1 /* 2 * linux/net/sunrpc/clnt.c 3 * 4 * This file contains the high-level RPC interface. 5 * It is modeled as a finite state machine to support both synchronous 6 * and asynchronous requests. 7 * 8 * - RPC header generation and argument serialization. 9 * - Credential refresh. 10 * - TCP connect handling. 11 * - Retry of operation when it is suspected the operation failed because 12 * of uid squashing on the server, or when the credentials were stale 13 * and need to be refreshed, or when a packet was damaged in transit. 14 * This may be have to be moved to the VFS layer. 15 * 16 * Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com> 17 * Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de> 18 */ 19 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/kallsyms.h> 24 #include <linux/mm.h> 25 #include <linux/namei.h> 26 #include <linux/mount.h> 27 #include <linux/slab.h> 28 #include <linux/rcupdate.h> 29 #include <linux/utsname.h> 30 #include <linux/workqueue.h> 31 #include <linux/in.h> 32 #include <linux/in6.h> 33 #include <linux/un.h> 34 35 #include <linux/sunrpc/clnt.h> 36 #include <linux/sunrpc/addr.h> 37 #include <linux/sunrpc/rpc_pipe_fs.h> 38 #include <linux/sunrpc/metrics.h> 39 #include <linux/sunrpc/bc_xprt.h> 40 #include <trace/events/sunrpc.h> 41 42 #include "sunrpc.h" 43 #include "netns.h" 44 45 #ifdef RPC_DEBUG 46 # define RPCDBG_FACILITY RPCDBG_CALL 47 #endif 48 49 #define dprint_status(t) \ 50 dprintk("RPC: %5u %s (status %d)\n", t->tk_pid, \ 51 __func__, t->tk_status) 52 53 /* 54 * All RPC clients are linked into this list 55 */ 56 57 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait); 58 59 60 static void call_start(struct rpc_task *task); 61 static void call_reserve(struct rpc_task *task); 62 static void call_reserveresult(struct rpc_task *task); 63 static void call_allocate(struct rpc_task *task); 64 static void call_decode(struct rpc_task *task); 65 static void call_bind(struct rpc_task *task); 66 static void call_bind_status(struct rpc_task *task); 67 static void call_transmit(struct rpc_task *task); 68 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 69 static void call_bc_transmit(struct rpc_task *task); 70 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 71 static void call_status(struct rpc_task *task); 72 static void call_transmit_status(struct rpc_task *task); 73 static void call_refresh(struct rpc_task *task); 74 static void call_refreshresult(struct rpc_task *task); 75 static void call_timeout(struct rpc_task *task); 76 static void call_connect(struct rpc_task *task); 77 static void call_connect_status(struct rpc_task *task); 78 79 static __be32 *rpc_encode_header(struct rpc_task *task); 80 static __be32 *rpc_verify_header(struct rpc_task *task); 81 static int rpc_ping(struct rpc_clnt *clnt); 82 83 static void rpc_register_client(struct rpc_clnt *clnt) 84 { 85 struct net *net = rpc_net_ns(clnt); 86 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 87 88 spin_lock(&sn->rpc_client_lock); 89 list_add(&clnt->cl_clients, &sn->all_clients); 90 spin_unlock(&sn->rpc_client_lock); 91 } 92 93 static void rpc_unregister_client(struct rpc_clnt *clnt) 94 { 95 struct net *net = rpc_net_ns(clnt); 96 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 97 98 spin_lock(&sn->rpc_client_lock); 99 list_del(&clnt->cl_clients); 100 spin_unlock(&sn->rpc_client_lock); 101 } 102 103 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 104 { 105 rpc_remove_client_dir(clnt); 106 } 107 108 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 109 { 110 struct net *net = rpc_net_ns(clnt); 111 struct super_block *pipefs_sb; 112 113 pipefs_sb = rpc_get_sb_net(net); 114 if (pipefs_sb) { 115 __rpc_clnt_remove_pipedir(clnt); 116 rpc_put_sb_net(net); 117 } 118 } 119 120 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb, 121 struct rpc_clnt *clnt) 122 { 123 static uint32_t clntid; 124 const char *dir_name = clnt->cl_program->pipe_dir_name; 125 char name[15]; 126 struct dentry *dir, *dentry; 127 128 dir = rpc_d_lookup_sb(sb, dir_name); 129 if (dir == NULL) { 130 pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name); 131 return dir; 132 } 133 for (;;) { 134 snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++); 135 name[sizeof(name) - 1] = '\0'; 136 dentry = rpc_create_client_dir(dir, name, clnt); 137 if (!IS_ERR(dentry)) 138 break; 139 if (dentry == ERR_PTR(-EEXIST)) 140 continue; 141 printk(KERN_INFO "RPC: Couldn't create pipefs entry" 142 " %s/%s, error %ld\n", 143 dir_name, name, PTR_ERR(dentry)); 144 break; 145 } 146 dput(dir); 147 return dentry; 148 } 149 150 static int 151 rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt) 152 { 153 struct dentry *dentry; 154 155 if (clnt->cl_program->pipe_dir_name != NULL) { 156 dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt); 157 if (IS_ERR(dentry)) 158 return PTR_ERR(dentry); 159 } 160 return 0; 161 } 162 163 static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event) 164 { 165 if (clnt->cl_program->pipe_dir_name == NULL) 166 return 1; 167 168 switch (event) { 169 case RPC_PIPEFS_MOUNT: 170 if (clnt->cl_pipedir_objects.pdh_dentry != NULL) 171 return 1; 172 if (atomic_read(&clnt->cl_count) == 0) 173 return 1; 174 break; 175 case RPC_PIPEFS_UMOUNT: 176 if (clnt->cl_pipedir_objects.pdh_dentry == NULL) 177 return 1; 178 break; 179 } 180 return 0; 181 } 182 183 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event, 184 struct super_block *sb) 185 { 186 struct dentry *dentry; 187 int err = 0; 188 189 switch (event) { 190 case RPC_PIPEFS_MOUNT: 191 dentry = rpc_setup_pipedir_sb(sb, clnt); 192 if (!dentry) 193 return -ENOENT; 194 if (IS_ERR(dentry)) 195 return PTR_ERR(dentry); 196 break; 197 case RPC_PIPEFS_UMOUNT: 198 __rpc_clnt_remove_pipedir(clnt); 199 break; 200 default: 201 printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event); 202 return -ENOTSUPP; 203 } 204 return err; 205 } 206 207 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event, 208 struct super_block *sb) 209 { 210 int error = 0; 211 212 for (;; clnt = clnt->cl_parent) { 213 if (!rpc_clnt_skip_event(clnt, event)) 214 error = __rpc_clnt_handle_event(clnt, event, sb); 215 if (error || clnt == clnt->cl_parent) 216 break; 217 } 218 return error; 219 } 220 221 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event) 222 { 223 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 224 struct rpc_clnt *clnt; 225 226 spin_lock(&sn->rpc_client_lock); 227 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 228 if (rpc_clnt_skip_event(clnt, event)) 229 continue; 230 spin_unlock(&sn->rpc_client_lock); 231 return clnt; 232 } 233 spin_unlock(&sn->rpc_client_lock); 234 return NULL; 235 } 236 237 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event, 238 void *ptr) 239 { 240 struct super_block *sb = ptr; 241 struct rpc_clnt *clnt; 242 int error = 0; 243 244 while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) { 245 error = __rpc_pipefs_event(clnt, event, sb); 246 if (error) 247 break; 248 } 249 return error; 250 } 251 252 static struct notifier_block rpc_clients_block = { 253 .notifier_call = rpc_pipefs_event, 254 .priority = SUNRPC_PIPEFS_RPC_PRIO, 255 }; 256 257 int rpc_clients_notifier_register(void) 258 { 259 return rpc_pipefs_notifier_register(&rpc_clients_block); 260 } 261 262 void rpc_clients_notifier_unregister(void) 263 { 264 return rpc_pipefs_notifier_unregister(&rpc_clients_block); 265 } 266 267 static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt, 268 struct rpc_xprt *xprt, 269 const struct rpc_timeout *timeout) 270 { 271 struct rpc_xprt *old; 272 273 spin_lock(&clnt->cl_lock); 274 old = rcu_dereference_protected(clnt->cl_xprt, 275 lockdep_is_held(&clnt->cl_lock)); 276 277 if (!xprt_bound(xprt)) 278 clnt->cl_autobind = 1; 279 280 clnt->cl_timeout = timeout; 281 rcu_assign_pointer(clnt->cl_xprt, xprt); 282 spin_unlock(&clnt->cl_lock); 283 284 return old; 285 } 286 287 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename) 288 { 289 clnt->cl_nodelen = strlen(nodename); 290 if (clnt->cl_nodelen > UNX_MAXNODENAME) 291 clnt->cl_nodelen = UNX_MAXNODENAME; 292 memcpy(clnt->cl_nodename, nodename, clnt->cl_nodelen); 293 } 294 295 static int rpc_client_register(struct rpc_clnt *clnt, 296 rpc_authflavor_t pseudoflavor, 297 const char *client_name) 298 { 299 struct rpc_auth_create_args auth_args = { 300 .pseudoflavor = pseudoflavor, 301 .target_name = client_name, 302 }; 303 struct rpc_auth *auth; 304 struct net *net = rpc_net_ns(clnt); 305 struct super_block *pipefs_sb; 306 int err; 307 308 pipefs_sb = rpc_get_sb_net(net); 309 if (pipefs_sb) { 310 err = rpc_setup_pipedir(pipefs_sb, clnt); 311 if (err) 312 goto out; 313 } 314 315 rpc_register_client(clnt); 316 if (pipefs_sb) 317 rpc_put_sb_net(net); 318 319 auth = rpcauth_create(&auth_args, clnt); 320 if (IS_ERR(auth)) { 321 dprintk("RPC: Couldn't create auth handle (flavor %u)\n", 322 pseudoflavor); 323 err = PTR_ERR(auth); 324 goto err_auth; 325 } 326 return 0; 327 err_auth: 328 pipefs_sb = rpc_get_sb_net(net); 329 rpc_unregister_client(clnt); 330 __rpc_clnt_remove_pipedir(clnt); 331 out: 332 if (pipefs_sb) 333 rpc_put_sb_net(net); 334 return err; 335 } 336 337 static DEFINE_IDA(rpc_clids); 338 339 static int rpc_alloc_clid(struct rpc_clnt *clnt) 340 { 341 int clid; 342 343 clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL); 344 if (clid < 0) 345 return clid; 346 clnt->cl_clid = clid; 347 return 0; 348 } 349 350 static void rpc_free_clid(struct rpc_clnt *clnt) 351 { 352 ida_simple_remove(&rpc_clids, clnt->cl_clid); 353 } 354 355 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args, 356 struct rpc_xprt *xprt, 357 struct rpc_clnt *parent) 358 { 359 const struct rpc_program *program = args->program; 360 const struct rpc_version *version; 361 struct rpc_clnt *clnt = NULL; 362 const struct rpc_timeout *timeout; 363 int err; 364 365 /* sanity check the name before trying to print it */ 366 dprintk("RPC: creating %s client for %s (xprt %p)\n", 367 program->name, args->servername, xprt); 368 369 err = rpciod_up(); 370 if (err) 371 goto out_no_rpciod; 372 373 err = -EINVAL; 374 if (args->version >= program->nrvers) 375 goto out_err; 376 version = program->version[args->version]; 377 if (version == NULL) 378 goto out_err; 379 380 err = -ENOMEM; 381 clnt = kzalloc(sizeof(*clnt), GFP_KERNEL); 382 if (!clnt) 383 goto out_err; 384 clnt->cl_parent = parent ? : clnt; 385 386 err = rpc_alloc_clid(clnt); 387 if (err) 388 goto out_no_clid; 389 390 clnt->cl_procinfo = version->procs; 391 clnt->cl_maxproc = version->nrprocs; 392 clnt->cl_prog = args->prognumber ? : program->number; 393 clnt->cl_vers = version->number; 394 clnt->cl_stats = program->stats; 395 clnt->cl_metrics = rpc_alloc_iostats(clnt); 396 rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects); 397 err = -ENOMEM; 398 if (clnt->cl_metrics == NULL) 399 goto out_no_stats; 400 clnt->cl_program = program; 401 INIT_LIST_HEAD(&clnt->cl_tasks); 402 spin_lock_init(&clnt->cl_lock); 403 404 timeout = xprt->timeout; 405 if (args->timeout != NULL) { 406 memcpy(&clnt->cl_timeout_default, args->timeout, 407 sizeof(clnt->cl_timeout_default)); 408 timeout = &clnt->cl_timeout_default; 409 } 410 411 rpc_clnt_set_transport(clnt, xprt, timeout); 412 413 clnt->cl_rtt = &clnt->cl_rtt_default; 414 rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval); 415 416 atomic_set(&clnt->cl_count, 1); 417 418 /* save the nodename */ 419 rpc_clnt_set_nodename(clnt, utsname()->nodename); 420 421 err = rpc_client_register(clnt, args->authflavor, args->client_name); 422 if (err) 423 goto out_no_path; 424 if (parent) 425 atomic_inc(&parent->cl_count); 426 return clnt; 427 428 out_no_path: 429 rpc_free_iostats(clnt->cl_metrics); 430 out_no_stats: 431 rpc_free_clid(clnt); 432 out_no_clid: 433 kfree(clnt); 434 out_err: 435 rpciod_down(); 436 out_no_rpciod: 437 xprt_put(xprt); 438 return ERR_PTR(err); 439 } 440 441 struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args, 442 struct rpc_xprt *xprt) 443 { 444 struct rpc_clnt *clnt = NULL; 445 446 clnt = rpc_new_client(args, xprt, NULL); 447 if (IS_ERR(clnt)) 448 return clnt; 449 450 if (!(args->flags & RPC_CLNT_CREATE_NOPING)) { 451 int err = rpc_ping(clnt); 452 if (err != 0) { 453 rpc_shutdown_client(clnt); 454 return ERR_PTR(err); 455 } 456 } 457 458 clnt->cl_softrtry = 1; 459 if (args->flags & RPC_CLNT_CREATE_HARDRTRY) 460 clnt->cl_softrtry = 0; 461 462 if (args->flags & RPC_CLNT_CREATE_AUTOBIND) 463 clnt->cl_autobind = 1; 464 if (args->flags & RPC_CLNT_CREATE_DISCRTRY) 465 clnt->cl_discrtry = 1; 466 if (!(args->flags & RPC_CLNT_CREATE_QUIET)) 467 clnt->cl_chatty = 1; 468 469 return clnt; 470 } 471 EXPORT_SYMBOL_GPL(rpc_create_xprt); 472 473 /** 474 * rpc_create - create an RPC client and transport with one call 475 * @args: rpc_clnt create argument structure 476 * 477 * Creates and initializes an RPC transport and an RPC client. 478 * 479 * It can ping the server in order to determine if it is up, and to see if 480 * it supports this program and version. RPC_CLNT_CREATE_NOPING disables 481 * this behavior so asynchronous tasks can also use rpc_create. 482 */ 483 struct rpc_clnt *rpc_create(struct rpc_create_args *args) 484 { 485 struct rpc_xprt *xprt; 486 struct xprt_create xprtargs = { 487 .net = args->net, 488 .ident = args->protocol, 489 .srcaddr = args->saddress, 490 .dstaddr = args->address, 491 .addrlen = args->addrsize, 492 .servername = args->servername, 493 .bc_xprt = args->bc_xprt, 494 }; 495 char servername[48]; 496 497 if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS) 498 xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS; 499 if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT) 500 xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT; 501 /* 502 * If the caller chooses not to specify a hostname, whip 503 * up a string representation of the passed-in address. 504 */ 505 if (xprtargs.servername == NULL) { 506 struct sockaddr_un *sun = 507 (struct sockaddr_un *)args->address; 508 struct sockaddr_in *sin = 509 (struct sockaddr_in *)args->address; 510 struct sockaddr_in6 *sin6 = 511 (struct sockaddr_in6 *)args->address; 512 513 servername[0] = '\0'; 514 switch (args->address->sa_family) { 515 case AF_LOCAL: 516 snprintf(servername, sizeof(servername), "%s", 517 sun->sun_path); 518 break; 519 case AF_INET: 520 snprintf(servername, sizeof(servername), "%pI4", 521 &sin->sin_addr.s_addr); 522 break; 523 case AF_INET6: 524 snprintf(servername, sizeof(servername), "%pI6", 525 &sin6->sin6_addr); 526 break; 527 default: 528 /* caller wants default server name, but 529 * address family isn't recognized. */ 530 return ERR_PTR(-EINVAL); 531 } 532 xprtargs.servername = servername; 533 } 534 535 xprt = xprt_create_transport(&xprtargs); 536 if (IS_ERR(xprt)) 537 return (struct rpc_clnt *)xprt; 538 539 /* 540 * By default, kernel RPC client connects from a reserved port. 541 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters, 542 * but it is always enabled for rpciod, which handles the connect 543 * operation. 544 */ 545 xprt->resvport = 1; 546 if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT) 547 xprt->resvport = 0; 548 549 return rpc_create_xprt(args, xprt); 550 } 551 EXPORT_SYMBOL_GPL(rpc_create); 552 553 /* 554 * This function clones the RPC client structure. It allows us to share the 555 * same transport while varying parameters such as the authentication 556 * flavour. 557 */ 558 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args, 559 struct rpc_clnt *clnt) 560 { 561 struct rpc_xprt *xprt; 562 struct rpc_clnt *new; 563 int err; 564 565 err = -ENOMEM; 566 rcu_read_lock(); 567 xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); 568 rcu_read_unlock(); 569 if (xprt == NULL) 570 goto out_err; 571 args->servername = xprt->servername; 572 573 new = rpc_new_client(args, xprt, clnt); 574 if (IS_ERR(new)) { 575 err = PTR_ERR(new); 576 goto out_err; 577 } 578 579 /* Turn off autobind on clones */ 580 new->cl_autobind = 0; 581 new->cl_softrtry = clnt->cl_softrtry; 582 new->cl_discrtry = clnt->cl_discrtry; 583 new->cl_chatty = clnt->cl_chatty; 584 return new; 585 586 out_err: 587 dprintk("RPC: %s: returned error %d\n", __func__, err); 588 return ERR_PTR(err); 589 } 590 591 /** 592 * rpc_clone_client - Clone an RPC client structure 593 * 594 * @clnt: RPC client whose parameters are copied 595 * 596 * Returns a fresh RPC client or an ERR_PTR. 597 */ 598 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt) 599 { 600 struct rpc_create_args args = { 601 .program = clnt->cl_program, 602 .prognumber = clnt->cl_prog, 603 .version = clnt->cl_vers, 604 .authflavor = clnt->cl_auth->au_flavor, 605 }; 606 return __rpc_clone_client(&args, clnt); 607 } 608 EXPORT_SYMBOL_GPL(rpc_clone_client); 609 610 /** 611 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth 612 * 613 * @clnt: RPC client whose parameters are copied 614 * @flavor: security flavor for new client 615 * 616 * Returns a fresh RPC client or an ERR_PTR. 617 */ 618 struct rpc_clnt * 619 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 620 { 621 struct rpc_create_args args = { 622 .program = clnt->cl_program, 623 .prognumber = clnt->cl_prog, 624 .version = clnt->cl_vers, 625 .authflavor = flavor, 626 }; 627 return __rpc_clone_client(&args, clnt); 628 } 629 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth); 630 631 /** 632 * rpc_switch_client_transport: switch the RPC transport on the fly 633 * @clnt: pointer to a struct rpc_clnt 634 * @args: pointer to the new transport arguments 635 * @timeout: pointer to the new timeout parameters 636 * 637 * This function allows the caller to switch the RPC transport for the 638 * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS 639 * server, for instance. It assumes that the caller has ensured that 640 * there are no active RPC tasks by using some form of locking. 641 * 642 * Returns zero if "clnt" is now using the new xprt. Otherwise a 643 * negative errno is returned, and "clnt" continues to use the old 644 * xprt. 645 */ 646 int rpc_switch_client_transport(struct rpc_clnt *clnt, 647 struct xprt_create *args, 648 const struct rpc_timeout *timeout) 649 { 650 const struct rpc_timeout *old_timeo; 651 rpc_authflavor_t pseudoflavor; 652 struct rpc_xprt *xprt, *old; 653 struct rpc_clnt *parent; 654 int err; 655 656 xprt = xprt_create_transport(args); 657 if (IS_ERR(xprt)) { 658 dprintk("RPC: failed to create new xprt for clnt %p\n", 659 clnt); 660 return PTR_ERR(xprt); 661 } 662 663 pseudoflavor = clnt->cl_auth->au_flavor; 664 665 old_timeo = clnt->cl_timeout; 666 old = rpc_clnt_set_transport(clnt, xprt, timeout); 667 668 rpc_unregister_client(clnt); 669 __rpc_clnt_remove_pipedir(clnt); 670 671 /* 672 * A new transport was created. "clnt" therefore 673 * becomes the root of a new cl_parent tree. clnt's 674 * children, if it has any, still point to the old xprt. 675 */ 676 parent = clnt->cl_parent; 677 clnt->cl_parent = clnt; 678 679 /* 680 * The old rpc_auth cache cannot be re-used. GSS 681 * contexts in particular are between a single 682 * client and server. 683 */ 684 err = rpc_client_register(clnt, pseudoflavor, NULL); 685 if (err) 686 goto out_revert; 687 688 synchronize_rcu(); 689 if (parent != clnt) 690 rpc_release_client(parent); 691 xprt_put(old); 692 dprintk("RPC: replaced xprt for clnt %p\n", clnt); 693 return 0; 694 695 out_revert: 696 rpc_clnt_set_transport(clnt, old, old_timeo); 697 clnt->cl_parent = parent; 698 rpc_client_register(clnt, pseudoflavor, NULL); 699 xprt_put(xprt); 700 dprintk("RPC: failed to switch xprt for clnt %p\n", clnt); 701 return err; 702 } 703 EXPORT_SYMBOL_GPL(rpc_switch_client_transport); 704 705 /* 706 * Kill all tasks for the given client. 707 * XXX: kill their descendants as well? 708 */ 709 void rpc_killall_tasks(struct rpc_clnt *clnt) 710 { 711 struct rpc_task *rovr; 712 713 714 if (list_empty(&clnt->cl_tasks)) 715 return; 716 dprintk("RPC: killing all tasks for client %p\n", clnt); 717 /* 718 * Spin lock all_tasks to prevent changes... 719 */ 720 spin_lock(&clnt->cl_lock); 721 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 722 if (!RPC_IS_ACTIVATED(rovr)) 723 continue; 724 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 725 rovr->tk_flags |= RPC_TASK_KILLED; 726 rpc_exit(rovr, -EIO); 727 if (RPC_IS_QUEUED(rovr)) 728 rpc_wake_up_queued_task(rovr->tk_waitqueue, 729 rovr); 730 } 731 } 732 spin_unlock(&clnt->cl_lock); 733 } 734 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 735 736 /* 737 * Properly shut down an RPC client, terminating all outstanding 738 * requests. 739 */ 740 void rpc_shutdown_client(struct rpc_clnt *clnt) 741 { 742 might_sleep(); 743 744 dprintk_rcu("RPC: shutting down %s client for %s\n", 745 clnt->cl_program->name, 746 rcu_dereference(clnt->cl_xprt)->servername); 747 748 while (!list_empty(&clnt->cl_tasks)) { 749 rpc_killall_tasks(clnt); 750 wait_event_timeout(destroy_wait, 751 list_empty(&clnt->cl_tasks), 1*HZ); 752 } 753 754 rpc_release_client(clnt); 755 } 756 EXPORT_SYMBOL_GPL(rpc_shutdown_client); 757 758 /* 759 * Free an RPC client 760 */ 761 static struct rpc_clnt * 762 rpc_free_client(struct rpc_clnt *clnt) 763 { 764 struct rpc_clnt *parent = NULL; 765 766 dprintk_rcu("RPC: destroying %s client for %s\n", 767 clnt->cl_program->name, 768 rcu_dereference(clnt->cl_xprt)->servername); 769 if (clnt->cl_parent != clnt) 770 parent = clnt->cl_parent; 771 rpc_clnt_remove_pipedir(clnt); 772 rpc_unregister_client(clnt); 773 rpc_free_iostats(clnt->cl_metrics); 774 clnt->cl_metrics = NULL; 775 xprt_put(rcu_dereference_raw(clnt->cl_xprt)); 776 rpciod_down(); 777 rpc_free_clid(clnt); 778 kfree(clnt); 779 return parent; 780 } 781 782 /* 783 * Free an RPC client 784 */ 785 static struct rpc_clnt * 786 rpc_free_auth(struct rpc_clnt *clnt) 787 { 788 if (clnt->cl_auth == NULL) 789 return rpc_free_client(clnt); 790 791 /* 792 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to 793 * release remaining GSS contexts. This mechanism ensures 794 * that it can do so safely. 795 */ 796 atomic_inc(&clnt->cl_count); 797 rpcauth_release(clnt->cl_auth); 798 clnt->cl_auth = NULL; 799 if (atomic_dec_and_test(&clnt->cl_count)) 800 return rpc_free_client(clnt); 801 return NULL; 802 } 803 804 /* 805 * Release reference to the RPC client 806 */ 807 void 808 rpc_release_client(struct rpc_clnt *clnt) 809 { 810 dprintk("RPC: rpc_release_client(%p)\n", clnt); 811 812 do { 813 if (list_empty(&clnt->cl_tasks)) 814 wake_up(&destroy_wait); 815 if (!atomic_dec_and_test(&clnt->cl_count)) 816 break; 817 clnt = rpc_free_auth(clnt); 818 } while (clnt != NULL); 819 } 820 EXPORT_SYMBOL_GPL(rpc_release_client); 821 822 /** 823 * rpc_bind_new_program - bind a new RPC program to an existing client 824 * @old: old rpc_client 825 * @program: rpc program to set 826 * @vers: rpc program version 827 * 828 * Clones the rpc client and sets up a new RPC program. This is mainly 829 * of use for enabling different RPC programs to share the same transport. 830 * The Sun NFSv2/v3 ACL protocol can do this. 831 */ 832 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old, 833 const struct rpc_program *program, 834 u32 vers) 835 { 836 struct rpc_create_args args = { 837 .program = program, 838 .prognumber = program->number, 839 .version = vers, 840 .authflavor = old->cl_auth->au_flavor, 841 }; 842 struct rpc_clnt *clnt; 843 int err; 844 845 clnt = __rpc_clone_client(&args, old); 846 if (IS_ERR(clnt)) 847 goto out; 848 err = rpc_ping(clnt); 849 if (err != 0) { 850 rpc_shutdown_client(clnt); 851 clnt = ERR_PTR(err); 852 } 853 out: 854 return clnt; 855 } 856 EXPORT_SYMBOL_GPL(rpc_bind_new_program); 857 858 void rpc_task_release_client(struct rpc_task *task) 859 { 860 struct rpc_clnt *clnt = task->tk_client; 861 862 if (clnt != NULL) { 863 /* Remove from client task list */ 864 spin_lock(&clnt->cl_lock); 865 list_del(&task->tk_task); 866 spin_unlock(&clnt->cl_lock); 867 task->tk_client = NULL; 868 869 rpc_release_client(clnt); 870 } 871 } 872 873 static 874 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt) 875 { 876 if (clnt != NULL) { 877 rpc_task_release_client(task); 878 task->tk_client = clnt; 879 atomic_inc(&clnt->cl_count); 880 if (clnt->cl_softrtry) 881 task->tk_flags |= RPC_TASK_SOFT; 882 if (clnt->cl_noretranstimeo) 883 task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT; 884 if (sk_memalloc_socks()) { 885 struct rpc_xprt *xprt; 886 887 rcu_read_lock(); 888 xprt = rcu_dereference(clnt->cl_xprt); 889 if (xprt->swapper) 890 task->tk_flags |= RPC_TASK_SWAPPER; 891 rcu_read_unlock(); 892 } 893 /* Add to the client's list of all tasks */ 894 spin_lock(&clnt->cl_lock); 895 list_add_tail(&task->tk_task, &clnt->cl_tasks); 896 spin_unlock(&clnt->cl_lock); 897 } 898 } 899 900 void rpc_task_reset_client(struct rpc_task *task, struct rpc_clnt *clnt) 901 { 902 rpc_task_release_client(task); 903 rpc_task_set_client(task, clnt); 904 } 905 EXPORT_SYMBOL_GPL(rpc_task_reset_client); 906 907 908 static void 909 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg) 910 { 911 if (msg != NULL) { 912 task->tk_msg.rpc_proc = msg->rpc_proc; 913 task->tk_msg.rpc_argp = msg->rpc_argp; 914 task->tk_msg.rpc_resp = msg->rpc_resp; 915 if (msg->rpc_cred != NULL) 916 task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred); 917 } 918 } 919 920 /* 921 * Default callback for async RPC calls 922 */ 923 static void 924 rpc_default_callback(struct rpc_task *task, void *data) 925 { 926 } 927 928 static const struct rpc_call_ops rpc_default_ops = { 929 .rpc_call_done = rpc_default_callback, 930 }; 931 932 /** 933 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 934 * @task_setup_data: pointer to task initialisation data 935 */ 936 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data) 937 { 938 struct rpc_task *task; 939 940 task = rpc_new_task(task_setup_data); 941 if (IS_ERR(task)) 942 goto out; 943 944 rpc_task_set_client(task, task_setup_data->rpc_client); 945 rpc_task_set_rpc_message(task, task_setup_data->rpc_message); 946 947 if (task->tk_action == NULL) 948 rpc_call_start(task); 949 950 atomic_inc(&task->tk_count); 951 rpc_execute(task); 952 out: 953 return task; 954 } 955 EXPORT_SYMBOL_GPL(rpc_run_task); 956 957 /** 958 * rpc_call_sync - Perform a synchronous RPC call 959 * @clnt: pointer to RPC client 960 * @msg: RPC call parameters 961 * @flags: RPC call flags 962 */ 963 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags) 964 { 965 struct rpc_task *task; 966 struct rpc_task_setup task_setup_data = { 967 .rpc_client = clnt, 968 .rpc_message = msg, 969 .callback_ops = &rpc_default_ops, 970 .flags = flags, 971 }; 972 int status; 973 974 WARN_ON_ONCE(flags & RPC_TASK_ASYNC); 975 if (flags & RPC_TASK_ASYNC) { 976 rpc_release_calldata(task_setup_data.callback_ops, 977 task_setup_data.callback_data); 978 return -EINVAL; 979 } 980 981 task = rpc_run_task(&task_setup_data); 982 if (IS_ERR(task)) 983 return PTR_ERR(task); 984 status = task->tk_status; 985 rpc_put_task(task); 986 return status; 987 } 988 EXPORT_SYMBOL_GPL(rpc_call_sync); 989 990 /** 991 * rpc_call_async - Perform an asynchronous RPC call 992 * @clnt: pointer to RPC client 993 * @msg: RPC call parameters 994 * @flags: RPC call flags 995 * @tk_ops: RPC call ops 996 * @data: user call data 997 */ 998 int 999 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags, 1000 const struct rpc_call_ops *tk_ops, void *data) 1001 { 1002 struct rpc_task *task; 1003 struct rpc_task_setup task_setup_data = { 1004 .rpc_client = clnt, 1005 .rpc_message = msg, 1006 .callback_ops = tk_ops, 1007 .callback_data = data, 1008 .flags = flags|RPC_TASK_ASYNC, 1009 }; 1010 1011 task = rpc_run_task(&task_setup_data); 1012 if (IS_ERR(task)) 1013 return PTR_ERR(task); 1014 rpc_put_task(task); 1015 return 0; 1016 } 1017 EXPORT_SYMBOL_GPL(rpc_call_async); 1018 1019 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1020 /** 1021 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run 1022 * rpc_execute against it 1023 * @req: RPC request 1024 * @tk_ops: RPC call ops 1025 */ 1026 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req, 1027 const struct rpc_call_ops *tk_ops) 1028 { 1029 struct rpc_task *task; 1030 struct xdr_buf *xbufp = &req->rq_snd_buf; 1031 struct rpc_task_setup task_setup_data = { 1032 .callback_ops = tk_ops, 1033 }; 1034 1035 dprintk("RPC: rpc_run_bc_task req= %p\n", req); 1036 /* 1037 * Create an rpc_task to send the data 1038 */ 1039 task = rpc_new_task(&task_setup_data); 1040 if (IS_ERR(task)) { 1041 xprt_free_bc_request(req); 1042 goto out; 1043 } 1044 task->tk_rqstp = req; 1045 1046 /* 1047 * Set up the xdr_buf length. 1048 * This also indicates that the buffer is XDR encoded already. 1049 */ 1050 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len + 1051 xbufp->tail[0].iov_len; 1052 1053 task->tk_action = call_bc_transmit; 1054 atomic_inc(&task->tk_count); 1055 WARN_ON_ONCE(atomic_read(&task->tk_count) != 2); 1056 rpc_execute(task); 1057 1058 out: 1059 dprintk("RPC: rpc_run_bc_task: task= %p\n", task); 1060 return task; 1061 } 1062 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1063 1064 void 1065 rpc_call_start(struct rpc_task *task) 1066 { 1067 task->tk_action = call_start; 1068 } 1069 EXPORT_SYMBOL_GPL(rpc_call_start); 1070 1071 /** 1072 * rpc_peeraddr - extract remote peer address from clnt's xprt 1073 * @clnt: RPC client structure 1074 * @buf: target buffer 1075 * @bufsize: length of target buffer 1076 * 1077 * Returns the number of bytes that are actually in the stored address. 1078 */ 1079 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize) 1080 { 1081 size_t bytes; 1082 struct rpc_xprt *xprt; 1083 1084 rcu_read_lock(); 1085 xprt = rcu_dereference(clnt->cl_xprt); 1086 1087 bytes = xprt->addrlen; 1088 if (bytes > bufsize) 1089 bytes = bufsize; 1090 memcpy(buf, &xprt->addr, bytes); 1091 rcu_read_unlock(); 1092 1093 return bytes; 1094 } 1095 EXPORT_SYMBOL_GPL(rpc_peeraddr); 1096 1097 /** 1098 * rpc_peeraddr2str - return remote peer address in printable format 1099 * @clnt: RPC client structure 1100 * @format: address format 1101 * 1102 * NB: the lifetime of the memory referenced by the returned pointer is 1103 * the same as the rpc_xprt itself. As long as the caller uses this 1104 * pointer, it must hold the RCU read lock. 1105 */ 1106 const char *rpc_peeraddr2str(struct rpc_clnt *clnt, 1107 enum rpc_display_format_t format) 1108 { 1109 struct rpc_xprt *xprt; 1110 1111 xprt = rcu_dereference(clnt->cl_xprt); 1112 1113 if (xprt->address_strings[format] != NULL) 1114 return xprt->address_strings[format]; 1115 else 1116 return "unprintable"; 1117 } 1118 EXPORT_SYMBOL_GPL(rpc_peeraddr2str); 1119 1120 static const struct sockaddr_in rpc_inaddr_loopback = { 1121 .sin_family = AF_INET, 1122 .sin_addr.s_addr = htonl(INADDR_ANY), 1123 }; 1124 1125 static const struct sockaddr_in6 rpc_in6addr_loopback = { 1126 .sin6_family = AF_INET6, 1127 .sin6_addr = IN6ADDR_ANY_INIT, 1128 }; 1129 1130 /* 1131 * Try a getsockname() on a connected datagram socket. Using a 1132 * connected datagram socket prevents leaving a socket in TIME_WAIT. 1133 * This conserves the ephemeral port number space. 1134 * 1135 * Returns zero and fills in "buf" if successful; otherwise, a 1136 * negative errno is returned. 1137 */ 1138 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen, 1139 struct sockaddr *buf, int buflen) 1140 { 1141 struct socket *sock; 1142 int err; 1143 1144 err = __sock_create(net, sap->sa_family, 1145 SOCK_DGRAM, IPPROTO_UDP, &sock, 1); 1146 if (err < 0) { 1147 dprintk("RPC: can't create UDP socket (%d)\n", err); 1148 goto out; 1149 } 1150 1151 switch (sap->sa_family) { 1152 case AF_INET: 1153 err = kernel_bind(sock, 1154 (struct sockaddr *)&rpc_inaddr_loopback, 1155 sizeof(rpc_inaddr_loopback)); 1156 break; 1157 case AF_INET6: 1158 err = kernel_bind(sock, 1159 (struct sockaddr *)&rpc_in6addr_loopback, 1160 sizeof(rpc_in6addr_loopback)); 1161 break; 1162 default: 1163 err = -EAFNOSUPPORT; 1164 goto out; 1165 } 1166 if (err < 0) { 1167 dprintk("RPC: can't bind UDP socket (%d)\n", err); 1168 goto out_release; 1169 } 1170 1171 err = kernel_connect(sock, sap, salen, 0); 1172 if (err < 0) { 1173 dprintk("RPC: can't connect UDP socket (%d)\n", err); 1174 goto out_release; 1175 } 1176 1177 err = kernel_getsockname(sock, buf, &buflen); 1178 if (err < 0) { 1179 dprintk("RPC: getsockname failed (%d)\n", err); 1180 goto out_release; 1181 } 1182 1183 err = 0; 1184 if (buf->sa_family == AF_INET6) { 1185 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf; 1186 sin6->sin6_scope_id = 0; 1187 } 1188 dprintk("RPC: %s succeeded\n", __func__); 1189 1190 out_release: 1191 sock_release(sock); 1192 out: 1193 return err; 1194 } 1195 1196 /* 1197 * Scraping a connected socket failed, so we don't have a useable 1198 * local address. Fallback: generate an address that will prevent 1199 * the server from calling us back. 1200 * 1201 * Returns zero and fills in "buf" if successful; otherwise, a 1202 * negative errno is returned. 1203 */ 1204 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen) 1205 { 1206 switch (family) { 1207 case AF_INET: 1208 if (buflen < sizeof(rpc_inaddr_loopback)) 1209 return -EINVAL; 1210 memcpy(buf, &rpc_inaddr_loopback, 1211 sizeof(rpc_inaddr_loopback)); 1212 break; 1213 case AF_INET6: 1214 if (buflen < sizeof(rpc_in6addr_loopback)) 1215 return -EINVAL; 1216 memcpy(buf, &rpc_in6addr_loopback, 1217 sizeof(rpc_in6addr_loopback)); 1218 default: 1219 dprintk("RPC: %s: address family not supported\n", 1220 __func__); 1221 return -EAFNOSUPPORT; 1222 } 1223 dprintk("RPC: %s: succeeded\n", __func__); 1224 return 0; 1225 } 1226 1227 /** 1228 * rpc_localaddr - discover local endpoint address for an RPC client 1229 * @clnt: RPC client structure 1230 * @buf: target buffer 1231 * @buflen: size of target buffer, in bytes 1232 * 1233 * Returns zero and fills in "buf" and "buflen" if successful; 1234 * otherwise, a negative errno is returned. 1235 * 1236 * This works even if the underlying transport is not currently connected, 1237 * or if the upper layer never previously provided a source address. 1238 * 1239 * The result of this function call is transient: multiple calls in 1240 * succession may give different results, depending on how local 1241 * networking configuration changes over time. 1242 */ 1243 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen) 1244 { 1245 struct sockaddr_storage address; 1246 struct sockaddr *sap = (struct sockaddr *)&address; 1247 struct rpc_xprt *xprt; 1248 struct net *net; 1249 size_t salen; 1250 int err; 1251 1252 rcu_read_lock(); 1253 xprt = rcu_dereference(clnt->cl_xprt); 1254 salen = xprt->addrlen; 1255 memcpy(sap, &xprt->addr, salen); 1256 net = get_net(xprt->xprt_net); 1257 rcu_read_unlock(); 1258 1259 rpc_set_port(sap, 0); 1260 err = rpc_sockname(net, sap, salen, buf, buflen); 1261 put_net(net); 1262 if (err != 0) 1263 /* Couldn't discover local address, return ANYADDR */ 1264 return rpc_anyaddr(sap->sa_family, buf, buflen); 1265 return 0; 1266 } 1267 EXPORT_SYMBOL_GPL(rpc_localaddr); 1268 1269 void 1270 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize) 1271 { 1272 struct rpc_xprt *xprt; 1273 1274 rcu_read_lock(); 1275 xprt = rcu_dereference(clnt->cl_xprt); 1276 if (xprt->ops->set_buffer_size) 1277 xprt->ops->set_buffer_size(xprt, sndsize, rcvsize); 1278 rcu_read_unlock(); 1279 } 1280 EXPORT_SYMBOL_GPL(rpc_setbufsize); 1281 1282 /** 1283 * rpc_protocol - Get transport protocol number for an RPC client 1284 * @clnt: RPC client to query 1285 * 1286 */ 1287 int rpc_protocol(struct rpc_clnt *clnt) 1288 { 1289 int protocol; 1290 1291 rcu_read_lock(); 1292 protocol = rcu_dereference(clnt->cl_xprt)->prot; 1293 rcu_read_unlock(); 1294 return protocol; 1295 } 1296 EXPORT_SYMBOL_GPL(rpc_protocol); 1297 1298 /** 1299 * rpc_net_ns - Get the network namespace for this RPC client 1300 * @clnt: RPC client to query 1301 * 1302 */ 1303 struct net *rpc_net_ns(struct rpc_clnt *clnt) 1304 { 1305 struct net *ret; 1306 1307 rcu_read_lock(); 1308 ret = rcu_dereference(clnt->cl_xprt)->xprt_net; 1309 rcu_read_unlock(); 1310 return ret; 1311 } 1312 EXPORT_SYMBOL_GPL(rpc_net_ns); 1313 1314 /** 1315 * rpc_max_payload - Get maximum payload size for a transport, in bytes 1316 * @clnt: RPC client to query 1317 * 1318 * For stream transports, this is one RPC record fragment (see RFC 1319 * 1831), as we don't support multi-record requests yet. For datagram 1320 * transports, this is the size of an IP packet minus the IP, UDP, and 1321 * RPC header sizes. 1322 */ 1323 size_t rpc_max_payload(struct rpc_clnt *clnt) 1324 { 1325 size_t ret; 1326 1327 rcu_read_lock(); 1328 ret = rcu_dereference(clnt->cl_xprt)->max_payload; 1329 rcu_read_unlock(); 1330 return ret; 1331 } 1332 EXPORT_SYMBOL_GPL(rpc_max_payload); 1333 1334 /** 1335 * rpc_get_timeout - Get timeout for transport in units of HZ 1336 * @clnt: RPC client to query 1337 */ 1338 unsigned long rpc_get_timeout(struct rpc_clnt *clnt) 1339 { 1340 unsigned long ret; 1341 1342 rcu_read_lock(); 1343 ret = rcu_dereference(clnt->cl_xprt)->timeout->to_initval; 1344 rcu_read_unlock(); 1345 return ret; 1346 } 1347 EXPORT_SYMBOL_GPL(rpc_get_timeout); 1348 1349 /** 1350 * rpc_force_rebind - force transport to check that remote port is unchanged 1351 * @clnt: client to rebind 1352 * 1353 */ 1354 void rpc_force_rebind(struct rpc_clnt *clnt) 1355 { 1356 if (clnt->cl_autobind) { 1357 rcu_read_lock(); 1358 xprt_clear_bound(rcu_dereference(clnt->cl_xprt)); 1359 rcu_read_unlock(); 1360 } 1361 } 1362 EXPORT_SYMBOL_GPL(rpc_force_rebind); 1363 1364 /* 1365 * Restart an (async) RPC call from the call_prepare state. 1366 * Usually called from within the exit handler. 1367 */ 1368 int 1369 rpc_restart_call_prepare(struct rpc_task *task) 1370 { 1371 if (RPC_ASSASSINATED(task)) 1372 return 0; 1373 task->tk_action = call_start; 1374 task->tk_status = 0; 1375 if (task->tk_ops->rpc_call_prepare != NULL) 1376 task->tk_action = rpc_prepare_task; 1377 return 1; 1378 } 1379 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare); 1380 1381 /* 1382 * Restart an (async) RPC call. Usually called from within the 1383 * exit handler. 1384 */ 1385 int 1386 rpc_restart_call(struct rpc_task *task) 1387 { 1388 if (RPC_ASSASSINATED(task)) 1389 return 0; 1390 task->tk_action = call_start; 1391 task->tk_status = 0; 1392 return 1; 1393 } 1394 EXPORT_SYMBOL_GPL(rpc_restart_call); 1395 1396 #ifdef RPC_DEBUG 1397 static const char *rpc_proc_name(const struct rpc_task *task) 1398 { 1399 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1400 1401 if (proc) { 1402 if (proc->p_name) 1403 return proc->p_name; 1404 else 1405 return "NULL"; 1406 } else 1407 return "no proc"; 1408 } 1409 #endif 1410 1411 /* 1412 * 0. Initial state 1413 * 1414 * Other FSM states can be visited zero or more times, but 1415 * this state is visited exactly once for each RPC. 1416 */ 1417 static void 1418 call_start(struct rpc_task *task) 1419 { 1420 struct rpc_clnt *clnt = task->tk_client; 1421 1422 dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid, 1423 clnt->cl_program->name, clnt->cl_vers, 1424 rpc_proc_name(task), 1425 (RPC_IS_ASYNC(task) ? "async" : "sync")); 1426 1427 /* Increment call count */ 1428 task->tk_msg.rpc_proc->p_count++; 1429 clnt->cl_stats->rpccnt++; 1430 task->tk_action = call_reserve; 1431 } 1432 1433 /* 1434 * 1. Reserve an RPC call slot 1435 */ 1436 static void 1437 call_reserve(struct rpc_task *task) 1438 { 1439 dprint_status(task); 1440 1441 task->tk_status = 0; 1442 task->tk_action = call_reserveresult; 1443 xprt_reserve(task); 1444 } 1445 1446 static void call_retry_reserve(struct rpc_task *task); 1447 1448 /* 1449 * 1b. Grok the result of xprt_reserve() 1450 */ 1451 static void 1452 call_reserveresult(struct rpc_task *task) 1453 { 1454 int status = task->tk_status; 1455 1456 dprint_status(task); 1457 1458 /* 1459 * After a call to xprt_reserve(), we must have either 1460 * a request slot or else an error status. 1461 */ 1462 task->tk_status = 0; 1463 if (status >= 0) { 1464 if (task->tk_rqstp) { 1465 task->tk_action = call_refresh; 1466 return; 1467 } 1468 1469 printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n", 1470 __func__, status); 1471 rpc_exit(task, -EIO); 1472 return; 1473 } 1474 1475 /* 1476 * Even though there was an error, we may have acquired 1477 * a request slot somehow. Make sure not to leak it. 1478 */ 1479 if (task->tk_rqstp) { 1480 printk(KERN_ERR "%s: status=%d, request allocated anyway\n", 1481 __func__, status); 1482 xprt_release(task); 1483 } 1484 1485 switch (status) { 1486 case -ENOMEM: 1487 rpc_delay(task, HZ >> 2); 1488 case -EAGAIN: /* woken up; retry */ 1489 task->tk_action = call_retry_reserve; 1490 return; 1491 case -EIO: /* probably a shutdown */ 1492 break; 1493 default: 1494 printk(KERN_ERR "%s: unrecognized error %d, exiting\n", 1495 __func__, status); 1496 break; 1497 } 1498 rpc_exit(task, status); 1499 } 1500 1501 /* 1502 * 1c. Retry reserving an RPC call slot 1503 */ 1504 static void 1505 call_retry_reserve(struct rpc_task *task) 1506 { 1507 dprint_status(task); 1508 1509 task->tk_status = 0; 1510 task->tk_action = call_reserveresult; 1511 xprt_retry_reserve(task); 1512 } 1513 1514 /* 1515 * 2. Bind and/or refresh the credentials 1516 */ 1517 static void 1518 call_refresh(struct rpc_task *task) 1519 { 1520 dprint_status(task); 1521 1522 task->tk_action = call_refreshresult; 1523 task->tk_status = 0; 1524 task->tk_client->cl_stats->rpcauthrefresh++; 1525 rpcauth_refreshcred(task); 1526 } 1527 1528 /* 1529 * 2a. Process the results of a credential refresh 1530 */ 1531 static void 1532 call_refreshresult(struct rpc_task *task) 1533 { 1534 int status = task->tk_status; 1535 1536 dprint_status(task); 1537 1538 task->tk_status = 0; 1539 task->tk_action = call_refresh; 1540 switch (status) { 1541 case 0: 1542 if (rpcauth_uptodatecred(task)) { 1543 task->tk_action = call_allocate; 1544 return; 1545 } 1546 /* Use rate-limiting and a max number of retries if refresh 1547 * had status 0 but failed to update the cred. 1548 */ 1549 case -ETIMEDOUT: 1550 rpc_delay(task, 3*HZ); 1551 case -EAGAIN: 1552 status = -EACCES; 1553 case -EKEYEXPIRED: 1554 if (!task->tk_cred_retry) 1555 break; 1556 task->tk_cred_retry--; 1557 dprintk("RPC: %5u %s: retry refresh creds\n", 1558 task->tk_pid, __func__); 1559 return; 1560 } 1561 dprintk("RPC: %5u %s: refresh creds failed with error %d\n", 1562 task->tk_pid, __func__, status); 1563 rpc_exit(task, status); 1564 } 1565 1566 /* 1567 * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc. 1568 * (Note: buffer memory is freed in xprt_release). 1569 */ 1570 static void 1571 call_allocate(struct rpc_task *task) 1572 { 1573 unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack; 1574 struct rpc_rqst *req = task->tk_rqstp; 1575 struct rpc_xprt *xprt = req->rq_xprt; 1576 struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1577 1578 dprint_status(task); 1579 1580 task->tk_status = 0; 1581 task->tk_action = call_bind; 1582 1583 if (req->rq_buffer) 1584 return; 1585 1586 if (proc->p_proc != 0) { 1587 BUG_ON(proc->p_arglen == 0); 1588 if (proc->p_decode != NULL) 1589 BUG_ON(proc->p_replen == 0); 1590 } 1591 1592 /* 1593 * Calculate the size (in quads) of the RPC call 1594 * and reply headers, and convert both values 1595 * to byte sizes. 1596 */ 1597 req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen; 1598 req->rq_callsize <<= 2; 1599 req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen; 1600 req->rq_rcvsize <<= 2; 1601 1602 req->rq_buffer = xprt->ops->buf_alloc(task, 1603 req->rq_callsize + req->rq_rcvsize); 1604 if (req->rq_buffer != NULL) 1605 return; 1606 1607 dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid); 1608 1609 if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) { 1610 task->tk_action = call_allocate; 1611 rpc_delay(task, HZ>>4); 1612 return; 1613 } 1614 1615 rpc_exit(task, -ERESTARTSYS); 1616 } 1617 1618 static inline int 1619 rpc_task_need_encode(struct rpc_task *task) 1620 { 1621 return task->tk_rqstp->rq_snd_buf.len == 0; 1622 } 1623 1624 static inline void 1625 rpc_task_force_reencode(struct rpc_task *task) 1626 { 1627 task->tk_rqstp->rq_snd_buf.len = 0; 1628 task->tk_rqstp->rq_bytes_sent = 0; 1629 } 1630 1631 static inline void 1632 rpc_xdr_buf_init(struct xdr_buf *buf, void *start, size_t len) 1633 { 1634 buf->head[0].iov_base = start; 1635 buf->head[0].iov_len = len; 1636 buf->tail[0].iov_len = 0; 1637 buf->page_len = 0; 1638 buf->flags = 0; 1639 buf->len = 0; 1640 buf->buflen = len; 1641 } 1642 1643 /* 1644 * 3. Encode arguments of an RPC call 1645 */ 1646 static void 1647 rpc_xdr_encode(struct rpc_task *task) 1648 { 1649 struct rpc_rqst *req = task->tk_rqstp; 1650 kxdreproc_t encode; 1651 __be32 *p; 1652 1653 dprint_status(task); 1654 1655 rpc_xdr_buf_init(&req->rq_snd_buf, 1656 req->rq_buffer, 1657 req->rq_callsize); 1658 rpc_xdr_buf_init(&req->rq_rcv_buf, 1659 (char *)req->rq_buffer + req->rq_callsize, 1660 req->rq_rcvsize); 1661 1662 p = rpc_encode_header(task); 1663 if (p == NULL) { 1664 printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n"); 1665 rpc_exit(task, -EIO); 1666 return; 1667 } 1668 1669 encode = task->tk_msg.rpc_proc->p_encode; 1670 if (encode == NULL) 1671 return; 1672 1673 task->tk_status = rpcauth_wrap_req(task, encode, req, p, 1674 task->tk_msg.rpc_argp); 1675 } 1676 1677 /* 1678 * 4. Get the server port number if not yet set 1679 */ 1680 static void 1681 call_bind(struct rpc_task *task) 1682 { 1683 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1684 1685 dprint_status(task); 1686 1687 task->tk_action = call_connect; 1688 if (!xprt_bound(xprt)) { 1689 task->tk_action = call_bind_status; 1690 task->tk_timeout = xprt->bind_timeout; 1691 xprt->ops->rpcbind(task); 1692 } 1693 } 1694 1695 /* 1696 * 4a. Sort out bind result 1697 */ 1698 static void 1699 call_bind_status(struct rpc_task *task) 1700 { 1701 int status = -EIO; 1702 1703 if (task->tk_status >= 0) { 1704 dprint_status(task); 1705 task->tk_status = 0; 1706 task->tk_action = call_connect; 1707 return; 1708 } 1709 1710 trace_rpc_bind_status(task); 1711 switch (task->tk_status) { 1712 case -ENOMEM: 1713 dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid); 1714 rpc_delay(task, HZ >> 2); 1715 goto retry_timeout; 1716 case -EACCES: 1717 dprintk("RPC: %5u remote rpcbind: RPC program/version " 1718 "unavailable\n", task->tk_pid); 1719 /* fail immediately if this is an RPC ping */ 1720 if (task->tk_msg.rpc_proc->p_proc == 0) { 1721 status = -EOPNOTSUPP; 1722 break; 1723 } 1724 if (task->tk_rebind_retry == 0) 1725 break; 1726 task->tk_rebind_retry--; 1727 rpc_delay(task, 3*HZ); 1728 goto retry_timeout; 1729 case -ETIMEDOUT: 1730 dprintk("RPC: %5u rpcbind request timed out\n", 1731 task->tk_pid); 1732 goto retry_timeout; 1733 case -EPFNOSUPPORT: 1734 /* server doesn't support any rpcbind version we know of */ 1735 dprintk("RPC: %5u unrecognized remote rpcbind service\n", 1736 task->tk_pid); 1737 break; 1738 case -EPROTONOSUPPORT: 1739 dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n", 1740 task->tk_pid); 1741 goto retry_timeout; 1742 case -ECONNREFUSED: /* connection problems */ 1743 case -ECONNRESET: 1744 case -ECONNABORTED: 1745 case -ENOTCONN: 1746 case -EHOSTDOWN: 1747 case -EHOSTUNREACH: 1748 case -ENETUNREACH: 1749 case -ENOBUFS: 1750 case -EPIPE: 1751 dprintk("RPC: %5u remote rpcbind unreachable: %d\n", 1752 task->tk_pid, task->tk_status); 1753 if (!RPC_IS_SOFTCONN(task)) { 1754 rpc_delay(task, 5*HZ); 1755 goto retry_timeout; 1756 } 1757 status = task->tk_status; 1758 break; 1759 default: 1760 dprintk("RPC: %5u unrecognized rpcbind error (%d)\n", 1761 task->tk_pid, -task->tk_status); 1762 } 1763 1764 rpc_exit(task, status); 1765 return; 1766 1767 retry_timeout: 1768 task->tk_status = 0; 1769 task->tk_action = call_timeout; 1770 } 1771 1772 /* 1773 * 4b. Connect to the RPC server 1774 */ 1775 static void 1776 call_connect(struct rpc_task *task) 1777 { 1778 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1779 1780 dprintk("RPC: %5u call_connect xprt %p %s connected\n", 1781 task->tk_pid, xprt, 1782 (xprt_connected(xprt) ? "is" : "is not")); 1783 1784 task->tk_action = call_transmit; 1785 if (!xprt_connected(xprt)) { 1786 task->tk_action = call_connect_status; 1787 if (task->tk_status < 0) 1788 return; 1789 if (task->tk_flags & RPC_TASK_NOCONNECT) { 1790 rpc_exit(task, -ENOTCONN); 1791 return; 1792 } 1793 xprt_connect(task); 1794 } 1795 } 1796 1797 /* 1798 * 4c. Sort out connect result 1799 */ 1800 static void 1801 call_connect_status(struct rpc_task *task) 1802 { 1803 struct rpc_clnt *clnt = task->tk_client; 1804 int status = task->tk_status; 1805 1806 dprint_status(task); 1807 1808 trace_rpc_connect_status(task, status); 1809 task->tk_status = 0; 1810 switch (status) { 1811 case -ECONNREFUSED: 1812 case -ECONNRESET: 1813 case -ECONNABORTED: 1814 case -ENETUNREACH: 1815 case -EHOSTUNREACH: 1816 case -ENOBUFS: 1817 case -EPIPE: 1818 if (RPC_IS_SOFTCONN(task)) 1819 break; 1820 /* retry with existing socket, after a delay */ 1821 rpc_delay(task, 3*HZ); 1822 case -EAGAIN: 1823 /* Check for timeouts before looping back to call_bind */ 1824 case -ETIMEDOUT: 1825 task->tk_action = call_timeout; 1826 return; 1827 case 0: 1828 clnt->cl_stats->netreconn++; 1829 task->tk_action = call_transmit; 1830 return; 1831 } 1832 rpc_exit(task, status); 1833 } 1834 1835 /* 1836 * 5. Transmit the RPC request, and wait for reply 1837 */ 1838 static void 1839 call_transmit(struct rpc_task *task) 1840 { 1841 int is_retrans = RPC_WAS_SENT(task); 1842 1843 dprint_status(task); 1844 1845 task->tk_action = call_status; 1846 if (task->tk_status < 0) 1847 return; 1848 if (!xprt_prepare_transmit(task)) 1849 return; 1850 task->tk_action = call_transmit_status; 1851 /* Encode here so that rpcsec_gss can use correct sequence number. */ 1852 if (rpc_task_need_encode(task)) { 1853 rpc_xdr_encode(task); 1854 /* Did the encode result in an error condition? */ 1855 if (task->tk_status != 0) { 1856 /* Was the error nonfatal? */ 1857 if (task->tk_status == -EAGAIN) 1858 rpc_delay(task, HZ >> 4); 1859 else 1860 rpc_exit(task, task->tk_status); 1861 return; 1862 } 1863 } 1864 xprt_transmit(task); 1865 if (task->tk_status < 0) 1866 return; 1867 if (is_retrans) 1868 task->tk_client->cl_stats->rpcretrans++; 1869 /* 1870 * On success, ensure that we call xprt_end_transmit() before sleeping 1871 * in order to allow access to the socket to other RPC requests. 1872 */ 1873 call_transmit_status(task); 1874 if (rpc_reply_expected(task)) 1875 return; 1876 task->tk_action = rpc_exit_task; 1877 rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task); 1878 } 1879 1880 /* 1881 * 5a. Handle cleanup after a transmission 1882 */ 1883 static void 1884 call_transmit_status(struct rpc_task *task) 1885 { 1886 task->tk_action = call_status; 1887 1888 /* 1889 * Common case: success. Force the compiler to put this 1890 * test first. 1891 */ 1892 if (task->tk_status == 0) { 1893 xprt_end_transmit(task); 1894 rpc_task_force_reencode(task); 1895 return; 1896 } 1897 1898 switch (task->tk_status) { 1899 case -EAGAIN: 1900 break; 1901 default: 1902 dprint_status(task); 1903 xprt_end_transmit(task); 1904 rpc_task_force_reencode(task); 1905 break; 1906 /* 1907 * Special cases: if we've been waiting on the 1908 * socket's write_space() callback, or if the 1909 * socket just returned a connection error, 1910 * then hold onto the transport lock. 1911 */ 1912 case -ECONNREFUSED: 1913 case -EHOSTDOWN: 1914 case -EHOSTUNREACH: 1915 case -ENETUNREACH: 1916 if (RPC_IS_SOFTCONN(task)) { 1917 xprt_end_transmit(task); 1918 rpc_exit(task, task->tk_status); 1919 break; 1920 } 1921 case -ECONNRESET: 1922 case -ECONNABORTED: 1923 case -ENOTCONN: 1924 case -ENOBUFS: 1925 case -EPIPE: 1926 rpc_task_force_reencode(task); 1927 } 1928 } 1929 1930 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1931 /* 1932 * 5b. Send the backchannel RPC reply. On error, drop the reply. In 1933 * addition, disconnect on connectivity errors. 1934 */ 1935 static void 1936 call_bc_transmit(struct rpc_task *task) 1937 { 1938 struct rpc_rqst *req = task->tk_rqstp; 1939 1940 if (!xprt_prepare_transmit(task)) { 1941 /* 1942 * Could not reserve the transport. Try again after the 1943 * transport is released. 1944 */ 1945 task->tk_status = 0; 1946 task->tk_action = call_bc_transmit; 1947 return; 1948 } 1949 1950 task->tk_action = rpc_exit_task; 1951 if (task->tk_status < 0) { 1952 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 1953 "error: %d\n", task->tk_status); 1954 return; 1955 } 1956 1957 xprt_transmit(task); 1958 xprt_end_transmit(task); 1959 dprint_status(task); 1960 switch (task->tk_status) { 1961 case 0: 1962 /* Success */ 1963 break; 1964 case -EHOSTDOWN: 1965 case -EHOSTUNREACH: 1966 case -ENETUNREACH: 1967 case -ETIMEDOUT: 1968 /* 1969 * Problem reaching the server. Disconnect and let the 1970 * forechannel reestablish the connection. The server will 1971 * have to retransmit the backchannel request and we'll 1972 * reprocess it. Since these ops are idempotent, there's no 1973 * need to cache our reply at this time. 1974 */ 1975 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 1976 "error: %d\n", task->tk_status); 1977 xprt_conditional_disconnect(req->rq_xprt, 1978 req->rq_connect_cookie); 1979 break; 1980 default: 1981 /* 1982 * We were unable to reply and will have to drop the 1983 * request. The server should reconnect and retransmit. 1984 */ 1985 WARN_ON_ONCE(task->tk_status == -EAGAIN); 1986 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 1987 "error: %d\n", task->tk_status); 1988 break; 1989 } 1990 rpc_wake_up_queued_task(&req->rq_xprt->pending, task); 1991 } 1992 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1993 1994 /* 1995 * 6. Sort out the RPC call status 1996 */ 1997 static void 1998 call_status(struct rpc_task *task) 1999 { 2000 struct rpc_clnt *clnt = task->tk_client; 2001 struct rpc_rqst *req = task->tk_rqstp; 2002 int status; 2003 2004 if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent) 2005 task->tk_status = req->rq_reply_bytes_recvd; 2006 2007 dprint_status(task); 2008 2009 status = task->tk_status; 2010 if (status >= 0) { 2011 task->tk_action = call_decode; 2012 return; 2013 } 2014 2015 trace_rpc_call_status(task); 2016 task->tk_status = 0; 2017 switch(status) { 2018 case -EHOSTDOWN: 2019 case -EHOSTUNREACH: 2020 case -ENETUNREACH: 2021 if (RPC_IS_SOFTCONN(task)) { 2022 rpc_exit(task, status); 2023 break; 2024 } 2025 /* 2026 * Delay any retries for 3 seconds, then handle as if it 2027 * were a timeout. 2028 */ 2029 rpc_delay(task, 3*HZ); 2030 case -ETIMEDOUT: 2031 task->tk_action = call_timeout; 2032 if (!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) 2033 && task->tk_client->cl_discrtry) 2034 xprt_conditional_disconnect(req->rq_xprt, 2035 req->rq_connect_cookie); 2036 break; 2037 case -ECONNREFUSED: 2038 case -ECONNRESET: 2039 case -ECONNABORTED: 2040 rpc_force_rebind(clnt); 2041 case -ENOBUFS: 2042 rpc_delay(task, 3*HZ); 2043 case -EPIPE: 2044 case -ENOTCONN: 2045 task->tk_action = call_bind; 2046 break; 2047 case -EAGAIN: 2048 task->tk_action = call_transmit; 2049 break; 2050 case -EIO: 2051 /* shutdown or soft timeout */ 2052 rpc_exit(task, status); 2053 break; 2054 default: 2055 if (clnt->cl_chatty) 2056 printk("%s: RPC call returned error %d\n", 2057 clnt->cl_program->name, -status); 2058 rpc_exit(task, status); 2059 } 2060 } 2061 2062 /* 2063 * 6a. Handle RPC timeout 2064 * We do not release the request slot, so we keep using the 2065 * same XID for all retransmits. 2066 */ 2067 static void 2068 call_timeout(struct rpc_task *task) 2069 { 2070 struct rpc_clnt *clnt = task->tk_client; 2071 2072 if (xprt_adjust_timeout(task->tk_rqstp) == 0) { 2073 dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid); 2074 goto retry; 2075 } 2076 2077 dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid); 2078 task->tk_timeouts++; 2079 2080 if (RPC_IS_SOFTCONN(task)) { 2081 rpc_exit(task, -ETIMEDOUT); 2082 return; 2083 } 2084 if (RPC_IS_SOFT(task)) { 2085 if (clnt->cl_chatty) { 2086 rcu_read_lock(); 2087 printk(KERN_NOTICE "%s: server %s not responding, timed out\n", 2088 clnt->cl_program->name, 2089 rcu_dereference(clnt->cl_xprt)->servername); 2090 rcu_read_unlock(); 2091 } 2092 if (task->tk_flags & RPC_TASK_TIMEOUT) 2093 rpc_exit(task, -ETIMEDOUT); 2094 else 2095 rpc_exit(task, -EIO); 2096 return; 2097 } 2098 2099 if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) { 2100 task->tk_flags |= RPC_CALL_MAJORSEEN; 2101 if (clnt->cl_chatty) { 2102 rcu_read_lock(); 2103 printk(KERN_NOTICE "%s: server %s not responding, still trying\n", 2104 clnt->cl_program->name, 2105 rcu_dereference(clnt->cl_xprt)->servername); 2106 rcu_read_unlock(); 2107 } 2108 } 2109 rpc_force_rebind(clnt); 2110 /* 2111 * Did our request time out due to an RPCSEC_GSS out-of-sequence 2112 * event? RFC2203 requires the server to drop all such requests. 2113 */ 2114 rpcauth_invalcred(task); 2115 2116 retry: 2117 task->tk_action = call_bind; 2118 task->tk_status = 0; 2119 } 2120 2121 /* 2122 * 7. Decode the RPC reply 2123 */ 2124 static void 2125 call_decode(struct rpc_task *task) 2126 { 2127 struct rpc_clnt *clnt = task->tk_client; 2128 struct rpc_rqst *req = task->tk_rqstp; 2129 kxdrdproc_t decode = task->tk_msg.rpc_proc->p_decode; 2130 __be32 *p; 2131 2132 dprint_status(task); 2133 2134 if (task->tk_flags & RPC_CALL_MAJORSEEN) { 2135 if (clnt->cl_chatty) { 2136 rcu_read_lock(); 2137 printk(KERN_NOTICE "%s: server %s OK\n", 2138 clnt->cl_program->name, 2139 rcu_dereference(clnt->cl_xprt)->servername); 2140 rcu_read_unlock(); 2141 } 2142 task->tk_flags &= ~RPC_CALL_MAJORSEEN; 2143 } 2144 2145 /* 2146 * Ensure that we see all writes made by xprt_complete_rqst() 2147 * before it changed req->rq_reply_bytes_recvd. 2148 */ 2149 smp_rmb(); 2150 req->rq_rcv_buf.len = req->rq_private_buf.len; 2151 2152 /* Check that the softirq receive buffer is valid */ 2153 WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf, 2154 sizeof(req->rq_rcv_buf)) != 0); 2155 2156 if (req->rq_rcv_buf.len < 12) { 2157 if (!RPC_IS_SOFT(task)) { 2158 task->tk_action = call_bind; 2159 goto out_retry; 2160 } 2161 dprintk("RPC: %s: too small RPC reply size (%d bytes)\n", 2162 clnt->cl_program->name, task->tk_status); 2163 task->tk_action = call_timeout; 2164 goto out_retry; 2165 } 2166 2167 p = rpc_verify_header(task); 2168 if (IS_ERR(p)) { 2169 if (p == ERR_PTR(-EAGAIN)) 2170 goto out_retry; 2171 return; 2172 } 2173 2174 task->tk_action = rpc_exit_task; 2175 2176 if (decode) { 2177 task->tk_status = rpcauth_unwrap_resp(task, decode, req, p, 2178 task->tk_msg.rpc_resp); 2179 } 2180 dprintk("RPC: %5u call_decode result %d\n", task->tk_pid, 2181 task->tk_status); 2182 return; 2183 out_retry: 2184 task->tk_status = 0; 2185 /* Note: rpc_verify_header() may have freed the RPC slot */ 2186 if (task->tk_rqstp == req) { 2187 req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0; 2188 if (task->tk_client->cl_discrtry) 2189 xprt_conditional_disconnect(req->rq_xprt, 2190 req->rq_connect_cookie); 2191 } 2192 } 2193 2194 static __be32 * 2195 rpc_encode_header(struct rpc_task *task) 2196 { 2197 struct rpc_clnt *clnt = task->tk_client; 2198 struct rpc_rqst *req = task->tk_rqstp; 2199 __be32 *p = req->rq_svec[0].iov_base; 2200 2201 /* FIXME: check buffer size? */ 2202 2203 p = xprt_skip_transport_header(req->rq_xprt, p); 2204 *p++ = req->rq_xid; /* XID */ 2205 *p++ = htonl(RPC_CALL); /* CALL */ 2206 *p++ = htonl(RPC_VERSION); /* RPC version */ 2207 *p++ = htonl(clnt->cl_prog); /* program number */ 2208 *p++ = htonl(clnt->cl_vers); /* program version */ 2209 *p++ = htonl(task->tk_msg.rpc_proc->p_proc); /* procedure */ 2210 p = rpcauth_marshcred(task, p); 2211 req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p); 2212 return p; 2213 } 2214 2215 static __be32 * 2216 rpc_verify_header(struct rpc_task *task) 2217 { 2218 struct rpc_clnt *clnt = task->tk_client; 2219 struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0]; 2220 int len = task->tk_rqstp->rq_rcv_buf.len >> 2; 2221 __be32 *p = iov->iov_base; 2222 u32 n; 2223 int error = -EACCES; 2224 2225 if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) { 2226 /* RFC-1014 says that the representation of XDR data must be a 2227 * multiple of four bytes 2228 * - if it isn't pointer subtraction in the NFS client may give 2229 * undefined results 2230 */ 2231 dprintk("RPC: %5u %s: XDR representation not a multiple of" 2232 " 4 bytes: 0x%x\n", task->tk_pid, __func__, 2233 task->tk_rqstp->rq_rcv_buf.len); 2234 error = -EIO; 2235 goto out_err; 2236 } 2237 if ((len -= 3) < 0) 2238 goto out_overflow; 2239 2240 p += 1; /* skip XID */ 2241 if ((n = ntohl(*p++)) != RPC_REPLY) { 2242 dprintk("RPC: %5u %s: not an RPC reply: %x\n", 2243 task->tk_pid, __func__, n); 2244 error = -EIO; 2245 goto out_garbage; 2246 } 2247 2248 if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) { 2249 if (--len < 0) 2250 goto out_overflow; 2251 switch ((n = ntohl(*p++))) { 2252 case RPC_AUTH_ERROR: 2253 break; 2254 case RPC_MISMATCH: 2255 dprintk("RPC: %5u %s: RPC call version mismatch!\n", 2256 task->tk_pid, __func__); 2257 error = -EPROTONOSUPPORT; 2258 goto out_err; 2259 default: 2260 dprintk("RPC: %5u %s: RPC call rejected, " 2261 "unknown error: %x\n", 2262 task->tk_pid, __func__, n); 2263 error = -EIO; 2264 goto out_err; 2265 } 2266 if (--len < 0) 2267 goto out_overflow; 2268 switch ((n = ntohl(*p++))) { 2269 case RPC_AUTH_REJECTEDCRED: 2270 case RPC_AUTH_REJECTEDVERF: 2271 case RPCSEC_GSS_CREDPROBLEM: 2272 case RPCSEC_GSS_CTXPROBLEM: 2273 if (!task->tk_cred_retry) 2274 break; 2275 task->tk_cred_retry--; 2276 dprintk("RPC: %5u %s: retry stale creds\n", 2277 task->tk_pid, __func__); 2278 rpcauth_invalcred(task); 2279 /* Ensure we obtain a new XID! */ 2280 xprt_release(task); 2281 task->tk_action = call_reserve; 2282 goto out_retry; 2283 case RPC_AUTH_BADCRED: 2284 case RPC_AUTH_BADVERF: 2285 /* possibly garbled cred/verf? */ 2286 if (!task->tk_garb_retry) 2287 break; 2288 task->tk_garb_retry--; 2289 dprintk("RPC: %5u %s: retry garbled creds\n", 2290 task->tk_pid, __func__); 2291 task->tk_action = call_bind; 2292 goto out_retry; 2293 case RPC_AUTH_TOOWEAK: 2294 rcu_read_lock(); 2295 printk(KERN_NOTICE "RPC: server %s requires stronger " 2296 "authentication.\n", 2297 rcu_dereference(clnt->cl_xprt)->servername); 2298 rcu_read_unlock(); 2299 break; 2300 default: 2301 dprintk("RPC: %5u %s: unknown auth error: %x\n", 2302 task->tk_pid, __func__, n); 2303 error = -EIO; 2304 } 2305 dprintk("RPC: %5u %s: call rejected %d\n", 2306 task->tk_pid, __func__, n); 2307 goto out_err; 2308 } 2309 p = rpcauth_checkverf(task, p); 2310 if (IS_ERR(p)) { 2311 error = PTR_ERR(p); 2312 dprintk("RPC: %5u %s: auth check failed with %d\n", 2313 task->tk_pid, __func__, error); 2314 goto out_garbage; /* bad verifier, retry */ 2315 } 2316 len = p - (__be32 *)iov->iov_base - 1; 2317 if (len < 0) 2318 goto out_overflow; 2319 switch ((n = ntohl(*p++))) { 2320 case RPC_SUCCESS: 2321 return p; 2322 case RPC_PROG_UNAVAIL: 2323 dprintk_rcu("RPC: %5u %s: program %u is unsupported " 2324 "by server %s\n", task->tk_pid, __func__, 2325 (unsigned int)clnt->cl_prog, 2326 rcu_dereference(clnt->cl_xprt)->servername); 2327 error = -EPFNOSUPPORT; 2328 goto out_err; 2329 case RPC_PROG_MISMATCH: 2330 dprintk_rcu("RPC: %5u %s: program %u, version %u unsupported " 2331 "by server %s\n", task->tk_pid, __func__, 2332 (unsigned int)clnt->cl_prog, 2333 (unsigned int)clnt->cl_vers, 2334 rcu_dereference(clnt->cl_xprt)->servername); 2335 error = -EPROTONOSUPPORT; 2336 goto out_err; 2337 case RPC_PROC_UNAVAIL: 2338 dprintk_rcu("RPC: %5u %s: proc %s unsupported by program %u, " 2339 "version %u on server %s\n", 2340 task->tk_pid, __func__, 2341 rpc_proc_name(task), 2342 clnt->cl_prog, clnt->cl_vers, 2343 rcu_dereference(clnt->cl_xprt)->servername); 2344 error = -EOPNOTSUPP; 2345 goto out_err; 2346 case RPC_GARBAGE_ARGS: 2347 dprintk("RPC: %5u %s: server saw garbage\n", 2348 task->tk_pid, __func__); 2349 break; /* retry */ 2350 default: 2351 dprintk("RPC: %5u %s: server accept status: %x\n", 2352 task->tk_pid, __func__, n); 2353 /* Also retry */ 2354 } 2355 2356 out_garbage: 2357 clnt->cl_stats->rpcgarbage++; 2358 if (task->tk_garb_retry) { 2359 task->tk_garb_retry--; 2360 dprintk("RPC: %5u %s: retrying\n", 2361 task->tk_pid, __func__); 2362 task->tk_action = call_bind; 2363 out_retry: 2364 return ERR_PTR(-EAGAIN); 2365 } 2366 out_err: 2367 rpc_exit(task, error); 2368 dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid, 2369 __func__, error); 2370 return ERR_PTR(error); 2371 out_overflow: 2372 dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid, 2373 __func__); 2374 goto out_garbage; 2375 } 2376 2377 static void rpcproc_encode_null(void *rqstp, struct xdr_stream *xdr, void *obj) 2378 { 2379 } 2380 2381 static int rpcproc_decode_null(void *rqstp, struct xdr_stream *xdr, void *obj) 2382 { 2383 return 0; 2384 } 2385 2386 static struct rpc_procinfo rpcproc_null = { 2387 .p_encode = rpcproc_encode_null, 2388 .p_decode = rpcproc_decode_null, 2389 }; 2390 2391 static int rpc_ping(struct rpc_clnt *clnt) 2392 { 2393 struct rpc_message msg = { 2394 .rpc_proc = &rpcproc_null, 2395 }; 2396 int err; 2397 msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2398 err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN); 2399 put_rpccred(msg.rpc_cred); 2400 return err; 2401 } 2402 2403 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags) 2404 { 2405 struct rpc_message msg = { 2406 .rpc_proc = &rpcproc_null, 2407 .rpc_cred = cred, 2408 }; 2409 struct rpc_task_setup task_setup_data = { 2410 .rpc_client = clnt, 2411 .rpc_message = &msg, 2412 .callback_ops = &rpc_default_ops, 2413 .flags = flags, 2414 }; 2415 return rpc_run_task(&task_setup_data); 2416 } 2417 EXPORT_SYMBOL_GPL(rpc_call_null); 2418 2419 #ifdef RPC_DEBUG 2420 static void rpc_show_header(void) 2421 { 2422 printk(KERN_INFO "-pid- flgs status -client- --rqstp- " 2423 "-timeout ---ops--\n"); 2424 } 2425 2426 static void rpc_show_task(const struct rpc_clnt *clnt, 2427 const struct rpc_task *task) 2428 { 2429 const char *rpc_waitq = "none"; 2430 2431 if (RPC_IS_QUEUED(task)) 2432 rpc_waitq = rpc_qname(task->tk_waitqueue); 2433 2434 printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n", 2435 task->tk_pid, task->tk_flags, task->tk_status, 2436 clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops, 2437 clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task), 2438 task->tk_action, rpc_waitq); 2439 } 2440 2441 void rpc_show_tasks(struct net *net) 2442 { 2443 struct rpc_clnt *clnt; 2444 struct rpc_task *task; 2445 int header = 0; 2446 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 2447 2448 spin_lock(&sn->rpc_client_lock); 2449 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 2450 spin_lock(&clnt->cl_lock); 2451 list_for_each_entry(task, &clnt->cl_tasks, tk_task) { 2452 if (!header) { 2453 rpc_show_header(); 2454 header++; 2455 } 2456 rpc_show_task(clnt, task); 2457 } 2458 spin_unlock(&clnt->cl_lock); 2459 } 2460 spin_unlock(&sn->rpc_client_lock); 2461 } 2462 #endif 2463