1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/string_helpers.h> 24 #include <linux/uaccess.h> 25 #include <linux/poll.h> 26 #include <linux/seq_file.h> 27 #include <linux/proc_fs.h> 28 #include <linux/net.h> 29 #include <linux/workqueue.h> 30 #include <linux/mutex.h> 31 #include <linux/pagemap.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include "netns.h" 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h, struct cache_detail *detail) 45 { 46 time_t now = seconds_since_boot(); 47 INIT_HLIST_NODE(&h->cache_list); 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 if (now <= detail->flush_time) 52 /* ensure it isn't already expired */ 53 now = detail->flush_time + 1; 54 h->last_refresh = now; 55 } 56 57 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 58 struct cache_detail *detail); 59 static void cache_fresh_unlocked(struct cache_head *head, 60 struct cache_detail *detail); 61 62 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 63 struct cache_head *key, 64 int hash) 65 { 66 struct hlist_head *head = &detail->hash_table[hash]; 67 struct cache_head *tmp; 68 69 rcu_read_lock(); 70 hlist_for_each_entry_rcu(tmp, head, cache_list) { 71 if (detail->match(tmp, key)) { 72 if (cache_is_expired(detail, tmp)) 73 continue; 74 tmp = cache_get_rcu(tmp); 75 rcu_read_unlock(); 76 return tmp; 77 } 78 } 79 rcu_read_unlock(); 80 return NULL; 81 } 82 83 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 84 struct cache_head *key, 85 int hash) 86 { 87 struct cache_head *new, *tmp, *freeme = NULL; 88 struct hlist_head *head = &detail->hash_table[hash]; 89 90 new = detail->alloc(); 91 if (!new) 92 return NULL; 93 /* must fully initialise 'new', else 94 * we might get lose if we need to 95 * cache_put it soon. 96 */ 97 cache_init(new, detail); 98 detail->init(new, key); 99 100 spin_lock(&detail->hash_lock); 101 102 /* check if entry appeared while we slept */ 103 hlist_for_each_entry_rcu(tmp, head, cache_list) { 104 if (detail->match(tmp, key)) { 105 if (cache_is_expired(detail, tmp)) { 106 hlist_del_init_rcu(&tmp->cache_list); 107 detail->entries --; 108 cache_fresh_locked(tmp, 0, detail); 109 freeme = tmp; 110 break; 111 } 112 cache_get(tmp); 113 spin_unlock(&detail->hash_lock); 114 cache_put(new, detail); 115 return tmp; 116 } 117 } 118 119 hlist_add_head_rcu(&new->cache_list, head); 120 detail->entries++; 121 cache_get(new); 122 spin_unlock(&detail->hash_lock); 123 124 if (freeme) { 125 cache_fresh_unlocked(freeme, detail); 126 cache_put(freeme, detail); 127 } 128 return new; 129 } 130 131 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 132 struct cache_head *key, int hash) 133 { 134 struct cache_head *ret; 135 136 ret = sunrpc_cache_find_rcu(detail, key, hash); 137 if (ret) 138 return ret; 139 /* Didn't find anything, insert an empty entry */ 140 return sunrpc_cache_add_entry(detail, key, hash); 141 } 142 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 143 144 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 145 146 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 147 struct cache_detail *detail) 148 { 149 time_t now = seconds_since_boot(); 150 if (now <= detail->flush_time) 151 /* ensure it isn't immediately treated as expired */ 152 now = detail->flush_time + 1; 153 head->expiry_time = expiry; 154 head->last_refresh = now; 155 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 156 set_bit(CACHE_VALID, &head->flags); 157 } 158 159 static void cache_fresh_unlocked(struct cache_head *head, 160 struct cache_detail *detail) 161 { 162 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 163 cache_revisit_request(head); 164 cache_dequeue(detail, head); 165 } 166 } 167 168 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 169 struct cache_head *new, struct cache_head *old, int hash) 170 { 171 /* The 'old' entry is to be replaced by 'new'. 172 * If 'old' is not VALID, we update it directly, 173 * otherwise we need to replace it 174 */ 175 struct cache_head *tmp; 176 177 if (!test_bit(CACHE_VALID, &old->flags)) { 178 spin_lock(&detail->hash_lock); 179 if (!test_bit(CACHE_VALID, &old->flags)) { 180 if (test_bit(CACHE_NEGATIVE, &new->flags)) 181 set_bit(CACHE_NEGATIVE, &old->flags); 182 else 183 detail->update(old, new); 184 cache_fresh_locked(old, new->expiry_time, detail); 185 spin_unlock(&detail->hash_lock); 186 cache_fresh_unlocked(old, detail); 187 return old; 188 } 189 spin_unlock(&detail->hash_lock); 190 } 191 /* We need to insert a new entry */ 192 tmp = detail->alloc(); 193 if (!tmp) { 194 cache_put(old, detail); 195 return NULL; 196 } 197 cache_init(tmp, detail); 198 detail->init(tmp, old); 199 200 spin_lock(&detail->hash_lock); 201 if (test_bit(CACHE_NEGATIVE, &new->flags)) 202 set_bit(CACHE_NEGATIVE, &tmp->flags); 203 else 204 detail->update(tmp, new); 205 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 206 detail->entries++; 207 cache_get(tmp); 208 cache_fresh_locked(tmp, new->expiry_time, detail); 209 cache_fresh_locked(old, 0, detail); 210 spin_unlock(&detail->hash_lock); 211 cache_fresh_unlocked(tmp, detail); 212 cache_fresh_unlocked(old, detail); 213 cache_put(old, detail); 214 return tmp; 215 } 216 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 217 218 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 219 { 220 if (cd->cache_upcall) 221 return cd->cache_upcall(cd, h); 222 return sunrpc_cache_pipe_upcall(cd, h); 223 } 224 225 static inline int cache_is_valid(struct cache_head *h) 226 { 227 if (!test_bit(CACHE_VALID, &h->flags)) 228 return -EAGAIN; 229 else { 230 /* entry is valid */ 231 if (test_bit(CACHE_NEGATIVE, &h->flags)) 232 return -ENOENT; 233 else { 234 /* 235 * In combination with write barrier in 236 * sunrpc_cache_update, ensures that anyone 237 * using the cache entry after this sees the 238 * updated contents: 239 */ 240 smp_rmb(); 241 return 0; 242 } 243 } 244 } 245 246 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 247 { 248 int rv; 249 250 spin_lock(&detail->hash_lock); 251 rv = cache_is_valid(h); 252 if (rv == -EAGAIN) { 253 set_bit(CACHE_NEGATIVE, &h->flags); 254 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 255 detail); 256 rv = -ENOENT; 257 } 258 spin_unlock(&detail->hash_lock); 259 cache_fresh_unlocked(h, detail); 260 return rv; 261 } 262 263 /* 264 * This is the generic cache management routine for all 265 * the authentication caches. 266 * It checks the currency of a cache item and will (later) 267 * initiate an upcall to fill it if needed. 268 * 269 * 270 * Returns 0 if the cache_head can be used, or cache_puts it and returns 271 * -EAGAIN if upcall is pending and request has been queued 272 * -ETIMEDOUT if upcall failed or request could not be queue or 273 * upcall completed but item is still invalid (implying that 274 * the cache item has been replaced with a newer one). 275 * -ENOENT if cache entry was negative 276 */ 277 int cache_check(struct cache_detail *detail, 278 struct cache_head *h, struct cache_req *rqstp) 279 { 280 int rv; 281 long refresh_age, age; 282 283 /* First decide return status as best we can */ 284 rv = cache_is_valid(h); 285 286 /* now see if we want to start an upcall */ 287 refresh_age = (h->expiry_time - h->last_refresh); 288 age = seconds_since_boot() - h->last_refresh; 289 290 if (rqstp == NULL) { 291 if (rv == -EAGAIN) 292 rv = -ENOENT; 293 } else if (rv == -EAGAIN || 294 (h->expiry_time != 0 && age > refresh_age/2)) { 295 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 296 refresh_age, age); 297 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 298 switch (cache_make_upcall(detail, h)) { 299 case -EINVAL: 300 rv = try_to_negate_entry(detail, h); 301 break; 302 case -EAGAIN: 303 cache_fresh_unlocked(h, detail); 304 break; 305 } 306 } 307 } 308 309 if (rv == -EAGAIN) { 310 if (!cache_defer_req(rqstp, h)) { 311 /* 312 * Request was not deferred; handle it as best 313 * we can ourselves: 314 */ 315 rv = cache_is_valid(h); 316 if (rv == -EAGAIN) 317 rv = -ETIMEDOUT; 318 } 319 } 320 if (rv) 321 cache_put(h, detail); 322 return rv; 323 } 324 EXPORT_SYMBOL_GPL(cache_check); 325 326 /* 327 * caches need to be periodically cleaned. 328 * For this we maintain a list of cache_detail and 329 * a current pointer into that list and into the table 330 * for that entry. 331 * 332 * Each time cache_clean is called it finds the next non-empty entry 333 * in the current table and walks the list in that entry 334 * looking for entries that can be removed. 335 * 336 * An entry gets removed if: 337 * - The expiry is before current time 338 * - The last_refresh time is before the flush_time for that cache 339 * 340 * later we might drop old entries with non-NEVER expiry if that table 341 * is getting 'full' for some definition of 'full' 342 * 343 * The question of "how often to scan a table" is an interesting one 344 * and is answered in part by the use of the "nextcheck" field in the 345 * cache_detail. 346 * When a scan of a table begins, the nextcheck field is set to a time 347 * that is well into the future. 348 * While scanning, if an expiry time is found that is earlier than the 349 * current nextcheck time, nextcheck is set to that expiry time. 350 * If the flush_time is ever set to a time earlier than the nextcheck 351 * time, the nextcheck time is then set to that flush_time. 352 * 353 * A table is then only scanned if the current time is at least 354 * the nextcheck time. 355 * 356 */ 357 358 static LIST_HEAD(cache_list); 359 static DEFINE_SPINLOCK(cache_list_lock); 360 static struct cache_detail *current_detail; 361 static int current_index; 362 363 static void do_cache_clean(struct work_struct *work); 364 static struct delayed_work cache_cleaner; 365 366 void sunrpc_init_cache_detail(struct cache_detail *cd) 367 { 368 spin_lock_init(&cd->hash_lock); 369 INIT_LIST_HEAD(&cd->queue); 370 spin_lock(&cache_list_lock); 371 cd->nextcheck = 0; 372 cd->entries = 0; 373 atomic_set(&cd->readers, 0); 374 cd->last_close = 0; 375 cd->last_warn = -1; 376 list_add(&cd->others, &cache_list); 377 spin_unlock(&cache_list_lock); 378 379 /* start the cleaning process */ 380 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 381 } 382 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 383 384 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 385 { 386 cache_purge(cd); 387 spin_lock(&cache_list_lock); 388 spin_lock(&cd->hash_lock); 389 if (current_detail == cd) 390 current_detail = NULL; 391 list_del_init(&cd->others); 392 spin_unlock(&cd->hash_lock); 393 spin_unlock(&cache_list_lock); 394 if (list_empty(&cache_list)) { 395 /* module must be being unloaded so its safe to kill the worker */ 396 cancel_delayed_work_sync(&cache_cleaner); 397 } 398 } 399 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 400 401 /* clean cache tries to find something to clean 402 * and cleans it. 403 * It returns 1 if it cleaned something, 404 * 0 if it didn't find anything this time 405 * -1 if it fell off the end of the list. 406 */ 407 static int cache_clean(void) 408 { 409 int rv = 0; 410 struct list_head *next; 411 412 spin_lock(&cache_list_lock); 413 414 /* find a suitable table if we don't already have one */ 415 while (current_detail == NULL || 416 current_index >= current_detail->hash_size) { 417 if (current_detail) 418 next = current_detail->others.next; 419 else 420 next = cache_list.next; 421 if (next == &cache_list) { 422 current_detail = NULL; 423 spin_unlock(&cache_list_lock); 424 return -1; 425 } 426 current_detail = list_entry(next, struct cache_detail, others); 427 if (current_detail->nextcheck > seconds_since_boot()) 428 current_index = current_detail->hash_size; 429 else { 430 current_index = 0; 431 current_detail->nextcheck = seconds_since_boot()+30*60; 432 } 433 } 434 435 /* find a non-empty bucket in the table */ 436 while (current_detail && 437 current_index < current_detail->hash_size && 438 hlist_empty(¤t_detail->hash_table[current_index])) 439 current_index++; 440 441 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 442 443 if (current_detail && current_index < current_detail->hash_size) { 444 struct cache_head *ch = NULL; 445 struct cache_detail *d; 446 struct hlist_head *head; 447 struct hlist_node *tmp; 448 449 spin_lock(¤t_detail->hash_lock); 450 451 /* Ok, now to clean this strand */ 452 453 head = ¤t_detail->hash_table[current_index]; 454 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 455 if (current_detail->nextcheck > ch->expiry_time) 456 current_detail->nextcheck = ch->expiry_time+1; 457 if (!cache_is_expired(current_detail, ch)) 458 continue; 459 460 hlist_del_init_rcu(&ch->cache_list); 461 current_detail->entries--; 462 rv = 1; 463 break; 464 } 465 466 spin_unlock(¤t_detail->hash_lock); 467 d = current_detail; 468 if (!ch) 469 current_index ++; 470 spin_unlock(&cache_list_lock); 471 if (ch) { 472 set_bit(CACHE_CLEANED, &ch->flags); 473 cache_fresh_unlocked(ch, d); 474 cache_put(ch, d); 475 } 476 } else 477 spin_unlock(&cache_list_lock); 478 479 return rv; 480 } 481 482 /* 483 * We want to regularly clean the cache, so we need to schedule some work ... 484 */ 485 static void do_cache_clean(struct work_struct *work) 486 { 487 int delay = 5; 488 if (cache_clean() == -1) 489 delay = round_jiffies_relative(30*HZ); 490 491 if (list_empty(&cache_list)) 492 delay = 0; 493 494 if (delay) 495 queue_delayed_work(system_power_efficient_wq, 496 &cache_cleaner, delay); 497 } 498 499 500 /* 501 * Clean all caches promptly. This just calls cache_clean 502 * repeatedly until we are sure that every cache has had a chance to 503 * be fully cleaned 504 */ 505 void cache_flush(void) 506 { 507 while (cache_clean() != -1) 508 cond_resched(); 509 while (cache_clean() != -1) 510 cond_resched(); 511 } 512 EXPORT_SYMBOL_GPL(cache_flush); 513 514 void cache_purge(struct cache_detail *detail) 515 { 516 struct cache_head *ch = NULL; 517 struct hlist_head *head = NULL; 518 struct hlist_node *tmp = NULL; 519 int i = 0; 520 521 spin_lock(&detail->hash_lock); 522 if (!detail->entries) { 523 spin_unlock(&detail->hash_lock); 524 return; 525 } 526 527 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 528 for (i = 0; i < detail->hash_size; i++) { 529 head = &detail->hash_table[i]; 530 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 531 hlist_del_init_rcu(&ch->cache_list); 532 detail->entries--; 533 534 set_bit(CACHE_CLEANED, &ch->flags); 535 spin_unlock(&detail->hash_lock); 536 cache_fresh_unlocked(ch, detail); 537 cache_put(ch, detail); 538 spin_lock(&detail->hash_lock); 539 } 540 } 541 spin_unlock(&detail->hash_lock); 542 } 543 EXPORT_SYMBOL_GPL(cache_purge); 544 545 546 /* 547 * Deferral and Revisiting of Requests. 548 * 549 * If a cache lookup finds a pending entry, we 550 * need to defer the request and revisit it later. 551 * All deferred requests are stored in a hash table, 552 * indexed by "struct cache_head *". 553 * As it may be wasteful to store a whole request 554 * structure, we allow the request to provide a 555 * deferred form, which must contain a 556 * 'struct cache_deferred_req' 557 * This cache_deferred_req contains a method to allow 558 * it to be revisited when cache info is available 559 */ 560 561 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 562 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 563 564 #define DFR_MAX 300 /* ??? */ 565 566 static DEFINE_SPINLOCK(cache_defer_lock); 567 static LIST_HEAD(cache_defer_list); 568 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 569 static int cache_defer_cnt; 570 571 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 572 { 573 hlist_del_init(&dreq->hash); 574 if (!list_empty(&dreq->recent)) { 575 list_del_init(&dreq->recent); 576 cache_defer_cnt--; 577 } 578 } 579 580 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 581 { 582 int hash = DFR_HASH(item); 583 584 INIT_LIST_HEAD(&dreq->recent); 585 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 586 } 587 588 static void setup_deferral(struct cache_deferred_req *dreq, 589 struct cache_head *item, 590 int count_me) 591 { 592 593 dreq->item = item; 594 595 spin_lock(&cache_defer_lock); 596 597 __hash_deferred_req(dreq, item); 598 599 if (count_me) { 600 cache_defer_cnt++; 601 list_add(&dreq->recent, &cache_defer_list); 602 } 603 604 spin_unlock(&cache_defer_lock); 605 606 } 607 608 struct thread_deferred_req { 609 struct cache_deferred_req handle; 610 struct completion completion; 611 }; 612 613 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 614 { 615 struct thread_deferred_req *dr = 616 container_of(dreq, struct thread_deferred_req, handle); 617 complete(&dr->completion); 618 } 619 620 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 621 { 622 struct thread_deferred_req sleeper; 623 struct cache_deferred_req *dreq = &sleeper.handle; 624 625 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 626 dreq->revisit = cache_restart_thread; 627 628 setup_deferral(dreq, item, 0); 629 630 if (!test_bit(CACHE_PENDING, &item->flags) || 631 wait_for_completion_interruptible_timeout( 632 &sleeper.completion, req->thread_wait) <= 0) { 633 /* The completion wasn't completed, so we need 634 * to clean up 635 */ 636 spin_lock(&cache_defer_lock); 637 if (!hlist_unhashed(&sleeper.handle.hash)) { 638 __unhash_deferred_req(&sleeper.handle); 639 spin_unlock(&cache_defer_lock); 640 } else { 641 /* cache_revisit_request already removed 642 * this from the hash table, but hasn't 643 * called ->revisit yet. It will very soon 644 * and we need to wait for it. 645 */ 646 spin_unlock(&cache_defer_lock); 647 wait_for_completion(&sleeper.completion); 648 } 649 } 650 } 651 652 static void cache_limit_defers(void) 653 { 654 /* Make sure we haven't exceed the limit of allowed deferred 655 * requests. 656 */ 657 struct cache_deferred_req *discard = NULL; 658 659 if (cache_defer_cnt <= DFR_MAX) 660 return; 661 662 spin_lock(&cache_defer_lock); 663 664 /* Consider removing either the first or the last */ 665 if (cache_defer_cnt > DFR_MAX) { 666 if (prandom_u32() & 1) 667 discard = list_entry(cache_defer_list.next, 668 struct cache_deferred_req, recent); 669 else 670 discard = list_entry(cache_defer_list.prev, 671 struct cache_deferred_req, recent); 672 __unhash_deferred_req(discard); 673 } 674 spin_unlock(&cache_defer_lock); 675 if (discard) 676 discard->revisit(discard, 1); 677 } 678 679 /* Return true if and only if a deferred request is queued. */ 680 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 681 { 682 struct cache_deferred_req *dreq; 683 684 if (req->thread_wait) { 685 cache_wait_req(req, item); 686 if (!test_bit(CACHE_PENDING, &item->flags)) 687 return false; 688 } 689 dreq = req->defer(req); 690 if (dreq == NULL) 691 return false; 692 setup_deferral(dreq, item, 1); 693 if (!test_bit(CACHE_PENDING, &item->flags)) 694 /* Bit could have been cleared before we managed to 695 * set up the deferral, so need to revisit just in case 696 */ 697 cache_revisit_request(item); 698 699 cache_limit_defers(); 700 return true; 701 } 702 703 static void cache_revisit_request(struct cache_head *item) 704 { 705 struct cache_deferred_req *dreq; 706 struct list_head pending; 707 struct hlist_node *tmp; 708 int hash = DFR_HASH(item); 709 710 INIT_LIST_HEAD(&pending); 711 spin_lock(&cache_defer_lock); 712 713 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 714 if (dreq->item == item) { 715 __unhash_deferred_req(dreq); 716 list_add(&dreq->recent, &pending); 717 } 718 719 spin_unlock(&cache_defer_lock); 720 721 while (!list_empty(&pending)) { 722 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 723 list_del_init(&dreq->recent); 724 dreq->revisit(dreq, 0); 725 } 726 } 727 728 void cache_clean_deferred(void *owner) 729 { 730 struct cache_deferred_req *dreq, *tmp; 731 struct list_head pending; 732 733 734 INIT_LIST_HEAD(&pending); 735 spin_lock(&cache_defer_lock); 736 737 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 738 if (dreq->owner == owner) { 739 __unhash_deferred_req(dreq); 740 list_add(&dreq->recent, &pending); 741 } 742 } 743 spin_unlock(&cache_defer_lock); 744 745 while (!list_empty(&pending)) { 746 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 747 list_del_init(&dreq->recent); 748 dreq->revisit(dreq, 1); 749 } 750 } 751 752 /* 753 * communicate with user-space 754 * 755 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 756 * On read, you get a full request, or block. 757 * On write, an update request is processed. 758 * Poll works if anything to read, and always allows write. 759 * 760 * Implemented by linked list of requests. Each open file has 761 * a ->private that also exists in this list. New requests are added 762 * to the end and may wakeup and preceding readers. 763 * New readers are added to the head. If, on read, an item is found with 764 * CACHE_UPCALLING clear, we free it from the list. 765 * 766 */ 767 768 static DEFINE_SPINLOCK(queue_lock); 769 static DEFINE_MUTEX(queue_io_mutex); 770 771 struct cache_queue { 772 struct list_head list; 773 int reader; /* if 0, then request */ 774 }; 775 struct cache_request { 776 struct cache_queue q; 777 struct cache_head *item; 778 char * buf; 779 int len; 780 int readers; 781 }; 782 struct cache_reader { 783 struct cache_queue q; 784 int offset; /* if non-0, we have a refcnt on next request */ 785 }; 786 787 static int cache_request(struct cache_detail *detail, 788 struct cache_request *crq) 789 { 790 char *bp = crq->buf; 791 int len = PAGE_SIZE; 792 793 detail->cache_request(detail, crq->item, &bp, &len); 794 if (len < 0) 795 return -EAGAIN; 796 return PAGE_SIZE - len; 797 } 798 799 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 800 loff_t *ppos, struct cache_detail *cd) 801 { 802 struct cache_reader *rp = filp->private_data; 803 struct cache_request *rq; 804 struct inode *inode = file_inode(filp); 805 int err; 806 807 if (count == 0) 808 return 0; 809 810 inode_lock(inode); /* protect against multiple concurrent 811 * readers on this file */ 812 again: 813 spin_lock(&queue_lock); 814 /* need to find next request */ 815 while (rp->q.list.next != &cd->queue && 816 list_entry(rp->q.list.next, struct cache_queue, list) 817 ->reader) { 818 struct list_head *next = rp->q.list.next; 819 list_move(&rp->q.list, next); 820 } 821 if (rp->q.list.next == &cd->queue) { 822 spin_unlock(&queue_lock); 823 inode_unlock(inode); 824 WARN_ON_ONCE(rp->offset); 825 return 0; 826 } 827 rq = container_of(rp->q.list.next, struct cache_request, q.list); 828 WARN_ON_ONCE(rq->q.reader); 829 if (rp->offset == 0) 830 rq->readers++; 831 spin_unlock(&queue_lock); 832 833 if (rq->len == 0) { 834 err = cache_request(cd, rq); 835 if (err < 0) 836 goto out; 837 rq->len = err; 838 } 839 840 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 841 err = -EAGAIN; 842 spin_lock(&queue_lock); 843 list_move(&rp->q.list, &rq->q.list); 844 spin_unlock(&queue_lock); 845 } else { 846 if (rp->offset + count > rq->len) 847 count = rq->len - rp->offset; 848 err = -EFAULT; 849 if (copy_to_user(buf, rq->buf + rp->offset, count)) 850 goto out; 851 rp->offset += count; 852 if (rp->offset >= rq->len) { 853 rp->offset = 0; 854 spin_lock(&queue_lock); 855 list_move(&rp->q.list, &rq->q.list); 856 spin_unlock(&queue_lock); 857 } 858 err = 0; 859 } 860 out: 861 if (rp->offset == 0) { 862 /* need to release rq */ 863 spin_lock(&queue_lock); 864 rq->readers--; 865 if (rq->readers == 0 && 866 !test_bit(CACHE_PENDING, &rq->item->flags)) { 867 list_del(&rq->q.list); 868 spin_unlock(&queue_lock); 869 cache_put(rq->item, cd); 870 kfree(rq->buf); 871 kfree(rq); 872 } else 873 spin_unlock(&queue_lock); 874 } 875 if (err == -EAGAIN) 876 goto again; 877 inode_unlock(inode); 878 return err ? err : count; 879 } 880 881 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 882 size_t count, struct cache_detail *cd) 883 { 884 ssize_t ret; 885 886 if (count == 0) 887 return -EINVAL; 888 if (copy_from_user(kaddr, buf, count)) 889 return -EFAULT; 890 kaddr[count] = '\0'; 891 ret = cd->cache_parse(cd, kaddr, count); 892 if (!ret) 893 ret = count; 894 return ret; 895 } 896 897 static ssize_t cache_slow_downcall(const char __user *buf, 898 size_t count, struct cache_detail *cd) 899 { 900 static char write_buf[8192]; /* protected by queue_io_mutex */ 901 ssize_t ret = -EINVAL; 902 903 if (count >= sizeof(write_buf)) 904 goto out; 905 mutex_lock(&queue_io_mutex); 906 ret = cache_do_downcall(write_buf, buf, count, cd); 907 mutex_unlock(&queue_io_mutex); 908 out: 909 return ret; 910 } 911 912 static ssize_t cache_downcall(struct address_space *mapping, 913 const char __user *buf, 914 size_t count, struct cache_detail *cd) 915 { 916 struct page *page; 917 char *kaddr; 918 ssize_t ret = -ENOMEM; 919 920 if (count >= PAGE_SIZE) 921 goto out_slow; 922 923 page = find_or_create_page(mapping, 0, GFP_KERNEL); 924 if (!page) 925 goto out_slow; 926 927 kaddr = kmap(page); 928 ret = cache_do_downcall(kaddr, buf, count, cd); 929 kunmap(page); 930 unlock_page(page); 931 put_page(page); 932 return ret; 933 out_slow: 934 return cache_slow_downcall(buf, count, cd); 935 } 936 937 static ssize_t cache_write(struct file *filp, const char __user *buf, 938 size_t count, loff_t *ppos, 939 struct cache_detail *cd) 940 { 941 struct address_space *mapping = filp->f_mapping; 942 struct inode *inode = file_inode(filp); 943 ssize_t ret = -EINVAL; 944 945 if (!cd->cache_parse) 946 goto out; 947 948 inode_lock(inode); 949 ret = cache_downcall(mapping, buf, count, cd); 950 inode_unlock(inode); 951 out: 952 return ret; 953 } 954 955 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 956 957 static __poll_t cache_poll(struct file *filp, poll_table *wait, 958 struct cache_detail *cd) 959 { 960 __poll_t mask; 961 struct cache_reader *rp = filp->private_data; 962 struct cache_queue *cq; 963 964 poll_wait(filp, &queue_wait, wait); 965 966 /* alway allow write */ 967 mask = EPOLLOUT | EPOLLWRNORM; 968 969 if (!rp) 970 return mask; 971 972 spin_lock(&queue_lock); 973 974 for (cq= &rp->q; &cq->list != &cd->queue; 975 cq = list_entry(cq->list.next, struct cache_queue, list)) 976 if (!cq->reader) { 977 mask |= EPOLLIN | EPOLLRDNORM; 978 break; 979 } 980 spin_unlock(&queue_lock); 981 return mask; 982 } 983 984 static int cache_ioctl(struct inode *ino, struct file *filp, 985 unsigned int cmd, unsigned long arg, 986 struct cache_detail *cd) 987 { 988 int len = 0; 989 struct cache_reader *rp = filp->private_data; 990 struct cache_queue *cq; 991 992 if (cmd != FIONREAD || !rp) 993 return -EINVAL; 994 995 spin_lock(&queue_lock); 996 997 /* only find the length remaining in current request, 998 * or the length of the next request 999 */ 1000 for (cq= &rp->q; &cq->list != &cd->queue; 1001 cq = list_entry(cq->list.next, struct cache_queue, list)) 1002 if (!cq->reader) { 1003 struct cache_request *cr = 1004 container_of(cq, struct cache_request, q); 1005 len = cr->len - rp->offset; 1006 break; 1007 } 1008 spin_unlock(&queue_lock); 1009 1010 return put_user(len, (int __user *)arg); 1011 } 1012 1013 static int cache_open(struct inode *inode, struct file *filp, 1014 struct cache_detail *cd) 1015 { 1016 struct cache_reader *rp = NULL; 1017 1018 if (!cd || !try_module_get(cd->owner)) 1019 return -EACCES; 1020 nonseekable_open(inode, filp); 1021 if (filp->f_mode & FMODE_READ) { 1022 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1023 if (!rp) { 1024 module_put(cd->owner); 1025 return -ENOMEM; 1026 } 1027 rp->offset = 0; 1028 rp->q.reader = 1; 1029 atomic_inc(&cd->readers); 1030 spin_lock(&queue_lock); 1031 list_add(&rp->q.list, &cd->queue); 1032 spin_unlock(&queue_lock); 1033 } 1034 filp->private_data = rp; 1035 return 0; 1036 } 1037 1038 static int cache_release(struct inode *inode, struct file *filp, 1039 struct cache_detail *cd) 1040 { 1041 struct cache_reader *rp = filp->private_data; 1042 1043 if (rp) { 1044 spin_lock(&queue_lock); 1045 if (rp->offset) { 1046 struct cache_queue *cq; 1047 for (cq= &rp->q; &cq->list != &cd->queue; 1048 cq = list_entry(cq->list.next, struct cache_queue, list)) 1049 if (!cq->reader) { 1050 container_of(cq, struct cache_request, q) 1051 ->readers--; 1052 break; 1053 } 1054 rp->offset = 0; 1055 } 1056 list_del(&rp->q.list); 1057 spin_unlock(&queue_lock); 1058 1059 filp->private_data = NULL; 1060 kfree(rp); 1061 1062 cd->last_close = seconds_since_boot(); 1063 atomic_dec(&cd->readers); 1064 } 1065 module_put(cd->owner); 1066 return 0; 1067 } 1068 1069 1070 1071 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1072 { 1073 struct cache_queue *cq, *tmp; 1074 struct cache_request *cr; 1075 struct list_head dequeued; 1076 1077 INIT_LIST_HEAD(&dequeued); 1078 spin_lock(&queue_lock); 1079 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1080 if (!cq->reader) { 1081 cr = container_of(cq, struct cache_request, q); 1082 if (cr->item != ch) 1083 continue; 1084 if (test_bit(CACHE_PENDING, &ch->flags)) 1085 /* Lost a race and it is pending again */ 1086 break; 1087 if (cr->readers != 0) 1088 continue; 1089 list_move(&cr->q.list, &dequeued); 1090 } 1091 spin_unlock(&queue_lock); 1092 while (!list_empty(&dequeued)) { 1093 cr = list_entry(dequeued.next, struct cache_request, q.list); 1094 list_del(&cr->q.list); 1095 cache_put(cr->item, detail); 1096 kfree(cr->buf); 1097 kfree(cr); 1098 } 1099 } 1100 1101 /* 1102 * Support routines for text-based upcalls. 1103 * Fields are separated by spaces. 1104 * Fields are either mangled to quote space tab newline slosh with slosh 1105 * or a hexified with a leading \x 1106 * Record is terminated with newline. 1107 * 1108 */ 1109 1110 void qword_add(char **bpp, int *lp, char *str) 1111 { 1112 char *bp = *bpp; 1113 int len = *lp; 1114 int ret; 1115 1116 if (len < 0) return; 1117 1118 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1119 if (ret >= len) { 1120 bp += len; 1121 len = -1; 1122 } else { 1123 bp += ret; 1124 len -= ret; 1125 *bp++ = ' '; 1126 len--; 1127 } 1128 *bpp = bp; 1129 *lp = len; 1130 } 1131 EXPORT_SYMBOL_GPL(qword_add); 1132 1133 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1134 { 1135 char *bp = *bpp; 1136 int len = *lp; 1137 1138 if (len < 0) return; 1139 1140 if (len > 2) { 1141 *bp++ = '\\'; 1142 *bp++ = 'x'; 1143 len -= 2; 1144 while (blen && len >= 2) { 1145 bp = hex_byte_pack(bp, *buf++); 1146 len -= 2; 1147 blen--; 1148 } 1149 } 1150 if (blen || len<1) len = -1; 1151 else { 1152 *bp++ = ' '; 1153 len--; 1154 } 1155 *bpp = bp; 1156 *lp = len; 1157 } 1158 EXPORT_SYMBOL_GPL(qword_addhex); 1159 1160 static void warn_no_listener(struct cache_detail *detail) 1161 { 1162 if (detail->last_warn != detail->last_close) { 1163 detail->last_warn = detail->last_close; 1164 if (detail->warn_no_listener) 1165 detail->warn_no_listener(detail, detail->last_close != 0); 1166 } 1167 } 1168 1169 static bool cache_listeners_exist(struct cache_detail *detail) 1170 { 1171 if (atomic_read(&detail->readers)) 1172 return true; 1173 if (detail->last_close == 0) 1174 /* This cache was never opened */ 1175 return false; 1176 if (detail->last_close < seconds_since_boot() - 30) 1177 /* 1178 * We allow for the possibility that someone might 1179 * restart a userspace daemon without restarting the 1180 * server; but after 30 seconds, we give up. 1181 */ 1182 return false; 1183 return true; 1184 } 1185 1186 /* 1187 * register an upcall request to user-space and queue it up for read() by the 1188 * upcall daemon. 1189 * 1190 * Each request is at most one page long. 1191 */ 1192 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1193 { 1194 1195 char *buf; 1196 struct cache_request *crq; 1197 int ret = 0; 1198 1199 if (!detail->cache_request) 1200 return -EINVAL; 1201 1202 if (!cache_listeners_exist(detail)) { 1203 warn_no_listener(detail); 1204 return -EINVAL; 1205 } 1206 if (test_bit(CACHE_CLEANED, &h->flags)) 1207 /* Too late to make an upcall */ 1208 return -EAGAIN; 1209 1210 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1211 if (!buf) 1212 return -EAGAIN; 1213 1214 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1215 if (!crq) { 1216 kfree(buf); 1217 return -EAGAIN; 1218 } 1219 1220 crq->q.reader = 0; 1221 crq->buf = buf; 1222 crq->len = 0; 1223 crq->readers = 0; 1224 spin_lock(&queue_lock); 1225 if (test_bit(CACHE_PENDING, &h->flags)) { 1226 crq->item = cache_get(h); 1227 list_add_tail(&crq->q.list, &detail->queue); 1228 } else 1229 /* Lost a race, no longer PENDING, so don't enqueue */ 1230 ret = -EAGAIN; 1231 spin_unlock(&queue_lock); 1232 wake_up(&queue_wait); 1233 if (ret == -EAGAIN) { 1234 kfree(buf); 1235 kfree(crq); 1236 } 1237 return ret; 1238 } 1239 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1240 1241 /* 1242 * parse a message from user-space and pass it 1243 * to an appropriate cache 1244 * Messages are, like requests, separated into fields by 1245 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1246 * 1247 * Message is 1248 * reply cachename expiry key ... content.... 1249 * 1250 * key and content are both parsed by cache 1251 */ 1252 1253 int qword_get(char **bpp, char *dest, int bufsize) 1254 { 1255 /* return bytes copied, or -1 on error */ 1256 char *bp = *bpp; 1257 int len = 0; 1258 1259 while (*bp == ' ') bp++; 1260 1261 if (bp[0] == '\\' && bp[1] == 'x') { 1262 /* HEX STRING */ 1263 bp += 2; 1264 while (len < bufsize - 1) { 1265 int h, l; 1266 1267 h = hex_to_bin(bp[0]); 1268 if (h < 0) 1269 break; 1270 1271 l = hex_to_bin(bp[1]); 1272 if (l < 0) 1273 break; 1274 1275 *dest++ = (h << 4) | l; 1276 bp += 2; 1277 len++; 1278 } 1279 } else { 1280 /* text with \nnn octal quoting */ 1281 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1282 if (*bp == '\\' && 1283 isodigit(bp[1]) && (bp[1] <= '3') && 1284 isodigit(bp[2]) && 1285 isodigit(bp[3])) { 1286 int byte = (*++bp -'0'); 1287 bp++; 1288 byte = (byte << 3) | (*bp++ - '0'); 1289 byte = (byte << 3) | (*bp++ - '0'); 1290 *dest++ = byte; 1291 len++; 1292 } else { 1293 *dest++ = *bp++; 1294 len++; 1295 } 1296 } 1297 } 1298 1299 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1300 return -1; 1301 while (*bp == ' ') bp++; 1302 *bpp = bp; 1303 *dest = '\0'; 1304 return len; 1305 } 1306 EXPORT_SYMBOL_GPL(qword_get); 1307 1308 1309 /* 1310 * support /proc/net/rpc/$CACHENAME/content 1311 * as a seqfile. 1312 * We call ->cache_show passing NULL for the item to 1313 * get a header, then pass each real item in the cache 1314 */ 1315 1316 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1317 { 1318 loff_t n = *pos; 1319 unsigned int hash, entry; 1320 struct cache_head *ch; 1321 struct cache_detail *cd = m->private; 1322 1323 if (!n--) 1324 return SEQ_START_TOKEN; 1325 hash = n >> 32; 1326 entry = n & ((1LL<<32) - 1); 1327 1328 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1329 if (!entry--) 1330 return ch; 1331 n &= ~((1LL<<32) - 1); 1332 do { 1333 hash++; 1334 n += 1LL<<32; 1335 } while(hash < cd->hash_size && 1336 hlist_empty(&cd->hash_table[hash])); 1337 if (hash >= cd->hash_size) 1338 return NULL; 1339 *pos = n+1; 1340 return hlist_entry_safe(rcu_dereference_raw( 1341 hlist_first_rcu(&cd->hash_table[hash])), 1342 struct cache_head, cache_list); 1343 } 1344 1345 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1346 { 1347 struct cache_head *ch = p; 1348 int hash = (*pos >> 32); 1349 struct cache_detail *cd = m->private; 1350 1351 if (p == SEQ_START_TOKEN) 1352 hash = 0; 1353 else if (ch->cache_list.next == NULL) { 1354 hash++; 1355 *pos += 1LL<<32; 1356 } else { 1357 ++*pos; 1358 return hlist_entry_safe(rcu_dereference_raw( 1359 hlist_next_rcu(&ch->cache_list)), 1360 struct cache_head, cache_list); 1361 } 1362 *pos &= ~((1LL<<32) - 1); 1363 while (hash < cd->hash_size && 1364 hlist_empty(&cd->hash_table[hash])) { 1365 hash++; 1366 *pos += 1LL<<32; 1367 } 1368 if (hash >= cd->hash_size) 1369 return NULL; 1370 ++*pos; 1371 return hlist_entry_safe(rcu_dereference_raw( 1372 hlist_first_rcu(&cd->hash_table[hash])), 1373 struct cache_head, cache_list); 1374 } 1375 EXPORT_SYMBOL_GPL(cache_seq_next); 1376 1377 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1378 __acquires(RCU) 1379 { 1380 rcu_read_lock(); 1381 return __cache_seq_start(m, pos); 1382 } 1383 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1384 1385 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1386 { 1387 return cache_seq_next(file, p, pos); 1388 } 1389 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1390 1391 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1392 __releases(RCU) 1393 { 1394 rcu_read_unlock(); 1395 } 1396 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1397 1398 static int c_show(struct seq_file *m, void *p) 1399 { 1400 struct cache_head *cp = p; 1401 struct cache_detail *cd = m->private; 1402 1403 if (p == SEQ_START_TOKEN) 1404 return cd->cache_show(m, cd, NULL); 1405 1406 ifdebug(CACHE) 1407 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1408 convert_to_wallclock(cp->expiry_time), 1409 kref_read(&cp->ref), cp->flags); 1410 cache_get(cp); 1411 if (cache_check(cd, cp, NULL)) 1412 /* cache_check does a cache_put on failure */ 1413 seq_printf(m, "# "); 1414 else { 1415 if (cache_is_expired(cd, cp)) 1416 seq_printf(m, "# "); 1417 cache_put(cp, cd); 1418 } 1419 1420 return cd->cache_show(m, cd, cp); 1421 } 1422 1423 static const struct seq_operations cache_content_op = { 1424 .start = cache_seq_start_rcu, 1425 .next = cache_seq_next_rcu, 1426 .stop = cache_seq_stop_rcu, 1427 .show = c_show, 1428 }; 1429 1430 static int content_open(struct inode *inode, struct file *file, 1431 struct cache_detail *cd) 1432 { 1433 struct seq_file *seq; 1434 int err; 1435 1436 if (!cd || !try_module_get(cd->owner)) 1437 return -EACCES; 1438 1439 err = seq_open(file, &cache_content_op); 1440 if (err) { 1441 module_put(cd->owner); 1442 return err; 1443 } 1444 1445 seq = file->private_data; 1446 seq->private = cd; 1447 return 0; 1448 } 1449 1450 static int content_release(struct inode *inode, struct file *file, 1451 struct cache_detail *cd) 1452 { 1453 int ret = seq_release(inode, file); 1454 module_put(cd->owner); 1455 return ret; 1456 } 1457 1458 static int open_flush(struct inode *inode, struct file *file, 1459 struct cache_detail *cd) 1460 { 1461 if (!cd || !try_module_get(cd->owner)) 1462 return -EACCES; 1463 return nonseekable_open(inode, file); 1464 } 1465 1466 static int release_flush(struct inode *inode, struct file *file, 1467 struct cache_detail *cd) 1468 { 1469 module_put(cd->owner); 1470 return 0; 1471 } 1472 1473 static ssize_t read_flush(struct file *file, char __user *buf, 1474 size_t count, loff_t *ppos, 1475 struct cache_detail *cd) 1476 { 1477 char tbuf[22]; 1478 size_t len; 1479 1480 len = snprintf(tbuf, sizeof(tbuf), "%lu\n", 1481 convert_to_wallclock(cd->flush_time)); 1482 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1483 } 1484 1485 static ssize_t write_flush(struct file *file, const char __user *buf, 1486 size_t count, loff_t *ppos, 1487 struct cache_detail *cd) 1488 { 1489 char tbuf[20]; 1490 char *ep; 1491 time_t now; 1492 1493 if (*ppos || count > sizeof(tbuf)-1) 1494 return -EINVAL; 1495 if (copy_from_user(tbuf, buf, count)) 1496 return -EFAULT; 1497 tbuf[count] = 0; 1498 simple_strtoul(tbuf, &ep, 0); 1499 if (*ep && *ep != '\n') 1500 return -EINVAL; 1501 /* Note that while we check that 'buf' holds a valid number, 1502 * we always ignore the value and just flush everything. 1503 * Making use of the number leads to races. 1504 */ 1505 1506 now = seconds_since_boot(); 1507 /* Always flush everything, so behave like cache_purge() 1508 * Do this by advancing flush_time to the current time, 1509 * or by one second if it has already reached the current time. 1510 * Newly added cache entries will always have ->last_refresh greater 1511 * that ->flush_time, so they don't get flushed prematurely. 1512 */ 1513 1514 if (cd->flush_time >= now) 1515 now = cd->flush_time + 1; 1516 1517 cd->flush_time = now; 1518 cd->nextcheck = now; 1519 cache_flush(); 1520 1521 *ppos += count; 1522 return count; 1523 } 1524 1525 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1526 size_t count, loff_t *ppos) 1527 { 1528 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1529 1530 return cache_read(filp, buf, count, ppos, cd); 1531 } 1532 1533 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1534 size_t count, loff_t *ppos) 1535 { 1536 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1537 1538 return cache_write(filp, buf, count, ppos, cd); 1539 } 1540 1541 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1542 { 1543 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1544 1545 return cache_poll(filp, wait, cd); 1546 } 1547 1548 static long cache_ioctl_procfs(struct file *filp, 1549 unsigned int cmd, unsigned long arg) 1550 { 1551 struct inode *inode = file_inode(filp); 1552 struct cache_detail *cd = PDE_DATA(inode); 1553 1554 return cache_ioctl(inode, filp, cmd, arg, cd); 1555 } 1556 1557 static int cache_open_procfs(struct inode *inode, struct file *filp) 1558 { 1559 struct cache_detail *cd = PDE_DATA(inode); 1560 1561 return cache_open(inode, filp, cd); 1562 } 1563 1564 static int cache_release_procfs(struct inode *inode, struct file *filp) 1565 { 1566 struct cache_detail *cd = PDE_DATA(inode); 1567 1568 return cache_release(inode, filp, cd); 1569 } 1570 1571 static const struct file_operations cache_file_operations_procfs = { 1572 .owner = THIS_MODULE, 1573 .llseek = no_llseek, 1574 .read = cache_read_procfs, 1575 .write = cache_write_procfs, 1576 .poll = cache_poll_procfs, 1577 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1578 .open = cache_open_procfs, 1579 .release = cache_release_procfs, 1580 }; 1581 1582 static int content_open_procfs(struct inode *inode, struct file *filp) 1583 { 1584 struct cache_detail *cd = PDE_DATA(inode); 1585 1586 return content_open(inode, filp, cd); 1587 } 1588 1589 static int content_release_procfs(struct inode *inode, struct file *filp) 1590 { 1591 struct cache_detail *cd = PDE_DATA(inode); 1592 1593 return content_release(inode, filp, cd); 1594 } 1595 1596 static const struct file_operations content_file_operations_procfs = { 1597 .open = content_open_procfs, 1598 .read = seq_read, 1599 .llseek = seq_lseek, 1600 .release = content_release_procfs, 1601 }; 1602 1603 static int open_flush_procfs(struct inode *inode, struct file *filp) 1604 { 1605 struct cache_detail *cd = PDE_DATA(inode); 1606 1607 return open_flush(inode, filp, cd); 1608 } 1609 1610 static int release_flush_procfs(struct inode *inode, struct file *filp) 1611 { 1612 struct cache_detail *cd = PDE_DATA(inode); 1613 1614 return release_flush(inode, filp, cd); 1615 } 1616 1617 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1618 size_t count, loff_t *ppos) 1619 { 1620 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1621 1622 return read_flush(filp, buf, count, ppos, cd); 1623 } 1624 1625 static ssize_t write_flush_procfs(struct file *filp, 1626 const char __user *buf, 1627 size_t count, loff_t *ppos) 1628 { 1629 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1630 1631 return write_flush(filp, buf, count, ppos, cd); 1632 } 1633 1634 static const struct file_operations cache_flush_operations_procfs = { 1635 .open = open_flush_procfs, 1636 .read = read_flush_procfs, 1637 .write = write_flush_procfs, 1638 .release = release_flush_procfs, 1639 .llseek = no_llseek, 1640 }; 1641 1642 static void remove_cache_proc_entries(struct cache_detail *cd) 1643 { 1644 if (cd->procfs) { 1645 proc_remove(cd->procfs); 1646 cd->procfs = NULL; 1647 } 1648 } 1649 1650 #ifdef CONFIG_PROC_FS 1651 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1652 { 1653 struct proc_dir_entry *p; 1654 struct sunrpc_net *sn; 1655 1656 sn = net_generic(net, sunrpc_net_id); 1657 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1658 if (cd->procfs == NULL) 1659 goto out_nomem; 1660 1661 p = proc_create_data("flush", S_IFREG | 0600, 1662 cd->procfs, &cache_flush_operations_procfs, cd); 1663 if (p == NULL) 1664 goto out_nomem; 1665 1666 if (cd->cache_request || cd->cache_parse) { 1667 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1668 &cache_file_operations_procfs, cd); 1669 if (p == NULL) 1670 goto out_nomem; 1671 } 1672 if (cd->cache_show) { 1673 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1674 &content_file_operations_procfs, cd); 1675 if (p == NULL) 1676 goto out_nomem; 1677 } 1678 return 0; 1679 out_nomem: 1680 remove_cache_proc_entries(cd); 1681 return -ENOMEM; 1682 } 1683 #else /* CONFIG_PROC_FS */ 1684 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1685 { 1686 return 0; 1687 } 1688 #endif 1689 1690 void __init cache_initialize(void) 1691 { 1692 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1693 } 1694 1695 int cache_register_net(struct cache_detail *cd, struct net *net) 1696 { 1697 int ret; 1698 1699 sunrpc_init_cache_detail(cd); 1700 ret = create_cache_proc_entries(cd, net); 1701 if (ret) 1702 sunrpc_destroy_cache_detail(cd); 1703 return ret; 1704 } 1705 EXPORT_SYMBOL_GPL(cache_register_net); 1706 1707 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1708 { 1709 remove_cache_proc_entries(cd); 1710 sunrpc_destroy_cache_detail(cd); 1711 } 1712 EXPORT_SYMBOL_GPL(cache_unregister_net); 1713 1714 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1715 { 1716 struct cache_detail *cd; 1717 int i; 1718 1719 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1720 if (cd == NULL) 1721 return ERR_PTR(-ENOMEM); 1722 1723 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1724 GFP_KERNEL); 1725 if (cd->hash_table == NULL) { 1726 kfree(cd); 1727 return ERR_PTR(-ENOMEM); 1728 } 1729 1730 for (i = 0; i < cd->hash_size; i++) 1731 INIT_HLIST_HEAD(&cd->hash_table[i]); 1732 cd->net = net; 1733 return cd; 1734 } 1735 EXPORT_SYMBOL_GPL(cache_create_net); 1736 1737 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1738 { 1739 kfree(cd->hash_table); 1740 kfree(cd); 1741 } 1742 EXPORT_SYMBOL_GPL(cache_destroy_net); 1743 1744 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1745 size_t count, loff_t *ppos) 1746 { 1747 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1748 1749 return cache_read(filp, buf, count, ppos, cd); 1750 } 1751 1752 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1753 size_t count, loff_t *ppos) 1754 { 1755 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1756 1757 return cache_write(filp, buf, count, ppos, cd); 1758 } 1759 1760 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1761 { 1762 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1763 1764 return cache_poll(filp, wait, cd); 1765 } 1766 1767 static long cache_ioctl_pipefs(struct file *filp, 1768 unsigned int cmd, unsigned long arg) 1769 { 1770 struct inode *inode = file_inode(filp); 1771 struct cache_detail *cd = RPC_I(inode)->private; 1772 1773 return cache_ioctl(inode, filp, cmd, arg, cd); 1774 } 1775 1776 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1777 { 1778 struct cache_detail *cd = RPC_I(inode)->private; 1779 1780 return cache_open(inode, filp, cd); 1781 } 1782 1783 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1784 { 1785 struct cache_detail *cd = RPC_I(inode)->private; 1786 1787 return cache_release(inode, filp, cd); 1788 } 1789 1790 const struct file_operations cache_file_operations_pipefs = { 1791 .owner = THIS_MODULE, 1792 .llseek = no_llseek, 1793 .read = cache_read_pipefs, 1794 .write = cache_write_pipefs, 1795 .poll = cache_poll_pipefs, 1796 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1797 .open = cache_open_pipefs, 1798 .release = cache_release_pipefs, 1799 }; 1800 1801 static int content_open_pipefs(struct inode *inode, struct file *filp) 1802 { 1803 struct cache_detail *cd = RPC_I(inode)->private; 1804 1805 return content_open(inode, filp, cd); 1806 } 1807 1808 static int content_release_pipefs(struct inode *inode, struct file *filp) 1809 { 1810 struct cache_detail *cd = RPC_I(inode)->private; 1811 1812 return content_release(inode, filp, cd); 1813 } 1814 1815 const struct file_operations content_file_operations_pipefs = { 1816 .open = content_open_pipefs, 1817 .read = seq_read, 1818 .llseek = seq_lseek, 1819 .release = content_release_pipefs, 1820 }; 1821 1822 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1823 { 1824 struct cache_detail *cd = RPC_I(inode)->private; 1825 1826 return open_flush(inode, filp, cd); 1827 } 1828 1829 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1830 { 1831 struct cache_detail *cd = RPC_I(inode)->private; 1832 1833 return release_flush(inode, filp, cd); 1834 } 1835 1836 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1837 size_t count, loff_t *ppos) 1838 { 1839 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1840 1841 return read_flush(filp, buf, count, ppos, cd); 1842 } 1843 1844 static ssize_t write_flush_pipefs(struct file *filp, 1845 const char __user *buf, 1846 size_t count, loff_t *ppos) 1847 { 1848 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1849 1850 return write_flush(filp, buf, count, ppos, cd); 1851 } 1852 1853 const struct file_operations cache_flush_operations_pipefs = { 1854 .open = open_flush_pipefs, 1855 .read = read_flush_pipefs, 1856 .write = write_flush_pipefs, 1857 .release = release_flush_pipefs, 1858 .llseek = no_llseek, 1859 }; 1860 1861 int sunrpc_cache_register_pipefs(struct dentry *parent, 1862 const char *name, umode_t umode, 1863 struct cache_detail *cd) 1864 { 1865 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1866 if (IS_ERR(dir)) 1867 return PTR_ERR(dir); 1868 cd->pipefs = dir; 1869 return 0; 1870 } 1871 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1872 1873 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1874 { 1875 if (cd->pipefs) { 1876 rpc_remove_cache_dir(cd->pipefs); 1877 cd->pipefs = NULL; 1878 } 1879 } 1880 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1881 1882 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1883 { 1884 spin_lock(&cd->hash_lock); 1885 if (!hlist_unhashed(&h->cache_list)){ 1886 hlist_del_init_rcu(&h->cache_list); 1887 cd->entries--; 1888 spin_unlock(&cd->hash_lock); 1889 cache_put(h, cd); 1890 } else 1891 spin_unlock(&cd->hash_lock); 1892 } 1893 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1894