprt, 2719 .rpc_message = &msg, 2720 .rpc_op_cred = cred, 2721 .callback_ops = (ops != NULL) ? ops : &rpc_default_ops, 2722 .callback_data = data, 2723 .flags = flags | RPC_TASK_SOFT | RPC_TASK_SOFTCONN | 2724 RPC_TASK_NULLCREDS, 2725 }; 2726 2727 return rpc_run_task(&task_setup_data); 2728 } 2729 2730 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags) 2731 { 2732 return rpc_call_null_helper(clnt, NULL, cred, flags, NULL, NULL); 2733 } 2734 EXPORT_SYMBOL_GPL(rpc_call_null); 2735 2736 struct rpc_cb_add_xprt_calldata { 2737 struct rpc_xprt_switch *xps; 2738 struct rpc_xprt *xprt; 2739 }; 2740 2741 static void rpc_cb_add_xprt_done(struct rpc_task *task, void *calldata) 2742 { 2743 struct rpc_cb_add_xprt_calldata *data = calldata; 2744 2745 if (task->tk_status == 0) 2746 rpc_xprt_switch_add_xprt(data->xps, data->xprt); 2747 } 2748 2749 static void rpc_cb_add_xprt_release(void *calldata) 2750 { 2751 struct rpc_cb_add_xprt_calldata *data = calldata; 2752 2753 xprt_put(data->xprt); 2754 xprt_switch_put(data->xps); 2755 kfree(data); 2756 } 2757 2758 static const struct rpc_call_ops rpc_cb_add_xprt_call_ops = { 2759 .rpc_call_done = rpc_cb_add_xprt_done, 2760 .rpc_release = rpc_cb_add_xprt_release, 2761 }; 2762 2763 /** 2764 * rpc_clnt_test_and_add_xprt - Test and add a new transport to a rpc_clnt 2765 * @clnt: pointer to struct rpc_clnt 2766 * @xps: pointer to struct rpc_xprt_switch, 2767 * @xprt: pointer struct rpc_xprt 2768 * @dummy: unused 2769 */ 2770 int rpc_clnt_test_and_add_xprt(struct rpc_clnt *clnt, 2771 struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, 2772 void *dummy) 2773 { 2774 struct rpc_cb_add_xprt_calldata *data; 2775 struct rpc_task *task; 2776 2777 data = kmalloc(sizeof(*data), GFP_NOFS); 2778 if (!data) 2779 return -ENOMEM; 2780 data->xps = xprt_switch_get(xps); 2781 data->xprt = xprt_get(xprt); 2782 if (rpc_xprt_switch_has_addr(data->xps, (struct sockaddr *)&xprt->addr)) { 2783 rpc_cb_add_xprt_release(data); 2784 goto success; 2785 } 2786 2787 task = rpc_call_null_helper(clnt, xprt, NULL, RPC_TASK_ASYNC, 2788 &rpc_cb_add_xprt_call_ops, data); 2789 2790 rpc_put_task(task); 2791 success: 2792 return 1; 2793 } 2794 EXPORT_SYMBOL_GPL(rpc_clnt_test_and_add_xprt); 2795 2796 /** 2797 * rpc_clnt_setup_test_and_add_xprt() 2798 * 2799 * This is an rpc_clnt_add_xprt setup() function which returns 1 so: 2800 * 1) caller of the test function must dereference the rpc_xprt_switch 2801 * and the rpc_xprt. 2802 * 2) test function must call rpc_xprt_switch_add_xprt, usually in 2803 * the rpc_call_done routine. 2804 * 2805 * Upon success (return of 1), the test function adds the new 2806 * transport to the rpc_clnt xprt switch 2807 * 2808 * @clnt: struct rpc_clnt to get the new transport 2809 * @xps: the rpc_xprt_switch to hold the new transport 2810 * @xprt: the rpc_xprt to test 2811 * @data: a struct rpc_add_xprt_test pointer that holds the test function 2812 * and test function call data 2813 */ 2814 int rpc_clnt_setup_test_and_add_xprt(struct rpc_clnt *clnt, 2815 struct rpc_xprt_switch *xps, 2816 struct rpc_xprt *xprt, 2817 void *data) 2818 { 2819 struct rpc_task *task; 2820 struct rpc_add_xprt_test *xtest = (struct rpc_add_xprt_test *)data; 2821 int status = -EADDRINUSE; 2822 2823 xprt = xprt_get(xprt); 2824 xprt_switch_get(xps); 2825 2826 if (rpc_xprt_switch_has_addr(xps, (struct sockaddr *)&xprt->addr)) 2827 goto out_err; 2828 2829 /* Test the connection */ 2830 task = rpc_call_null_helper(clnt, xprt, NULL, 0, NULL, NULL); 2831 if (IS_ERR(task)) { 2832 status = PTR_ERR(task); 2833 goto out_err; 2834 } 2835 status = task->tk_status; 2836 rpc_put_task(task); 2837 2838 if (status < 0) 2839 goto out_err; 2840 2841 /* rpc_xprt_switch and rpc_xprt are deferrenced by add_xprt_test() */ 2842 xtest->add_xprt_test(clnt, xprt, xtest->data); 2843 2844 xprt_put(xprt); 2845 xprt_switch_put(xps); 2846 2847 /* so that rpc_clnt_add_xprt does not call rpc_xprt_switch_add_xprt */ 2848 return 1; 2849 out_err: 2850 xprt_put(xprt); 2851 xprt_switch_put(xps); 2852 pr_info("RPC: rpc_clnt_test_xprt failed: %d addr %s not added\n", 2853 status, xprt->address_strings[RPC_DISPLAY_ADDR]); 2854 return status; 2855 } 2856 EXPORT_SYMBOL_GPL(rpc_clnt_setup_test_and_add_xprt); 2857 2858 /** 2859 * rpc_clnt_add_xprt - Add a new transport to a rpc_clnt 2860 * @clnt: pointer to struct rpc_clnt 2861 * @xprtargs: pointer to struct xprt_create 2862 * @setup: callback to test and/or set up the connection 2863 * @data: pointer to setup function data 2864 * 2865 * Creates a new transport using the parameters set in args and 2866 * adds it to clnt. 2867 * If ping is set, then test that connectivity succeeds before 2868 * adding the new transport. 2869 * 2870 */ 2871 int rpc_clnt_add_xprt(struct rpc_clnt *clnt, 2872 struct xprt_create *xprtargs, 2873 int (*setup)(struct rpc_clnt *, 2874 struct rpc_xprt_switch *, 2875 struct rpc_xprt *, 2876 void *), 2877 void *data) 2878 { 2879 struct rpc_xprt_switch *xps; 2880 struct rpc_xprt *xprt; 2881 unsigned long connect_timeout; 2882 unsigned long reconnect_timeout; 2883 unsigned char resvport, reuseport; 2884 int ret = 0; 2885 2886 rcu_read_lock(); 2887 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2888 xprt = xprt_iter_xprt(&clnt->cl_xpi); 2889 if (xps == NULL || xprt == NULL) { 2890 rcu_read_unlock(); 2891 xprt_switch_put(xps); 2892 return -EAGAIN; 2893 } 2894 resvport = xprt->resvport; 2895 reuseport = xprt->reuseport; 2896 connect_timeout = xprt->connect_timeout; 2897 reconnect_timeout = xprt->max_reconnect_timeout; 2898 rcu_read_unlock(); 2899 2900 xprt = xprt_create_transport(xprtargs); 2901 if (IS_ERR(xprt)) { 2902 ret = PTR_ERR(xprt); 2903 goto out_put_switch; 2904 } 2905 xprt->resvport = resvport; 2906 xprt->reuseport = reuseport; 2907 if (xprt->ops->set_connect_timeout != NULL) 2908 xprt->ops->set_connect_timeout(xprt, 2909 connect_timeout, 2910 reconnect_timeout); 2911 2912 rpc_xprt_switch_set_roundrobin(xps); 2913 if (setup) { 2914 ret = setup(clnt, xps, xprt, data); 2915 if (ret != 0) 2916 goto out_put_xprt; 2917 } 2918 rpc_xprt_switch_add_xprt(xps, xprt); 2919 out_put_xprt: 2920 xprt_put(xprt); 2921 out_put_switch: 2922 xprt_switch_put(xps); 2923 return ret; 2924 } 2925 EXPORT_SYMBOL_GPL(rpc_clnt_add_xprt); 2926 2927 struct connect_timeout_data { 2928 unsigned long connect_timeout; 2929 unsigned long reconnect_timeout; 2930 }; 2931 2932 static int 2933 rpc_xprt_set_connect_timeout(struct rpc_clnt *clnt, 2934 struct rpc_xprt *xprt, 2935 void *data) 2936 { 2937 struct connect_timeout_data *timeo = data; 2938 2939 if (xprt->ops->set_connect_timeout) 2940 xprt->ops->set_connect_timeout(xprt, 2941 timeo->connect_timeout, 2942 timeo->reconnect_timeout); 2943 return 0; 2944 } 2945 2946 void 2947 rpc_set_connect_timeout(struct rpc_clnt *clnt, 2948 unsigned long connect_timeout, 2949 unsigned long reconnect_timeout) 2950 { 2951 struct connect_timeout_data timeout = { 2952 .connect_timeout = connect_timeout, 2953 .reconnect_timeout = reconnect_timeout, 2954 }; 2955 rpc_clnt_iterate_for_each_xprt(clnt, 2956 rpc_xprt_set_connect_timeout, 2957 &timeout); 2958 } 2959 EXPORT_SYMBOL_GPL(rpc_set_connect_timeout); 2960 2961 void rpc_clnt_xprt_switch_put(struct rpc_clnt *clnt) 2962 { 2963 rcu_read_lock(); 2964 xprt_switch_put(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2965 rcu_read_unlock(); 2966 } 2967 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_put); 2968 2969 void rpc_clnt_xprt_switch_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) 2970 { 2971 rcu_read_lock(); 2972 rpc_xprt_switch_add_xprt(rcu_dereference(clnt->cl_xpi.xpi_xpswitch), 2973 xprt); 2974 rcu_read_unlock(); 2975 } 2976 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_add_xprt); 2977 2978 bool rpc_clnt_xprt_switch_has_addr(struct rpc_clnt *clnt, 2979 const struct sockaddr *sap) 2980 { 2981 struct rpc_xprt_switch *xps; 2982 bool ret; 2983 2984 rcu_read_lock(); 2985 xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); 2986 ret = rpc_xprt_switch_has_addr(xps, sap); 2987 rcu_read_unlock(); 2988 return ret; 2989 } 2990 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_has_addr); 2991 2992 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 2993 static void rpc_show_header(void) 2994 { 2995 printk(KERN_INFO "-pid- flgs status -client- --rqstp- " 2996 "-timeout ---ops--\n"); 2997 } 2998 2999 static void rpc_show_task(const struct rpc_clnt *clnt, 3000 const struct rpc_task *task) 3001 { 3002 const char *rpc_waitq = "none"; 3003 3004 if (RPC_IS_QUEUED(task)) 3005 rpc_waitq = rpc_qname(task->tk_waitqueue); 3006 3007 printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n", 3008 task->tk_pid, task->tk_flags, task->tk_status, 3009 clnt, task->tk_rqstp, rpc_task_timeout(task), task->tk_ops, 3010 clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task), 3011 task->tk_action, rpc_waitq); 3012 } 3013 3014 void rpc_show_tasks(struct net *net) 3015 { 3016 struct rpc_clnt *clnt; 3017 struct rpc_task *task; 3018 int header = 0; 3019 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 3020 3021 spin_lock(&sn->rpc_client_lock); 3022 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 3023 spin_lock(&clnt->cl_lock); 3024 list_for_each_entry(task, &clnt->cl_tasks, tk_task) { 3025 if (!header) { 3026 rpc_show_header(); 3027 header++; 3028 } 3029 rpc_show_task(clnt, task); 3030 } 3031 spin_unlock(&clnt->cl_lock); 3032 } 3033 spin_unlock(&sn->rpc_client_lock); 3034 } 3035 #endif 3036 3037 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 3038 static int 3039 rpc_clnt_swap_activate_callback(struct rpc_clnt *clnt, 3040 struct rpc_xprt *xprt, 3041 void *dummy) 3042 { 3043 return xprt_enable_swap(xprt); 3044 } 3045 3046 int 3047 rpc_clnt_swap_activate(struct rpc_clnt *clnt) 3048 { 3049 if (atomic_inc_return(&clnt->cl_swapper) == 1) 3050 return rpc_clnt_iterate_for_each_xprt(clnt, 3051 rpc_clnt_swap_activate_callback, NULL); 3052 return 0; 3053 } 3054 EXPORT_SYMBOL_GPL(rpc_clnt_swap_activate); 3055 3056 static int 3057 rpc_clnt_swap_deactivate_callback(struct rpc_clnt *clnt, 3058 struct rpc_xprt *xprt, 3059 void *dummy) 3060 { 3061 xprt_disable_swap(xprt); 3062 return 0; 3063 } 3064 3065 void 3066 rpc_clnt_swap_deactivate(struct rpc_clnt *clnt) 3067 { 3068 if (atomic_dec_if_positive(&clnt->cl_swapper) == 0) 3069 rpc_clnt_iterate_for_each_xprt(clnt, 3070 rpc_clnt_swap_deactivate_callback, NULL); 3071 } 3072 EXPORT_SYMBOL_GPL(rpc_clnt_swap_deactivate); 3073 #endif /* CONFIG_SUNRPC_SWAP */ 3074