xref: /openbmc/linux/net/sunrpc/cache.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h)
44 {
45 	time_t now = seconds_since_boot();
46 	h->next = NULL;
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	h->last_refresh = now;
51 }
52 
53 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
54 				       struct cache_head *key, int hash)
55 {
56 	struct cache_head **head,  **hp;
57 	struct cache_head *new = NULL, *freeme = NULL;
58 
59 	head = &detail->hash_table[hash];
60 
61 	read_lock(&detail->hash_lock);
62 
63 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
64 		struct cache_head *tmp = *hp;
65 		if (detail->match(tmp, key)) {
66 			if (cache_is_expired(detail, tmp))
67 				/* This entry is expired, we will discard it. */
68 				break;
69 			cache_get(tmp);
70 			read_unlock(&detail->hash_lock);
71 			return tmp;
72 		}
73 	}
74 	read_unlock(&detail->hash_lock);
75 	/* Didn't find anything, insert an empty entry */
76 
77 	new = detail->alloc();
78 	if (!new)
79 		return NULL;
80 	/* must fully initialise 'new', else
81 	 * we might get lose if we need to
82 	 * cache_put it soon.
83 	 */
84 	cache_init(new);
85 	detail->init(new, key);
86 
87 	write_lock(&detail->hash_lock);
88 
89 	/* check if entry appeared while we slept */
90 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
91 		struct cache_head *tmp = *hp;
92 		if (detail->match(tmp, key)) {
93 			if (cache_is_expired(detail, tmp)) {
94 				*hp = tmp->next;
95 				tmp->next = NULL;
96 				detail->entries --;
97 				freeme = tmp;
98 				break;
99 			}
100 			cache_get(tmp);
101 			write_unlock(&detail->hash_lock);
102 			cache_put(new, detail);
103 			return tmp;
104 		}
105 	}
106 	new->next = *head;
107 	*head = new;
108 	detail->entries++;
109 	cache_get(new);
110 	write_unlock(&detail->hash_lock);
111 
112 	if (freeme)
113 		cache_put(freeme, detail);
114 	return new;
115 }
116 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
117 
118 
119 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
120 
121 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
122 {
123 	head->expiry_time = expiry;
124 	head->last_refresh = seconds_since_boot();
125 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
126 	set_bit(CACHE_VALID, &head->flags);
127 }
128 
129 static void cache_fresh_unlocked(struct cache_head *head,
130 				 struct cache_detail *detail)
131 {
132 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
133 		cache_revisit_request(head);
134 		cache_dequeue(detail, head);
135 	}
136 }
137 
138 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
139 				       struct cache_head *new, struct cache_head *old, int hash)
140 {
141 	/* The 'old' entry is to be replaced by 'new'.
142 	 * If 'old' is not VALID, we update it directly,
143 	 * otherwise we need to replace it
144 	 */
145 	struct cache_head **head;
146 	struct cache_head *tmp;
147 
148 	if (!test_bit(CACHE_VALID, &old->flags)) {
149 		write_lock(&detail->hash_lock);
150 		if (!test_bit(CACHE_VALID, &old->flags)) {
151 			if (test_bit(CACHE_NEGATIVE, &new->flags))
152 				set_bit(CACHE_NEGATIVE, &old->flags);
153 			else
154 				detail->update(old, new);
155 			cache_fresh_locked(old, new->expiry_time);
156 			write_unlock(&detail->hash_lock);
157 			cache_fresh_unlocked(old, detail);
158 			return old;
159 		}
160 		write_unlock(&detail->hash_lock);
161 	}
162 	/* We need to insert a new entry */
163 	tmp = detail->alloc();
164 	if (!tmp) {
165 		cache_put(old, detail);
166 		return NULL;
167 	}
168 	cache_init(tmp);
169 	detail->init(tmp, old);
170 	head = &detail->hash_table[hash];
171 
172 	write_lock(&detail->hash_lock);
173 	if (test_bit(CACHE_NEGATIVE, &new->flags))
174 		set_bit(CACHE_NEGATIVE, &tmp->flags);
175 	else
176 		detail->update(tmp, new);
177 	tmp->next = *head;
178 	*head = tmp;
179 	detail->entries++;
180 	cache_get(tmp);
181 	cache_fresh_locked(tmp, new->expiry_time);
182 	cache_fresh_locked(old, 0);
183 	write_unlock(&detail->hash_lock);
184 	cache_fresh_unlocked(tmp, detail);
185 	cache_fresh_unlocked(old, detail);
186 	cache_put(old, detail);
187 	return tmp;
188 }
189 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
190 
191 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
192 {
193 	if (cd->cache_upcall)
194 		return cd->cache_upcall(cd, h);
195 	return sunrpc_cache_pipe_upcall(cd, h);
196 }
197 
198 static inline int cache_is_valid(struct cache_head *h)
199 {
200 	if (!test_bit(CACHE_VALID, &h->flags))
201 		return -EAGAIN;
202 	else {
203 		/* entry is valid */
204 		if (test_bit(CACHE_NEGATIVE, &h->flags))
205 			return -ENOENT;
206 		else {
207 			/*
208 			 * In combination with write barrier in
209 			 * sunrpc_cache_update, ensures that anyone
210 			 * using the cache entry after this sees the
211 			 * updated contents:
212 			 */
213 			smp_rmb();
214 			return 0;
215 		}
216 	}
217 }
218 
219 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
220 {
221 	int rv;
222 
223 	write_lock(&detail->hash_lock);
224 	rv = cache_is_valid(h);
225 	if (rv == -EAGAIN) {
226 		set_bit(CACHE_NEGATIVE, &h->flags);
227 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
228 		rv = -ENOENT;
229 	}
230 	write_unlock(&detail->hash_lock);
231 	cache_fresh_unlocked(h, detail);
232 	return rv;
233 }
234 
235 /*
236  * This is the generic cache management routine for all
237  * the authentication caches.
238  * It checks the currency of a cache item and will (later)
239  * initiate an upcall to fill it if needed.
240  *
241  *
242  * Returns 0 if the cache_head can be used, or cache_puts it and returns
243  * -EAGAIN if upcall is pending and request has been queued
244  * -ETIMEDOUT if upcall failed or request could not be queue or
245  *           upcall completed but item is still invalid (implying that
246  *           the cache item has been replaced with a newer one).
247  * -ENOENT if cache entry was negative
248  */
249 int cache_check(struct cache_detail *detail,
250 		    struct cache_head *h, struct cache_req *rqstp)
251 {
252 	int rv;
253 	long refresh_age, age;
254 
255 	/* First decide return status as best we can */
256 	rv = cache_is_valid(h);
257 
258 	/* now see if we want to start an upcall */
259 	refresh_age = (h->expiry_time - h->last_refresh);
260 	age = seconds_since_boot() - h->last_refresh;
261 
262 	if (rqstp == NULL) {
263 		if (rv == -EAGAIN)
264 			rv = -ENOENT;
265 	} else if (rv == -EAGAIN ||
266 		   (h->expiry_time != 0 && age > refresh_age/2)) {
267 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
268 				refresh_age, age);
269 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
270 			switch (cache_make_upcall(detail, h)) {
271 			case -EINVAL:
272 				rv = try_to_negate_entry(detail, h);
273 				break;
274 			case -EAGAIN:
275 				cache_fresh_unlocked(h, detail);
276 				break;
277 			}
278 		}
279 	}
280 
281 	if (rv == -EAGAIN) {
282 		if (!cache_defer_req(rqstp, h)) {
283 			/*
284 			 * Request was not deferred; handle it as best
285 			 * we can ourselves:
286 			 */
287 			rv = cache_is_valid(h);
288 			if (rv == -EAGAIN)
289 				rv = -ETIMEDOUT;
290 		}
291 	}
292 	if (rv)
293 		cache_put(h, detail);
294 	return rv;
295 }
296 EXPORT_SYMBOL_GPL(cache_check);
297 
298 /*
299  * caches need to be periodically cleaned.
300  * For this we maintain a list of cache_detail and
301  * a current pointer into that list and into the table
302  * for that entry.
303  *
304  * Each time cache_clean is called it finds the next non-empty entry
305  * in the current table and walks the list in that entry
306  * looking for entries that can be removed.
307  *
308  * An entry gets removed if:
309  * - The expiry is before current time
310  * - The last_refresh time is before the flush_time for that cache
311  *
312  * later we might drop old entries with non-NEVER expiry if that table
313  * is getting 'full' for some definition of 'full'
314  *
315  * The question of "how often to scan a table" is an interesting one
316  * and is answered in part by the use of the "nextcheck" field in the
317  * cache_detail.
318  * When a scan of a table begins, the nextcheck field is set to a time
319  * that is well into the future.
320  * While scanning, if an expiry time is found that is earlier than the
321  * current nextcheck time, nextcheck is set to that expiry time.
322  * If the flush_time is ever set to a time earlier than the nextcheck
323  * time, the nextcheck time is then set to that flush_time.
324  *
325  * A table is then only scanned if the current time is at least
326  * the nextcheck time.
327  *
328  */
329 
330 static LIST_HEAD(cache_list);
331 static DEFINE_SPINLOCK(cache_list_lock);
332 static struct cache_detail *current_detail;
333 static int current_index;
334 
335 static void do_cache_clean(struct work_struct *work);
336 static struct delayed_work cache_cleaner;
337 
338 void sunrpc_init_cache_detail(struct cache_detail *cd)
339 {
340 	rwlock_init(&cd->hash_lock);
341 	INIT_LIST_HEAD(&cd->queue);
342 	spin_lock(&cache_list_lock);
343 	cd->nextcheck = 0;
344 	cd->entries = 0;
345 	atomic_set(&cd->readers, 0);
346 	cd->last_close = 0;
347 	cd->last_warn = -1;
348 	list_add(&cd->others, &cache_list);
349 	spin_unlock(&cache_list_lock);
350 
351 	/* start the cleaning process */
352 	schedule_delayed_work(&cache_cleaner, 0);
353 }
354 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
355 
356 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
357 {
358 	cache_purge(cd);
359 	spin_lock(&cache_list_lock);
360 	write_lock(&cd->hash_lock);
361 	if (cd->entries || atomic_read(&cd->inuse)) {
362 		write_unlock(&cd->hash_lock);
363 		spin_unlock(&cache_list_lock);
364 		goto out;
365 	}
366 	if (current_detail == cd)
367 		current_detail = NULL;
368 	list_del_init(&cd->others);
369 	write_unlock(&cd->hash_lock);
370 	spin_unlock(&cache_list_lock);
371 	if (list_empty(&cache_list)) {
372 		/* module must be being unloaded so its safe to kill the worker */
373 		cancel_delayed_work_sync(&cache_cleaner);
374 	}
375 	return;
376 out:
377 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
378 }
379 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
380 
381 /* clean cache tries to find something to clean
382  * and cleans it.
383  * It returns 1 if it cleaned something,
384  *            0 if it didn't find anything this time
385  *           -1 if it fell off the end of the list.
386  */
387 static int cache_clean(void)
388 {
389 	int rv = 0;
390 	struct list_head *next;
391 
392 	spin_lock(&cache_list_lock);
393 
394 	/* find a suitable table if we don't already have one */
395 	while (current_detail == NULL ||
396 	    current_index >= current_detail->hash_size) {
397 		if (current_detail)
398 			next = current_detail->others.next;
399 		else
400 			next = cache_list.next;
401 		if (next == &cache_list) {
402 			current_detail = NULL;
403 			spin_unlock(&cache_list_lock);
404 			return -1;
405 		}
406 		current_detail = list_entry(next, struct cache_detail, others);
407 		if (current_detail->nextcheck > seconds_since_boot())
408 			current_index = current_detail->hash_size;
409 		else {
410 			current_index = 0;
411 			current_detail->nextcheck = seconds_since_boot()+30*60;
412 		}
413 	}
414 
415 	/* find a non-empty bucket in the table */
416 	while (current_detail &&
417 	       current_index < current_detail->hash_size &&
418 	       current_detail->hash_table[current_index] == NULL)
419 		current_index++;
420 
421 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
422 
423 	if (current_detail && current_index < current_detail->hash_size) {
424 		struct cache_head *ch, **cp;
425 		struct cache_detail *d;
426 
427 		write_lock(&current_detail->hash_lock);
428 
429 		/* Ok, now to clean this strand */
430 
431 		cp = & current_detail->hash_table[current_index];
432 		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
433 			if (current_detail->nextcheck > ch->expiry_time)
434 				current_detail->nextcheck = ch->expiry_time+1;
435 			if (!cache_is_expired(current_detail, ch))
436 				continue;
437 
438 			*cp = ch->next;
439 			ch->next = NULL;
440 			current_detail->entries--;
441 			rv = 1;
442 			break;
443 		}
444 
445 		write_unlock(&current_detail->hash_lock);
446 		d = current_detail;
447 		if (!ch)
448 			current_index ++;
449 		spin_unlock(&cache_list_lock);
450 		if (ch) {
451 			set_bit(CACHE_CLEANED, &ch->flags);
452 			cache_fresh_unlocked(ch, d);
453 			cache_put(ch, d);
454 		}
455 	} else
456 		spin_unlock(&cache_list_lock);
457 
458 	return rv;
459 }
460 
461 /*
462  * We want to regularly clean the cache, so we need to schedule some work ...
463  */
464 static void do_cache_clean(struct work_struct *work)
465 {
466 	int delay = 5;
467 	if (cache_clean() == -1)
468 		delay = round_jiffies_relative(30*HZ);
469 
470 	if (list_empty(&cache_list))
471 		delay = 0;
472 
473 	if (delay)
474 		schedule_delayed_work(&cache_cleaner, delay);
475 }
476 
477 
478 /*
479  * Clean all caches promptly.  This just calls cache_clean
480  * repeatedly until we are sure that every cache has had a chance to
481  * be fully cleaned
482  */
483 void cache_flush(void)
484 {
485 	while (cache_clean() != -1)
486 		cond_resched();
487 	while (cache_clean() != -1)
488 		cond_resched();
489 }
490 EXPORT_SYMBOL_GPL(cache_flush);
491 
492 void cache_purge(struct cache_detail *detail)
493 {
494 	detail->flush_time = LONG_MAX;
495 	detail->nextcheck = seconds_since_boot();
496 	cache_flush();
497 	detail->flush_time = 1;
498 }
499 EXPORT_SYMBOL_GPL(cache_purge);
500 
501 
502 /*
503  * Deferral and Revisiting of Requests.
504  *
505  * If a cache lookup finds a pending entry, we
506  * need to defer the request and revisit it later.
507  * All deferred requests are stored in a hash table,
508  * indexed by "struct cache_head *".
509  * As it may be wasteful to store a whole request
510  * structure, we allow the request to provide a
511  * deferred form, which must contain a
512  * 'struct cache_deferred_req'
513  * This cache_deferred_req contains a method to allow
514  * it to be revisited when cache info is available
515  */
516 
517 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
518 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
519 
520 #define	DFR_MAX	300	/* ??? */
521 
522 static DEFINE_SPINLOCK(cache_defer_lock);
523 static LIST_HEAD(cache_defer_list);
524 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
525 static int cache_defer_cnt;
526 
527 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
528 {
529 	hlist_del_init(&dreq->hash);
530 	if (!list_empty(&dreq->recent)) {
531 		list_del_init(&dreq->recent);
532 		cache_defer_cnt--;
533 	}
534 }
535 
536 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
537 {
538 	int hash = DFR_HASH(item);
539 
540 	INIT_LIST_HEAD(&dreq->recent);
541 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
542 }
543 
544 static void setup_deferral(struct cache_deferred_req *dreq,
545 			   struct cache_head *item,
546 			   int count_me)
547 {
548 
549 	dreq->item = item;
550 
551 	spin_lock(&cache_defer_lock);
552 
553 	__hash_deferred_req(dreq, item);
554 
555 	if (count_me) {
556 		cache_defer_cnt++;
557 		list_add(&dreq->recent, &cache_defer_list);
558 	}
559 
560 	spin_unlock(&cache_defer_lock);
561 
562 }
563 
564 struct thread_deferred_req {
565 	struct cache_deferred_req handle;
566 	struct completion completion;
567 };
568 
569 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
570 {
571 	struct thread_deferred_req *dr =
572 		container_of(dreq, struct thread_deferred_req, handle);
573 	complete(&dr->completion);
574 }
575 
576 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
577 {
578 	struct thread_deferred_req sleeper;
579 	struct cache_deferred_req *dreq = &sleeper.handle;
580 
581 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
582 	dreq->revisit = cache_restart_thread;
583 
584 	setup_deferral(dreq, item, 0);
585 
586 	if (!test_bit(CACHE_PENDING, &item->flags) ||
587 	    wait_for_completion_interruptible_timeout(
588 		    &sleeper.completion, req->thread_wait) <= 0) {
589 		/* The completion wasn't completed, so we need
590 		 * to clean up
591 		 */
592 		spin_lock(&cache_defer_lock);
593 		if (!hlist_unhashed(&sleeper.handle.hash)) {
594 			__unhash_deferred_req(&sleeper.handle);
595 			spin_unlock(&cache_defer_lock);
596 		} else {
597 			/* cache_revisit_request already removed
598 			 * this from the hash table, but hasn't
599 			 * called ->revisit yet.  It will very soon
600 			 * and we need to wait for it.
601 			 */
602 			spin_unlock(&cache_defer_lock);
603 			wait_for_completion(&sleeper.completion);
604 		}
605 	}
606 }
607 
608 static void cache_limit_defers(void)
609 {
610 	/* Make sure we haven't exceed the limit of allowed deferred
611 	 * requests.
612 	 */
613 	struct cache_deferred_req *discard = NULL;
614 
615 	if (cache_defer_cnt <= DFR_MAX)
616 		return;
617 
618 	spin_lock(&cache_defer_lock);
619 
620 	/* Consider removing either the first or the last */
621 	if (cache_defer_cnt > DFR_MAX) {
622 		if (net_random() & 1)
623 			discard = list_entry(cache_defer_list.next,
624 					     struct cache_deferred_req, recent);
625 		else
626 			discard = list_entry(cache_defer_list.prev,
627 					     struct cache_deferred_req, recent);
628 		__unhash_deferred_req(discard);
629 	}
630 	spin_unlock(&cache_defer_lock);
631 	if (discard)
632 		discard->revisit(discard, 1);
633 }
634 
635 /* Return true if and only if a deferred request is queued. */
636 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
637 {
638 	struct cache_deferred_req *dreq;
639 
640 	if (req->thread_wait) {
641 		cache_wait_req(req, item);
642 		if (!test_bit(CACHE_PENDING, &item->flags))
643 			return false;
644 	}
645 	dreq = req->defer(req);
646 	if (dreq == NULL)
647 		return false;
648 	setup_deferral(dreq, item, 1);
649 	if (!test_bit(CACHE_PENDING, &item->flags))
650 		/* Bit could have been cleared before we managed to
651 		 * set up the deferral, so need to revisit just in case
652 		 */
653 		cache_revisit_request(item);
654 
655 	cache_limit_defers();
656 	return true;
657 }
658 
659 static void cache_revisit_request(struct cache_head *item)
660 {
661 	struct cache_deferred_req *dreq;
662 	struct list_head pending;
663 	struct hlist_node *tmp;
664 	int hash = DFR_HASH(item);
665 
666 	INIT_LIST_HEAD(&pending);
667 	spin_lock(&cache_defer_lock);
668 
669 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
670 		if (dreq->item == item) {
671 			__unhash_deferred_req(dreq);
672 			list_add(&dreq->recent, &pending);
673 		}
674 
675 	spin_unlock(&cache_defer_lock);
676 
677 	while (!list_empty(&pending)) {
678 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
679 		list_del_init(&dreq->recent);
680 		dreq->revisit(dreq, 0);
681 	}
682 }
683 
684 void cache_clean_deferred(void *owner)
685 {
686 	struct cache_deferred_req *dreq, *tmp;
687 	struct list_head pending;
688 
689 
690 	INIT_LIST_HEAD(&pending);
691 	spin_lock(&cache_defer_lock);
692 
693 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
694 		if (dreq->owner == owner) {
695 			__unhash_deferred_req(dreq);
696 			list_add(&dreq->recent, &pending);
697 		}
698 	}
699 	spin_unlock(&cache_defer_lock);
700 
701 	while (!list_empty(&pending)) {
702 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
703 		list_del_init(&dreq->recent);
704 		dreq->revisit(dreq, 1);
705 	}
706 }
707 
708 /*
709  * communicate with user-space
710  *
711  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
712  * On read, you get a full request, or block.
713  * On write, an update request is processed.
714  * Poll works if anything to read, and always allows write.
715  *
716  * Implemented by linked list of requests.  Each open file has
717  * a ->private that also exists in this list.  New requests are added
718  * to the end and may wakeup and preceding readers.
719  * New readers are added to the head.  If, on read, an item is found with
720  * CACHE_UPCALLING clear, we free it from the list.
721  *
722  */
723 
724 static DEFINE_SPINLOCK(queue_lock);
725 static DEFINE_MUTEX(queue_io_mutex);
726 
727 struct cache_queue {
728 	struct list_head	list;
729 	int			reader;	/* if 0, then request */
730 };
731 struct cache_request {
732 	struct cache_queue	q;
733 	struct cache_head	*item;
734 	char			* buf;
735 	int			len;
736 	int			readers;
737 };
738 struct cache_reader {
739 	struct cache_queue	q;
740 	int			offset;	/* if non-0, we have a refcnt on next request */
741 };
742 
743 static int cache_request(struct cache_detail *detail,
744 			       struct cache_request *crq)
745 {
746 	char *bp = crq->buf;
747 	int len = PAGE_SIZE;
748 
749 	detail->cache_request(detail, crq->item, &bp, &len);
750 	if (len < 0)
751 		return -EAGAIN;
752 	return PAGE_SIZE - len;
753 }
754 
755 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
756 			  loff_t *ppos, struct cache_detail *cd)
757 {
758 	struct cache_reader *rp = filp->private_data;
759 	struct cache_request *rq;
760 	struct inode *inode = file_inode(filp);
761 	int err;
762 
763 	if (count == 0)
764 		return 0;
765 
766 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
767 			      * readers on this file */
768  again:
769 	spin_lock(&queue_lock);
770 	/* need to find next request */
771 	while (rp->q.list.next != &cd->queue &&
772 	       list_entry(rp->q.list.next, struct cache_queue, list)
773 	       ->reader) {
774 		struct list_head *next = rp->q.list.next;
775 		list_move(&rp->q.list, next);
776 	}
777 	if (rp->q.list.next == &cd->queue) {
778 		spin_unlock(&queue_lock);
779 		mutex_unlock(&inode->i_mutex);
780 		WARN_ON_ONCE(rp->offset);
781 		return 0;
782 	}
783 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
784 	WARN_ON_ONCE(rq->q.reader);
785 	if (rp->offset == 0)
786 		rq->readers++;
787 	spin_unlock(&queue_lock);
788 
789 	if (rq->len == 0) {
790 		err = cache_request(cd, rq);
791 		if (err < 0)
792 			goto out;
793 		rq->len = err;
794 	}
795 
796 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
797 		err = -EAGAIN;
798 		spin_lock(&queue_lock);
799 		list_move(&rp->q.list, &rq->q.list);
800 		spin_unlock(&queue_lock);
801 	} else {
802 		if (rp->offset + count > rq->len)
803 			count = rq->len - rp->offset;
804 		err = -EFAULT;
805 		if (copy_to_user(buf, rq->buf + rp->offset, count))
806 			goto out;
807 		rp->offset += count;
808 		if (rp->offset >= rq->len) {
809 			rp->offset = 0;
810 			spin_lock(&queue_lock);
811 			list_move(&rp->q.list, &rq->q.list);
812 			spin_unlock(&queue_lock);
813 		}
814 		err = 0;
815 	}
816  out:
817 	if (rp->offset == 0) {
818 		/* need to release rq */
819 		spin_lock(&queue_lock);
820 		rq->readers--;
821 		if (rq->readers == 0 &&
822 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
823 			list_del(&rq->q.list);
824 			spin_unlock(&queue_lock);
825 			cache_put(rq->item, cd);
826 			kfree(rq->buf);
827 			kfree(rq);
828 		} else
829 			spin_unlock(&queue_lock);
830 	}
831 	if (err == -EAGAIN)
832 		goto again;
833 	mutex_unlock(&inode->i_mutex);
834 	return err ? err :  count;
835 }
836 
837 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
838 				 size_t count, struct cache_detail *cd)
839 {
840 	ssize_t ret;
841 
842 	if (count == 0)
843 		return -EINVAL;
844 	if (copy_from_user(kaddr, buf, count))
845 		return -EFAULT;
846 	kaddr[count] = '\0';
847 	ret = cd->cache_parse(cd, kaddr, count);
848 	if (!ret)
849 		ret = count;
850 	return ret;
851 }
852 
853 static ssize_t cache_slow_downcall(const char __user *buf,
854 				   size_t count, struct cache_detail *cd)
855 {
856 	static char write_buf[8192]; /* protected by queue_io_mutex */
857 	ssize_t ret = -EINVAL;
858 
859 	if (count >= sizeof(write_buf))
860 		goto out;
861 	mutex_lock(&queue_io_mutex);
862 	ret = cache_do_downcall(write_buf, buf, count, cd);
863 	mutex_unlock(&queue_io_mutex);
864 out:
865 	return ret;
866 }
867 
868 static ssize_t cache_downcall(struct address_space *mapping,
869 			      const char __user *buf,
870 			      size_t count, struct cache_detail *cd)
871 {
872 	struct page *page;
873 	char *kaddr;
874 	ssize_t ret = -ENOMEM;
875 
876 	if (count >= PAGE_CACHE_SIZE)
877 		goto out_slow;
878 
879 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
880 	if (!page)
881 		goto out_slow;
882 
883 	kaddr = kmap(page);
884 	ret = cache_do_downcall(kaddr, buf, count, cd);
885 	kunmap(page);
886 	unlock_page(page);
887 	page_cache_release(page);
888 	return ret;
889 out_slow:
890 	return cache_slow_downcall(buf, count, cd);
891 }
892 
893 static ssize_t cache_write(struct file *filp, const char __user *buf,
894 			   size_t count, loff_t *ppos,
895 			   struct cache_detail *cd)
896 {
897 	struct address_space *mapping = filp->f_mapping;
898 	struct inode *inode = file_inode(filp);
899 	ssize_t ret = -EINVAL;
900 
901 	if (!cd->cache_parse)
902 		goto out;
903 
904 	mutex_lock(&inode->i_mutex);
905 	ret = cache_downcall(mapping, buf, count, cd);
906 	mutex_unlock(&inode->i_mutex);
907 out:
908 	return ret;
909 }
910 
911 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
912 
913 static unsigned int cache_poll(struct file *filp, poll_table *wait,
914 			       struct cache_detail *cd)
915 {
916 	unsigned int mask;
917 	struct cache_reader *rp = filp->private_data;
918 	struct cache_queue *cq;
919 
920 	poll_wait(filp, &queue_wait, wait);
921 
922 	/* alway allow write */
923 	mask = POLL_OUT | POLLWRNORM;
924 
925 	if (!rp)
926 		return mask;
927 
928 	spin_lock(&queue_lock);
929 
930 	for (cq= &rp->q; &cq->list != &cd->queue;
931 	     cq = list_entry(cq->list.next, struct cache_queue, list))
932 		if (!cq->reader) {
933 			mask |= POLLIN | POLLRDNORM;
934 			break;
935 		}
936 	spin_unlock(&queue_lock);
937 	return mask;
938 }
939 
940 static int cache_ioctl(struct inode *ino, struct file *filp,
941 		       unsigned int cmd, unsigned long arg,
942 		       struct cache_detail *cd)
943 {
944 	int len = 0;
945 	struct cache_reader *rp = filp->private_data;
946 	struct cache_queue *cq;
947 
948 	if (cmd != FIONREAD || !rp)
949 		return -EINVAL;
950 
951 	spin_lock(&queue_lock);
952 
953 	/* only find the length remaining in current request,
954 	 * or the length of the next request
955 	 */
956 	for (cq= &rp->q; &cq->list != &cd->queue;
957 	     cq = list_entry(cq->list.next, struct cache_queue, list))
958 		if (!cq->reader) {
959 			struct cache_request *cr =
960 				container_of(cq, struct cache_request, q);
961 			len = cr->len - rp->offset;
962 			break;
963 		}
964 	spin_unlock(&queue_lock);
965 
966 	return put_user(len, (int __user *)arg);
967 }
968 
969 static int cache_open(struct inode *inode, struct file *filp,
970 		      struct cache_detail *cd)
971 {
972 	struct cache_reader *rp = NULL;
973 
974 	if (!cd || !try_module_get(cd->owner))
975 		return -EACCES;
976 	nonseekable_open(inode, filp);
977 	if (filp->f_mode & FMODE_READ) {
978 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
979 		if (!rp) {
980 			module_put(cd->owner);
981 			return -ENOMEM;
982 		}
983 		rp->offset = 0;
984 		rp->q.reader = 1;
985 		atomic_inc(&cd->readers);
986 		spin_lock(&queue_lock);
987 		list_add(&rp->q.list, &cd->queue);
988 		spin_unlock(&queue_lock);
989 	}
990 	filp->private_data = rp;
991 	return 0;
992 }
993 
994 static int cache_release(struct inode *inode, struct file *filp,
995 			 struct cache_detail *cd)
996 {
997 	struct cache_reader *rp = filp->private_data;
998 
999 	if (rp) {
1000 		spin_lock(&queue_lock);
1001 		if (rp->offset) {
1002 			struct cache_queue *cq;
1003 			for (cq= &rp->q; &cq->list != &cd->queue;
1004 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1005 				if (!cq->reader) {
1006 					container_of(cq, struct cache_request, q)
1007 						->readers--;
1008 					break;
1009 				}
1010 			rp->offset = 0;
1011 		}
1012 		list_del(&rp->q.list);
1013 		spin_unlock(&queue_lock);
1014 
1015 		filp->private_data = NULL;
1016 		kfree(rp);
1017 
1018 		cd->last_close = seconds_since_boot();
1019 		atomic_dec(&cd->readers);
1020 	}
1021 	module_put(cd->owner);
1022 	return 0;
1023 }
1024 
1025 
1026 
1027 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1028 {
1029 	struct cache_queue *cq, *tmp;
1030 	struct cache_request *cr;
1031 	struct list_head dequeued;
1032 
1033 	INIT_LIST_HEAD(&dequeued);
1034 	spin_lock(&queue_lock);
1035 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1036 		if (!cq->reader) {
1037 			cr = container_of(cq, struct cache_request, q);
1038 			if (cr->item != ch)
1039 				continue;
1040 			if (test_bit(CACHE_PENDING, &ch->flags))
1041 				/* Lost a race and it is pending again */
1042 				break;
1043 			if (cr->readers != 0)
1044 				continue;
1045 			list_move(&cr->q.list, &dequeued);
1046 		}
1047 	spin_unlock(&queue_lock);
1048 	while (!list_empty(&dequeued)) {
1049 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1050 		list_del(&cr->q.list);
1051 		cache_put(cr->item, detail);
1052 		kfree(cr->buf);
1053 		kfree(cr);
1054 	}
1055 }
1056 
1057 /*
1058  * Support routines for text-based upcalls.
1059  * Fields are separated by spaces.
1060  * Fields are either mangled to quote space tab newline slosh with slosh
1061  * or a hexified with a leading \x
1062  * Record is terminated with newline.
1063  *
1064  */
1065 
1066 void qword_add(char **bpp, int *lp, char *str)
1067 {
1068 	char *bp = *bpp;
1069 	int len = *lp;
1070 	char c;
1071 
1072 	if (len < 0) return;
1073 
1074 	while ((c=*str++) && len)
1075 		switch(c) {
1076 		case ' ':
1077 		case '\t':
1078 		case '\n':
1079 		case '\\':
1080 			if (len >= 4) {
1081 				*bp++ = '\\';
1082 				*bp++ = '0' + ((c & 0300)>>6);
1083 				*bp++ = '0' + ((c & 0070)>>3);
1084 				*bp++ = '0' + ((c & 0007)>>0);
1085 			}
1086 			len -= 4;
1087 			break;
1088 		default:
1089 			*bp++ = c;
1090 			len--;
1091 		}
1092 	if (c || len <1) len = -1;
1093 	else {
1094 		*bp++ = ' ';
1095 		len--;
1096 	}
1097 	*bpp = bp;
1098 	*lp = len;
1099 }
1100 EXPORT_SYMBOL_GPL(qword_add);
1101 
1102 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1103 {
1104 	char *bp = *bpp;
1105 	int len = *lp;
1106 
1107 	if (len < 0) return;
1108 
1109 	if (len > 2) {
1110 		*bp++ = '\\';
1111 		*bp++ = 'x';
1112 		len -= 2;
1113 		while (blen && len >= 2) {
1114 			unsigned char c = *buf++;
1115 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1116 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1117 			len -= 2;
1118 			blen--;
1119 		}
1120 	}
1121 	if (blen || len<1) len = -1;
1122 	else {
1123 		*bp++ = ' ';
1124 		len--;
1125 	}
1126 	*bpp = bp;
1127 	*lp = len;
1128 }
1129 EXPORT_SYMBOL_GPL(qword_addhex);
1130 
1131 static void warn_no_listener(struct cache_detail *detail)
1132 {
1133 	if (detail->last_warn != detail->last_close) {
1134 		detail->last_warn = detail->last_close;
1135 		if (detail->warn_no_listener)
1136 			detail->warn_no_listener(detail, detail->last_close != 0);
1137 	}
1138 }
1139 
1140 static bool cache_listeners_exist(struct cache_detail *detail)
1141 {
1142 	if (atomic_read(&detail->readers))
1143 		return true;
1144 	if (detail->last_close == 0)
1145 		/* This cache was never opened */
1146 		return false;
1147 	if (detail->last_close < seconds_since_boot() - 30)
1148 		/*
1149 		 * We allow for the possibility that someone might
1150 		 * restart a userspace daemon without restarting the
1151 		 * server; but after 30 seconds, we give up.
1152 		 */
1153 		 return false;
1154 	return true;
1155 }
1156 
1157 /*
1158  * register an upcall request to user-space and queue it up for read() by the
1159  * upcall daemon.
1160  *
1161  * Each request is at most one page long.
1162  */
1163 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1164 {
1165 
1166 	char *buf;
1167 	struct cache_request *crq;
1168 	int ret = 0;
1169 
1170 	if (!detail->cache_request)
1171 		return -EINVAL;
1172 
1173 	if (!cache_listeners_exist(detail)) {
1174 		warn_no_listener(detail);
1175 		return -EINVAL;
1176 	}
1177 	if (test_bit(CACHE_CLEANED, &h->flags))
1178 		/* Too late to make an upcall */
1179 		return -EAGAIN;
1180 
1181 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182 	if (!buf)
1183 		return -EAGAIN;
1184 
1185 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1186 	if (!crq) {
1187 		kfree(buf);
1188 		return -EAGAIN;
1189 	}
1190 
1191 	crq->q.reader = 0;
1192 	crq->item = cache_get(h);
1193 	crq->buf = buf;
1194 	crq->len = 0;
1195 	crq->readers = 0;
1196 	spin_lock(&queue_lock);
1197 	if (test_bit(CACHE_PENDING, &h->flags))
1198 		list_add_tail(&crq->q.list, &detail->queue);
1199 	else
1200 		/* Lost a race, no longer PENDING, so don't enqueue */
1201 		ret = -EAGAIN;
1202 	spin_unlock(&queue_lock);
1203 	wake_up(&queue_wait);
1204 	if (ret == -EAGAIN) {
1205 		kfree(buf);
1206 		kfree(crq);
1207 	}
1208 	return ret;
1209 }
1210 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1211 
1212 /*
1213  * parse a message from user-space and pass it
1214  * to an appropriate cache
1215  * Messages are, like requests, separated into fields by
1216  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1217  *
1218  * Message is
1219  *   reply cachename expiry key ... content....
1220  *
1221  * key and content are both parsed by cache
1222  */
1223 
1224 int qword_get(char **bpp, char *dest, int bufsize)
1225 {
1226 	/* return bytes copied, or -1 on error */
1227 	char *bp = *bpp;
1228 	int len = 0;
1229 
1230 	while (*bp == ' ') bp++;
1231 
1232 	if (bp[0] == '\\' && bp[1] == 'x') {
1233 		/* HEX STRING */
1234 		bp += 2;
1235 		while (len < bufsize) {
1236 			int h, l;
1237 
1238 			h = hex_to_bin(bp[0]);
1239 			if (h < 0)
1240 				break;
1241 
1242 			l = hex_to_bin(bp[1]);
1243 			if (l < 0)
1244 				break;
1245 
1246 			*dest++ = (h << 4) | l;
1247 			bp += 2;
1248 			len++;
1249 		}
1250 	} else {
1251 		/* text with \nnn octal quoting */
1252 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1253 			if (*bp == '\\' &&
1254 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1255 			    isodigit(bp[2]) &&
1256 			    isodigit(bp[3])) {
1257 				int byte = (*++bp -'0');
1258 				bp++;
1259 				byte = (byte << 3) | (*bp++ - '0');
1260 				byte = (byte << 3) | (*bp++ - '0');
1261 				*dest++ = byte;
1262 				len++;
1263 			} else {
1264 				*dest++ = *bp++;
1265 				len++;
1266 			}
1267 		}
1268 	}
1269 
1270 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1271 		return -1;
1272 	while (*bp == ' ') bp++;
1273 	*bpp = bp;
1274 	*dest = '\0';
1275 	return len;
1276 }
1277 EXPORT_SYMBOL_GPL(qword_get);
1278 
1279 
1280 /*
1281  * support /proc/sunrpc/cache/$CACHENAME/content
1282  * as a seqfile.
1283  * We call ->cache_show passing NULL for the item to
1284  * get a header, then pass each real item in the cache
1285  */
1286 
1287 struct handle {
1288 	struct cache_detail *cd;
1289 };
1290 
1291 static void *c_start(struct seq_file *m, loff_t *pos)
1292 	__acquires(cd->hash_lock)
1293 {
1294 	loff_t n = *pos;
1295 	unsigned int hash, entry;
1296 	struct cache_head *ch;
1297 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1298 
1299 
1300 	read_lock(&cd->hash_lock);
1301 	if (!n--)
1302 		return SEQ_START_TOKEN;
1303 	hash = n >> 32;
1304 	entry = n & ((1LL<<32) - 1);
1305 
1306 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1307 		if (!entry--)
1308 			return ch;
1309 	n &= ~((1LL<<32) - 1);
1310 	do {
1311 		hash++;
1312 		n += 1LL<<32;
1313 	} while(hash < cd->hash_size &&
1314 		cd->hash_table[hash]==NULL);
1315 	if (hash >= cd->hash_size)
1316 		return NULL;
1317 	*pos = n+1;
1318 	return cd->hash_table[hash];
1319 }
1320 
1321 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1322 {
1323 	struct cache_head *ch = p;
1324 	int hash = (*pos >> 32);
1325 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1326 
1327 	if (p == SEQ_START_TOKEN)
1328 		hash = 0;
1329 	else if (ch->next == NULL) {
1330 		hash++;
1331 		*pos += 1LL<<32;
1332 	} else {
1333 		++*pos;
1334 		return ch->next;
1335 	}
1336 	*pos &= ~((1LL<<32) - 1);
1337 	while (hash < cd->hash_size &&
1338 	       cd->hash_table[hash] == NULL) {
1339 		hash++;
1340 		*pos += 1LL<<32;
1341 	}
1342 	if (hash >= cd->hash_size)
1343 		return NULL;
1344 	++*pos;
1345 	return cd->hash_table[hash];
1346 }
1347 
1348 static void c_stop(struct seq_file *m, void *p)
1349 	__releases(cd->hash_lock)
1350 {
1351 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1352 	read_unlock(&cd->hash_lock);
1353 }
1354 
1355 static int c_show(struct seq_file *m, void *p)
1356 {
1357 	struct cache_head *cp = p;
1358 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1359 
1360 	if (p == SEQ_START_TOKEN)
1361 		return cd->cache_show(m, cd, NULL);
1362 
1363 	ifdebug(CACHE)
1364 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1365 			   convert_to_wallclock(cp->expiry_time),
1366 			   atomic_read(&cp->ref.refcount), cp->flags);
1367 	cache_get(cp);
1368 	if (cache_check(cd, cp, NULL))
1369 		/* cache_check does a cache_put on failure */
1370 		seq_printf(m, "# ");
1371 	else {
1372 		if (cache_is_expired(cd, cp))
1373 			seq_printf(m, "# ");
1374 		cache_put(cp, cd);
1375 	}
1376 
1377 	return cd->cache_show(m, cd, cp);
1378 }
1379 
1380 static const struct seq_operations cache_content_op = {
1381 	.start	= c_start,
1382 	.next	= c_next,
1383 	.stop	= c_stop,
1384 	.show	= c_show,
1385 };
1386 
1387 static int content_open(struct inode *inode, struct file *file,
1388 			struct cache_detail *cd)
1389 {
1390 	struct handle *han;
1391 
1392 	if (!cd || !try_module_get(cd->owner))
1393 		return -EACCES;
1394 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1395 	if (han == NULL) {
1396 		module_put(cd->owner);
1397 		return -ENOMEM;
1398 	}
1399 
1400 	han->cd = cd;
1401 	return 0;
1402 }
1403 
1404 static int content_release(struct inode *inode, struct file *file,
1405 		struct cache_detail *cd)
1406 {
1407 	int ret = seq_release_private(inode, file);
1408 	module_put(cd->owner);
1409 	return ret;
1410 }
1411 
1412 static int open_flush(struct inode *inode, struct file *file,
1413 			struct cache_detail *cd)
1414 {
1415 	if (!cd || !try_module_get(cd->owner))
1416 		return -EACCES;
1417 	return nonseekable_open(inode, file);
1418 }
1419 
1420 static int release_flush(struct inode *inode, struct file *file,
1421 			struct cache_detail *cd)
1422 {
1423 	module_put(cd->owner);
1424 	return 0;
1425 }
1426 
1427 static ssize_t read_flush(struct file *file, char __user *buf,
1428 			  size_t count, loff_t *ppos,
1429 			  struct cache_detail *cd)
1430 {
1431 	char tbuf[22];
1432 	unsigned long p = *ppos;
1433 	size_t len;
1434 
1435 	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1436 	len = strlen(tbuf);
1437 	if (p >= len)
1438 		return 0;
1439 	len -= p;
1440 	if (len > count)
1441 		len = count;
1442 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1443 		return -EFAULT;
1444 	*ppos += len;
1445 	return len;
1446 }
1447 
1448 static ssize_t write_flush(struct file *file, const char __user *buf,
1449 			   size_t count, loff_t *ppos,
1450 			   struct cache_detail *cd)
1451 {
1452 	char tbuf[20];
1453 	char *bp, *ep;
1454 
1455 	if (*ppos || count > sizeof(tbuf)-1)
1456 		return -EINVAL;
1457 	if (copy_from_user(tbuf, buf, count))
1458 		return -EFAULT;
1459 	tbuf[count] = 0;
1460 	simple_strtoul(tbuf, &ep, 0);
1461 	if (*ep && *ep != '\n')
1462 		return -EINVAL;
1463 
1464 	bp = tbuf;
1465 	cd->flush_time = get_expiry(&bp);
1466 	cd->nextcheck = seconds_since_boot();
1467 	cache_flush();
1468 
1469 	*ppos += count;
1470 	return count;
1471 }
1472 
1473 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1474 				 size_t count, loff_t *ppos)
1475 {
1476 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1477 
1478 	return cache_read(filp, buf, count, ppos, cd);
1479 }
1480 
1481 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1482 				  size_t count, loff_t *ppos)
1483 {
1484 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1485 
1486 	return cache_write(filp, buf, count, ppos, cd);
1487 }
1488 
1489 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1490 {
1491 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1492 
1493 	return cache_poll(filp, wait, cd);
1494 }
1495 
1496 static long cache_ioctl_procfs(struct file *filp,
1497 			       unsigned int cmd, unsigned long arg)
1498 {
1499 	struct inode *inode = file_inode(filp);
1500 	struct cache_detail *cd = PDE_DATA(inode);
1501 
1502 	return cache_ioctl(inode, filp, cmd, arg, cd);
1503 }
1504 
1505 static int cache_open_procfs(struct inode *inode, struct file *filp)
1506 {
1507 	struct cache_detail *cd = PDE_DATA(inode);
1508 
1509 	return cache_open(inode, filp, cd);
1510 }
1511 
1512 static int cache_release_procfs(struct inode *inode, struct file *filp)
1513 {
1514 	struct cache_detail *cd = PDE_DATA(inode);
1515 
1516 	return cache_release(inode, filp, cd);
1517 }
1518 
1519 static const struct file_operations cache_file_operations_procfs = {
1520 	.owner		= THIS_MODULE,
1521 	.llseek		= no_llseek,
1522 	.read		= cache_read_procfs,
1523 	.write		= cache_write_procfs,
1524 	.poll		= cache_poll_procfs,
1525 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1526 	.open		= cache_open_procfs,
1527 	.release	= cache_release_procfs,
1528 };
1529 
1530 static int content_open_procfs(struct inode *inode, struct file *filp)
1531 {
1532 	struct cache_detail *cd = PDE_DATA(inode);
1533 
1534 	return content_open(inode, filp, cd);
1535 }
1536 
1537 static int content_release_procfs(struct inode *inode, struct file *filp)
1538 {
1539 	struct cache_detail *cd = PDE_DATA(inode);
1540 
1541 	return content_release(inode, filp, cd);
1542 }
1543 
1544 static const struct file_operations content_file_operations_procfs = {
1545 	.open		= content_open_procfs,
1546 	.read		= seq_read,
1547 	.llseek		= seq_lseek,
1548 	.release	= content_release_procfs,
1549 };
1550 
1551 static int open_flush_procfs(struct inode *inode, struct file *filp)
1552 {
1553 	struct cache_detail *cd = PDE_DATA(inode);
1554 
1555 	return open_flush(inode, filp, cd);
1556 }
1557 
1558 static int release_flush_procfs(struct inode *inode, struct file *filp)
1559 {
1560 	struct cache_detail *cd = PDE_DATA(inode);
1561 
1562 	return release_flush(inode, filp, cd);
1563 }
1564 
1565 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1566 			    size_t count, loff_t *ppos)
1567 {
1568 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1569 
1570 	return read_flush(filp, buf, count, ppos, cd);
1571 }
1572 
1573 static ssize_t write_flush_procfs(struct file *filp,
1574 				  const char __user *buf,
1575 				  size_t count, loff_t *ppos)
1576 {
1577 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1578 
1579 	return write_flush(filp, buf, count, ppos, cd);
1580 }
1581 
1582 static const struct file_operations cache_flush_operations_procfs = {
1583 	.open		= open_flush_procfs,
1584 	.read		= read_flush_procfs,
1585 	.write		= write_flush_procfs,
1586 	.release	= release_flush_procfs,
1587 	.llseek		= no_llseek,
1588 };
1589 
1590 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1591 {
1592 	struct sunrpc_net *sn;
1593 
1594 	if (cd->u.procfs.proc_ent == NULL)
1595 		return;
1596 	if (cd->u.procfs.flush_ent)
1597 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1598 	if (cd->u.procfs.channel_ent)
1599 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1600 	if (cd->u.procfs.content_ent)
1601 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1602 	cd->u.procfs.proc_ent = NULL;
1603 	sn = net_generic(net, sunrpc_net_id);
1604 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1605 }
1606 
1607 #ifdef CONFIG_PROC_FS
1608 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1609 {
1610 	struct proc_dir_entry *p;
1611 	struct sunrpc_net *sn;
1612 
1613 	sn = net_generic(net, sunrpc_net_id);
1614 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1615 	if (cd->u.procfs.proc_ent == NULL)
1616 		goto out_nomem;
1617 	cd->u.procfs.channel_ent = NULL;
1618 	cd->u.procfs.content_ent = NULL;
1619 
1620 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1621 			     cd->u.procfs.proc_ent,
1622 			     &cache_flush_operations_procfs, cd);
1623 	cd->u.procfs.flush_ent = p;
1624 	if (p == NULL)
1625 		goto out_nomem;
1626 
1627 	if (cd->cache_request || cd->cache_parse) {
1628 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1629 				     cd->u.procfs.proc_ent,
1630 				     &cache_file_operations_procfs, cd);
1631 		cd->u.procfs.channel_ent = p;
1632 		if (p == NULL)
1633 			goto out_nomem;
1634 	}
1635 	if (cd->cache_show) {
1636 		p = proc_create_data("content", S_IFREG|S_IRUSR,
1637 				cd->u.procfs.proc_ent,
1638 				&content_file_operations_procfs, cd);
1639 		cd->u.procfs.content_ent = p;
1640 		if (p == NULL)
1641 			goto out_nomem;
1642 	}
1643 	return 0;
1644 out_nomem:
1645 	remove_cache_proc_entries(cd, net);
1646 	return -ENOMEM;
1647 }
1648 #else /* CONFIG_PROC_FS */
1649 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1650 {
1651 	return 0;
1652 }
1653 #endif
1654 
1655 void __init cache_initialize(void)
1656 {
1657 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1658 }
1659 
1660 int cache_register_net(struct cache_detail *cd, struct net *net)
1661 {
1662 	int ret;
1663 
1664 	sunrpc_init_cache_detail(cd);
1665 	ret = create_cache_proc_entries(cd, net);
1666 	if (ret)
1667 		sunrpc_destroy_cache_detail(cd);
1668 	return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(cache_register_net);
1671 
1672 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1673 {
1674 	remove_cache_proc_entries(cd, net);
1675 	sunrpc_destroy_cache_detail(cd);
1676 }
1677 EXPORT_SYMBOL_GPL(cache_unregister_net);
1678 
1679 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1680 {
1681 	struct cache_detail *cd;
1682 
1683 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1684 	if (cd == NULL)
1685 		return ERR_PTR(-ENOMEM);
1686 
1687 	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1688 				 GFP_KERNEL);
1689 	if (cd->hash_table == NULL) {
1690 		kfree(cd);
1691 		return ERR_PTR(-ENOMEM);
1692 	}
1693 	cd->net = net;
1694 	return cd;
1695 }
1696 EXPORT_SYMBOL_GPL(cache_create_net);
1697 
1698 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1699 {
1700 	kfree(cd->hash_table);
1701 	kfree(cd);
1702 }
1703 EXPORT_SYMBOL_GPL(cache_destroy_net);
1704 
1705 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1706 				 size_t count, loff_t *ppos)
1707 {
1708 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1709 
1710 	return cache_read(filp, buf, count, ppos, cd);
1711 }
1712 
1713 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1714 				  size_t count, loff_t *ppos)
1715 {
1716 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1717 
1718 	return cache_write(filp, buf, count, ppos, cd);
1719 }
1720 
1721 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1722 {
1723 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1724 
1725 	return cache_poll(filp, wait, cd);
1726 }
1727 
1728 static long cache_ioctl_pipefs(struct file *filp,
1729 			      unsigned int cmd, unsigned long arg)
1730 {
1731 	struct inode *inode = file_inode(filp);
1732 	struct cache_detail *cd = RPC_I(inode)->private;
1733 
1734 	return cache_ioctl(inode, filp, cmd, arg, cd);
1735 }
1736 
1737 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1738 {
1739 	struct cache_detail *cd = RPC_I(inode)->private;
1740 
1741 	return cache_open(inode, filp, cd);
1742 }
1743 
1744 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1745 {
1746 	struct cache_detail *cd = RPC_I(inode)->private;
1747 
1748 	return cache_release(inode, filp, cd);
1749 }
1750 
1751 const struct file_operations cache_file_operations_pipefs = {
1752 	.owner		= THIS_MODULE,
1753 	.llseek		= no_llseek,
1754 	.read		= cache_read_pipefs,
1755 	.write		= cache_write_pipefs,
1756 	.poll		= cache_poll_pipefs,
1757 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1758 	.open		= cache_open_pipefs,
1759 	.release	= cache_release_pipefs,
1760 };
1761 
1762 static int content_open_pipefs(struct inode *inode, struct file *filp)
1763 {
1764 	struct cache_detail *cd = RPC_I(inode)->private;
1765 
1766 	return content_open(inode, filp, cd);
1767 }
1768 
1769 static int content_release_pipefs(struct inode *inode, struct file *filp)
1770 {
1771 	struct cache_detail *cd = RPC_I(inode)->private;
1772 
1773 	return content_release(inode, filp, cd);
1774 }
1775 
1776 const struct file_operations content_file_operations_pipefs = {
1777 	.open		= content_open_pipefs,
1778 	.read		= seq_read,
1779 	.llseek		= seq_lseek,
1780 	.release	= content_release_pipefs,
1781 };
1782 
1783 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1784 {
1785 	struct cache_detail *cd = RPC_I(inode)->private;
1786 
1787 	return open_flush(inode, filp, cd);
1788 }
1789 
1790 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1791 {
1792 	struct cache_detail *cd = RPC_I(inode)->private;
1793 
1794 	return release_flush(inode, filp, cd);
1795 }
1796 
1797 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1798 			    size_t count, loff_t *ppos)
1799 {
1800 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1801 
1802 	return read_flush(filp, buf, count, ppos, cd);
1803 }
1804 
1805 static ssize_t write_flush_pipefs(struct file *filp,
1806 				  const char __user *buf,
1807 				  size_t count, loff_t *ppos)
1808 {
1809 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1810 
1811 	return write_flush(filp, buf, count, ppos, cd);
1812 }
1813 
1814 const struct file_operations cache_flush_operations_pipefs = {
1815 	.open		= open_flush_pipefs,
1816 	.read		= read_flush_pipefs,
1817 	.write		= write_flush_pipefs,
1818 	.release	= release_flush_pipefs,
1819 	.llseek		= no_llseek,
1820 };
1821 
1822 int sunrpc_cache_register_pipefs(struct dentry *parent,
1823 				 const char *name, umode_t umode,
1824 				 struct cache_detail *cd)
1825 {
1826 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1827 	if (IS_ERR(dir))
1828 		return PTR_ERR(dir);
1829 	cd->u.pipefs.dir = dir;
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1833 
1834 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1835 {
1836 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1837 	cd->u.pipefs.dir = NULL;
1838 }
1839 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1840 
1841