1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 37 #define RPCDBG_FACILITY RPCDBG_CACHE 38 39 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 40 static void cache_revisit_request(struct cache_head *item); 41 42 static void cache_init(struct cache_head *h) 43 { 44 time_t now = get_seconds(); 45 h->next = NULL; 46 h->flags = 0; 47 kref_init(&h->ref); 48 h->expiry_time = now + CACHE_NEW_EXPIRY; 49 h->last_refresh = now; 50 } 51 52 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 53 struct cache_head *key, int hash) 54 { 55 struct cache_head **head, **hp; 56 struct cache_head *new = NULL; 57 58 head = &detail->hash_table[hash]; 59 60 read_lock(&detail->hash_lock); 61 62 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 63 struct cache_head *tmp = *hp; 64 if (detail->match(tmp, key)) { 65 cache_get(tmp); 66 read_unlock(&detail->hash_lock); 67 return tmp; 68 } 69 } 70 read_unlock(&detail->hash_lock); 71 /* Didn't find anything, insert an empty entry */ 72 73 new = detail->alloc(); 74 if (!new) 75 return NULL; 76 /* must fully initialise 'new', else 77 * we might get lose if we need to 78 * cache_put it soon. 79 */ 80 cache_init(new); 81 detail->init(new, key); 82 83 write_lock(&detail->hash_lock); 84 85 /* check if entry appeared while we slept */ 86 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 87 struct cache_head *tmp = *hp; 88 if (detail->match(tmp, key)) { 89 cache_get(tmp); 90 write_unlock(&detail->hash_lock); 91 cache_put(new, detail); 92 return tmp; 93 } 94 } 95 new->next = *head; 96 *head = new; 97 detail->entries++; 98 cache_get(new); 99 write_unlock(&detail->hash_lock); 100 101 return new; 102 } 103 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 104 105 106 static void queue_loose(struct cache_detail *detail, struct cache_head *ch); 107 108 static int cache_fresh_locked(struct cache_head *head, time_t expiry) 109 { 110 head->expiry_time = expiry; 111 head->last_refresh = get_seconds(); 112 return !test_and_set_bit(CACHE_VALID, &head->flags); 113 } 114 115 static void cache_fresh_unlocked(struct cache_head *head, 116 struct cache_detail *detail, int new) 117 { 118 if (new) 119 cache_revisit_request(head); 120 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 121 cache_revisit_request(head); 122 queue_loose(detail, head); 123 } 124 } 125 126 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 127 struct cache_head *new, struct cache_head *old, int hash) 128 { 129 /* The 'old' entry is to be replaced by 'new'. 130 * If 'old' is not VALID, we update it directly, 131 * otherwise we need to replace it 132 */ 133 struct cache_head **head; 134 struct cache_head *tmp; 135 int is_new; 136 137 if (!test_bit(CACHE_VALID, &old->flags)) { 138 write_lock(&detail->hash_lock); 139 if (!test_bit(CACHE_VALID, &old->flags)) { 140 if (test_bit(CACHE_NEGATIVE, &new->flags)) 141 set_bit(CACHE_NEGATIVE, &old->flags); 142 else 143 detail->update(old, new); 144 is_new = cache_fresh_locked(old, new->expiry_time); 145 write_unlock(&detail->hash_lock); 146 cache_fresh_unlocked(old, detail, is_new); 147 return old; 148 } 149 write_unlock(&detail->hash_lock); 150 } 151 /* We need to insert a new entry */ 152 tmp = detail->alloc(); 153 if (!tmp) { 154 cache_put(old, detail); 155 return NULL; 156 } 157 cache_init(tmp); 158 detail->init(tmp, old); 159 head = &detail->hash_table[hash]; 160 161 write_lock(&detail->hash_lock); 162 if (test_bit(CACHE_NEGATIVE, &new->flags)) 163 set_bit(CACHE_NEGATIVE, &tmp->flags); 164 else 165 detail->update(tmp, new); 166 tmp->next = *head; 167 *head = tmp; 168 detail->entries++; 169 cache_get(tmp); 170 is_new = cache_fresh_locked(tmp, new->expiry_time); 171 cache_fresh_locked(old, 0); 172 write_unlock(&detail->hash_lock); 173 cache_fresh_unlocked(tmp, detail, is_new); 174 cache_fresh_unlocked(old, detail, 0); 175 cache_put(old, detail); 176 return tmp; 177 } 178 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 179 180 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 181 { 182 if (!cd->cache_upcall) 183 return -EINVAL; 184 return cd->cache_upcall(cd, h); 185 } 186 187 /* 188 * This is the generic cache management routine for all 189 * the authentication caches. 190 * It checks the currency of a cache item and will (later) 191 * initiate an upcall to fill it if needed. 192 * 193 * 194 * Returns 0 if the cache_head can be used, or cache_puts it and returns 195 * -EAGAIN if upcall is pending, 196 * -ETIMEDOUT if upcall failed and should be retried, 197 * -ENOENT if cache entry was negative 198 */ 199 int cache_check(struct cache_detail *detail, 200 struct cache_head *h, struct cache_req *rqstp) 201 { 202 int rv; 203 long refresh_age, age; 204 205 /* First decide return status as best we can */ 206 if (!test_bit(CACHE_VALID, &h->flags) || 207 h->expiry_time < get_seconds()) 208 rv = -EAGAIN; 209 else if (detail->flush_time > h->last_refresh) 210 rv = -EAGAIN; 211 else { 212 /* entry is valid */ 213 if (test_bit(CACHE_NEGATIVE, &h->flags)) 214 rv = -ENOENT; 215 else rv = 0; 216 } 217 218 /* now see if we want to start an upcall */ 219 refresh_age = (h->expiry_time - h->last_refresh); 220 age = get_seconds() - h->last_refresh; 221 222 if (rqstp == NULL) { 223 if (rv == -EAGAIN) 224 rv = -ENOENT; 225 } else if (rv == -EAGAIN || age > refresh_age/2) { 226 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 227 refresh_age, age); 228 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 229 switch (cache_make_upcall(detail, h)) { 230 case -EINVAL: 231 clear_bit(CACHE_PENDING, &h->flags); 232 if (rv == -EAGAIN) { 233 set_bit(CACHE_NEGATIVE, &h->flags); 234 cache_fresh_unlocked(h, detail, 235 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY)); 236 rv = -ENOENT; 237 } 238 break; 239 240 case -EAGAIN: 241 clear_bit(CACHE_PENDING, &h->flags); 242 cache_revisit_request(h); 243 break; 244 } 245 } 246 } 247 248 if (rv == -EAGAIN) 249 if (cache_defer_req(rqstp, h) != 0) 250 rv = -ETIMEDOUT; 251 252 if (rv) 253 cache_put(h, detail); 254 return rv; 255 } 256 EXPORT_SYMBOL_GPL(cache_check); 257 258 /* 259 * caches need to be periodically cleaned. 260 * For this we maintain a list of cache_detail and 261 * a current pointer into that list and into the table 262 * for that entry. 263 * 264 * Each time clean_cache is called it finds the next non-empty entry 265 * in the current table and walks the list in that entry 266 * looking for entries that can be removed. 267 * 268 * An entry gets removed if: 269 * - The expiry is before current time 270 * - The last_refresh time is before the flush_time for that cache 271 * 272 * later we might drop old entries with non-NEVER expiry if that table 273 * is getting 'full' for some definition of 'full' 274 * 275 * The question of "how often to scan a table" is an interesting one 276 * and is answered in part by the use of the "nextcheck" field in the 277 * cache_detail. 278 * When a scan of a table begins, the nextcheck field is set to a time 279 * that is well into the future. 280 * While scanning, if an expiry time is found that is earlier than the 281 * current nextcheck time, nextcheck is set to that expiry time. 282 * If the flush_time is ever set to a time earlier than the nextcheck 283 * time, the nextcheck time is then set to that flush_time. 284 * 285 * A table is then only scanned if the current time is at least 286 * the nextcheck time. 287 * 288 */ 289 290 static LIST_HEAD(cache_list); 291 static DEFINE_SPINLOCK(cache_list_lock); 292 static struct cache_detail *current_detail; 293 static int current_index; 294 295 static void do_cache_clean(struct work_struct *work); 296 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 297 298 static void sunrpc_init_cache_detail(struct cache_detail *cd) 299 { 300 rwlock_init(&cd->hash_lock); 301 INIT_LIST_HEAD(&cd->queue); 302 spin_lock(&cache_list_lock); 303 cd->nextcheck = 0; 304 cd->entries = 0; 305 atomic_set(&cd->readers, 0); 306 cd->last_close = 0; 307 cd->last_warn = -1; 308 list_add(&cd->others, &cache_list); 309 spin_unlock(&cache_list_lock); 310 311 /* start the cleaning process */ 312 schedule_delayed_work(&cache_cleaner, 0); 313 } 314 315 static void sunrpc_destroy_cache_detail(struct cache_detail *cd) 316 { 317 cache_purge(cd); 318 spin_lock(&cache_list_lock); 319 write_lock(&cd->hash_lock); 320 if (cd->entries || atomic_read(&cd->inuse)) { 321 write_unlock(&cd->hash_lock); 322 spin_unlock(&cache_list_lock); 323 goto out; 324 } 325 if (current_detail == cd) 326 current_detail = NULL; 327 list_del_init(&cd->others); 328 write_unlock(&cd->hash_lock); 329 spin_unlock(&cache_list_lock); 330 if (list_empty(&cache_list)) { 331 /* module must be being unloaded so its safe to kill the worker */ 332 cancel_delayed_work_sync(&cache_cleaner); 333 } 334 return; 335 out: 336 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 337 } 338 339 /* clean cache tries to find something to clean 340 * and cleans it. 341 * It returns 1 if it cleaned something, 342 * 0 if it didn't find anything this time 343 * -1 if it fell off the end of the list. 344 */ 345 static int cache_clean(void) 346 { 347 int rv = 0; 348 struct list_head *next; 349 350 spin_lock(&cache_list_lock); 351 352 /* find a suitable table if we don't already have one */ 353 while (current_detail == NULL || 354 current_index >= current_detail->hash_size) { 355 if (current_detail) 356 next = current_detail->others.next; 357 else 358 next = cache_list.next; 359 if (next == &cache_list) { 360 current_detail = NULL; 361 spin_unlock(&cache_list_lock); 362 return -1; 363 } 364 current_detail = list_entry(next, struct cache_detail, others); 365 if (current_detail->nextcheck > get_seconds()) 366 current_index = current_detail->hash_size; 367 else { 368 current_index = 0; 369 current_detail->nextcheck = get_seconds()+30*60; 370 } 371 } 372 373 /* find a non-empty bucket in the table */ 374 while (current_detail && 375 current_index < current_detail->hash_size && 376 current_detail->hash_table[current_index] == NULL) 377 current_index++; 378 379 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 380 381 if (current_detail && current_index < current_detail->hash_size) { 382 struct cache_head *ch, **cp; 383 struct cache_detail *d; 384 385 write_lock(¤t_detail->hash_lock); 386 387 /* Ok, now to clean this strand */ 388 389 cp = & current_detail->hash_table[current_index]; 390 ch = *cp; 391 for (; ch; cp= & ch->next, ch= *cp) { 392 if (current_detail->nextcheck > ch->expiry_time) 393 current_detail->nextcheck = ch->expiry_time+1; 394 if (ch->expiry_time >= get_seconds() 395 && ch->last_refresh >= current_detail->flush_time 396 ) 397 continue; 398 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 399 queue_loose(current_detail, ch); 400 401 if (atomic_read(&ch->ref.refcount) == 1) 402 break; 403 } 404 if (ch) { 405 *cp = ch->next; 406 ch->next = NULL; 407 current_detail->entries--; 408 rv = 1; 409 } 410 write_unlock(¤t_detail->hash_lock); 411 d = current_detail; 412 if (!ch) 413 current_index ++; 414 spin_unlock(&cache_list_lock); 415 if (ch) 416 cache_put(ch, d); 417 } else 418 spin_unlock(&cache_list_lock); 419 420 return rv; 421 } 422 423 /* 424 * We want to regularly clean the cache, so we need to schedule some work ... 425 */ 426 static void do_cache_clean(struct work_struct *work) 427 { 428 int delay = 5; 429 if (cache_clean() == -1) 430 delay = round_jiffies_relative(30*HZ); 431 432 if (list_empty(&cache_list)) 433 delay = 0; 434 435 if (delay) 436 schedule_delayed_work(&cache_cleaner, delay); 437 } 438 439 440 /* 441 * Clean all caches promptly. This just calls cache_clean 442 * repeatedly until we are sure that every cache has had a chance to 443 * be fully cleaned 444 */ 445 void cache_flush(void) 446 { 447 while (cache_clean() != -1) 448 cond_resched(); 449 while (cache_clean() != -1) 450 cond_resched(); 451 } 452 EXPORT_SYMBOL_GPL(cache_flush); 453 454 void cache_purge(struct cache_detail *detail) 455 { 456 detail->flush_time = LONG_MAX; 457 detail->nextcheck = get_seconds(); 458 cache_flush(); 459 detail->flush_time = 1; 460 } 461 EXPORT_SYMBOL_GPL(cache_purge); 462 463 464 /* 465 * Deferral and Revisiting of Requests. 466 * 467 * If a cache lookup finds a pending entry, we 468 * need to defer the request and revisit it later. 469 * All deferred requests are stored in a hash table, 470 * indexed by "struct cache_head *". 471 * As it may be wasteful to store a whole request 472 * structure, we allow the request to provide a 473 * deferred form, which must contain a 474 * 'struct cache_deferred_req' 475 * This cache_deferred_req contains a method to allow 476 * it to be revisited when cache info is available 477 */ 478 479 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 480 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 481 482 #define DFR_MAX 300 /* ??? */ 483 484 static DEFINE_SPINLOCK(cache_defer_lock); 485 static LIST_HEAD(cache_defer_list); 486 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 487 static int cache_defer_cnt; 488 489 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 490 { 491 struct cache_deferred_req *dreq; 492 int hash = DFR_HASH(item); 493 494 if (cache_defer_cnt >= DFR_MAX) { 495 /* too much in the cache, randomly drop this one, 496 * or continue and drop the oldest below 497 */ 498 if (net_random()&1) 499 return -ETIMEDOUT; 500 } 501 dreq = req->defer(req); 502 if (dreq == NULL) 503 return -ETIMEDOUT; 504 505 dreq->item = item; 506 507 spin_lock(&cache_defer_lock); 508 509 list_add(&dreq->recent, &cache_defer_list); 510 511 if (cache_defer_hash[hash].next == NULL) 512 INIT_LIST_HEAD(&cache_defer_hash[hash]); 513 list_add(&dreq->hash, &cache_defer_hash[hash]); 514 515 /* it is in, now maybe clean up */ 516 dreq = NULL; 517 if (++cache_defer_cnt > DFR_MAX) { 518 dreq = list_entry(cache_defer_list.prev, 519 struct cache_deferred_req, recent); 520 list_del(&dreq->recent); 521 list_del(&dreq->hash); 522 cache_defer_cnt--; 523 } 524 spin_unlock(&cache_defer_lock); 525 526 if (dreq) { 527 /* there was one too many */ 528 dreq->revisit(dreq, 1); 529 } 530 if (!test_bit(CACHE_PENDING, &item->flags)) { 531 /* must have just been validated... */ 532 cache_revisit_request(item); 533 } 534 return 0; 535 } 536 537 static void cache_revisit_request(struct cache_head *item) 538 { 539 struct cache_deferred_req *dreq; 540 struct list_head pending; 541 542 struct list_head *lp; 543 int hash = DFR_HASH(item); 544 545 INIT_LIST_HEAD(&pending); 546 spin_lock(&cache_defer_lock); 547 548 lp = cache_defer_hash[hash].next; 549 if (lp) { 550 while (lp != &cache_defer_hash[hash]) { 551 dreq = list_entry(lp, struct cache_deferred_req, hash); 552 lp = lp->next; 553 if (dreq->item == item) { 554 list_del(&dreq->hash); 555 list_move(&dreq->recent, &pending); 556 cache_defer_cnt--; 557 } 558 } 559 } 560 spin_unlock(&cache_defer_lock); 561 562 while (!list_empty(&pending)) { 563 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 564 list_del_init(&dreq->recent); 565 dreq->revisit(dreq, 0); 566 } 567 } 568 569 void cache_clean_deferred(void *owner) 570 { 571 struct cache_deferred_req *dreq, *tmp; 572 struct list_head pending; 573 574 575 INIT_LIST_HEAD(&pending); 576 spin_lock(&cache_defer_lock); 577 578 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 579 if (dreq->owner == owner) { 580 list_del(&dreq->hash); 581 list_move(&dreq->recent, &pending); 582 cache_defer_cnt--; 583 } 584 } 585 spin_unlock(&cache_defer_lock); 586 587 while (!list_empty(&pending)) { 588 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 589 list_del_init(&dreq->recent); 590 dreq->revisit(dreq, 1); 591 } 592 } 593 594 /* 595 * communicate with user-space 596 * 597 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 598 * On read, you get a full request, or block. 599 * On write, an update request is processed. 600 * Poll works if anything to read, and always allows write. 601 * 602 * Implemented by linked list of requests. Each open file has 603 * a ->private that also exists in this list. New requests are added 604 * to the end and may wakeup and preceding readers. 605 * New readers are added to the head. If, on read, an item is found with 606 * CACHE_UPCALLING clear, we free it from the list. 607 * 608 */ 609 610 static DEFINE_SPINLOCK(queue_lock); 611 static DEFINE_MUTEX(queue_io_mutex); 612 613 struct cache_queue { 614 struct list_head list; 615 int reader; /* if 0, then request */ 616 }; 617 struct cache_request { 618 struct cache_queue q; 619 struct cache_head *item; 620 char * buf; 621 int len; 622 int readers; 623 }; 624 struct cache_reader { 625 struct cache_queue q; 626 int offset; /* if non-0, we have a refcnt on next request */ 627 }; 628 629 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 630 loff_t *ppos, struct cache_detail *cd) 631 { 632 struct cache_reader *rp = filp->private_data; 633 struct cache_request *rq; 634 struct inode *inode = filp->f_path.dentry->d_inode; 635 int err; 636 637 if (count == 0) 638 return 0; 639 640 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 641 * readers on this file */ 642 again: 643 spin_lock(&queue_lock); 644 /* need to find next request */ 645 while (rp->q.list.next != &cd->queue && 646 list_entry(rp->q.list.next, struct cache_queue, list) 647 ->reader) { 648 struct list_head *next = rp->q.list.next; 649 list_move(&rp->q.list, next); 650 } 651 if (rp->q.list.next == &cd->queue) { 652 spin_unlock(&queue_lock); 653 mutex_unlock(&inode->i_mutex); 654 BUG_ON(rp->offset); 655 return 0; 656 } 657 rq = container_of(rp->q.list.next, struct cache_request, q.list); 658 BUG_ON(rq->q.reader); 659 if (rp->offset == 0) 660 rq->readers++; 661 spin_unlock(&queue_lock); 662 663 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 664 err = -EAGAIN; 665 spin_lock(&queue_lock); 666 list_move(&rp->q.list, &rq->q.list); 667 spin_unlock(&queue_lock); 668 } else { 669 if (rp->offset + count > rq->len) 670 count = rq->len - rp->offset; 671 err = -EFAULT; 672 if (copy_to_user(buf, rq->buf + rp->offset, count)) 673 goto out; 674 rp->offset += count; 675 if (rp->offset >= rq->len) { 676 rp->offset = 0; 677 spin_lock(&queue_lock); 678 list_move(&rp->q.list, &rq->q.list); 679 spin_unlock(&queue_lock); 680 } 681 err = 0; 682 } 683 out: 684 if (rp->offset == 0) { 685 /* need to release rq */ 686 spin_lock(&queue_lock); 687 rq->readers--; 688 if (rq->readers == 0 && 689 !test_bit(CACHE_PENDING, &rq->item->flags)) { 690 list_del(&rq->q.list); 691 spin_unlock(&queue_lock); 692 cache_put(rq->item, cd); 693 kfree(rq->buf); 694 kfree(rq); 695 } else 696 spin_unlock(&queue_lock); 697 } 698 if (err == -EAGAIN) 699 goto again; 700 mutex_unlock(&inode->i_mutex); 701 return err ? err : count; 702 } 703 704 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 705 size_t count, struct cache_detail *cd) 706 { 707 ssize_t ret; 708 709 if (copy_from_user(kaddr, buf, count)) 710 return -EFAULT; 711 kaddr[count] = '\0'; 712 ret = cd->cache_parse(cd, kaddr, count); 713 if (!ret) 714 ret = count; 715 return ret; 716 } 717 718 static ssize_t cache_slow_downcall(const char __user *buf, 719 size_t count, struct cache_detail *cd) 720 { 721 static char write_buf[8192]; /* protected by queue_io_mutex */ 722 ssize_t ret = -EINVAL; 723 724 if (count >= sizeof(write_buf)) 725 goto out; 726 mutex_lock(&queue_io_mutex); 727 ret = cache_do_downcall(write_buf, buf, count, cd); 728 mutex_unlock(&queue_io_mutex); 729 out: 730 return ret; 731 } 732 733 static ssize_t cache_downcall(struct address_space *mapping, 734 const char __user *buf, 735 size_t count, struct cache_detail *cd) 736 { 737 struct page *page; 738 char *kaddr; 739 ssize_t ret = -ENOMEM; 740 741 if (count >= PAGE_CACHE_SIZE) 742 goto out_slow; 743 744 page = find_or_create_page(mapping, 0, GFP_KERNEL); 745 if (!page) 746 goto out_slow; 747 748 kaddr = kmap(page); 749 ret = cache_do_downcall(kaddr, buf, count, cd); 750 kunmap(page); 751 unlock_page(page); 752 page_cache_release(page); 753 return ret; 754 out_slow: 755 return cache_slow_downcall(buf, count, cd); 756 } 757 758 static ssize_t cache_write(struct file *filp, const char __user *buf, 759 size_t count, loff_t *ppos, 760 struct cache_detail *cd) 761 { 762 struct address_space *mapping = filp->f_mapping; 763 struct inode *inode = filp->f_path.dentry->d_inode; 764 ssize_t ret = -EINVAL; 765 766 if (!cd->cache_parse) 767 goto out; 768 769 mutex_lock(&inode->i_mutex); 770 ret = cache_downcall(mapping, buf, count, cd); 771 mutex_unlock(&inode->i_mutex); 772 out: 773 return ret; 774 } 775 776 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 777 778 static unsigned int cache_poll(struct file *filp, poll_table *wait, 779 struct cache_detail *cd) 780 { 781 unsigned int mask; 782 struct cache_reader *rp = filp->private_data; 783 struct cache_queue *cq; 784 785 poll_wait(filp, &queue_wait, wait); 786 787 /* alway allow write */ 788 mask = POLL_OUT | POLLWRNORM; 789 790 if (!rp) 791 return mask; 792 793 spin_lock(&queue_lock); 794 795 for (cq= &rp->q; &cq->list != &cd->queue; 796 cq = list_entry(cq->list.next, struct cache_queue, list)) 797 if (!cq->reader) { 798 mask |= POLLIN | POLLRDNORM; 799 break; 800 } 801 spin_unlock(&queue_lock); 802 return mask; 803 } 804 805 static int cache_ioctl(struct inode *ino, struct file *filp, 806 unsigned int cmd, unsigned long arg, 807 struct cache_detail *cd) 808 { 809 int len = 0; 810 struct cache_reader *rp = filp->private_data; 811 struct cache_queue *cq; 812 813 if (cmd != FIONREAD || !rp) 814 return -EINVAL; 815 816 spin_lock(&queue_lock); 817 818 /* only find the length remaining in current request, 819 * or the length of the next request 820 */ 821 for (cq= &rp->q; &cq->list != &cd->queue; 822 cq = list_entry(cq->list.next, struct cache_queue, list)) 823 if (!cq->reader) { 824 struct cache_request *cr = 825 container_of(cq, struct cache_request, q); 826 len = cr->len - rp->offset; 827 break; 828 } 829 spin_unlock(&queue_lock); 830 831 return put_user(len, (int __user *)arg); 832 } 833 834 static int cache_open(struct inode *inode, struct file *filp, 835 struct cache_detail *cd) 836 { 837 struct cache_reader *rp = NULL; 838 839 if (!cd || !try_module_get(cd->owner)) 840 return -EACCES; 841 nonseekable_open(inode, filp); 842 if (filp->f_mode & FMODE_READ) { 843 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 844 if (!rp) 845 return -ENOMEM; 846 rp->offset = 0; 847 rp->q.reader = 1; 848 atomic_inc(&cd->readers); 849 spin_lock(&queue_lock); 850 list_add(&rp->q.list, &cd->queue); 851 spin_unlock(&queue_lock); 852 } 853 filp->private_data = rp; 854 return 0; 855 } 856 857 static int cache_release(struct inode *inode, struct file *filp, 858 struct cache_detail *cd) 859 { 860 struct cache_reader *rp = filp->private_data; 861 862 if (rp) { 863 spin_lock(&queue_lock); 864 if (rp->offset) { 865 struct cache_queue *cq; 866 for (cq= &rp->q; &cq->list != &cd->queue; 867 cq = list_entry(cq->list.next, struct cache_queue, list)) 868 if (!cq->reader) { 869 container_of(cq, struct cache_request, q) 870 ->readers--; 871 break; 872 } 873 rp->offset = 0; 874 } 875 list_del(&rp->q.list); 876 spin_unlock(&queue_lock); 877 878 filp->private_data = NULL; 879 kfree(rp); 880 881 cd->last_close = get_seconds(); 882 atomic_dec(&cd->readers); 883 } 884 module_put(cd->owner); 885 return 0; 886 } 887 888 889 890 static void queue_loose(struct cache_detail *detail, struct cache_head *ch) 891 { 892 struct cache_queue *cq; 893 spin_lock(&queue_lock); 894 list_for_each_entry(cq, &detail->queue, list) 895 if (!cq->reader) { 896 struct cache_request *cr = container_of(cq, struct cache_request, q); 897 if (cr->item != ch) 898 continue; 899 if (cr->readers != 0) 900 continue; 901 list_del(&cr->q.list); 902 spin_unlock(&queue_lock); 903 cache_put(cr->item, detail); 904 kfree(cr->buf); 905 kfree(cr); 906 return; 907 } 908 spin_unlock(&queue_lock); 909 } 910 911 /* 912 * Support routines for text-based upcalls. 913 * Fields are separated by spaces. 914 * Fields are either mangled to quote space tab newline slosh with slosh 915 * or a hexified with a leading \x 916 * Record is terminated with newline. 917 * 918 */ 919 920 void qword_add(char **bpp, int *lp, char *str) 921 { 922 char *bp = *bpp; 923 int len = *lp; 924 char c; 925 926 if (len < 0) return; 927 928 while ((c=*str++) && len) 929 switch(c) { 930 case ' ': 931 case '\t': 932 case '\n': 933 case '\\': 934 if (len >= 4) { 935 *bp++ = '\\'; 936 *bp++ = '0' + ((c & 0300)>>6); 937 *bp++ = '0' + ((c & 0070)>>3); 938 *bp++ = '0' + ((c & 0007)>>0); 939 } 940 len -= 4; 941 break; 942 default: 943 *bp++ = c; 944 len--; 945 } 946 if (c || len <1) len = -1; 947 else { 948 *bp++ = ' '; 949 len--; 950 } 951 *bpp = bp; 952 *lp = len; 953 } 954 EXPORT_SYMBOL_GPL(qword_add); 955 956 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 957 { 958 char *bp = *bpp; 959 int len = *lp; 960 961 if (len < 0) return; 962 963 if (len > 2) { 964 *bp++ = '\\'; 965 *bp++ = 'x'; 966 len -= 2; 967 while (blen && len >= 2) { 968 unsigned char c = *buf++; 969 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 970 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 971 len -= 2; 972 blen--; 973 } 974 } 975 if (blen || len<1) len = -1; 976 else { 977 *bp++ = ' '; 978 len--; 979 } 980 *bpp = bp; 981 *lp = len; 982 } 983 EXPORT_SYMBOL_GPL(qword_addhex); 984 985 static void warn_no_listener(struct cache_detail *detail) 986 { 987 if (detail->last_warn != detail->last_close) { 988 detail->last_warn = detail->last_close; 989 if (detail->warn_no_listener) 990 detail->warn_no_listener(detail, detail->last_close != 0); 991 } 992 } 993 994 /* 995 * register an upcall request to user-space and queue it up for read() by the 996 * upcall daemon. 997 * 998 * Each request is at most one page long. 999 */ 1000 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, 1001 void (*cache_request)(struct cache_detail *, 1002 struct cache_head *, 1003 char **, 1004 int *)) 1005 { 1006 1007 char *buf; 1008 struct cache_request *crq; 1009 char *bp; 1010 int len; 1011 1012 if (atomic_read(&detail->readers) == 0 && 1013 detail->last_close < get_seconds() - 30) { 1014 warn_no_listener(detail); 1015 return -EINVAL; 1016 } 1017 1018 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1019 if (!buf) 1020 return -EAGAIN; 1021 1022 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1023 if (!crq) { 1024 kfree(buf); 1025 return -EAGAIN; 1026 } 1027 1028 bp = buf; len = PAGE_SIZE; 1029 1030 cache_request(detail, h, &bp, &len); 1031 1032 if (len < 0) { 1033 kfree(buf); 1034 kfree(crq); 1035 return -EAGAIN; 1036 } 1037 crq->q.reader = 0; 1038 crq->item = cache_get(h); 1039 crq->buf = buf; 1040 crq->len = PAGE_SIZE - len; 1041 crq->readers = 0; 1042 spin_lock(&queue_lock); 1043 list_add_tail(&crq->q.list, &detail->queue); 1044 spin_unlock(&queue_lock); 1045 wake_up(&queue_wait); 1046 return 0; 1047 } 1048 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1049 1050 /* 1051 * parse a message from user-space and pass it 1052 * to an appropriate cache 1053 * Messages are, like requests, separated into fields by 1054 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1055 * 1056 * Message is 1057 * reply cachename expiry key ... content.... 1058 * 1059 * key and content are both parsed by cache 1060 */ 1061 1062 #define isodigit(c) (isdigit(c) && c <= '7') 1063 int qword_get(char **bpp, char *dest, int bufsize) 1064 { 1065 /* return bytes copied, or -1 on error */ 1066 char *bp = *bpp; 1067 int len = 0; 1068 1069 while (*bp == ' ') bp++; 1070 1071 if (bp[0] == '\\' && bp[1] == 'x') { 1072 /* HEX STRING */ 1073 bp += 2; 1074 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1075 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1076 bp++; 1077 byte <<= 4; 1078 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1079 *dest++ = byte; 1080 bp++; 1081 len++; 1082 } 1083 } else { 1084 /* text with \nnn octal quoting */ 1085 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1086 if (*bp == '\\' && 1087 isodigit(bp[1]) && (bp[1] <= '3') && 1088 isodigit(bp[2]) && 1089 isodigit(bp[3])) { 1090 int byte = (*++bp -'0'); 1091 bp++; 1092 byte = (byte << 3) | (*bp++ - '0'); 1093 byte = (byte << 3) | (*bp++ - '0'); 1094 *dest++ = byte; 1095 len++; 1096 } else { 1097 *dest++ = *bp++; 1098 len++; 1099 } 1100 } 1101 } 1102 1103 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1104 return -1; 1105 while (*bp == ' ') bp++; 1106 *bpp = bp; 1107 *dest = '\0'; 1108 return len; 1109 } 1110 EXPORT_SYMBOL_GPL(qword_get); 1111 1112 1113 /* 1114 * support /proc/sunrpc/cache/$CACHENAME/content 1115 * as a seqfile. 1116 * We call ->cache_show passing NULL for the item to 1117 * get a header, then pass each real item in the cache 1118 */ 1119 1120 struct handle { 1121 struct cache_detail *cd; 1122 }; 1123 1124 static void *c_start(struct seq_file *m, loff_t *pos) 1125 __acquires(cd->hash_lock) 1126 { 1127 loff_t n = *pos; 1128 unsigned hash, entry; 1129 struct cache_head *ch; 1130 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1131 1132 1133 read_lock(&cd->hash_lock); 1134 if (!n--) 1135 return SEQ_START_TOKEN; 1136 hash = n >> 32; 1137 entry = n & ((1LL<<32) - 1); 1138 1139 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1140 if (!entry--) 1141 return ch; 1142 n &= ~((1LL<<32) - 1); 1143 do { 1144 hash++; 1145 n += 1LL<<32; 1146 } while(hash < cd->hash_size && 1147 cd->hash_table[hash]==NULL); 1148 if (hash >= cd->hash_size) 1149 return NULL; 1150 *pos = n+1; 1151 return cd->hash_table[hash]; 1152 } 1153 1154 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1155 { 1156 struct cache_head *ch = p; 1157 int hash = (*pos >> 32); 1158 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1159 1160 if (p == SEQ_START_TOKEN) 1161 hash = 0; 1162 else if (ch->next == NULL) { 1163 hash++; 1164 *pos += 1LL<<32; 1165 } else { 1166 ++*pos; 1167 return ch->next; 1168 } 1169 *pos &= ~((1LL<<32) - 1); 1170 while (hash < cd->hash_size && 1171 cd->hash_table[hash] == NULL) { 1172 hash++; 1173 *pos += 1LL<<32; 1174 } 1175 if (hash >= cd->hash_size) 1176 return NULL; 1177 ++*pos; 1178 return cd->hash_table[hash]; 1179 } 1180 1181 static void c_stop(struct seq_file *m, void *p) 1182 __releases(cd->hash_lock) 1183 { 1184 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1185 read_unlock(&cd->hash_lock); 1186 } 1187 1188 static int c_show(struct seq_file *m, void *p) 1189 { 1190 struct cache_head *cp = p; 1191 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1192 1193 if (p == SEQ_START_TOKEN) 1194 return cd->cache_show(m, cd, NULL); 1195 1196 ifdebug(CACHE) 1197 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1198 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1199 cache_get(cp); 1200 if (cache_check(cd, cp, NULL)) 1201 /* cache_check does a cache_put on failure */ 1202 seq_printf(m, "# "); 1203 else 1204 cache_put(cp, cd); 1205 1206 return cd->cache_show(m, cd, cp); 1207 } 1208 1209 static const struct seq_operations cache_content_op = { 1210 .start = c_start, 1211 .next = c_next, 1212 .stop = c_stop, 1213 .show = c_show, 1214 }; 1215 1216 static int content_open(struct inode *inode, struct file *file, 1217 struct cache_detail *cd) 1218 { 1219 struct handle *han; 1220 1221 if (!cd || !try_module_get(cd->owner)) 1222 return -EACCES; 1223 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1224 if (han == NULL) 1225 return -ENOMEM; 1226 1227 han->cd = cd; 1228 return 0; 1229 } 1230 1231 static int content_release(struct inode *inode, struct file *file, 1232 struct cache_detail *cd) 1233 { 1234 int ret = seq_release_private(inode, file); 1235 module_put(cd->owner); 1236 return ret; 1237 } 1238 1239 static int open_flush(struct inode *inode, struct file *file, 1240 struct cache_detail *cd) 1241 { 1242 if (!cd || !try_module_get(cd->owner)) 1243 return -EACCES; 1244 return nonseekable_open(inode, file); 1245 } 1246 1247 static int release_flush(struct inode *inode, struct file *file, 1248 struct cache_detail *cd) 1249 { 1250 module_put(cd->owner); 1251 return 0; 1252 } 1253 1254 static ssize_t read_flush(struct file *file, char __user *buf, 1255 size_t count, loff_t *ppos, 1256 struct cache_detail *cd) 1257 { 1258 char tbuf[20]; 1259 unsigned long p = *ppos; 1260 size_t len; 1261 1262 sprintf(tbuf, "%lu\n", cd->flush_time); 1263 len = strlen(tbuf); 1264 if (p >= len) 1265 return 0; 1266 len -= p; 1267 if (len > count) 1268 len = count; 1269 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1270 return -EFAULT; 1271 *ppos += len; 1272 return len; 1273 } 1274 1275 static ssize_t write_flush(struct file *file, const char __user *buf, 1276 size_t count, loff_t *ppos, 1277 struct cache_detail *cd) 1278 { 1279 char tbuf[20]; 1280 char *ep; 1281 long flushtime; 1282 if (*ppos || count > sizeof(tbuf)-1) 1283 return -EINVAL; 1284 if (copy_from_user(tbuf, buf, count)) 1285 return -EFAULT; 1286 tbuf[count] = 0; 1287 flushtime = simple_strtoul(tbuf, &ep, 0); 1288 if (*ep && *ep != '\n') 1289 return -EINVAL; 1290 1291 cd->flush_time = flushtime; 1292 cd->nextcheck = get_seconds(); 1293 cache_flush(); 1294 1295 *ppos += count; 1296 return count; 1297 } 1298 1299 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1300 size_t count, loff_t *ppos) 1301 { 1302 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1303 1304 return cache_read(filp, buf, count, ppos, cd); 1305 } 1306 1307 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1308 size_t count, loff_t *ppos) 1309 { 1310 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1311 1312 return cache_write(filp, buf, count, ppos, cd); 1313 } 1314 1315 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1316 { 1317 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1318 1319 return cache_poll(filp, wait, cd); 1320 } 1321 1322 static int cache_ioctl_procfs(struct inode *inode, struct file *filp, 1323 unsigned int cmd, unsigned long arg) 1324 { 1325 struct cache_detail *cd = PDE(inode)->data; 1326 1327 return cache_ioctl(inode, filp, cmd, arg, cd); 1328 } 1329 1330 static int cache_open_procfs(struct inode *inode, struct file *filp) 1331 { 1332 struct cache_detail *cd = PDE(inode)->data; 1333 1334 return cache_open(inode, filp, cd); 1335 } 1336 1337 static int cache_release_procfs(struct inode *inode, struct file *filp) 1338 { 1339 struct cache_detail *cd = PDE(inode)->data; 1340 1341 return cache_release(inode, filp, cd); 1342 } 1343 1344 static const struct file_operations cache_file_operations_procfs = { 1345 .owner = THIS_MODULE, 1346 .llseek = no_llseek, 1347 .read = cache_read_procfs, 1348 .write = cache_write_procfs, 1349 .poll = cache_poll_procfs, 1350 .ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1351 .open = cache_open_procfs, 1352 .release = cache_release_procfs, 1353 }; 1354 1355 static int content_open_procfs(struct inode *inode, struct file *filp) 1356 { 1357 struct cache_detail *cd = PDE(inode)->data; 1358 1359 return content_open(inode, filp, cd); 1360 } 1361 1362 static int content_release_procfs(struct inode *inode, struct file *filp) 1363 { 1364 struct cache_detail *cd = PDE(inode)->data; 1365 1366 return content_release(inode, filp, cd); 1367 } 1368 1369 static const struct file_operations content_file_operations_procfs = { 1370 .open = content_open_procfs, 1371 .read = seq_read, 1372 .llseek = seq_lseek, 1373 .release = content_release_procfs, 1374 }; 1375 1376 static int open_flush_procfs(struct inode *inode, struct file *filp) 1377 { 1378 struct cache_detail *cd = PDE(inode)->data; 1379 1380 return open_flush(inode, filp, cd); 1381 } 1382 1383 static int release_flush_procfs(struct inode *inode, struct file *filp) 1384 { 1385 struct cache_detail *cd = PDE(inode)->data; 1386 1387 return release_flush(inode, filp, cd); 1388 } 1389 1390 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1391 size_t count, loff_t *ppos) 1392 { 1393 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1394 1395 return read_flush(filp, buf, count, ppos, cd); 1396 } 1397 1398 static ssize_t write_flush_procfs(struct file *filp, 1399 const char __user *buf, 1400 size_t count, loff_t *ppos) 1401 { 1402 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1403 1404 return write_flush(filp, buf, count, ppos, cd); 1405 } 1406 1407 static const struct file_operations cache_flush_operations_procfs = { 1408 .open = open_flush_procfs, 1409 .read = read_flush_procfs, 1410 .write = write_flush_procfs, 1411 .release = release_flush_procfs, 1412 }; 1413 1414 static void remove_cache_proc_entries(struct cache_detail *cd) 1415 { 1416 if (cd->u.procfs.proc_ent == NULL) 1417 return; 1418 if (cd->u.procfs.flush_ent) 1419 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1420 if (cd->u.procfs.channel_ent) 1421 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1422 if (cd->u.procfs.content_ent) 1423 remove_proc_entry("content", cd->u.procfs.proc_ent); 1424 cd->u.procfs.proc_ent = NULL; 1425 remove_proc_entry(cd->name, proc_net_rpc); 1426 } 1427 1428 #ifdef CONFIG_PROC_FS 1429 static int create_cache_proc_entries(struct cache_detail *cd) 1430 { 1431 struct proc_dir_entry *p; 1432 1433 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc); 1434 if (cd->u.procfs.proc_ent == NULL) 1435 goto out_nomem; 1436 cd->u.procfs.channel_ent = NULL; 1437 cd->u.procfs.content_ent = NULL; 1438 1439 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1440 cd->u.procfs.proc_ent, 1441 &cache_flush_operations_procfs, cd); 1442 cd->u.procfs.flush_ent = p; 1443 if (p == NULL) 1444 goto out_nomem; 1445 1446 if (cd->cache_upcall || cd->cache_parse) { 1447 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1448 cd->u.procfs.proc_ent, 1449 &cache_file_operations_procfs, cd); 1450 cd->u.procfs.channel_ent = p; 1451 if (p == NULL) 1452 goto out_nomem; 1453 } 1454 if (cd->cache_show) { 1455 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 1456 cd->u.procfs.proc_ent, 1457 &content_file_operations_procfs, cd); 1458 cd->u.procfs.content_ent = p; 1459 if (p == NULL) 1460 goto out_nomem; 1461 } 1462 return 0; 1463 out_nomem: 1464 remove_cache_proc_entries(cd); 1465 return -ENOMEM; 1466 } 1467 #else /* CONFIG_PROC_FS */ 1468 static int create_cache_proc_entries(struct cache_detail *cd) 1469 { 1470 return 0; 1471 } 1472 #endif 1473 1474 int cache_register(struct cache_detail *cd) 1475 { 1476 int ret; 1477 1478 sunrpc_init_cache_detail(cd); 1479 ret = create_cache_proc_entries(cd); 1480 if (ret) 1481 sunrpc_destroy_cache_detail(cd); 1482 return ret; 1483 } 1484 EXPORT_SYMBOL_GPL(cache_register); 1485 1486 void cache_unregister(struct cache_detail *cd) 1487 { 1488 remove_cache_proc_entries(cd); 1489 sunrpc_destroy_cache_detail(cd); 1490 } 1491 EXPORT_SYMBOL_GPL(cache_unregister); 1492 1493 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1494 size_t count, loff_t *ppos) 1495 { 1496 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1497 1498 return cache_read(filp, buf, count, ppos, cd); 1499 } 1500 1501 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1502 size_t count, loff_t *ppos) 1503 { 1504 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1505 1506 return cache_write(filp, buf, count, ppos, cd); 1507 } 1508 1509 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1510 { 1511 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1512 1513 return cache_poll(filp, wait, cd); 1514 } 1515 1516 static int cache_ioctl_pipefs(struct inode *inode, struct file *filp, 1517 unsigned int cmd, unsigned long arg) 1518 { 1519 struct cache_detail *cd = RPC_I(inode)->private; 1520 1521 return cache_ioctl(inode, filp, cmd, arg, cd); 1522 } 1523 1524 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1525 { 1526 struct cache_detail *cd = RPC_I(inode)->private; 1527 1528 return cache_open(inode, filp, cd); 1529 } 1530 1531 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1532 { 1533 struct cache_detail *cd = RPC_I(inode)->private; 1534 1535 return cache_release(inode, filp, cd); 1536 } 1537 1538 const struct file_operations cache_file_operations_pipefs = { 1539 .owner = THIS_MODULE, 1540 .llseek = no_llseek, 1541 .read = cache_read_pipefs, 1542 .write = cache_write_pipefs, 1543 .poll = cache_poll_pipefs, 1544 .ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1545 .open = cache_open_pipefs, 1546 .release = cache_release_pipefs, 1547 }; 1548 1549 static int content_open_pipefs(struct inode *inode, struct file *filp) 1550 { 1551 struct cache_detail *cd = RPC_I(inode)->private; 1552 1553 return content_open(inode, filp, cd); 1554 } 1555 1556 static int content_release_pipefs(struct inode *inode, struct file *filp) 1557 { 1558 struct cache_detail *cd = RPC_I(inode)->private; 1559 1560 return content_release(inode, filp, cd); 1561 } 1562 1563 const struct file_operations content_file_operations_pipefs = { 1564 .open = content_open_pipefs, 1565 .read = seq_read, 1566 .llseek = seq_lseek, 1567 .release = content_release_pipefs, 1568 }; 1569 1570 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1571 { 1572 struct cache_detail *cd = RPC_I(inode)->private; 1573 1574 return open_flush(inode, filp, cd); 1575 } 1576 1577 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1578 { 1579 struct cache_detail *cd = RPC_I(inode)->private; 1580 1581 return release_flush(inode, filp, cd); 1582 } 1583 1584 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1585 size_t count, loff_t *ppos) 1586 { 1587 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1588 1589 return read_flush(filp, buf, count, ppos, cd); 1590 } 1591 1592 static ssize_t write_flush_pipefs(struct file *filp, 1593 const char __user *buf, 1594 size_t count, loff_t *ppos) 1595 { 1596 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1597 1598 return write_flush(filp, buf, count, ppos, cd); 1599 } 1600 1601 const struct file_operations cache_flush_operations_pipefs = { 1602 .open = open_flush_pipefs, 1603 .read = read_flush_pipefs, 1604 .write = write_flush_pipefs, 1605 .release = release_flush_pipefs, 1606 }; 1607 1608 int sunrpc_cache_register_pipefs(struct dentry *parent, 1609 const char *name, mode_t umode, 1610 struct cache_detail *cd) 1611 { 1612 struct qstr q; 1613 struct dentry *dir; 1614 int ret = 0; 1615 1616 sunrpc_init_cache_detail(cd); 1617 q.name = name; 1618 q.len = strlen(name); 1619 q.hash = full_name_hash(q.name, q.len); 1620 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1621 if (!IS_ERR(dir)) 1622 cd->u.pipefs.dir = dir; 1623 else { 1624 sunrpc_destroy_cache_detail(cd); 1625 ret = PTR_ERR(dir); 1626 } 1627 return ret; 1628 } 1629 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1630 1631 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1632 { 1633 rpc_remove_cache_dir(cd->u.pipefs.dir); 1634 cd->u.pipefs.dir = NULL; 1635 sunrpc_destroy_cache_detail(cd); 1636 } 1637 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1638 1639