xref: /openbmc/linux/net/sunrpc/clnt.c (revision c819e2cf)
1 /*
2  *  linux/net/sunrpc/clnt.c
3  *
4  *  This file contains the high-level RPC interface.
5  *  It is modeled as a finite state machine to support both synchronous
6  *  and asynchronous requests.
7  *
8  *  -	RPC header generation and argument serialization.
9  *  -	Credential refresh.
10  *  -	TCP connect handling.
11  *  -	Retry of operation when it is suspected the operation failed because
12  *	of uid squashing on the server, or when the credentials were stale
13  *	and need to be refreshed, or when a packet was damaged in transit.
14  *	This may be have to be moved to the VFS layer.
15  *
16  *  Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com>
17  *  Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de>
18  */
19 
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kallsyms.h>
24 #include <linux/mm.h>
25 #include <linux/namei.h>
26 #include <linux/mount.h>
27 #include <linux/slab.h>
28 #include <linux/rcupdate.h>
29 #include <linux/utsname.h>
30 #include <linux/workqueue.h>
31 #include <linux/in.h>
32 #include <linux/in6.h>
33 #include <linux/un.h>
34 
35 #include <linux/sunrpc/clnt.h>
36 #include <linux/sunrpc/addr.h>
37 #include <linux/sunrpc/rpc_pipe_fs.h>
38 #include <linux/sunrpc/metrics.h>
39 #include <linux/sunrpc/bc_xprt.h>
40 #include <trace/events/sunrpc.h>
41 
42 #include "sunrpc.h"
43 #include "netns.h"
44 
45 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
46 # define RPCDBG_FACILITY	RPCDBG_CALL
47 #endif
48 
49 #define dprint_status(t)					\
50 	dprintk("RPC: %5u %s (status %d)\n", t->tk_pid,		\
51 			__func__, t->tk_status)
52 
53 /*
54  * All RPC clients are linked into this list
55  */
56 
57 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait);
58 
59 
60 static void	call_start(struct rpc_task *task);
61 static void	call_reserve(struct rpc_task *task);
62 static void	call_reserveresult(struct rpc_task *task);
63 static void	call_allocate(struct rpc_task *task);
64 static void	call_decode(struct rpc_task *task);
65 static void	call_bind(struct rpc_task *task);
66 static void	call_bind_status(struct rpc_task *task);
67 static void	call_transmit(struct rpc_task *task);
68 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
69 static void	call_bc_transmit(struct rpc_task *task);
70 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
71 static void	call_status(struct rpc_task *task);
72 static void	call_transmit_status(struct rpc_task *task);
73 static void	call_refresh(struct rpc_task *task);
74 static void	call_refreshresult(struct rpc_task *task);
75 static void	call_timeout(struct rpc_task *task);
76 static void	call_connect(struct rpc_task *task);
77 static void	call_connect_status(struct rpc_task *task);
78 
79 static __be32	*rpc_encode_header(struct rpc_task *task);
80 static __be32	*rpc_verify_header(struct rpc_task *task);
81 static int	rpc_ping(struct rpc_clnt *clnt);
82 
83 static void rpc_register_client(struct rpc_clnt *clnt)
84 {
85 	struct net *net = rpc_net_ns(clnt);
86 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
87 
88 	spin_lock(&sn->rpc_client_lock);
89 	list_add(&clnt->cl_clients, &sn->all_clients);
90 	spin_unlock(&sn->rpc_client_lock);
91 }
92 
93 static void rpc_unregister_client(struct rpc_clnt *clnt)
94 {
95 	struct net *net = rpc_net_ns(clnt);
96 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
97 
98 	spin_lock(&sn->rpc_client_lock);
99 	list_del(&clnt->cl_clients);
100 	spin_unlock(&sn->rpc_client_lock);
101 }
102 
103 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
104 {
105 	rpc_remove_client_dir(clnt);
106 }
107 
108 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
109 {
110 	struct net *net = rpc_net_ns(clnt);
111 	struct super_block *pipefs_sb;
112 
113 	pipefs_sb = rpc_get_sb_net(net);
114 	if (pipefs_sb) {
115 		__rpc_clnt_remove_pipedir(clnt);
116 		rpc_put_sb_net(net);
117 	}
118 }
119 
120 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb,
121 				    struct rpc_clnt *clnt)
122 {
123 	static uint32_t clntid;
124 	const char *dir_name = clnt->cl_program->pipe_dir_name;
125 	char name[15];
126 	struct dentry *dir, *dentry;
127 
128 	dir = rpc_d_lookup_sb(sb, dir_name);
129 	if (dir == NULL) {
130 		pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name);
131 		return dir;
132 	}
133 	for (;;) {
134 		snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++);
135 		name[sizeof(name) - 1] = '\0';
136 		dentry = rpc_create_client_dir(dir, name, clnt);
137 		if (!IS_ERR(dentry))
138 			break;
139 		if (dentry == ERR_PTR(-EEXIST))
140 			continue;
141 		printk(KERN_INFO "RPC: Couldn't create pipefs entry"
142 				" %s/%s, error %ld\n",
143 				dir_name, name, PTR_ERR(dentry));
144 		break;
145 	}
146 	dput(dir);
147 	return dentry;
148 }
149 
150 static int
151 rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt)
152 {
153 	struct dentry *dentry;
154 
155 	if (clnt->cl_program->pipe_dir_name != NULL) {
156 		dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt);
157 		if (IS_ERR(dentry))
158 			return PTR_ERR(dentry);
159 	}
160 	return 0;
161 }
162 
163 static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event)
164 {
165 	if (clnt->cl_program->pipe_dir_name == NULL)
166 		return 1;
167 
168 	switch (event) {
169 	case RPC_PIPEFS_MOUNT:
170 		if (clnt->cl_pipedir_objects.pdh_dentry != NULL)
171 			return 1;
172 		if (atomic_read(&clnt->cl_count) == 0)
173 			return 1;
174 		break;
175 	case RPC_PIPEFS_UMOUNT:
176 		if (clnt->cl_pipedir_objects.pdh_dentry == NULL)
177 			return 1;
178 		break;
179 	}
180 	return 0;
181 }
182 
183 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event,
184 				   struct super_block *sb)
185 {
186 	struct dentry *dentry;
187 	int err = 0;
188 
189 	switch (event) {
190 	case RPC_PIPEFS_MOUNT:
191 		dentry = rpc_setup_pipedir_sb(sb, clnt);
192 		if (!dentry)
193 			return -ENOENT;
194 		if (IS_ERR(dentry))
195 			return PTR_ERR(dentry);
196 		break;
197 	case RPC_PIPEFS_UMOUNT:
198 		__rpc_clnt_remove_pipedir(clnt);
199 		break;
200 	default:
201 		printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event);
202 		return -ENOTSUPP;
203 	}
204 	return err;
205 }
206 
207 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event,
208 				struct super_block *sb)
209 {
210 	int error = 0;
211 
212 	for (;; clnt = clnt->cl_parent) {
213 		if (!rpc_clnt_skip_event(clnt, event))
214 			error = __rpc_clnt_handle_event(clnt, event, sb);
215 		if (error || clnt == clnt->cl_parent)
216 			break;
217 	}
218 	return error;
219 }
220 
221 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event)
222 {
223 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
224 	struct rpc_clnt *clnt;
225 
226 	spin_lock(&sn->rpc_client_lock);
227 	list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
228 		if (rpc_clnt_skip_event(clnt, event))
229 			continue;
230 		spin_unlock(&sn->rpc_client_lock);
231 		return clnt;
232 	}
233 	spin_unlock(&sn->rpc_client_lock);
234 	return NULL;
235 }
236 
237 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event,
238 			    void *ptr)
239 {
240 	struct super_block *sb = ptr;
241 	struct rpc_clnt *clnt;
242 	int error = 0;
243 
244 	while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) {
245 		error = __rpc_pipefs_event(clnt, event, sb);
246 		if (error)
247 			break;
248 	}
249 	return error;
250 }
251 
252 static struct notifier_block rpc_clients_block = {
253 	.notifier_call	= rpc_pipefs_event,
254 	.priority	= SUNRPC_PIPEFS_RPC_PRIO,
255 };
256 
257 int rpc_clients_notifier_register(void)
258 {
259 	return rpc_pipefs_notifier_register(&rpc_clients_block);
260 }
261 
262 void rpc_clients_notifier_unregister(void)
263 {
264 	return rpc_pipefs_notifier_unregister(&rpc_clients_block);
265 }
266 
267 static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt,
268 		struct rpc_xprt *xprt,
269 		const struct rpc_timeout *timeout)
270 {
271 	struct rpc_xprt *old;
272 
273 	spin_lock(&clnt->cl_lock);
274 	old = rcu_dereference_protected(clnt->cl_xprt,
275 			lockdep_is_held(&clnt->cl_lock));
276 
277 	if (!xprt_bound(xprt))
278 		clnt->cl_autobind = 1;
279 
280 	clnt->cl_timeout = timeout;
281 	rcu_assign_pointer(clnt->cl_xprt, xprt);
282 	spin_unlock(&clnt->cl_lock);
283 
284 	return old;
285 }
286 
287 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename)
288 {
289 	clnt->cl_nodelen = strlen(nodename);
290 	if (clnt->cl_nodelen > UNX_MAXNODENAME)
291 		clnt->cl_nodelen = UNX_MAXNODENAME;
292 	memcpy(clnt->cl_nodename, nodename, clnt->cl_nodelen);
293 }
294 
295 static int rpc_client_register(struct rpc_clnt *clnt,
296 			       rpc_authflavor_t pseudoflavor,
297 			       const char *client_name)
298 {
299 	struct rpc_auth_create_args auth_args = {
300 		.pseudoflavor = pseudoflavor,
301 		.target_name = client_name,
302 	};
303 	struct rpc_auth *auth;
304 	struct net *net = rpc_net_ns(clnt);
305 	struct super_block *pipefs_sb;
306 	int err;
307 
308 	err = rpc_clnt_debugfs_register(clnt);
309 	if (err)
310 		return err;
311 
312 	pipefs_sb = rpc_get_sb_net(net);
313 	if (pipefs_sb) {
314 		err = rpc_setup_pipedir(pipefs_sb, clnt);
315 		if (err)
316 			goto out;
317 	}
318 
319 	rpc_register_client(clnt);
320 	if (pipefs_sb)
321 		rpc_put_sb_net(net);
322 
323 	auth = rpcauth_create(&auth_args, clnt);
324 	if (IS_ERR(auth)) {
325 		dprintk("RPC:       Couldn't create auth handle (flavor %u)\n",
326 				pseudoflavor);
327 		err = PTR_ERR(auth);
328 		goto err_auth;
329 	}
330 	return 0;
331 err_auth:
332 	pipefs_sb = rpc_get_sb_net(net);
333 	rpc_unregister_client(clnt);
334 	__rpc_clnt_remove_pipedir(clnt);
335 out:
336 	if (pipefs_sb)
337 		rpc_put_sb_net(net);
338 	rpc_clnt_debugfs_unregister(clnt);
339 	return err;
340 }
341 
342 static DEFINE_IDA(rpc_clids);
343 
344 static int rpc_alloc_clid(struct rpc_clnt *clnt)
345 {
346 	int clid;
347 
348 	clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL);
349 	if (clid < 0)
350 		return clid;
351 	clnt->cl_clid = clid;
352 	return 0;
353 }
354 
355 static void rpc_free_clid(struct rpc_clnt *clnt)
356 {
357 	ida_simple_remove(&rpc_clids, clnt->cl_clid);
358 }
359 
360 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args,
361 		struct rpc_xprt *xprt,
362 		struct rpc_clnt *parent)
363 {
364 	const struct rpc_program *program = args->program;
365 	const struct rpc_version *version;
366 	struct rpc_clnt *clnt = NULL;
367 	const struct rpc_timeout *timeout;
368 	int err;
369 
370 	/* sanity check the name before trying to print it */
371 	dprintk("RPC:       creating %s client for %s (xprt %p)\n",
372 			program->name, args->servername, xprt);
373 
374 	err = rpciod_up();
375 	if (err)
376 		goto out_no_rpciod;
377 
378 	err = -EINVAL;
379 	if (args->version >= program->nrvers)
380 		goto out_err;
381 	version = program->version[args->version];
382 	if (version == NULL)
383 		goto out_err;
384 
385 	err = -ENOMEM;
386 	clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
387 	if (!clnt)
388 		goto out_err;
389 	clnt->cl_parent = parent ? : clnt;
390 
391 	err = rpc_alloc_clid(clnt);
392 	if (err)
393 		goto out_no_clid;
394 
395 	clnt->cl_procinfo = version->procs;
396 	clnt->cl_maxproc  = version->nrprocs;
397 	clnt->cl_prog     = args->prognumber ? : program->number;
398 	clnt->cl_vers     = version->number;
399 	clnt->cl_stats    = program->stats;
400 	clnt->cl_metrics  = rpc_alloc_iostats(clnt);
401 	rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects);
402 	err = -ENOMEM;
403 	if (clnt->cl_metrics == NULL)
404 		goto out_no_stats;
405 	clnt->cl_program  = program;
406 	INIT_LIST_HEAD(&clnt->cl_tasks);
407 	spin_lock_init(&clnt->cl_lock);
408 
409 	timeout = xprt->timeout;
410 	if (args->timeout != NULL) {
411 		memcpy(&clnt->cl_timeout_default, args->timeout,
412 				sizeof(clnt->cl_timeout_default));
413 		timeout = &clnt->cl_timeout_default;
414 	}
415 
416 	rpc_clnt_set_transport(clnt, xprt, timeout);
417 
418 	clnt->cl_rtt = &clnt->cl_rtt_default;
419 	rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval);
420 
421 	atomic_set(&clnt->cl_count, 1);
422 
423 	/* save the nodename */
424 	rpc_clnt_set_nodename(clnt, utsname()->nodename);
425 
426 	err = rpc_client_register(clnt, args->authflavor, args->client_name);
427 	if (err)
428 		goto out_no_path;
429 	if (parent)
430 		atomic_inc(&parent->cl_count);
431 	return clnt;
432 
433 out_no_path:
434 	rpc_free_iostats(clnt->cl_metrics);
435 out_no_stats:
436 	rpc_free_clid(clnt);
437 out_no_clid:
438 	kfree(clnt);
439 out_err:
440 	rpciod_down();
441 out_no_rpciod:
442 	xprt_put(xprt);
443 	return ERR_PTR(err);
444 }
445 
446 struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args,
447 					struct rpc_xprt *xprt)
448 {
449 	struct rpc_clnt *clnt = NULL;
450 
451 	clnt = rpc_new_client(args, xprt, NULL);
452 	if (IS_ERR(clnt))
453 		return clnt;
454 
455 	if (!(args->flags & RPC_CLNT_CREATE_NOPING)) {
456 		int err = rpc_ping(clnt);
457 		if (err != 0) {
458 			rpc_shutdown_client(clnt);
459 			return ERR_PTR(err);
460 		}
461 	}
462 
463 	clnt->cl_softrtry = 1;
464 	if (args->flags & RPC_CLNT_CREATE_HARDRTRY)
465 		clnt->cl_softrtry = 0;
466 
467 	if (args->flags & RPC_CLNT_CREATE_AUTOBIND)
468 		clnt->cl_autobind = 1;
469 	if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT)
470 		clnt->cl_noretranstimeo = 1;
471 	if (args->flags & RPC_CLNT_CREATE_DISCRTRY)
472 		clnt->cl_discrtry = 1;
473 	if (!(args->flags & RPC_CLNT_CREATE_QUIET))
474 		clnt->cl_chatty = 1;
475 
476 	return clnt;
477 }
478 EXPORT_SYMBOL_GPL(rpc_create_xprt);
479 
480 /**
481  * rpc_create - create an RPC client and transport with one call
482  * @args: rpc_clnt create argument structure
483  *
484  * Creates and initializes an RPC transport and an RPC client.
485  *
486  * It can ping the server in order to determine if it is up, and to see if
487  * it supports this program and version.  RPC_CLNT_CREATE_NOPING disables
488  * this behavior so asynchronous tasks can also use rpc_create.
489  */
490 struct rpc_clnt *rpc_create(struct rpc_create_args *args)
491 {
492 	struct rpc_xprt *xprt;
493 	struct xprt_create xprtargs = {
494 		.net = args->net,
495 		.ident = args->protocol,
496 		.srcaddr = args->saddress,
497 		.dstaddr = args->address,
498 		.addrlen = args->addrsize,
499 		.servername = args->servername,
500 		.bc_xprt = args->bc_xprt,
501 	};
502 	char servername[48];
503 
504 	if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS)
505 		xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS;
506 	if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT)
507 		xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT;
508 	/*
509 	 * If the caller chooses not to specify a hostname, whip
510 	 * up a string representation of the passed-in address.
511 	 */
512 	if (xprtargs.servername == NULL) {
513 		struct sockaddr_un *sun =
514 				(struct sockaddr_un *)args->address;
515 		struct sockaddr_in *sin =
516 				(struct sockaddr_in *)args->address;
517 		struct sockaddr_in6 *sin6 =
518 				(struct sockaddr_in6 *)args->address;
519 
520 		servername[0] = '\0';
521 		switch (args->address->sa_family) {
522 		case AF_LOCAL:
523 			snprintf(servername, sizeof(servername), "%s",
524 				 sun->sun_path);
525 			break;
526 		case AF_INET:
527 			snprintf(servername, sizeof(servername), "%pI4",
528 				 &sin->sin_addr.s_addr);
529 			break;
530 		case AF_INET6:
531 			snprintf(servername, sizeof(servername), "%pI6",
532 				 &sin6->sin6_addr);
533 			break;
534 		default:
535 			/* caller wants default server name, but
536 			 * address family isn't recognized. */
537 			return ERR_PTR(-EINVAL);
538 		}
539 		xprtargs.servername = servername;
540 	}
541 
542 	xprt = xprt_create_transport(&xprtargs);
543 	if (IS_ERR(xprt))
544 		return (struct rpc_clnt *)xprt;
545 
546 	/*
547 	 * By default, kernel RPC client connects from a reserved port.
548 	 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters,
549 	 * but it is always enabled for rpciod, which handles the connect
550 	 * operation.
551 	 */
552 	xprt->resvport = 1;
553 	if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT)
554 		xprt->resvport = 0;
555 
556 	return rpc_create_xprt(args, xprt);
557 }
558 EXPORT_SYMBOL_GPL(rpc_create);
559 
560 /*
561  * This function clones the RPC client structure. It allows us to share the
562  * same transport while varying parameters such as the authentication
563  * flavour.
564  */
565 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args,
566 					   struct rpc_clnt *clnt)
567 {
568 	struct rpc_xprt *xprt;
569 	struct rpc_clnt *new;
570 	int err;
571 
572 	err = -ENOMEM;
573 	rcu_read_lock();
574 	xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
575 	rcu_read_unlock();
576 	if (xprt == NULL)
577 		goto out_err;
578 	args->servername = xprt->servername;
579 
580 	new = rpc_new_client(args, xprt, clnt);
581 	if (IS_ERR(new)) {
582 		err = PTR_ERR(new);
583 		goto out_err;
584 	}
585 
586 	/* Turn off autobind on clones */
587 	new->cl_autobind = 0;
588 	new->cl_softrtry = clnt->cl_softrtry;
589 	new->cl_noretranstimeo = clnt->cl_noretranstimeo;
590 	new->cl_discrtry = clnt->cl_discrtry;
591 	new->cl_chatty = clnt->cl_chatty;
592 	return new;
593 
594 out_err:
595 	dprintk("RPC:       %s: returned error %d\n", __func__, err);
596 	return ERR_PTR(err);
597 }
598 
599 /**
600  * rpc_clone_client - Clone an RPC client structure
601  *
602  * @clnt: RPC client whose parameters are copied
603  *
604  * Returns a fresh RPC client or an ERR_PTR.
605  */
606 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt)
607 {
608 	struct rpc_create_args args = {
609 		.program	= clnt->cl_program,
610 		.prognumber	= clnt->cl_prog,
611 		.version	= clnt->cl_vers,
612 		.authflavor	= clnt->cl_auth->au_flavor,
613 	};
614 	return __rpc_clone_client(&args, clnt);
615 }
616 EXPORT_SYMBOL_GPL(rpc_clone_client);
617 
618 /**
619  * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth
620  *
621  * @clnt: RPC client whose parameters are copied
622  * @flavor: security flavor for new client
623  *
624  * Returns a fresh RPC client or an ERR_PTR.
625  */
626 struct rpc_clnt *
627 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
628 {
629 	struct rpc_create_args args = {
630 		.program	= clnt->cl_program,
631 		.prognumber	= clnt->cl_prog,
632 		.version	= clnt->cl_vers,
633 		.authflavor	= flavor,
634 	};
635 	return __rpc_clone_client(&args, clnt);
636 }
637 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth);
638 
639 /**
640  * rpc_switch_client_transport: switch the RPC transport on the fly
641  * @clnt: pointer to a struct rpc_clnt
642  * @args: pointer to the new transport arguments
643  * @timeout: pointer to the new timeout parameters
644  *
645  * This function allows the caller to switch the RPC transport for the
646  * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS
647  * server, for instance.  It assumes that the caller has ensured that
648  * there are no active RPC tasks by using some form of locking.
649  *
650  * Returns zero if "clnt" is now using the new xprt.  Otherwise a
651  * negative errno is returned, and "clnt" continues to use the old
652  * xprt.
653  */
654 int rpc_switch_client_transport(struct rpc_clnt *clnt,
655 		struct xprt_create *args,
656 		const struct rpc_timeout *timeout)
657 {
658 	const struct rpc_timeout *old_timeo;
659 	rpc_authflavor_t pseudoflavor;
660 	struct rpc_xprt *xprt, *old;
661 	struct rpc_clnt *parent;
662 	int err;
663 
664 	xprt = xprt_create_transport(args);
665 	if (IS_ERR(xprt)) {
666 		dprintk("RPC:       failed to create new xprt for clnt %p\n",
667 			clnt);
668 		return PTR_ERR(xprt);
669 	}
670 
671 	pseudoflavor = clnt->cl_auth->au_flavor;
672 
673 	old_timeo = clnt->cl_timeout;
674 	old = rpc_clnt_set_transport(clnt, xprt, timeout);
675 
676 	rpc_unregister_client(clnt);
677 	__rpc_clnt_remove_pipedir(clnt);
678 	rpc_clnt_debugfs_unregister(clnt);
679 
680 	/*
681 	 * A new transport was created.  "clnt" therefore
682 	 * becomes the root of a new cl_parent tree.  clnt's
683 	 * children, if it has any, still point to the old xprt.
684 	 */
685 	parent = clnt->cl_parent;
686 	clnt->cl_parent = clnt;
687 
688 	/*
689 	 * The old rpc_auth cache cannot be re-used.  GSS
690 	 * contexts in particular are between a single
691 	 * client and server.
692 	 */
693 	err = rpc_client_register(clnt, pseudoflavor, NULL);
694 	if (err)
695 		goto out_revert;
696 
697 	synchronize_rcu();
698 	if (parent != clnt)
699 		rpc_release_client(parent);
700 	xprt_put(old);
701 	dprintk("RPC:       replaced xprt for clnt %p\n", clnt);
702 	return 0;
703 
704 out_revert:
705 	rpc_clnt_set_transport(clnt, old, old_timeo);
706 	clnt->cl_parent = parent;
707 	rpc_client_register(clnt, pseudoflavor, NULL);
708 	xprt_put(xprt);
709 	dprintk("RPC:       failed to switch xprt for clnt %p\n", clnt);
710 	return err;
711 }
712 EXPORT_SYMBOL_GPL(rpc_switch_client_transport);
713 
714 /*
715  * Kill all tasks for the given client.
716  * XXX: kill their descendants as well?
717  */
718 void rpc_killall_tasks(struct rpc_clnt *clnt)
719 {
720 	struct rpc_task	*rovr;
721 
722 
723 	if (list_empty(&clnt->cl_tasks))
724 		return;
725 	dprintk("RPC:       killing all tasks for client %p\n", clnt);
726 	/*
727 	 * Spin lock all_tasks to prevent changes...
728 	 */
729 	spin_lock(&clnt->cl_lock);
730 	list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
731 		if (!RPC_IS_ACTIVATED(rovr))
732 			continue;
733 		if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
734 			rovr->tk_flags |= RPC_TASK_KILLED;
735 			rpc_exit(rovr, -EIO);
736 			if (RPC_IS_QUEUED(rovr))
737 				rpc_wake_up_queued_task(rovr->tk_waitqueue,
738 							rovr);
739 		}
740 	}
741 	spin_unlock(&clnt->cl_lock);
742 }
743 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
744 
745 /*
746  * Properly shut down an RPC client, terminating all outstanding
747  * requests.
748  */
749 void rpc_shutdown_client(struct rpc_clnt *clnt)
750 {
751 	might_sleep();
752 
753 	dprintk_rcu("RPC:       shutting down %s client for %s\n",
754 			clnt->cl_program->name,
755 			rcu_dereference(clnt->cl_xprt)->servername);
756 
757 	while (!list_empty(&clnt->cl_tasks)) {
758 		rpc_killall_tasks(clnt);
759 		wait_event_timeout(destroy_wait,
760 			list_empty(&clnt->cl_tasks), 1*HZ);
761 	}
762 
763 	rpc_release_client(clnt);
764 }
765 EXPORT_SYMBOL_GPL(rpc_shutdown_client);
766 
767 /*
768  * Free an RPC client
769  */
770 static struct rpc_clnt *
771 rpc_free_client(struct rpc_clnt *clnt)
772 {
773 	struct rpc_clnt *parent = NULL;
774 
775 	dprintk_rcu("RPC:       destroying %s client for %s\n",
776 			clnt->cl_program->name,
777 			rcu_dereference(clnt->cl_xprt)->servername);
778 	if (clnt->cl_parent != clnt)
779 		parent = clnt->cl_parent;
780 	rpc_clnt_debugfs_unregister(clnt);
781 	rpc_clnt_remove_pipedir(clnt);
782 	rpc_unregister_client(clnt);
783 	rpc_free_iostats(clnt->cl_metrics);
784 	clnt->cl_metrics = NULL;
785 	xprt_put(rcu_dereference_raw(clnt->cl_xprt));
786 	rpciod_down();
787 	rpc_free_clid(clnt);
788 	kfree(clnt);
789 	return parent;
790 }
791 
792 /*
793  * Free an RPC client
794  */
795 static struct rpc_clnt *
796 rpc_free_auth(struct rpc_clnt *clnt)
797 {
798 	if (clnt->cl_auth == NULL)
799 		return rpc_free_client(clnt);
800 
801 	/*
802 	 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to
803 	 *       release remaining GSS contexts. This mechanism ensures
804 	 *       that it can do so safely.
805 	 */
806 	atomic_inc(&clnt->cl_count);
807 	rpcauth_release(clnt->cl_auth);
808 	clnt->cl_auth = NULL;
809 	if (atomic_dec_and_test(&clnt->cl_count))
810 		return rpc_free_client(clnt);
811 	return NULL;
812 }
813 
814 /*
815  * Release reference to the RPC client
816  */
817 void
818 rpc_release_client(struct rpc_clnt *clnt)
819 {
820 	dprintk("RPC:       rpc_release_client(%p)\n", clnt);
821 
822 	do {
823 		if (list_empty(&clnt->cl_tasks))
824 			wake_up(&destroy_wait);
825 		if (!atomic_dec_and_test(&clnt->cl_count))
826 			break;
827 		clnt = rpc_free_auth(clnt);
828 	} while (clnt != NULL);
829 }
830 EXPORT_SYMBOL_GPL(rpc_release_client);
831 
832 /**
833  * rpc_bind_new_program - bind a new RPC program to an existing client
834  * @old: old rpc_client
835  * @program: rpc program to set
836  * @vers: rpc program version
837  *
838  * Clones the rpc client and sets up a new RPC program. This is mainly
839  * of use for enabling different RPC programs to share the same transport.
840  * The Sun NFSv2/v3 ACL protocol can do this.
841  */
842 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old,
843 				      const struct rpc_program *program,
844 				      u32 vers)
845 {
846 	struct rpc_create_args args = {
847 		.program	= program,
848 		.prognumber	= program->number,
849 		.version	= vers,
850 		.authflavor	= old->cl_auth->au_flavor,
851 	};
852 	struct rpc_clnt *clnt;
853 	int err;
854 
855 	clnt = __rpc_clone_client(&args, old);
856 	if (IS_ERR(clnt))
857 		goto out;
858 	err = rpc_ping(clnt);
859 	if (err != 0) {
860 		rpc_shutdown_client(clnt);
861 		clnt = ERR_PTR(err);
862 	}
863 out:
864 	return clnt;
865 }
866 EXPORT_SYMBOL_GPL(rpc_bind_new_program);
867 
868 void rpc_task_release_client(struct rpc_task *task)
869 {
870 	struct rpc_clnt *clnt = task->tk_client;
871 
872 	if (clnt != NULL) {
873 		/* Remove from client task list */
874 		spin_lock(&clnt->cl_lock);
875 		list_del(&task->tk_task);
876 		spin_unlock(&clnt->cl_lock);
877 		task->tk_client = NULL;
878 
879 		rpc_release_client(clnt);
880 	}
881 }
882 
883 static
884 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt)
885 {
886 	if (clnt != NULL) {
887 		rpc_task_release_client(task);
888 		task->tk_client = clnt;
889 		atomic_inc(&clnt->cl_count);
890 		if (clnt->cl_softrtry)
891 			task->tk_flags |= RPC_TASK_SOFT;
892 		if (clnt->cl_noretranstimeo)
893 			task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT;
894 		if (sk_memalloc_socks()) {
895 			struct rpc_xprt *xprt;
896 
897 			rcu_read_lock();
898 			xprt = rcu_dereference(clnt->cl_xprt);
899 			if (xprt->swapper)
900 				task->tk_flags |= RPC_TASK_SWAPPER;
901 			rcu_read_unlock();
902 		}
903 		/* Add to the client's list of all tasks */
904 		spin_lock(&clnt->cl_lock);
905 		list_add_tail(&task->tk_task, &clnt->cl_tasks);
906 		spin_unlock(&clnt->cl_lock);
907 	}
908 }
909 
910 void rpc_task_reset_client(struct rpc_task *task, struct rpc_clnt *clnt)
911 {
912 	rpc_task_release_client(task);
913 	rpc_task_set_client(task, clnt);
914 }
915 EXPORT_SYMBOL_GPL(rpc_task_reset_client);
916 
917 
918 static void
919 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg)
920 {
921 	if (msg != NULL) {
922 		task->tk_msg.rpc_proc = msg->rpc_proc;
923 		task->tk_msg.rpc_argp = msg->rpc_argp;
924 		task->tk_msg.rpc_resp = msg->rpc_resp;
925 		if (msg->rpc_cred != NULL)
926 			task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred);
927 	}
928 }
929 
930 /*
931  * Default callback for async RPC calls
932  */
933 static void
934 rpc_default_callback(struct rpc_task *task, void *data)
935 {
936 }
937 
938 static const struct rpc_call_ops rpc_default_ops = {
939 	.rpc_call_done = rpc_default_callback,
940 };
941 
942 /**
943  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
944  * @task_setup_data: pointer to task initialisation data
945  */
946 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data)
947 {
948 	struct rpc_task *task;
949 
950 	task = rpc_new_task(task_setup_data);
951 	if (IS_ERR(task))
952 		goto out;
953 
954 	rpc_task_set_client(task, task_setup_data->rpc_client);
955 	rpc_task_set_rpc_message(task, task_setup_data->rpc_message);
956 
957 	if (task->tk_action == NULL)
958 		rpc_call_start(task);
959 
960 	atomic_inc(&task->tk_count);
961 	rpc_execute(task);
962 out:
963 	return task;
964 }
965 EXPORT_SYMBOL_GPL(rpc_run_task);
966 
967 /**
968  * rpc_call_sync - Perform a synchronous RPC call
969  * @clnt: pointer to RPC client
970  * @msg: RPC call parameters
971  * @flags: RPC call flags
972  */
973 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags)
974 {
975 	struct rpc_task	*task;
976 	struct rpc_task_setup task_setup_data = {
977 		.rpc_client = clnt,
978 		.rpc_message = msg,
979 		.callback_ops = &rpc_default_ops,
980 		.flags = flags,
981 	};
982 	int status;
983 
984 	WARN_ON_ONCE(flags & RPC_TASK_ASYNC);
985 	if (flags & RPC_TASK_ASYNC) {
986 		rpc_release_calldata(task_setup_data.callback_ops,
987 			task_setup_data.callback_data);
988 		return -EINVAL;
989 	}
990 
991 	task = rpc_run_task(&task_setup_data);
992 	if (IS_ERR(task))
993 		return PTR_ERR(task);
994 	status = task->tk_status;
995 	rpc_put_task(task);
996 	return status;
997 }
998 EXPORT_SYMBOL_GPL(rpc_call_sync);
999 
1000 /**
1001  * rpc_call_async - Perform an asynchronous RPC call
1002  * @clnt: pointer to RPC client
1003  * @msg: RPC call parameters
1004  * @flags: RPC call flags
1005  * @tk_ops: RPC call ops
1006  * @data: user call data
1007  */
1008 int
1009 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags,
1010 	       const struct rpc_call_ops *tk_ops, void *data)
1011 {
1012 	struct rpc_task	*task;
1013 	struct rpc_task_setup task_setup_data = {
1014 		.rpc_client = clnt,
1015 		.rpc_message = msg,
1016 		.callback_ops = tk_ops,
1017 		.callback_data = data,
1018 		.flags = flags|RPC_TASK_ASYNC,
1019 	};
1020 
1021 	task = rpc_run_task(&task_setup_data);
1022 	if (IS_ERR(task))
1023 		return PTR_ERR(task);
1024 	rpc_put_task(task);
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(rpc_call_async);
1028 
1029 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1030 /**
1031  * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run
1032  * rpc_execute against it
1033  * @req: RPC request
1034  * @tk_ops: RPC call ops
1035  */
1036 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req,
1037 				const struct rpc_call_ops *tk_ops)
1038 {
1039 	struct rpc_task *task;
1040 	struct xdr_buf *xbufp = &req->rq_snd_buf;
1041 	struct rpc_task_setup task_setup_data = {
1042 		.callback_ops = tk_ops,
1043 	};
1044 
1045 	dprintk("RPC: rpc_run_bc_task req= %p\n", req);
1046 	/*
1047 	 * Create an rpc_task to send the data
1048 	 */
1049 	task = rpc_new_task(&task_setup_data);
1050 	if (IS_ERR(task)) {
1051 		xprt_free_bc_request(req);
1052 		goto out;
1053 	}
1054 	task->tk_rqstp = req;
1055 
1056 	/*
1057 	 * Set up the xdr_buf length.
1058 	 * This also indicates that the buffer is XDR encoded already.
1059 	 */
1060 	xbufp->len = xbufp->head[0].iov_len + xbufp->page_len +
1061 			xbufp->tail[0].iov_len;
1062 
1063 	task->tk_action = call_bc_transmit;
1064 	atomic_inc(&task->tk_count);
1065 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 2);
1066 	rpc_execute(task);
1067 
1068 out:
1069 	dprintk("RPC: rpc_run_bc_task: task= %p\n", task);
1070 	return task;
1071 }
1072 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1073 
1074 void
1075 rpc_call_start(struct rpc_task *task)
1076 {
1077 	task->tk_action = call_start;
1078 }
1079 EXPORT_SYMBOL_GPL(rpc_call_start);
1080 
1081 /**
1082  * rpc_peeraddr - extract remote peer address from clnt's xprt
1083  * @clnt: RPC client structure
1084  * @buf: target buffer
1085  * @bufsize: length of target buffer
1086  *
1087  * Returns the number of bytes that are actually in the stored address.
1088  */
1089 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize)
1090 {
1091 	size_t bytes;
1092 	struct rpc_xprt *xprt;
1093 
1094 	rcu_read_lock();
1095 	xprt = rcu_dereference(clnt->cl_xprt);
1096 
1097 	bytes = xprt->addrlen;
1098 	if (bytes > bufsize)
1099 		bytes = bufsize;
1100 	memcpy(buf, &xprt->addr, bytes);
1101 	rcu_read_unlock();
1102 
1103 	return bytes;
1104 }
1105 EXPORT_SYMBOL_GPL(rpc_peeraddr);
1106 
1107 /**
1108  * rpc_peeraddr2str - return remote peer address in printable format
1109  * @clnt: RPC client structure
1110  * @format: address format
1111  *
1112  * NB: the lifetime of the memory referenced by the returned pointer is
1113  * the same as the rpc_xprt itself.  As long as the caller uses this
1114  * pointer, it must hold the RCU read lock.
1115  */
1116 const char *rpc_peeraddr2str(struct rpc_clnt *clnt,
1117 			     enum rpc_display_format_t format)
1118 {
1119 	struct rpc_xprt *xprt;
1120 
1121 	xprt = rcu_dereference(clnt->cl_xprt);
1122 
1123 	if (xprt->address_strings[format] != NULL)
1124 		return xprt->address_strings[format];
1125 	else
1126 		return "unprintable";
1127 }
1128 EXPORT_SYMBOL_GPL(rpc_peeraddr2str);
1129 
1130 static const struct sockaddr_in rpc_inaddr_loopback = {
1131 	.sin_family		= AF_INET,
1132 	.sin_addr.s_addr	= htonl(INADDR_ANY),
1133 };
1134 
1135 static const struct sockaddr_in6 rpc_in6addr_loopback = {
1136 	.sin6_family		= AF_INET6,
1137 	.sin6_addr		= IN6ADDR_ANY_INIT,
1138 };
1139 
1140 /*
1141  * Try a getsockname() on a connected datagram socket.  Using a
1142  * connected datagram socket prevents leaving a socket in TIME_WAIT.
1143  * This conserves the ephemeral port number space.
1144  *
1145  * Returns zero and fills in "buf" if successful; otherwise, a
1146  * negative errno is returned.
1147  */
1148 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen,
1149 			struct sockaddr *buf, int buflen)
1150 {
1151 	struct socket *sock;
1152 	int err;
1153 
1154 	err = __sock_create(net, sap->sa_family,
1155 				SOCK_DGRAM, IPPROTO_UDP, &sock, 1);
1156 	if (err < 0) {
1157 		dprintk("RPC:       can't create UDP socket (%d)\n", err);
1158 		goto out;
1159 	}
1160 
1161 	switch (sap->sa_family) {
1162 	case AF_INET:
1163 		err = kernel_bind(sock,
1164 				(struct sockaddr *)&rpc_inaddr_loopback,
1165 				sizeof(rpc_inaddr_loopback));
1166 		break;
1167 	case AF_INET6:
1168 		err = kernel_bind(sock,
1169 				(struct sockaddr *)&rpc_in6addr_loopback,
1170 				sizeof(rpc_in6addr_loopback));
1171 		break;
1172 	default:
1173 		err = -EAFNOSUPPORT;
1174 		goto out;
1175 	}
1176 	if (err < 0) {
1177 		dprintk("RPC:       can't bind UDP socket (%d)\n", err);
1178 		goto out_release;
1179 	}
1180 
1181 	err = kernel_connect(sock, sap, salen, 0);
1182 	if (err < 0) {
1183 		dprintk("RPC:       can't connect UDP socket (%d)\n", err);
1184 		goto out_release;
1185 	}
1186 
1187 	err = kernel_getsockname(sock, buf, &buflen);
1188 	if (err < 0) {
1189 		dprintk("RPC:       getsockname failed (%d)\n", err);
1190 		goto out_release;
1191 	}
1192 
1193 	err = 0;
1194 	if (buf->sa_family == AF_INET6) {
1195 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf;
1196 		sin6->sin6_scope_id = 0;
1197 	}
1198 	dprintk("RPC:       %s succeeded\n", __func__);
1199 
1200 out_release:
1201 	sock_release(sock);
1202 out:
1203 	return err;
1204 }
1205 
1206 /*
1207  * Scraping a connected socket failed, so we don't have a useable
1208  * local address.  Fallback: generate an address that will prevent
1209  * the server from calling us back.
1210  *
1211  * Returns zero and fills in "buf" if successful; otherwise, a
1212  * negative errno is returned.
1213  */
1214 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen)
1215 {
1216 	switch (family) {
1217 	case AF_INET:
1218 		if (buflen < sizeof(rpc_inaddr_loopback))
1219 			return -EINVAL;
1220 		memcpy(buf, &rpc_inaddr_loopback,
1221 				sizeof(rpc_inaddr_loopback));
1222 		break;
1223 	case AF_INET6:
1224 		if (buflen < sizeof(rpc_in6addr_loopback))
1225 			return -EINVAL;
1226 		memcpy(buf, &rpc_in6addr_loopback,
1227 				sizeof(rpc_in6addr_loopback));
1228 	default:
1229 		dprintk("RPC:       %s: address family not supported\n",
1230 			__func__);
1231 		return -EAFNOSUPPORT;
1232 	}
1233 	dprintk("RPC:       %s: succeeded\n", __func__);
1234 	return 0;
1235 }
1236 
1237 /**
1238  * rpc_localaddr - discover local endpoint address for an RPC client
1239  * @clnt: RPC client structure
1240  * @buf: target buffer
1241  * @buflen: size of target buffer, in bytes
1242  *
1243  * Returns zero and fills in "buf" and "buflen" if successful;
1244  * otherwise, a negative errno is returned.
1245  *
1246  * This works even if the underlying transport is not currently connected,
1247  * or if the upper layer never previously provided a source address.
1248  *
1249  * The result of this function call is transient: multiple calls in
1250  * succession may give different results, depending on how local
1251  * networking configuration changes over time.
1252  */
1253 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen)
1254 {
1255 	struct sockaddr_storage address;
1256 	struct sockaddr *sap = (struct sockaddr *)&address;
1257 	struct rpc_xprt *xprt;
1258 	struct net *net;
1259 	size_t salen;
1260 	int err;
1261 
1262 	rcu_read_lock();
1263 	xprt = rcu_dereference(clnt->cl_xprt);
1264 	salen = xprt->addrlen;
1265 	memcpy(sap, &xprt->addr, salen);
1266 	net = get_net(xprt->xprt_net);
1267 	rcu_read_unlock();
1268 
1269 	rpc_set_port(sap, 0);
1270 	err = rpc_sockname(net, sap, salen, buf, buflen);
1271 	put_net(net);
1272 	if (err != 0)
1273 		/* Couldn't discover local address, return ANYADDR */
1274 		return rpc_anyaddr(sap->sa_family, buf, buflen);
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(rpc_localaddr);
1278 
1279 void
1280 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize)
1281 {
1282 	struct rpc_xprt *xprt;
1283 
1284 	rcu_read_lock();
1285 	xprt = rcu_dereference(clnt->cl_xprt);
1286 	if (xprt->ops->set_buffer_size)
1287 		xprt->ops->set_buffer_size(xprt, sndsize, rcvsize);
1288 	rcu_read_unlock();
1289 }
1290 EXPORT_SYMBOL_GPL(rpc_setbufsize);
1291 
1292 /**
1293  * rpc_protocol - Get transport protocol number for an RPC client
1294  * @clnt: RPC client to query
1295  *
1296  */
1297 int rpc_protocol(struct rpc_clnt *clnt)
1298 {
1299 	int protocol;
1300 
1301 	rcu_read_lock();
1302 	protocol = rcu_dereference(clnt->cl_xprt)->prot;
1303 	rcu_read_unlock();
1304 	return protocol;
1305 }
1306 EXPORT_SYMBOL_GPL(rpc_protocol);
1307 
1308 /**
1309  * rpc_net_ns - Get the network namespace for this RPC client
1310  * @clnt: RPC client to query
1311  *
1312  */
1313 struct net *rpc_net_ns(struct rpc_clnt *clnt)
1314 {
1315 	struct net *ret;
1316 
1317 	rcu_read_lock();
1318 	ret = rcu_dereference(clnt->cl_xprt)->xprt_net;
1319 	rcu_read_unlock();
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(rpc_net_ns);
1323 
1324 /**
1325  * rpc_max_payload - Get maximum payload size for a transport, in bytes
1326  * @clnt: RPC client to query
1327  *
1328  * For stream transports, this is one RPC record fragment (see RFC
1329  * 1831), as we don't support multi-record requests yet.  For datagram
1330  * transports, this is the size of an IP packet minus the IP, UDP, and
1331  * RPC header sizes.
1332  */
1333 size_t rpc_max_payload(struct rpc_clnt *clnt)
1334 {
1335 	size_t ret;
1336 
1337 	rcu_read_lock();
1338 	ret = rcu_dereference(clnt->cl_xprt)->max_payload;
1339 	rcu_read_unlock();
1340 	return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(rpc_max_payload);
1343 
1344 /**
1345  * rpc_get_timeout - Get timeout for transport in units of HZ
1346  * @clnt: RPC client to query
1347  */
1348 unsigned long rpc_get_timeout(struct rpc_clnt *clnt)
1349 {
1350 	unsigned long ret;
1351 
1352 	rcu_read_lock();
1353 	ret = rcu_dereference(clnt->cl_xprt)->timeout->to_initval;
1354 	rcu_read_unlock();
1355 	return ret;
1356 }
1357 EXPORT_SYMBOL_GPL(rpc_get_timeout);
1358 
1359 /**
1360  * rpc_force_rebind - force transport to check that remote port is unchanged
1361  * @clnt: client to rebind
1362  *
1363  */
1364 void rpc_force_rebind(struct rpc_clnt *clnt)
1365 {
1366 	if (clnt->cl_autobind) {
1367 		rcu_read_lock();
1368 		xprt_clear_bound(rcu_dereference(clnt->cl_xprt));
1369 		rcu_read_unlock();
1370 	}
1371 }
1372 EXPORT_SYMBOL_GPL(rpc_force_rebind);
1373 
1374 /*
1375  * Restart an (async) RPC call from the call_prepare state.
1376  * Usually called from within the exit handler.
1377  */
1378 int
1379 rpc_restart_call_prepare(struct rpc_task *task)
1380 {
1381 	if (RPC_ASSASSINATED(task))
1382 		return 0;
1383 	task->tk_action = call_start;
1384 	task->tk_status = 0;
1385 	if (task->tk_ops->rpc_call_prepare != NULL)
1386 		task->tk_action = rpc_prepare_task;
1387 	return 1;
1388 }
1389 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare);
1390 
1391 /*
1392  * Restart an (async) RPC call. Usually called from within the
1393  * exit handler.
1394  */
1395 int
1396 rpc_restart_call(struct rpc_task *task)
1397 {
1398 	if (RPC_ASSASSINATED(task))
1399 		return 0;
1400 	task->tk_action = call_start;
1401 	task->tk_status = 0;
1402 	return 1;
1403 }
1404 EXPORT_SYMBOL_GPL(rpc_restart_call);
1405 
1406 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1407 const char
1408 *rpc_proc_name(const struct rpc_task *task)
1409 {
1410 	const struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1411 
1412 	if (proc) {
1413 		if (proc->p_name)
1414 			return proc->p_name;
1415 		else
1416 			return "NULL";
1417 	} else
1418 		return "no proc";
1419 }
1420 #endif
1421 
1422 /*
1423  * 0.  Initial state
1424  *
1425  *     Other FSM states can be visited zero or more times, but
1426  *     this state is visited exactly once for each RPC.
1427  */
1428 static void
1429 call_start(struct rpc_task *task)
1430 {
1431 	struct rpc_clnt	*clnt = task->tk_client;
1432 
1433 	dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid,
1434 			clnt->cl_program->name, clnt->cl_vers,
1435 			rpc_proc_name(task),
1436 			(RPC_IS_ASYNC(task) ? "async" : "sync"));
1437 
1438 	/* Increment call count */
1439 	task->tk_msg.rpc_proc->p_count++;
1440 	clnt->cl_stats->rpccnt++;
1441 	task->tk_action = call_reserve;
1442 }
1443 
1444 /*
1445  * 1.	Reserve an RPC call slot
1446  */
1447 static void
1448 call_reserve(struct rpc_task *task)
1449 {
1450 	dprint_status(task);
1451 
1452 	task->tk_status  = 0;
1453 	task->tk_action  = call_reserveresult;
1454 	xprt_reserve(task);
1455 }
1456 
1457 static void call_retry_reserve(struct rpc_task *task);
1458 
1459 /*
1460  * 1b.	Grok the result of xprt_reserve()
1461  */
1462 static void
1463 call_reserveresult(struct rpc_task *task)
1464 {
1465 	int status = task->tk_status;
1466 
1467 	dprint_status(task);
1468 
1469 	/*
1470 	 * After a call to xprt_reserve(), we must have either
1471 	 * a request slot or else an error status.
1472 	 */
1473 	task->tk_status = 0;
1474 	if (status >= 0) {
1475 		if (task->tk_rqstp) {
1476 			task->tk_action = call_refresh;
1477 			return;
1478 		}
1479 
1480 		printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n",
1481 				__func__, status);
1482 		rpc_exit(task, -EIO);
1483 		return;
1484 	}
1485 
1486 	/*
1487 	 * Even though there was an error, we may have acquired
1488 	 * a request slot somehow.  Make sure not to leak it.
1489 	 */
1490 	if (task->tk_rqstp) {
1491 		printk(KERN_ERR "%s: status=%d, request allocated anyway\n",
1492 				__func__, status);
1493 		xprt_release(task);
1494 	}
1495 
1496 	switch (status) {
1497 	case -ENOMEM:
1498 		rpc_delay(task, HZ >> 2);
1499 	case -EAGAIN:	/* woken up; retry */
1500 		task->tk_action = call_retry_reserve;
1501 		return;
1502 	case -EIO:	/* probably a shutdown */
1503 		break;
1504 	default:
1505 		printk(KERN_ERR "%s: unrecognized error %d, exiting\n",
1506 				__func__, status);
1507 		break;
1508 	}
1509 	rpc_exit(task, status);
1510 }
1511 
1512 /*
1513  * 1c.	Retry reserving an RPC call slot
1514  */
1515 static void
1516 call_retry_reserve(struct rpc_task *task)
1517 {
1518 	dprint_status(task);
1519 
1520 	task->tk_status  = 0;
1521 	task->tk_action  = call_reserveresult;
1522 	xprt_retry_reserve(task);
1523 }
1524 
1525 /*
1526  * 2.	Bind and/or refresh the credentials
1527  */
1528 static void
1529 call_refresh(struct rpc_task *task)
1530 {
1531 	dprint_status(task);
1532 
1533 	task->tk_action = call_refreshresult;
1534 	task->tk_status = 0;
1535 	task->tk_client->cl_stats->rpcauthrefresh++;
1536 	rpcauth_refreshcred(task);
1537 }
1538 
1539 /*
1540  * 2a.	Process the results of a credential refresh
1541  */
1542 static void
1543 call_refreshresult(struct rpc_task *task)
1544 {
1545 	int status = task->tk_status;
1546 
1547 	dprint_status(task);
1548 
1549 	task->tk_status = 0;
1550 	task->tk_action = call_refresh;
1551 	switch (status) {
1552 	case 0:
1553 		if (rpcauth_uptodatecred(task)) {
1554 			task->tk_action = call_allocate;
1555 			return;
1556 		}
1557 		/* Use rate-limiting and a max number of retries if refresh
1558 		 * had status 0 but failed to update the cred.
1559 		 */
1560 	case -ETIMEDOUT:
1561 		rpc_delay(task, 3*HZ);
1562 	case -EAGAIN:
1563 		status = -EACCES;
1564 	case -EKEYEXPIRED:
1565 		if (!task->tk_cred_retry)
1566 			break;
1567 		task->tk_cred_retry--;
1568 		dprintk("RPC: %5u %s: retry refresh creds\n",
1569 				task->tk_pid, __func__);
1570 		return;
1571 	}
1572 	dprintk("RPC: %5u %s: refresh creds failed with error %d\n",
1573 				task->tk_pid, __func__, status);
1574 	rpc_exit(task, status);
1575 }
1576 
1577 /*
1578  * 2b.	Allocate the buffer. For details, see sched.c:rpc_malloc.
1579  *	(Note: buffer memory is freed in xprt_release).
1580  */
1581 static void
1582 call_allocate(struct rpc_task *task)
1583 {
1584 	unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack;
1585 	struct rpc_rqst *req = task->tk_rqstp;
1586 	struct rpc_xprt *xprt = req->rq_xprt;
1587 	struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1588 
1589 	dprint_status(task);
1590 
1591 	task->tk_status = 0;
1592 	task->tk_action = call_bind;
1593 
1594 	if (req->rq_buffer)
1595 		return;
1596 
1597 	if (proc->p_proc != 0) {
1598 		BUG_ON(proc->p_arglen == 0);
1599 		if (proc->p_decode != NULL)
1600 			BUG_ON(proc->p_replen == 0);
1601 	}
1602 
1603 	/*
1604 	 * Calculate the size (in quads) of the RPC call
1605 	 * and reply headers, and convert both values
1606 	 * to byte sizes.
1607 	 */
1608 	req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen;
1609 	req->rq_callsize <<= 2;
1610 	req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen;
1611 	req->rq_rcvsize <<= 2;
1612 
1613 	req->rq_buffer = xprt->ops->buf_alloc(task,
1614 					req->rq_callsize + req->rq_rcvsize);
1615 	if (req->rq_buffer != NULL)
1616 		return;
1617 
1618 	dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid);
1619 
1620 	if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) {
1621 		task->tk_action = call_allocate;
1622 		rpc_delay(task, HZ>>4);
1623 		return;
1624 	}
1625 
1626 	rpc_exit(task, -ERESTARTSYS);
1627 }
1628 
1629 static inline int
1630 rpc_task_need_encode(struct rpc_task *task)
1631 {
1632 	return task->tk_rqstp->rq_snd_buf.len == 0;
1633 }
1634 
1635 static inline void
1636 rpc_task_force_reencode(struct rpc_task *task)
1637 {
1638 	task->tk_rqstp->rq_snd_buf.len = 0;
1639 	task->tk_rqstp->rq_bytes_sent = 0;
1640 }
1641 
1642 static inline void
1643 rpc_xdr_buf_init(struct xdr_buf *buf, void *start, size_t len)
1644 {
1645 	buf->head[0].iov_base = start;
1646 	buf->head[0].iov_len = len;
1647 	buf->tail[0].iov_len = 0;
1648 	buf->page_len = 0;
1649 	buf->flags = 0;
1650 	buf->len = 0;
1651 	buf->buflen = len;
1652 }
1653 
1654 /*
1655  * 3.	Encode arguments of an RPC call
1656  */
1657 static void
1658 rpc_xdr_encode(struct rpc_task *task)
1659 {
1660 	struct rpc_rqst	*req = task->tk_rqstp;
1661 	kxdreproc_t	encode;
1662 	__be32		*p;
1663 
1664 	dprint_status(task);
1665 
1666 	rpc_xdr_buf_init(&req->rq_snd_buf,
1667 			 req->rq_buffer,
1668 			 req->rq_callsize);
1669 	rpc_xdr_buf_init(&req->rq_rcv_buf,
1670 			 (char *)req->rq_buffer + req->rq_callsize,
1671 			 req->rq_rcvsize);
1672 
1673 	p = rpc_encode_header(task);
1674 	if (p == NULL) {
1675 		printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n");
1676 		rpc_exit(task, -EIO);
1677 		return;
1678 	}
1679 
1680 	encode = task->tk_msg.rpc_proc->p_encode;
1681 	if (encode == NULL)
1682 		return;
1683 
1684 	task->tk_status = rpcauth_wrap_req(task, encode, req, p,
1685 			task->tk_msg.rpc_argp);
1686 }
1687 
1688 /*
1689  * 4.	Get the server port number if not yet set
1690  */
1691 static void
1692 call_bind(struct rpc_task *task)
1693 {
1694 	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1695 
1696 	dprint_status(task);
1697 
1698 	task->tk_action = call_connect;
1699 	if (!xprt_bound(xprt)) {
1700 		task->tk_action = call_bind_status;
1701 		task->tk_timeout = xprt->bind_timeout;
1702 		xprt->ops->rpcbind(task);
1703 	}
1704 }
1705 
1706 /*
1707  * 4a.	Sort out bind result
1708  */
1709 static void
1710 call_bind_status(struct rpc_task *task)
1711 {
1712 	int status = -EIO;
1713 
1714 	if (task->tk_status >= 0) {
1715 		dprint_status(task);
1716 		task->tk_status = 0;
1717 		task->tk_action = call_connect;
1718 		return;
1719 	}
1720 
1721 	trace_rpc_bind_status(task);
1722 	switch (task->tk_status) {
1723 	case -ENOMEM:
1724 		dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid);
1725 		rpc_delay(task, HZ >> 2);
1726 		goto retry_timeout;
1727 	case -EACCES:
1728 		dprintk("RPC: %5u remote rpcbind: RPC program/version "
1729 				"unavailable\n", task->tk_pid);
1730 		/* fail immediately if this is an RPC ping */
1731 		if (task->tk_msg.rpc_proc->p_proc == 0) {
1732 			status = -EOPNOTSUPP;
1733 			break;
1734 		}
1735 		if (task->tk_rebind_retry == 0)
1736 			break;
1737 		task->tk_rebind_retry--;
1738 		rpc_delay(task, 3*HZ);
1739 		goto retry_timeout;
1740 	case -ETIMEDOUT:
1741 		dprintk("RPC: %5u rpcbind request timed out\n",
1742 				task->tk_pid);
1743 		goto retry_timeout;
1744 	case -EPFNOSUPPORT:
1745 		/* server doesn't support any rpcbind version we know of */
1746 		dprintk("RPC: %5u unrecognized remote rpcbind service\n",
1747 				task->tk_pid);
1748 		break;
1749 	case -EPROTONOSUPPORT:
1750 		dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n",
1751 				task->tk_pid);
1752 		goto retry_timeout;
1753 	case -ECONNREFUSED:		/* connection problems */
1754 	case -ECONNRESET:
1755 	case -ECONNABORTED:
1756 	case -ENOTCONN:
1757 	case -EHOSTDOWN:
1758 	case -EHOSTUNREACH:
1759 	case -ENETUNREACH:
1760 	case -ENOBUFS:
1761 	case -EPIPE:
1762 		dprintk("RPC: %5u remote rpcbind unreachable: %d\n",
1763 				task->tk_pid, task->tk_status);
1764 		if (!RPC_IS_SOFTCONN(task)) {
1765 			rpc_delay(task, 5*HZ);
1766 			goto retry_timeout;
1767 		}
1768 		status = task->tk_status;
1769 		break;
1770 	default:
1771 		dprintk("RPC: %5u unrecognized rpcbind error (%d)\n",
1772 				task->tk_pid, -task->tk_status);
1773 	}
1774 
1775 	rpc_exit(task, status);
1776 	return;
1777 
1778 retry_timeout:
1779 	task->tk_status = 0;
1780 	task->tk_action = call_timeout;
1781 }
1782 
1783 /*
1784  * 4b.	Connect to the RPC server
1785  */
1786 static void
1787 call_connect(struct rpc_task *task)
1788 {
1789 	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1790 
1791 	dprintk("RPC: %5u call_connect xprt %p %s connected\n",
1792 			task->tk_pid, xprt,
1793 			(xprt_connected(xprt) ? "is" : "is not"));
1794 
1795 	task->tk_action = call_transmit;
1796 	if (!xprt_connected(xprt)) {
1797 		task->tk_action = call_connect_status;
1798 		if (task->tk_status < 0)
1799 			return;
1800 		if (task->tk_flags & RPC_TASK_NOCONNECT) {
1801 			rpc_exit(task, -ENOTCONN);
1802 			return;
1803 		}
1804 		xprt_connect(task);
1805 	}
1806 }
1807 
1808 /*
1809  * 4c.	Sort out connect result
1810  */
1811 static void
1812 call_connect_status(struct rpc_task *task)
1813 {
1814 	struct rpc_clnt *clnt = task->tk_client;
1815 	int status = task->tk_status;
1816 
1817 	dprint_status(task);
1818 
1819 	trace_rpc_connect_status(task, status);
1820 	task->tk_status = 0;
1821 	switch (status) {
1822 	case -ECONNREFUSED:
1823 	case -ECONNRESET:
1824 	case -ECONNABORTED:
1825 	case -ENETUNREACH:
1826 	case -EHOSTUNREACH:
1827 	case -ENOBUFS:
1828 	case -EPIPE:
1829 		if (RPC_IS_SOFTCONN(task))
1830 			break;
1831 		/* retry with existing socket, after a delay */
1832 		rpc_delay(task, 3*HZ);
1833 	case -EAGAIN:
1834 		/* Check for timeouts before looping back to call_bind */
1835 	case -ETIMEDOUT:
1836 		task->tk_action = call_timeout;
1837 		return;
1838 	case 0:
1839 		clnt->cl_stats->netreconn++;
1840 		task->tk_action = call_transmit;
1841 		return;
1842 	}
1843 	rpc_exit(task, status);
1844 }
1845 
1846 /*
1847  * 5.	Transmit the RPC request, and wait for reply
1848  */
1849 static void
1850 call_transmit(struct rpc_task *task)
1851 {
1852 	int is_retrans = RPC_WAS_SENT(task);
1853 
1854 	dprint_status(task);
1855 
1856 	task->tk_action = call_status;
1857 	if (task->tk_status < 0)
1858 		return;
1859 	if (!xprt_prepare_transmit(task))
1860 		return;
1861 	task->tk_action = call_transmit_status;
1862 	/* Encode here so that rpcsec_gss can use correct sequence number. */
1863 	if (rpc_task_need_encode(task)) {
1864 		rpc_xdr_encode(task);
1865 		/* Did the encode result in an error condition? */
1866 		if (task->tk_status != 0) {
1867 			/* Was the error nonfatal? */
1868 			if (task->tk_status == -EAGAIN)
1869 				rpc_delay(task, HZ >> 4);
1870 			else
1871 				rpc_exit(task, task->tk_status);
1872 			return;
1873 		}
1874 	}
1875 	xprt_transmit(task);
1876 	if (task->tk_status < 0)
1877 		return;
1878 	if (is_retrans)
1879 		task->tk_client->cl_stats->rpcretrans++;
1880 	/*
1881 	 * On success, ensure that we call xprt_end_transmit() before sleeping
1882 	 * in order to allow access to the socket to other RPC requests.
1883 	 */
1884 	call_transmit_status(task);
1885 	if (rpc_reply_expected(task))
1886 		return;
1887 	task->tk_action = rpc_exit_task;
1888 	rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task);
1889 }
1890 
1891 /*
1892  * 5a.	Handle cleanup after a transmission
1893  */
1894 static void
1895 call_transmit_status(struct rpc_task *task)
1896 {
1897 	task->tk_action = call_status;
1898 
1899 	/*
1900 	 * Common case: success.  Force the compiler to put this
1901 	 * test first.
1902 	 */
1903 	if (task->tk_status == 0) {
1904 		xprt_end_transmit(task);
1905 		rpc_task_force_reencode(task);
1906 		return;
1907 	}
1908 
1909 	switch (task->tk_status) {
1910 	case -EAGAIN:
1911 		break;
1912 	default:
1913 		dprint_status(task);
1914 		xprt_end_transmit(task);
1915 		rpc_task_force_reencode(task);
1916 		break;
1917 		/*
1918 		 * Special cases: if we've been waiting on the
1919 		 * socket's write_space() callback, or if the
1920 		 * socket just returned a connection error,
1921 		 * then hold onto the transport lock.
1922 		 */
1923 	case -ECONNREFUSED:
1924 	case -EHOSTDOWN:
1925 	case -EHOSTUNREACH:
1926 	case -ENETUNREACH:
1927 	case -EPERM:
1928 		if (RPC_IS_SOFTCONN(task)) {
1929 			xprt_end_transmit(task);
1930 			rpc_exit(task, task->tk_status);
1931 			break;
1932 		}
1933 	case -ECONNRESET:
1934 	case -ECONNABORTED:
1935 	case -ENOTCONN:
1936 	case -ENOBUFS:
1937 	case -EPIPE:
1938 		rpc_task_force_reencode(task);
1939 	}
1940 }
1941 
1942 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1943 /*
1944  * 5b.	Send the backchannel RPC reply.  On error, drop the reply.  In
1945  * addition, disconnect on connectivity errors.
1946  */
1947 static void
1948 call_bc_transmit(struct rpc_task *task)
1949 {
1950 	struct rpc_rqst *req = task->tk_rqstp;
1951 
1952 	if (!xprt_prepare_transmit(task)) {
1953 		/*
1954 		 * Could not reserve the transport. Try again after the
1955 		 * transport is released.
1956 		 */
1957 		task->tk_status = 0;
1958 		task->tk_action = call_bc_transmit;
1959 		return;
1960 	}
1961 
1962 	task->tk_action = rpc_exit_task;
1963 	if (task->tk_status < 0) {
1964 		printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1965 			"error: %d\n", task->tk_status);
1966 		return;
1967 	}
1968 
1969 	xprt_transmit(task);
1970 	xprt_end_transmit(task);
1971 	dprint_status(task);
1972 	switch (task->tk_status) {
1973 	case 0:
1974 		/* Success */
1975 		break;
1976 	case -EHOSTDOWN:
1977 	case -EHOSTUNREACH:
1978 	case -ENETUNREACH:
1979 	case -ETIMEDOUT:
1980 		/*
1981 		 * Problem reaching the server.  Disconnect and let the
1982 		 * forechannel reestablish the connection.  The server will
1983 		 * have to retransmit the backchannel request and we'll
1984 		 * reprocess it.  Since these ops are idempotent, there's no
1985 		 * need to cache our reply at this time.
1986 		 */
1987 		printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1988 			"error: %d\n", task->tk_status);
1989 		xprt_conditional_disconnect(req->rq_xprt,
1990 			req->rq_connect_cookie);
1991 		break;
1992 	default:
1993 		/*
1994 		 * We were unable to reply and will have to drop the
1995 		 * request.  The server should reconnect and retransmit.
1996 		 */
1997 		WARN_ON_ONCE(task->tk_status == -EAGAIN);
1998 		printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1999 			"error: %d\n", task->tk_status);
2000 		break;
2001 	}
2002 	rpc_wake_up_queued_task(&req->rq_xprt->pending, task);
2003 }
2004 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
2005 
2006 /*
2007  * 6.	Sort out the RPC call status
2008  */
2009 static void
2010 call_status(struct rpc_task *task)
2011 {
2012 	struct rpc_clnt	*clnt = task->tk_client;
2013 	struct rpc_rqst	*req = task->tk_rqstp;
2014 	int		status;
2015 
2016 	if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent)
2017 		task->tk_status = req->rq_reply_bytes_recvd;
2018 
2019 	dprint_status(task);
2020 
2021 	status = task->tk_status;
2022 	if (status >= 0) {
2023 		task->tk_action = call_decode;
2024 		return;
2025 	}
2026 
2027 	trace_rpc_call_status(task);
2028 	task->tk_status = 0;
2029 	switch(status) {
2030 	case -EHOSTDOWN:
2031 	case -EHOSTUNREACH:
2032 	case -ENETUNREACH:
2033 	case -EPERM:
2034 		if (RPC_IS_SOFTCONN(task)) {
2035 			rpc_exit(task, status);
2036 			break;
2037 		}
2038 		/*
2039 		 * Delay any retries for 3 seconds, then handle as if it
2040 		 * were a timeout.
2041 		 */
2042 		rpc_delay(task, 3*HZ);
2043 	case -ETIMEDOUT:
2044 		task->tk_action = call_timeout;
2045 		if (!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT)
2046 		    && task->tk_client->cl_discrtry)
2047 			xprt_conditional_disconnect(req->rq_xprt,
2048 					req->rq_connect_cookie);
2049 		break;
2050 	case -ECONNREFUSED:
2051 	case -ECONNRESET:
2052 	case -ECONNABORTED:
2053 		rpc_force_rebind(clnt);
2054 	case -ENOBUFS:
2055 		rpc_delay(task, 3*HZ);
2056 	case -EPIPE:
2057 	case -ENOTCONN:
2058 		task->tk_action = call_bind;
2059 		break;
2060 	case -EAGAIN:
2061 		task->tk_action = call_transmit;
2062 		break;
2063 	case -EIO:
2064 		/* shutdown or soft timeout */
2065 		rpc_exit(task, status);
2066 		break;
2067 	default:
2068 		if (clnt->cl_chatty)
2069 			printk("%s: RPC call returned error %d\n",
2070 			       clnt->cl_program->name, -status);
2071 		rpc_exit(task, status);
2072 	}
2073 }
2074 
2075 /*
2076  * 6a.	Handle RPC timeout
2077  * 	We do not release the request slot, so we keep using the
2078  *	same XID for all retransmits.
2079  */
2080 static void
2081 call_timeout(struct rpc_task *task)
2082 {
2083 	struct rpc_clnt	*clnt = task->tk_client;
2084 
2085 	if (xprt_adjust_timeout(task->tk_rqstp) == 0) {
2086 		dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid);
2087 		goto retry;
2088 	}
2089 
2090 	dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid);
2091 	task->tk_timeouts++;
2092 
2093 	if (RPC_IS_SOFTCONN(task)) {
2094 		rpc_exit(task, -ETIMEDOUT);
2095 		return;
2096 	}
2097 	if (RPC_IS_SOFT(task)) {
2098 		if (clnt->cl_chatty) {
2099 			rcu_read_lock();
2100 			printk(KERN_NOTICE "%s: server %s not responding, timed out\n",
2101 				clnt->cl_program->name,
2102 				rcu_dereference(clnt->cl_xprt)->servername);
2103 			rcu_read_unlock();
2104 		}
2105 		if (task->tk_flags & RPC_TASK_TIMEOUT)
2106 			rpc_exit(task, -ETIMEDOUT);
2107 		else
2108 			rpc_exit(task, -EIO);
2109 		return;
2110 	}
2111 
2112 	if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) {
2113 		task->tk_flags |= RPC_CALL_MAJORSEEN;
2114 		if (clnt->cl_chatty) {
2115 			rcu_read_lock();
2116 			printk(KERN_NOTICE "%s: server %s not responding, still trying\n",
2117 			clnt->cl_program->name,
2118 			rcu_dereference(clnt->cl_xprt)->servername);
2119 			rcu_read_unlock();
2120 		}
2121 	}
2122 	rpc_force_rebind(clnt);
2123 	/*
2124 	 * Did our request time out due to an RPCSEC_GSS out-of-sequence
2125 	 * event? RFC2203 requires the server to drop all such requests.
2126 	 */
2127 	rpcauth_invalcred(task);
2128 
2129 retry:
2130 	task->tk_action = call_bind;
2131 	task->tk_status = 0;
2132 }
2133 
2134 /*
2135  * 7.	Decode the RPC reply
2136  */
2137 static void
2138 call_decode(struct rpc_task *task)
2139 {
2140 	struct rpc_clnt	*clnt = task->tk_client;
2141 	struct rpc_rqst	*req = task->tk_rqstp;
2142 	kxdrdproc_t	decode = task->tk_msg.rpc_proc->p_decode;
2143 	__be32		*p;
2144 
2145 	dprint_status(task);
2146 
2147 	if (task->tk_flags & RPC_CALL_MAJORSEEN) {
2148 		if (clnt->cl_chatty) {
2149 			rcu_read_lock();
2150 			printk(KERN_NOTICE "%s: server %s OK\n",
2151 				clnt->cl_program->name,
2152 				rcu_dereference(clnt->cl_xprt)->servername);
2153 			rcu_read_unlock();
2154 		}
2155 		task->tk_flags &= ~RPC_CALL_MAJORSEEN;
2156 	}
2157 
2158 	/*
2159 	 * Ensure that we see all writes made by xprt_complete_rqst()
2160 	 * before it changed req->rq_reply_bytes_recvd.
2161 	 */
2162 	smp_rmb();
2163 	req->rq_rcv_buf.len = req->rq_private_buf.len;
2164 
2165 	/* Check that the softirq receive buffer is valid */
2166 	WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf,
2167 				sizeof(req->rq_rcv_buf)) != 0);
2168 
2169 	if (req->rq_rcv_buf.len < 12) {
2170 		if (!RPC_IS_SOFT(task)) {
2171 			task->tk_action = call_bind;
2172 			goto out_retry;
2173 		}
2174 		dprintk("RPC:       %s: too small RPC reply size (%d bytes)\n",
2175 				clnt->cl_program->name, task->tk_status);
2176 		task->tk_action = call_timeout;
2177 		goto out_retry;
2178 	}
2179 
2180 	p = rpc_verify_header(task);
2181 	if (IS_ERR(p)) {
2182 		if (p == ERR_PTR(-EAGAIN))
2183 			goto out_retry;
2184 		return;
2185 	}
2186 
2187 	task->tk_action = rpc_exit_task;
2188 
2189 	if (decode) {
2190 		task->tk_status = rpcauth_unwrap_resp(task, decode, req, p,
2191 						      task->tk_msg.rpc_resp);
2192 	}
2193 	dprintk("RPC: %5u call_decode result %d\n", task->tk_pid,
2194 			task->tk_status);
2195 	return;
2196 out_retry:
2197 	task->tk_status = 0;
2198 	/* Note: rpc_verify_header() may have freed the RPC slot */
2199 	if (task->tk_rqstp == req) {
2200 		req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0;
2201 		if (task->tk_client->cl_discrtry)
2202 			xprt_conditional_disconnect(req->rq_xprt,
2203 					req->rq_connect_cookie);
2204 	}
2205 }
2206 
2207 static __be32 *
2208 rpc_encode_header(struct rpc_task *task)
2209 {
2210 	struct rpc_clnt *clnt = task->tk_client;
2211 	struct rpc_rqst	*req = task->tk_rqstp;
2212 	__be32		*p = req->rq_svec[0].iov_base;
2213 
2214 	/* FIXME: check buffer size? */
2215 
2216 	p = xprt_skip_transport_header(req->rq_xprt, p);
2217 	*p++ = req->rq_xid;		/* XID */
2218 	*p++ = htonl(RPC_CALL);		/* CALL */
2219 	*p++ = htonl(RPC_VERSION);	/* RPC version */
2220 	*p++ = htonl(clnt->cl_prog);	/* program number */
2221 	*p++ = htonl(clnt->cl_vers);	/* program version */
2222 	*p++ = htonl(task->tk_msg.rpc_proc->p_proc);	/* procedure */
2223 	p = rpcauth_marshcred(task, p);
2224 	req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p);
2225 	return p;
2226 }
2227 
2228 static __be32 *
2229 rpc_verify_header(struct rpc_task *task)
2230 {
2231 	struct rpc_clnt *clnt = task->tk_client;
2232 	struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0];
2233 	int len = task->tk_rqstp->rq_rcv_buf.len >> 2;
2234 	__be32	*p = iov->iov_base;
2235 	u32 n;
2236 	int error = -EACCES;
2237 
2238 	if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) {
2239 		/* RFC-1014 says that the representation of XDR data must be a
2240 		 * multiple of four bytes
2241 		 * - if it isn't pointer subtraction in the NFS client may give
2242 		 *   undefined results
2243 		 */
2244 		dprintk("RPC: %5u %s: XDR representation not a multiple of"
2245 		       " 4 bytes: 0x%x\n", task->tk_pid, __func__,
2246 		       task->tk_rqstp->rq_rcv_buf.len);
2247 		error = -EIO;
2248 		goto out_err;
2249 	}
2250 	if ((len -= 3) < 0)
2251 		goto out_overflow;
2252 
2253 	p += 1; /* skip XID */
2254 	if ((n = ntohl(*p++)) != RPC_REPLY) {
2255 		dprintk("RPC: %5u %s: not an RPC reply: %x\n",
2256 			task->tk_pid, __func__, n);
2257 		error = -EIO;
2258 		goto out_garbage;
2259 	}
2260 
2261 	if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) {
2262 		if (--len < 0)
2263 			goto out_overflow;
2264 		switch ((n = ntohl(*p++))) {
2265 		case RPC_AUTH_ERROR:
2266 			break;
2267 		case RPC_MISMATCH:
2268 			dprintk("RPC: %5u %s: RPC call version mismatch!\n",
2269 				task->tk_pid, __func__);
2270 			error = -EPROTONOSUPPORT;
2271 			goto out_err;
2272 		default:
2273 			dprintk("RPC: %5u %s: RPC call rejected, "
2274 				"unknown error: %x\n",
2275 				task->tk_pid, __func__, n);
2276 			error = -EIO;
2277 			goto out_err;
2278 		}
2279 		if (--len < 0)
2280 			goto out_overflow;
2281 		switch ((n = ntohl(*p++))) {
2282 		case RPC_AUTH_REJECTEDCRED:
2283 		case RPC_AUTH_REJECTEDVERF:
2284 		case RPCSEC_GSS_CREDPROBLEM:
2285 		case RPCSEC_GSS_CTXPROBLEM:
2286 			if (!task->tk_cred_retry)
2287 				break;
2288 			task->tk_cred_retry--;
2289 			dprintk("RPC: %5u %s: retry stale creds\n",
2290 					task->tk_pid, __func__);
2291 			rpcauth_invalcred(task);
2292 			/* Ensure we obtain a new XID! */
2293 			xprt_release(task);
2294 			task->tk_action = call_reserve;
2295 			goto out_retry;
2296 		case RPC_AUTH_BADCRED:
2297 		case RPC_AUTH_BADVERF:
2298 			/* possibly garbled cred/verf? */
2299 			if (!task->tk_garb_retry)
2300 				break;
2301 			task->tk_garb_retry--;
2302 			dprintk("RPC: %5u %s: retry garbled creds\n",
2303 					task->tk_pid, __func__);
2304 			task->tk_action = call_bind;
2305 			goto out_retry;
2306 		case RPC_AUTH_TOOWEAK:
2307 			rcu_read_lock();
2308 			printk(KERN_NOTICE "RPC: server %s requires stronger "
2309 			       "authentication.\n",
2310 			       rcu_dereference(clnt->cl_xprt)->servername);
2311 			rcu_read_unlock();
2312 			break;
2313 		default:
2314 			dprintk("RPC: %5u %s: unknown auth error: %x\n",
2315 					task->tk_pid, __func__, n);
2316 			error = -EIO;
2317 		}
2318 		dprintk("RPC: %5u %s: call rejected %d\n",
2319 				task->tk_pid, __func__, n);
2320 		goto out_err;
2321 	}
2322 	p = rpcauth_checkverf(task, p);
2323 	if (IS_ERR(p)) {
2324 		error = PTR_ERR(p);
2325 		dprintk("RPC: %5u %s: auth check failed with %d\n",
2326 				task->tk_pid, __func__, error);
2327 		goto out_garbage;		/* bad verifier, retry */
2328 	}
2329 	len = p - (__be32 *)iov->iov_base - 1;
2330 	if (len < 0)
2331 		goto out_overflow;
2332 	switch ((n = ntohl(*p++))) {
2333 	case RPC_SUCCESS:
2334 		return p;
2335 	case RPC_PROG_UNAVAIL:
2336 		dprintk_rcu("RPC: %5u %s: program %u is unsupported "
2337 				"by server %s\n", task->tk_pid, __func__,
2338 				(unsigned int)clnt->cl_prog,
2339 				rcu_dereference(clnt->cl_xprt)->servername);
2340 		error = -EPFNOSUPPORT;
2341 		goto out_err;
2342 	case RPC_PROG_MISMATCH:
2343 		dprintk_rcu("RPC: %5u %s: program %u, version %u unsupported "
2344 				"by server %s\n", task->tk_pid, __func__,
2345 				(unsigned int)clnt->cl_prog,
2346 				(unsigned int)clnt->cl_vers,
2347 				rcu_dereference(clnt->cl_xprt)->servername);
2348 		error = -EPROTONOSUPPORT;
2349 		goto out_err;
2350 	case RPC_PROC_UNAVAIL:
2351 		dprintk_rcu("RPC: %5u %s: proc %s unsupported by program %u, "
2352 				"version %u on server %s\n",
2353 				task->tk_pid, __func__,
2354 				rpc_proc_name(task),
2355 				clnt->cl_prog, clnt->cl_vers,
2356 				rcu_dereference(clnt->cl_xprt)->servername);
2357 		error = -EOPNOTSUPP;
2358 		goto out_err;
2359 	case RPC_GARBAGE_ARGS:
2360 		dprintk("RPC: %5u %s: server saw garbage\n",
2361 				task->tk_pid, __func__);
2362 		break;			/* retry */
2363 	default:
2364 		dprintk("RPC: %5u %s: server accept status: %x\n",
2365 				task->tk_pid, __func__, n);
2366 		/* Also retry */
2367 	}
2368 
2369 out_garbage:
2370 	clnt->cl_stats->rpcgarbage++;
2371 	if (task->tk_garb_retry) {
2372 		task->tk_garb_retry--;
2373 		dprintk("RPC: %5u %s: retrying\n",
2374 				task->tk_pid, __func__);
2375 		task->tk_action = call_bind;
2376 out_retry:
2377 		return ERR_PTR(-EAGAIN);
2378 	}
2379 out_err:
2380 	rpc_exit(task, error);
2381 	dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid,
2382 			__func__, error);
2383 	return ERR_PTR(error);
2384 out_overflow:
2385 	dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid,
2386 			__func__);
2387 	goto out_garbage;
2388 }
2389 
2390 static void rpcproc_encode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2391 {
2392 }
2393 
2394 static int rpcproc_decode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2395 {
2396 	return 0;
2397 }
2398 
2399 static struct rpc_procinfo rpcproc_null = {
2400 	.p_encode = rpcproc_encode_null,
2401 	.p_decode = rpcproc_decode_null,
2402 };
2403 
2404 static int rpc_ping(struct rpc_clnt *clnt)
2405 {
2406 	struct rpc_message msg = {
2407 		.rpc_proc = &rpcproc_null,
2408 	};
2409 	int err;
2410 	msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0);
2411 	err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN);
2412 	put_rpccred(msg.rpc_cred);
2413 	return err;
2414 }
2415 
2416 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags)
2417 {
2418 	struct rpc_message msg = {
2419 		.rpc_proc = &rpcproc_null,
2420 		.rpc_cred = cred,
2421 	};
2422 	struct rpc_task_setup task_setup_data = {
2423 		.rpc_client = clnt,
2424 		.rpc_message = &msg,
2425 		.callback_ops = &rpc_default_ops,
2426 		.flags = flags,
2427 	};
2428 	return rpc_run_task(&task_setup_data);
2429 }
2430 EXPORT_SYMBOL_GPL(rpc_call_null);
2431 
2432 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
2433 static void rpc_show_header(void)
2434 {
2435 	printk(KERN_INFO "-pid- flgs status -client- --rqstp- "
2436 		"-timeout ---ops--\n");
2437 }
2438 
2439 static void rpc_show_task(const struct rpc_clnt *clnt,
2440 			  const struct rpc_task *task)
2441 {
2442 	const char *rpc_waitq = "none";
2443 
2444 	if (RPC_IS_QUEUED(task))
2445 		rpc_waitq = rpc_qname(task->tk_waitqueue);
2446 
2447 	printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n",
2448 		task->tk_pid, task->tk_flags, task->tk_status,
2449 		clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops,
2450 		clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task),
2451 		task->tk_action, rpc_waitq);
2452 }
2453 
2454 void rpc_show_tasks(struct net *net)
2455 {
2456 	struct rpc_clnt *clnt;
2457 	struct rpc_task *task;
2458 	int header = 0;
2459 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
2460 
2461 	spin_lock(&sn->rpc_client_lock);
2462 	list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
2463 		spin_lock(&clnt->cl_lock);
2464 		list_for_each_entry(task, &clnt->cl_tasks, tk_task) {
2465 			if (!header) {
2466 				rpc_show_header();
2467 				header++;
2468 			}
2469 			rpc_show_task(clnt, task);
2470 		}
2471 		spin_unlock(&clnt->cl_lock);
2472 	}
2473 	spin_unlock(&sn->rpc_client_lock);
2474 }
2475 #endif
2476