xref: /openbmc/linux/net/sunrpc/cache.c (revision fd589a8f)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 
37 #define	 RPCDBG_FACILITY RPCDBG_CACHE
38 
39 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 
42 static void cache_init(struct cache_head *h)
43 {
44 	time_t now = get_seconds();
45 	h->next = NULL;
46 	h->flags = 0;
47 	kref_init(&h->ref);
48 	h->expiry_time = now + CACHE_NEW_EXPIRY;
49 	h->last_refresh = now;
50 }
51 
52 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
53 				       struct cache_head *key, int hash)
54 {
55 	struct cache_head **head,  **hp;
56 	struct cache_head *new = NULL;
57 
58 	head = &detail->hash_table[hash];
59 
60 	read_lock(&detail->hash_lock);
61 
62 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
63 		struct cache_head *tmp = *hp;
64 		if (detail->match(tmp, key)) {
65 			cache_get(tmp);
66 			read_unlock(&detail->hash_lock);
67 			return tmp;
68 		}
69 	}
70 	read_unlock(&detail->hash_lock);
71 	/* Didn't find anything, insert an empty entry */
72 
73 	new = detail->alloc();
74 	if (!new)
75 		return NULL;
76 	/* must fully initialise 'new', else
77 	 * we might get lose if we need to
78 	 * cache_put it soon.
79 	 */
80 	cache_init(new);
81 	detail->init(new, key);
82 
83 	write_lock(&detail->hash_lock);
84 
85 	/* check if entry appeared while we slept */
86 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
87 		struct cache_head *tmp = *hp;
88 		if (detail->match(tmp, key)) {
89 			cache_get(tmp);
90 			write_unlock(&detail->hash_lock);
91 			cache_put(new, detail);
92 			return tmp;
93 		}
94 	}
95 	new->next = *head;
96 	*head = new;
97 	detail->entries++;
98 	cache_get(new);
99 	write_unlock(&detail->hash_lock);
100 
101 	return new;
102 }
103 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
104 
105 
106 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
107 
108 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
109 {
110 	head->expiry_time = expiry;
111 	head->last_refresh = get_seconds();
112 	return !test_and_set_bit(CACHE_VALID, &head->flags);
113 }
114 
115 static void cache_fresh_unlocked(struct cache_head *head,
116 			struct cache_detail *detail, int new)
117 {
118 	if (new)
119 		cache_revisit_request(head);
120 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
121 		cache_revisit_request(head);
122 		queue_loose(detail, head);
123 	}
124 }
125 
126 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
127 				       struct cache_head *new, struct cache_head *old, int hash)
128 {
129 	/* The 'old' entry is to be replaced by 'new'.
130 	 * If 'old' is not VALID, we update it directly,
131 	 * otherwise we need to replace it
132 	 */
133 	struct cache_head **head;
134 	struct cache_head *tmp;
135 	int is_new;
136 
137 	if (!test_bit(CACHE_VALID, &old->flags)) {
138 		write_lock(&detail->hash_lock);
139 		if (!test_bit(CACHE_VALID, &old->flags)) {
140 			if (test_bit(CACHE_NEGATIVE, &new->flags))
141 				set_bit(CACHE_NEGATIVE, &old->flags);
142 			else
143 				detail->update(old, new);
144 			is_new = cache_fresh_locked(old, new->expiry_time);
145 			write_unlock(&detail->hash_lock);
146 			cache_fresh_unlocked(old, detail, is_new);
147 			return old;
148 		}
149 		write_unlock(&detail->hash_lock);
150 	}
151 	/* We need to insert a new entry */
152 	tmp = detail->alloc();
153 	if (!tmp) {
154 		cache_put(old, detail);
155 		return NULL;
156 	}
157 	cache_init(tmp);
158 	detail->init(tmp, old);
159 	head = &detail->hash_table[hash];
160 
161 	write_lock(&detail->hash_lock);
162 	if (test_bit(CACHE_NEGATIVE, &new->flags))
163 		set_bit(CACHE_NEGATIVE, &tmp->flags);
164 	else
165 		detail->update(tmp, new);
166 	tmp->next = *head;
167 	*head = tmp;
168 	detail->entries++;
169 	cache_get(tmp);
170 	is_new = cache_fresh_locked(tmp, new->expiry_time);
171 	cache_fresh_locked(old, 0);
172 	write_unlock(&detail->hash_lock);
173 	cache_fresh_unlocked(tmp, detail, is_new);
174 	cache_fresh_unlocked(old, detail, 0);
175 	cache_put(old, detail);
176 	return tmp;
177 }
178 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
179 
180 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
181 {
182 	if (!cd->cache_upcall)
183 		return -EINVAL;
184 	return cd->cache_upcall(cd, h);
185 }
186 
187 /*
188  * This is the generic cache management routine for all
189  * the authentication caches.
190  * It checks the currency of a cache item and will (later)
191  * initiate an upcall to fill it if needed.
192  *
193  *
194  * Returns 0 if the cache_head can be used, or cache_puts it and returns
195  * -EAGAIN if upcall is pending,
196  * -ETIMEDOUT if upcall failed and should be retried,
197  * -ENOENT if cache entry was negative
198  */
199 int cache_check(struct cache_detail *detail,
200 		    struct cache_head *h, struct cache_req *rqstp)
201 {
202 	int rv;
203 	long refresh_age, age;
204 
205 	/* First decide return status as best we can */
206 	if (!test_bit(CACHE_VALID, &h->flags) ||
207 	    h->expiry_time < get_seconds())
208 		rv = -EAGAIN;
209 	else if (detail->flush_time > h->last_refresh)
210 		rv = -EAGAIN;
211 	else {
212 		/* entry is valid */
213 		if (test_bit(CACHE_NEGATIVE, &h->flags))
214 			rv = -ENOENT;
215 		else rv = 0;
216 	}
217 
218 	/* now see if we want to start an upcall */
219 	refresh_age = (h->expiry_time - h->last_refresh);
220 	age = get_seconds() - h->last_refresh;
221 
222 	if (rqstp == NULL) {
223 		if (rv == -EAGAIN)
224 			rv = -ENOENT;
225 	} else if (rv == -EAGAIN || age > refresh_age/2) {
226 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
227 				refresh_age, age);
228 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
229 			switch (cache_make_upcall(detail, h)) {
230 			case -EINVAL:
231 				clear_bit(CACHE_PENDING, &h->flags);
232 				if (rv == -EAGAIN) {
233 					set_bit(CACHE_NEGATIVE, &h->flags);
234 					cache_fresh_unlocked(h, detail,
235 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
236 					rv = -ENOENT;
237 				}
238 				break;
239 
240 			case -EAGAIN:
241 				clear_bit(CACHE_PENDING, &h->flags);
242 				cache_revisit_request(h);
243 				break;
244 			}
245 		}
246 	}
247 
248 	if (rv == -EAGAIN)
249 		if (cache_defer_req(rqstp, h) != 0)
250 			rv = -ETIMEDOUT;
251 
252 	if (rv)
253 		cache_put(h, detail);
254 	return rv;
255 }
256 EXPORT_SYMBOL_GPL(cache_check);
257 
258 /*
259  * caches need to be periodically cleaned.
260  * For this we maintain a list of cache_detail and
261  * a current pointer into that list and into the table
262  * for that entry.
263  *
264  * Each time clean_cache is called it finds the next non-empty entry
265  * in the current table and walks the list in that entry
266  * looking for entries that can be removed.
267  *
268  * An entry gets removed if:
269  * - The expiry is before current time
270  * - The last_refresh time is before the flush_time for that cache
271  *
272  * later we might drop old entries with non-NEVER expiry if that table
273  * is getting 'full' for some definition of 'full'
274  *
275  * The question of "how often to scan a table" is an interesting one
276  * and is answered in part by the use of the "nextcheck" field in the
277  * cache_detail.
278  * When a scan of a table begins, the nextcheck field is set to a time
279  * that is well into the future.
280  * While scanning, if an expiry time is found that is earlier than the
281  * current nextcheck time, nextcheck is set to that expiry time.
282  * If the flush_time is ever set to a time earlier than the nextcheck
283  * time, the nextcheck time is then set to that flush_time.
284  *
285  * A table is then only scanned if the current time is at least
286  * the nextcheck time.
287  *
288  */
289 
290 static LIST_HEAD(cache_list);
291 static DEFINE_SPINLOCK(cache_list_lock);
292 static struct cache_detail *current_detail;
293 static int current_index;
294 
295 static void do_cache_clean(struct work_struct *work);
296 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
297 
298 static void sunrpc_init_cache_detail(struct cache_detail *cd)
299 {
300 	rwlock_init(&cd->hash_lock);
301 	INIT_LIST_HEAD(&cd->queue);
302 	spin_lock(&cache_list_lock);
303 	cd->nextcheck = 0;
304 	cd->entries = 0;
305 	atomic_set(&cd->readers, 0);
306 	cd->last_close = 0;
307 	cd->last_warn = -1;
308 	list_add(&cd->others, &cache_list);
309 	spin_unlock(&cache_list_lock);
310 
311 	/* start the cleaning process */
312 	schedule_delayed_work(&cache_cleaner, 0);
313 }
314 
315 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
316 {
317 	cache_purge(cd);
318 	spin_lock(&cache_list_lock);
319 	write_lock(&cd->hash_lock);
320 	if (cd->entries || atomic_read(&cd->inuse)) {
321 		write_unlock(&cd->hash_lock);
322 		spin_unlock(&cache_list_lock);
323 		goto out;
324 	}
325 	if (current_detail == cd)
326 		current_detail = NULL;
327 	list_del_init(&cd->others);
328 	write_unlock(&cd->hash_lock);
329 	spin_unlock(&cache_list_lock);
330 	if (list_empty(&cache_list)) {
331 		/* module must be being unloaded so its safe to kill the worker */
332 		cancel_delayed_work_sync(&cache_cleaner);
333 	}
334 	return;
335 out:
336 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
337 }
338 
339 /* clean cache tries to find something to clean
340  * and cleans it.
341  * It returns 1 if it cleaned something,
342  *            0 if it didn't find anything this time
343  *           -1 if it fell off the end of the list.
344  */
345 static int cache_clean(void)
346 {
347 	int rv = 0;
348 	struct list_head *next;
349 
350 	spin_lock(&cache_list_lock);
351 
352 	/* find a suitable table if we don't already have one */
353 	while (current_detail == NULL ||
354 	    current_index >= current_detail->hash_size) {
355 		if (current_detail)
356 			next = current_detail->others.next;
357 		else
358 			next = cache_list.next;
359 		if (next == &cache_list) {
360 			current_detail = NULL;
361 			spin_unlock(&cache_list_lock);
362 			return -1;
363 		}
364 		current_detail = list_entry(next, struct cache_detail, others);
365 		if (current_detail->nextcheck > get_seconds())
366 			current_index = current_detail->hash_size;
367 		else {
368 			current_index = 0;
369 			current_detail->nextcheck = get_seconds()+30*60;
370 		}
371 	}
372 
373 	/* find a non-empty bucket in the table */
374 	while (current_detail &&
375 	       current_index < current_detail->hash_size &&
376 	       current_detail->hash_table[current_index] == NULL)
377 		current_index++;
378 
379 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
380 
381 	if (current_detail && current_index < current_detail->hash_size) {
382 		struct cache_head *ch, **cp;
383 		struct cache_detail *d;
384 
385 		write_lock(&current_detail->hash_lock);
386 
387 		/* Ok, now to clean this strand */
388 
389 		cp = & current_detail->hash_table[current_index];
390 		ch = *cp;
391 		for (; ch; cp= & ch->next, ch= *cp) {
392 			if (current_detail->nextcheck > ch->expiry_time)
393 				current_detail->nextcheck = ch->expiry_time+1;
394 			if (ch->expiry_time >= get_seconds()
395 			    && ch->last_refresh >= current_detail->flush_time
396 				)
397 				continue;
398 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
399 				queue_loose(current_detail, ch);
400 
401 			if (atomic_read(&ch->ref.refcount) == 1)
402 				break;
403 		}
404 		if (ch) {
405 			*cp = ch->next;
406 			ch->next = NULL;
407 			current_detail->entries--;
408 			rv = 1;
409 		}
410 		write_unlock(&current_detail->hash_lock);
411 		d = current_detail;
412 		if (!ch)
413 			current_index ++;
414 		spin_unlock(&cache_list_lock);
415 		if (ch)
416 			cache_put(ch, d);
417 	} else
418 		spin_unlock(&cache_list_lock);
419 
420 	return rv;
421 }
422 
423 /*
424  * We want to regularly clean the cache, so we need to schedule some work ...
425  */
426 static void do_cache_clean(struct work_struct *work)
427 {
428 	int delay = 5;
429 	if (cache_clean() == -1)
430 		delay = round_jiffies_relative(30*HZ);
431 
432 	if (list_empty(&cache_list))
433 		delay = 0;
434 
435 	if (delay)
436 		schedule_delayed_work(&cache_cleaner, delay);
437 }
438 
439 
440 /*
441  * Clean all caches promptly.  This just calls cache_clean
442  * repeatedly until we are sure that every cache has had a chance to
443  * be fully cleaned
444  */
445 void cache_flush(void)
446 {
447 	while (cache_clean() != -1)
448 		cond_resched();
449 	while (cache_clean() != -1)
450 		cond_resched();
451 }
452 EXPORT_SYMBOL_GPL(cache_flush);
453 
454 void cache_purge(struct cache_detail *detail)
455 {
456 	detail->flush_time = LONG_MAX;
457 	detail->nextcheck = get_seconds();
458 	cache_flush();
459 	detail->flush_time = 1;
460 }
461 EXPORT_SYMBOL_GPL(cache_purge);
462 
463 
464 /*
465  * Deferral and Revisiting of Requests.
466  *
467  * If a cache lookup finds a pending entry, we
468  * need to defer the request and revisit it later.
469  * All deferred requests are stored in a hash table,
470  * indexed by "struct cache_head *".
471  * As it may be wasteful to store a whole request
472  * structure, we allow the request to provide a
473  * deferred form, which must contain a
474  * 'struct cache_deferred_req'
475  * This cache_deferred_req contains a method to allow
476  * it to be revisited when cache info is available
477  */
478 
479 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
480 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
481 
482 #define	DFR_MAX	300	/* ??? */
483 
484 static DEFINE_SPINLOCK(cache_defer_lock);
485 static LIST_HEAD(cache_defer_list);
486 static struct list_head cache_defer_hash[DFR_HASHSIZE];
487 static int cache_defer_cnt;
488 
489 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
490 {
491 	struct cache_deferred_req *dreq;
492 	int hash = DFR_HASH(item);
493 
494 	if (cache_defer_cnt >= DFR_MAX) {
495 		/* too much in the cache, randomly drop this one,
496 		 * or continue and drop the oldest below
497 		 */
498 		if (net_random()&1)
499 			return -ETIMEDOUT;
500 	}
501 	dreq = req->defer(req);
502 	if (dreq == NULL)
503 		return -ETIMEDOUT;
504 
505 	dreq->item = item;
506 
507 	spin_lock(&cache_defer_lock);
508 
509 	list_add(&dreq->recent, &cache_defer_list);
510 
511 	if (cache_defer_hash[hash].next == NULL)
512 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
513 	list_add(&dreq->hash, &cache_defer_hash[hash]);
514 
515 	/* it is in, now maybe clean up */
516 	dreq = NULL;
517 	if (++cache_defer_cnt > DFR_MAX) {
518 		dreq = list_entry(cache_defer_list.prev,
519 				  struct cache_deferred_req, recent);
520 		list_del(&dreq->recent);
521 		list_del(&dreq->hash);
522 		cache_defer_cnt--;
523 	}
524 	spin_unlock(&cache_defer_lock);
525 
526 	if (dreq) {
527 		/* there was one too many */
528 		dreq->revisit(dreq, 1);
529 	}
530 	if (!test_bit(CACHE_PENDING, &item->flags)) {
531 		/* must have just been validated... */
532 		cache_revisit_request(item);
533 	}
534 	return 0;
535 }
536 
537 static void cache_revisit_request(struct cache_head *item)
538 {
539 	struct cache_deferred_req *dreq;
540 	struct list_head pending;
541 
542 	struct list_head *lp;
543 	int hash = DFR_HASH(item);
544 
545 	INIT_LIST_HEAD(&pending);
546 	spin_lock(&cache_defer_lock);
547 
548 	lp = cache_defer_hash[hash].next;
549 	if (lp) {
550 		while (lp != &cache_defer_hash[hash]) {
551 			dreq = list_entry(lp, struct cache_deferred_req, hash);
552 			lp = lp->next;
553 			if (dreq->item == item) {
554 				list_del(&dreq->hash);
555 				list_move(&dreq->recent, &pending);
556 				cache_defer_cnt--;
557 			}
558 		}
559 	}
560 	spin_unlock(&cache_defer_lock);
561 
562 	while (!list_empty(&pending)) {
563 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
564 		list_del_init(&dreq->recent);
565 		dreq->revisit(dreq, 0);
566 	}
567 }
568 
569 void cache_clean_deferred(void *owner)
570 {
571 	struct cache_deferred_req *dreq, *tmp;
572 	struct list_head pending;
573 
574 
575 	INIT_LIST_HEAD(&pending);
576 	spin_lock(&cache_defer_lock);
577 
578 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
579 		if (dreq->owner == owner) {
580 			list_del(&dreq->hash);
581 			list_move(&dreq->recent, &pending);
582 			cache_defer_cnt--;
583 		}
584 	}
585 	spin_unlock(&cache_defer_lock);
586 
587 	while (!list_empty(&pending)) {
588 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
589 		list_del_init(&dreq->recent);
590 		dreq->revisit(dreq, 1);
591 	}
592 }
593 
594 /*
595  * communicate with user-space
596  *
597  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
598  * On read, you get a full request, or block.
599  * On write, an update request is processed.
600  * Poll works if anything to read, and always allows write.
601  *
602  * Implemented by linked list of requests.  Each open file has
603  * a ->private that also exists in this list.  New requests are added
604  * to the end and may wakeup and preceding readers.
605  * New readers are added to the head.  If, on read, an item is found with
606  * CACHE_UPCALLING clear, we free it from the list.
607  *
608  */
609 
610 static DEFINE_SPINLOCK(queue_lock);
611 static DEFINE_MUTEX(queue_io_mutex);
612 
613 struct cache_queue {
614 	struct list_head	list;
615 	int			reader;	/* if 0, then request */
616 };
617 struct cache_request {
618 	struct cache_queue	q;
619 	struct cache_head	*item;
620 	char			* buf;
621 	int			len;
622 	int			readers;
623 };
624 struct cache_reader {
625 	struct cache_queue	q;
626 	int			offset;	/* if non-0, we have a refcnt on next request */
627 };
628 
629 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
630 			  loff_t *ppos, struct cache_detail *cd)
631 {
632 	struct cache_reader *rp = filp->private_data;
633 	struct cache_request *rq;
634 	struct inode *inode = filp->f_path.dentry->d_inode;
635 	int err;
636 
637 	if (count == 0)
638 		return 0;
639 
640 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
641 			      * readers on this file */
642  again:
643 	spin_lock(&queue_lock);
644 	/* need to find next request */
645 	while (rp->q.list.next != &cd->queue &&
646 	       list_entry(rp->q.list.next, struct cache_queue, list)
647 	       ->reader) {
648 		struct list_head *next = rp->q.list.next;
649 		list_move(&rp->q.list, next);
650 	}
651 	if (rp->q.list.next == &cd->queue) {
652 		spin_unlock(&queue_lock);
653 		mutex_unlock(&inode->i_mutex);
654 		BUG_ON(rp->offset);
655 		return 0;
656 	}
657 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
658 	BUG_ON(rq->q.reader);
659 	if (rp->offset == 0)
660 		rq->readers++;
661 	spin_unlock(&queue_lock);
662 
663 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
664 		err = -EAGAIN;
665 		spin_lock(&queue_lock);
666 		list_move(&rp->q.list, &rq->q.list);
667 		spin_unlock(&queue_lock);
668 	} else {
669 		if (rp->offset + count > rq->len)
670 			count = rq->len - rp->offset;
671 		err = -EFAULT;
672 		if (copy_to_user(buf, rq->buf + rp->offset, count))
673 			goto out;
674 		rp->offset += count;
675 		if (rp->offset >= rq->len) {
676 			rp->offset = 0;
677 			spin_lock(&queue_lock);
678 			list_move(&rp->q.list, &rq->q.list);
679 			spin_unlock(&queue_lock);
680 		}
681 		err = 0;
682 	}
683  out:
684 	if (rp->offset == 0) {
685 		/* need to release rq */
686 		spin_lock(&queue_lock);
687 		rq->readers--;
688 		if (rq->readers == 0 &&
689 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
690 			list_del(&rq->q.list);
691 			spin_unlock(&queue_lock);
692 			cache_put(rq->item, cd);
693 			kfree(rq->buf);
694 			kfree(rq);
695 		} else
696 			spin_unlock(&queue_lock);
697 	}
698 	if (err == -EAGAIN)
699 		goto again;
700 	mutex_unlock(&inode->i_mutex);
701 	return err ? err :  count;
702 }
703 
704 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
705 				 size_t count, struct cache_detail *cd)
706 {
707 	ssize_t ret;
708 
709 	if (copy_from_user(kaddr, buf, count))
710 		return -EFAULT;
711 	kaddr[count] = '\0';
712 	ret = cd->cache_parse(cd, kaddr, count);
713 	if (!ret)
714 		ret = count;
715 	return ret;
716 }
717 
718 static ssize_t cache_slow_downcall(const char __user *buf,
719 				   size_t count, struct cache_detail *cd)
720 {
721 	static char write_buf[8192]; /* protected by queue_io_mutex */
722 	ssize_t ret = -EINVAL;
723 
724 	if (count >= sizeof(write_buf))
725 		goto out;
726 	mutex_lock(&queue_io_mutex);
727 	ret = cache_do_downcall(write_buf, buf, count, cd);
728 	mutex_unlock(&queue_io_mutex);
729 out:
730 	return ret;
731 }
732 
733 static ssize_t cache_downcall(struct address_space *mapping,
734 			      const char __user *buf,
735 			      size_t count, struct cache_detail *cd)
736 {
737 	struct page *page;
738 	char *kaddr;
739 	ssize_t ret = -ENOMEM;
740 
741 	if (count >= PAGE_CACHE_SIZE)
742 		goto out_slow;
743 
744 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
745 	if (!page)
746 		goto out_slow;
747 
748 	kaddr = kmap(page);
749 	ret = cache_do_downcall(kaddr, buf, count, cd);
750 	kunmap(page);
751 	unlock_page(page);
752 	page_cache_release(page);
753 	return ret;
754 out_slow:
755 	return cache_slow_downcall(buf, count, cd);
756 }
757 
758 static ssize_t cache_write(struct file *filp, const char __user *buf,
759 			   size_t count, loff_t *ppos,
760 			   struct cache_detail *cd)
761 {
762 	struct address_space *mapping = filp->f_mapping;
763 	struct inode *inode = filp->f_path.dentry->d_inode;
764 	ssize_t ret = -EINVAL;
765 
766 	if (!cd->cache_parse)
767 		goto out;
768 
769 	mutex_lock(&inode->i_mutex);
770 	ret = cache_downcall(mapping, buf, count, cd);
771 	mutex_unlock(&inode->i_mutex);
772 out:
773 	return ret;
774 }
775 
776 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
777 
778 static unsigned int cache_poll(struct file *filp, poll_table *wait,
779 			       struct cache_detail *cd)
780 {
781 	unsigned int mask;
782 	struct cache_reader *rp = filp->private_data;
783 	struct cache_queue *cq;
784 
785 	poll_wait(filp, &queue_wait, wait);
786 
787 	/* alway allow write */
788 	mask = POLL_OUT | POLLWRNORM;
789 
790 	if (!rp)
791 		return mask;
792 
793 	spin_lock(&queue_lock);
794 
795 	for (cq= &rp->q; &cq->list != &cd->queue;
796 	     cq = list_entry(cq->list.next, struct cache_queue, list))
797 		if (!cq->reader) {
798 			mask |= POLLIN | POLLRDNORM;
799 			break;
800 		}
801 	spin_unlock(&queue_lock);
802 	return mask;
803 }
804 
805 static int cache_ioctl(struct inode *ino, struct file *filp,
806 		       unsigned int cmd, unsigned long arg,
807 		       struct cache_detail *cd)
808 {
809 	int len = 0;
810 	struct cache_reader *rp = filp->private_data;
811 	struct cache_queue *cq;
812 
813 	if (cmd != FIONREAD || !rp)
814 		return -EINVAL;
815 
816 	spin_lock(&queue_lock);
817 
818 	/* only find the length remaining in current request,
819 	 * or the length of the next request
820 	 */
821 	for (cq= &rp->q; &cq->list != &cd->queue;
822 	     cq = list_entry(cq->list.next, struct cache_queue, list))
823 		if (!cq->reader) {
824 			struct cache_request *cr =
825 				container_of(cq, struct cache_request, q);
826 			len = cr->len - rp->offset;
827 			break;
828 		}
829 	spin_unlock(&queue_lock);
830 
831 	return put_user(len, (int __user *)arg);
832 }
833 
834 static int cache_open(struct inode *inode, struct file *filp,
835 		      struct cache_detail *cd)
836 {
837 	struct cache_reader *rp = NULL;
838 
839 	if (!cd || !try_module_get(cd->owner))
840 		return -EACCES;
841 	nonseekable_open(inode, filp);
842 	if (filp->f_mode & FMODE_READ) {
843 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
844 		if (!rp)
845 			return -ENOMEM;
846 		rp->offset = 0;
847 		rp->q.reader = 1;
848 		atomic_inc(&cd->readers);
849 		spin_lock(&queue_lock);
850 		list_add(&rp->q.list, &cd->queue);
851 		spin_unlock(&queue_lock);
852 	}
853 	filp->private_data = rp;
854 	return 0;
855 }
856 
857 static int cache_release(struct inode *inode, struct file *filp,
858 			 struct cache_detail *cd)
859 {
860 	struct cache_reader *rp = filp->private_data;
861 
862 	if (rp) {
863 		spin_lock(&queue_lock);
864 		if (rp->offset) {
865 			struct cache_queue *cq;
866 			for (cq= &rp->q; &cq->list != &cd->queue;
867 			     cq = list_entry(cq->list.next, struct cache_queue, list))
868 				if (!cq->reader) {
869 					container_of(cq, struct cache_request, q)
870 						->readers--;
871 					break;
872 				}
873 			rp->offset = 0;
874 		}
875 		list_del(&rp->q.list);
876 		spin_unlock(&queue_lock);
877 
878 		filp->private_data = NULL;
879 		kfree(rp);
880 
881 		cd->last_close = get_seconds();
882 		atomic_dec(&cd->readers);
883 	}
884 	module_put(cd->owner);
885 	return 0;
886 }
887 
888 
889 
890 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
891 {
892 	struct cache_queue *cq;
893 	spin_lock(&queue_lock);
894 	list_for_each_entry(cq, &detail->queue, list)
895 		if (!cq->reader) {
896 			struct cache_request *cr = container_of(cq, struct cache_request, q);
897 			if (cr->item != ch)
898 				continue;
899 			if (cr->readers != 0)
900 				continue;
901 			list_del(&cr->q.list);
902 			spin_unlock(&queue_lock);
903 			cache_put(cr->item, detail);
904 			kfree(cr->buf);
905 			kfree(cr);
906 			return;
907 		}
908 	spin_unlock(&queue_lock);
909 }
910 
911 /*
912  * Support routines for text-based upcalls.
913  * Fields are separated by spaces.
914  * Fields are either mangled to quote space tab newline slosh with slosh
915  * or a hexified with a leading \x
916  * Record is terminated with newline.
917  *
918  */
919 
920 void qword_add(char **bpp, int *lp, char *str)
921 {
922 	char *bp = *bpp;
923 	int len = *lp;
924 	char c;
925 
926 	if (len < 0) return;
927 
928 	while ((c=*str++) && len)
929 		switch(c) {
930 		case ' ':
931 		case '\t':
932 		case '\n':
933 		case '\\':
934 			if (len >= 4) {
935 				*bp++ = '\\';
936 				*bp++ = '0' + ((c & 0300)>>6);
937 				*bp++ = '0' + ((c & 0070)>>3);
938 				*bp++ = '0' + ((c & 0007)>>0);
939 			}
940 			len -= 4;
941 			break;
942 		default:
943 			*bp++ = c;
944 			len--;
945 		}
946 	if (c || len <1) len = -1;
947 	else {
948 		*bp++ = ' ';
949 		len--;
950 	}
951 	*bpp = bp;
952 	*lp = len;
953 }
954 EXPORT_SYMBOL_GPL(qword_add);
955 
956 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
957 {
958 	char *bp = *bpp;
959 	int len = *lp;
960 
961 	if (len < 0) return;
962 
963 	if (len > 2) {
964 		*bp++ = '\\';
965 		*bp++ = 'x';
966 		len -= 2;
967 		while (blen && len >= 2) {
968 			unsigned char c = *buf++;
969 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
970 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
971 			len -= 2;
972 			blen--;
973 		}
974 	}
975 	if (blen || len<1) len = -1;
976 	else {
977 		*bp++ = ' ';
978 		len--;
979 	}
980 	*bpp = bp;
981 	*lp = len;
982 }
983 EXPORT_SYMBOL_GPL(qword_addhex);
984 
985 static void warn_no_listener(struct cache_detail *detail)
986 {
987 	if (detail->last_warn != detail->last_close) {
988 		detail->last_warn = detail->last_close;
989 		if (detail->warn_no_listener)
990 			detail->warn_no_listener(detail, detail->last_close != 0);
991 	}
992 }
993 
994 /*
995  * register an upcall request to user-space and queue it up for read() by the
996  * upcall daemon.
997  *
998  * Each request is at most one page long.
999  */
1000 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1001 		void (*cache_request)(struct cache_detail *,
1002 				      struct cache_head *,
1003 				      char **,
1004 				      int *))
1005 {
1006 
1007 	char *buf;
1008 	struct cache_request *crq;
1009 	char *bp;
1010 	int len;
1011 
1012 	if (atomic_read(&detail->readers) == 0 &&
1013 	    detail->last_close < get_seconds() - 30) {
1014 			warn_no_listener(detail);
1015 			return -EINVAL;
1016 	}
1017 
1018 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1019 	if (!buf)
1020 		return -EAGAIN;
1021 
1022 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1023 	if (!crq) {
1024 		kfree(buf);
1025 		return -EAGAIN;
1026 	}
1027 
1028 	bp = buf; len = PAGE_SIZE;
1029 
1030 	cache_request(detail, h, &bp, &len);
1031 
1032 	if (len < 0) {
1033 		kfree(buf);
1034 		kfree(crq);
1035 		return -EAGAIN;
1036 	}
1037 	crq->q.reader = 0;
1038 	crq->item = cache_get(h);
1039 	crq->buf = buf;
1040 	crq->len = PAGE_SIZE - len;
1041 	crq->readers = 0;
1042 	spin_lock(&queue_lock);
1043 	list_add_tail(&crq->q.list, &detail->queue);
1044 	spin_unlock(&queue_lock);
1045 	wake_up(&queue_wait);
1046 	return 0;
1047 }
1048 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1049 
1050 /*
1051  * parse a message from user-space and pass it
1052  * to an appropriate cache
1053  * Messages are, like requests, separated into fields by
1054  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1055  *
1056  * Message is
1057  *   reply cachename expiry key ... content....
1058  *
1059  * key and content are both parsed by cache
1060  */
1061 
1062 #define isodigit(c) (isdigit(c) && c <= '7')
1063 int qword_get(char **bpp, char *dest, int bufsize)
1064 {
1065 	/* return bytes copied, or -1 on error */
1066 	char *bp = *bpp;
1067 	int len = 0;
1068 
1069 	while (*bp == ' ') bp++;
1070 
1071 	if (bp[0] == '\\' && bp[1] == 'x') {
1072 		/* HEX STRING */
1073 		bp += 2;
1074 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1075 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1076 			bp++;
1077 			byte <<= 4;
1078 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1079 			*dest++ = byte;
1080 			bp++;
1081 			len++;
1082 		}
1083 	} else {
1084 		/* text with \nnn octal quoting */
1085 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1086 			if (*bp == '\\' &&
1087 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1088 			    isodigit(bp[2]) &&
1089 			    isodigit(bp[3])) {
1090 				int byte = (*++bp -'0');
1091 				bp++;
1092 				byte = (byte << 3) | (*bp++ - '0');
1093 				byte = (byte << 3) | (*bp++ - '0');
1094 				*dest++ = byte;
1095 				len++;
1096 			} else {
1097 				*dest++ = *bp++;
1098 				len++;
1099 			}
1100 		}
1101 	}
1102 
1103 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1104 		return -1;
1105 	while (*bp == ' ') bp++;
1106 	*bpp = bp;
1107 	*dest = '\0';
1108 	return len;
1109 }
1110 EXPORT_SYMBOL_GPL(qword_get);
1111 
1112 
1113 /*
1114  * support /proc/sunrpc/cache/$CACHENAME/content
1115  * as a seqfile.
1116  * We call ->cache_show passing NULL for the item to
1117  * get a header, then pass each real item in the cache
1118  */
1119 
1120 struct handle {
1121 	struct cache_detail *cd;
1122 };
1123 
1124 static void *c_start(struct seq_file *m, loff_t *pos)
1125 	__acquires(cd->hash_lock)
1126 {
1127 	loff_t n = *pos;
1128 	unsigned hash, entry;
1129 	struct cache_head *ch;
1130 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1131 
1132 
1133 	read_lock(&cd->hash_lock);
1134 	if (!n--)
1135 		return SEQ_START_TOKEN;
1136 	hash = n >> 32;
1137 	entry = n & ((1LL<<32) - 1);
1138 
1139 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1140 		if (!entry--)
1141 			return ch;
1142 	n &= ~((1LL<<32) - 1);
1143 	do {
1144 		hash++;
1145 		n += 1LL<<32;
1146 	} while(hash < cd->hash_size &&
1147 		cd->hash_table[hash]==NULL);
1148 	if (hash >= cd->hash_size)
1149 		return NULL;
1150 	*pos = n+1;
1151 	return cd->hash_table[hash];
1152 }
1153 
1154 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1155 {
1156 	struct cache_head *ch = p;
1157 	int hash = (*pos >> 32);
1158 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1159 
1160 	if (p == SEQ_START_TOKEN)
1161 		hash = 0;
1162 	else if (ch->next == NULL) {
1163 		hash++;
1164 		*pos += 1LL<<32;
1165 	} else {
1166 		++*pos;
1167 		return ch->next;
1168 	}
1169 	*pos &= ~((1LL<<32) - 1);
1170 	while (hash < cd->hash_size &&
1171 	       cd->hash_table[hash] == NULL) {
1172 		hash++;
1173 		*pos += 1LL<<32;
1174 	}
1175 	if (hash >= cd->hash_size)
1176 		return NULL;
1177 	++*pos;
1178 	return cd->hash_table[hash];
1179 }
1180 
1181 static void c_stop(struct seq_file *m, void *p)
1182 	__releases(cd->hash_lock)
1183 {
1184 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1185 	read_unlock(&cd->hash_lock);
1186 }
1187 
1188 static int c_show(struct seq_file *m, void *p)
1189 {
1190 	struct cache_head *cp = p;
1191 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1192 
1193 	if (p == SEQ_START_TOKEN)
1194 		return cd->cache_show(m, cd, NULL);
1195 
1196 	ifdebug(CACHE)
1197 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1198 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1199 	cache_get(cp);
1200 	if (cache_check(cd, cp, NULL))
1201 		/* cache_check does a cache_put on failure */
1202 		seq_printf(m, "# ");
1203 	else
1204 		cache_put(cp, cd);
1205 
1206 	return cd->cache_show(m, cd, cp);
1207 }
1208 
1209 static const struct seq_operations cache_content_op = {
1210 	.start	= c_start,
1211 	.next	= c_next,
1212 	.stop	= c_stop,
1213 	.show	= c_show,
1214 };
1215 
1216 static int content_open(struct inode *inode, struct file *file,
1217 			struct cache_detail *cd)
1218 {
1219 	struct handle *han;
1220 
1221 	if (!cd || !try_module_get(cd->owner))
1222 		return -EACCES;
1223 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1224 	if (han == NULL)
1225 		return -ENOMEM;
1226 
1227 	han->cd = cd;
1228 	return 0;
1229 }
1230 
1231 static int content_release(struct inode *inode, struct file *file,
1232 		struct cache_detail *cd)
1233 {
1234 	int ret = seq_release_private(inode, file);
1235 	module_put(cd->owner);
1236 	return ret;
1237 }
1238 
1239 static int open_flush(struct inode *inode, struct file *file,
1240 			struct cache_detail *cd)
1241 {
1242 	if (!cd || !try_module_get(cd->owner))
1243 		return -EACCES;
1244 	return nonseekable_open(inode, file);
1245 }
1246 
1247 static int release_flush(struct inode *inode, struct file *file,
1248 			struct cache_detail *cd)
1249 {
1250 	module_put(cd->owner);
1251 	return 0;
1252 }
1253 
1254 static ssize_t read_flush(struct file *file, char __user *buf,
1255 			  size_t count, loff_t *ppos,
1256 			  struct cache_detail *cd)
1257 {
1258 	char tbuf[20];
1259 	unsigned long p = *ppos;
1260 	size_t len;
1261 
1262 	sprintf(tbuf, "%lu\n", cd->flush_time);
1263 	len = strlen(tbuf);
1264 	if (p >= len)
1265 		return 0;
1266 	len -= p;
1267 	if (len > count)
1268 		len = count;
1269 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1270 		return -EFAULT;
1271 	*ppos += len;
1272 	return len;
1273 }
1274 
1275 static ssize_t write_flush(struct file *file, const char __user *buf,
1276 			   size_t count, loff_t *ppos,
1277 			   struct cache_detail *cd)
1278 {
1279 	char tbuf[20];
1280 	char *ep;
1281 	long flushtime;
1282 	if (*ppos || count > sizeof(tbuf)-1)
1283 		return -EINVAL;
1284 	if (copy_from_user(tbuf, buf, count))
1285 		return -EFAULT;
1286 	tbuf[count] = 0;
1287 	flushtime = simple_strtoul(tbuf, &ep, 0);
1288 	if (*ep && *ep != '\n')
1289 		return -EINVAL;
1290 
1291 	cd->flush_time = flushtime;
1292 	cd->nextcheck = get_seconds();
1293 	cache_flush();
1294 
1295 	*ppos += count;
1296 	return count;
1297 }
1298 
1299 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1300 				 size_t count, loff_t *ppos)
1301 {
1302 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1303 
1304 	return cache_read(filp, buf, count, ppos, cd);
1305 }
1306 
1307 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1308 				  size_t count, loff_t *ppos)
1309 {
1310 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1311 
1312 	return cache_write(filp, buf, count, ppos, cd);
1313 }
1314 
1315 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1316 {
1317 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1318 
1319 	return cache_poll(filp, wait, cd);
1320 }
1321 
1322 static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1323 			      unsigned int cmd, unsigned long arg)
1324 {
1325 	struct cache_detail *cd = PDE(inode)->data;
1326 
1327 	return cache_ioctl(inode, filp, cmd, arg, cd);
1328 }
1329 
1330 static int cache_open_procfs(struct inode *inode, struct file *filp)
1331 {
1332 	struct cache_detail *cd = PDE(inode)->data;
1333 
1334 	return cache_open(inode, filp, cd);
1335 }
1336 
1337 static int cache_release_procfs(struct inode *inode, struct file *filp)
1338 {
1339 	struct cache_detail *cd = PDE(inode)->data;
1340 
1341 	return cache_release(inode, filp, cd);
1342 }
1343 
1344 static const struct file_operations cache_file_operations_procfs = {
1345 	.owner		= THIS_MODULE,
1346 	.llseek		= no_llseek,
1347 	.read		= cache_read_procfs,
1348 	.write		= cache_write_procfs,
1349 	.poll		= cache_poll_procfs,
1350 	.ioctl		= cache_ioctl_procfs, /* for FIONREAD */
1351 	.open		= cache_open_procfs,
1352 	.release	= cache_release_procfs,
1353 };
1354 
1355 static int content_open_procfs(struct inode *inode, struct file *filp)
1356 {
1357 	struct cache_detail *cd = PDE(inode)->data;
1358 
1359 	return content_open(inode, filp, cd);
1360 }
1361 
1362 static int content_release_procfs(struct inode *inode, struct file *filp)
1363 {
1364 	struct cache_detail *cd = PDE(inode)->data;
1365 
1366 	return content_release(inode, filp, cd);
1367 }
1368 
1369 static const struct file_operations content_file_operations_procfs = {
1370 	.open		= content_open_procfs,
1371 	.read		= seq_read,
1372 	.llseek		= seq_lseek,
1373 	.release	= content_release_procfs,
1374 };
1375 
1376 static int open_flush_procfs(struct inode *inode, struct file *filp)
1377 {
1378 	struct cache_detail *cd = PDE(inode)->data;
1379 
1380 	return open_flush(inode, filp, cd);
1381 }
1382 
1383 static int release_flush_procfs(struct inode *inode, struct file *filp)
1384 {
1385 	struct cache_detail *cd = PDE(inode)->data;
1386 
1387 	return release_flush(inode, filp, cd);
1388 }
1389 
1390 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1391 			    size_t count, loff_t *ppos)
1392 {
1393 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1394 
1395 	return read_flush(filp, buf, count, ppos, cd);
1396 }
1397 
1398 static ssize_t write_flush_procfs(struct file *filp,
1399 				  const char __user *buf,
1400 				  size_t count, loff_t *ppos)
1401 {
1402 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1403 
1404 	return write_flush(filp, buf, count, ppos, cd);
1405 }
1406 
1407 static const struct file_operations cache_flush_operations_procfs = {
1408 	.open		= open_flush_procfs,
1409 	.read		= read_flush_procfs,
1410 	.write		= write_flush_procfs,
1411 	.release	= release_flush_procfs,
1412 };
1413 
1414 static void remove_cache_proc_entries(struct cache_detail *cd)
1415 {
1416 	if (cd->u.procfs.proc_ent == NULL)
1417 		return;
1418 	if (cd->u.procfs.flush_ent)
1419 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1420 	if (cd->u.procfs.channel_ent)
1421 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1422 	if (cd->u.procfs.content_ent)
1423 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1424 	cd->u.procfs.proc_ent = NULL;
1425 	remove_proc_entry(cd->name, proc_net_rpc);
1426 }
1427 
1428 #ifdef CONFIG_PROC_FS
1429 static int create_cache_proc_entries(struct cache_detail *cd)
1430 {
1431 	struct proc_dir_entry *p;
1432 
1433 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1434 	if (cd->u.procfs.proc_ent == NULL)
1435 		goto out_nomem;
1436 	cd->u.procfs.channel_ent = NULL;
1437 	cd->u.procfs.content_ent = NULL;
1438 
1439 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1440 			     cd->u.procfs.proc_ent,
1441 			     &cache_flush_operations_procfs, cd);
1442 	cd->u.procfs.flush_ent = p;
1443 	if (p == NULL)
1444 		goto out_nomem;
1445 
1446 	if (cd->cache_upcall || cd->cache_parse) {
1447 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1448 				     cd->u.procfs.proc_ent,
1449 				     &cache_file_operations_procfs, cd);
1450 		cd->u.procfs.channel_ent = p;
1451 		if (p == NULL)
1452 			goto out_nomem;
1453 	}
1454 	if (cd->cache_show) {
1455 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1456 				cd->u.procfs.proc_ent,
1457 				&content_file_operations_procfs, cd);
1458 		cd->u.procfs.content_ent = p;
1459 		if (p == NULL)
1460 			goto out_nomem;
1461 	}
1462 	return 0;
1463 out_nomem:
1464 	remove_cache_proc_entries(cd);
1465 	return -ENOMEM;
1466 }
1467 #else /* CONFIG_PROC_FS */
1468 static int create_cache_proc_entries(struct cache_detail *cd)
1469 {
1470 	return 0;
1471 }
1472 #endif
1473 
1474 int cache_register(struct cache_detail *cd)
1475 {
1476 	int ret;
1477 
1478 	sunrpc_init_cache_detail(cd);
1479 	ret = create_cache_proc_entries(cd);
1480 	if (ret)
1481 		sunrpc_destroy_cache_detail(cd);
1482 	return ret;
1483 }
1484 EXPORT_SYMBOL_GPL(cache_register);
1485 
1486 void cache_unregister(struct cache_detail *cd)
1487 {
1488 	remove_cache_proc_entries(cd);
1489 	sunrpc_destroy_cache_detail(cd);
1490 }
1491 EXPORT_SYMBOL_GPL(cache_unregister);
1492 
1493 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1494 				 size_t count, loff_t *ppos)
1495 {
1496 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1497 
1498 	return cache_read(filp, buf, count, ppos, cd);
1499 }
1500 
1501 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1502 				  size_t count, loff_t *ppos)
1503 {
1504 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1505 
1506 	return cache_write(filp, buf, count, ppos, cd);
1507 }
1508 
1509 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1510 {
1511 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1512 
1513 	return cache_poll(filp, wait, cd);
1514 }
1515 
1516 static int cache_ioctl_pipefs(struct inode *inode, struct file *filp,
1517 			      unsigned int cmd, unsigned long arg)
1518 {
1519 	struct cache_detail *cd = RPC_I(inode)->private;
1520 
1521 	return cache_ioctl(inode, filp, cmd, arg, cd);
1522 }
1523 
1524 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1525 {
1526 	struct cache_detail *cd = RPC_I(inode)->private;
1527 
1528 	return cache_open(inode, filp, cd);
1529 }
1530 
1531 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1532 {
1533 	struct cache_detail *cd = RPC_I(inode)->private;
1534 
1535 	return cache_release(inode, filp, cd);
1536 }
1537 
1538 const struct file_operations cache_file_operations_pipefs = {
1539 	.owner		= THIS_MODULE,
1540 	.llseek		= no_llseek,
1541 	.read		= cache_read_pipefs,
1542 	.write		= cache_write_pipefs,
1543 	.poll		= cache_poll_pipefs,
1544 	.ioctl		= cache_ioctl_pipefs, /* for FIONREAD */
1545 	.open		= cache_open_pipefs,
1546 	.release	= cache_release_pipefs,
1547 };
1548 
1549 static int content_open_pipefs(struct inode *inode, struct file *filp)
1550 {
1551 	struct cache_detail *cd = RPC_I(inode)->private;
1552 
1553 	return content_open(inode, filp, cd);
1554 }
1555 
1556 static int content_release_pipefs(struct inode *inode, struct file *filp)
1557 {
1558 	struct cache_detail *cd = RPC_I(inode)->private;
1559 
1560 	return content_release(inode, filp, cd);
1561 }
1562 
1563 const struct file_operations content_file_operations_pipefs = {
1564 	.open		= content_open_pipefs,
1565 	.read		= seq_read,
1566 	.llseek		= seq_lseek,
1567 	.release	= content_release_pipefs,
1568 };
1569 
1570 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1571 {
1572 	struct cache_detail *cd = RPC_I(inode)->private;
1573 
1574 	return open_flush(inode, filp, cd);
1575 }
1576 
1577 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1578 {
1579 	struct cache_detail *cd = RPC_I(inode)->private;
1580 
1581 	return release_flush(inode, filp, cd);
1582 }
1583 
1584 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1585 			    size_t count, loff_t *ppos)
1586 {
1587 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1588 
1589 	return read_flush(filp, buf, count, ppos, cd);
1590 }
1591 
1592 static ssize_t write_flush_pipefs(struct file *filp,
1593 				  const char __user *buf,
1594 				  size_t count, loff_t *ppos)
1595 {
1596 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1597 
1598 	return write_flush(filp, buf, count, ppos, cd);
1599 }
1600 
1601 const struct file_operations cache_flush_operations_pipefs = {
1602 	.open		= open_flush_pipefs,
1603 	.read		= read_flush_pipefs,
1604 	.write		= write_flush_pipefs,
1605 	.release	= release_flush_pipefs,
1606 };
1607 
1608 int sunrpc_cache_register_pipefs(struct dentry *parent,
1609 				 const char *name, mode_t umode,
1610 				 struct cache_detail *cd)
1611 {
1612 	struct qstr q;
1613 	struct dentry *dir;
1614 	int ret = 0;
1615 
1616 	sunrpc_init_cache_detail(cd);
1617 	q.name = name;
1618 	q.len = strlen(name);
1619 	q.hash = full_name_hash(q.name, q.len);
1620 	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1621 	if (!IS_ERR(dir))
1622 		cd->u.pipefs.dir = dir;
1623 	else {
1624 		sunrpc_destroy_cache_detail(cd);
1625 		ret = PTR_ERR(dir);
1626 	}
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1630 
1631 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1632 {
1633 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1634 	cd->u.pipefs.dir = NULL;
1635 	sunrpc_destroy_cache_detail(cd);
1636 }
1637 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1638 
1639