xref: /openbmc/linux/net/sunrpc/cache.c (revision f42b3800)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	/* must fully initialise 'new', else
75 	 * we might get lose if we need to
76 	 * cache_put it soon.
77 	 */
78 	cache_init(new);
79 	detail->init(new, key);
80 
81 	write_lock(&detail->hash_lock);
82 
83 	/* check if entry appeared while we slept */
84 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 		struct cache_head *tmp = *hp;
86 		if (detail->match(tmp, key)) {
87 			cache_get(tmp);
88 			write_unlock(&detail->hash_lock);
89 			cache_put(new, detail);
90 			return tmp;
91 		}
92 	}
93 	new->next = *head;
94 	*head = new;
95 	detail->entries++;
96 	cache_get(new);
97 	write_unlock(&detail->hash_lock);
98 
99 	return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102 
103 
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105 
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108 	head->expiry_time = expiry;
109 	head->last_refresh = get_seconds();
110 	return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112 
113 static void cache_fresh_unlocked(struct cache_head *head,
114 			struct cache_detail *detail, int new)
115 {
116 	if (new)
117 		cache_revisit_request(head);
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		queue_loose(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 	int is_new;
134 
135 	if (!test_bit(CACHE_VALID, &old->flags)) {
136 		write_lock(&detail->hash_lock);
137 		if (!test_bit(CACHE_VALID, &old->flags)) {
138 			if (test_bit(CACHE_NEGATIVE, &new->flags))
139 				set_bit(CACHE_NEGATIVE, &old->flags);
140 			else
141 				detail->update(old, new);
142 			is_new = cache_fresh_locked(old, new->expiry_time);
143 			write_unlock(&detail->hash_lock);
144 			cache_fresh_unlocked(old, detail, is_new);
145 			return old;
146 		}
147 		write_unlock(&detail->hash_lock);
148 	}
149 	/* We need to insert a new entry */
150 	tmp = detail->alloc();
151 	if (!tmp) {
152 		cache_put(old, detail);
153 		return NULL;
154 	}
155 	cache_init(tmp);
156 	detail->init(tmp, old);
157 	head = &detail->hash_table[hash];
158 
159 	write_lock(&detail->hash_lock);
160 	if (test_bit(CACHE_NEGATIVE, &new->flags))
161 		set_bit(CACHE_NEGATIVE, &tmp->flags);
162 	else
163 		detail->update(tmp, new);
164 	tmp->next = *head;
165 	*head = tmp;
166 	detail->entries++;
167 	cache_get(tmp);
168 	is_new = cache_fresh_locked(tmp, new->expiry_time);
169 	cache_fresh_locked(old, 0);
170 	write_unlock(&detail->hash_lock);
171 	cache_fresh_unlocked(tmp, detail, is_new);
172 	cache_fresh_unlocked(old, detail, 0);
173 	cache_put(old, detail);
174 	return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177 
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192 		    struct cache_head *h, struct cache_req *rqstp)
193 {
194 	int rv;
195 	long refresh_age, age;
196 
197 	/* First decide return status as best we can */
198 	if (!test_bit(CACHE_VALID, &h->flags) ||
199 	    h->expiry_time < get_seconds())
200 		rv = -EAGAIN;
201 	else if (detail->flush_time > h->last_refresh)
202 		rv = -EAGAIN;
203 	else {
204 		/* entry is valid */
205 		if (test_bit(CACHE_NEGATIVE, &h->flags))
206 			rv = -ENOENT;
207 		else rv = 0;
208 	}
209 
210 	/* now see if we want to start an upcall */
211 	refresh_age = (h->expiry_time - h->last_refresh);
212 	age = get_seconds() - h->last_refresh;
213 
214 	if (rqstp == NULL) {
215 		if (rv == -EAGAIN)
216 			rv = -ENOENT;
217 	} else if (rv == -EAGAIN || age > refresh_age/2) {
218 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219 				refresh_age, age);
220 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221 			switch (cache_make_upcall(detail, h)) {
222 			case -EINVAL:
223 				clear_bit(CACHE_PENDING, &h->flags);
224 				if (rv == -EAGAIN) {
225 					set_bit(CACHE_NEGATIVE, &h->flags);
226 					cache_fresh_unlocked(h, detail,
227 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228 					rv = -ENOENT;
229 				}
230 				break;
231 
232 			case -EAGAIN:
233 				clear_bit(CACHE_PENDING, &h->flags);
234 				cache_revisit_request(h);
235 				break;
236 			}
237 		}
238 	}
239 
240 	if (rv == -EAGAIN)
241 		if (cache_defer_req(rqstp, h) != 0)
242 			rv = -ETIMEDOUT;
243 
244 	if (rv)
245 		cache_put(h, detail);
246 	return rv;
247 }
248 EXPORT_SYMBOL(cache_check);
249 
250 /*
251  * caches need to be periodically cleaned.
252  * For this we maintain a list of cache_detail and
253  * a current pointer into that list and into the table
254  * for that entry.
255  *
256  * Each time clean_cache is called it finds the next non-empty entry
257  * in the current table and walks the list in that entry
258  * looking for entries that can be removed.
259  *
260  * An entry gets removed if:
261  * - The expiry is before current time
262  * - The last_refresh time is before the flush_time for that cache
263  *
264  * later we might drop old entries with non-NEVER expiry if that table
265  * is getting 'full' for some definition of 'full'
266  *
267  * The question of "how often to scan a table" is an interesting one
268  * and is answered in part by the use of the "nextcheck" field in the
269  * cache_detail.
270  * When a scan of a table begins, the nextcheck field is set to a time
271  * that is well into the future.
272  * While scanning, if an expiry time is found that is earlier than the
273  * current nextcheck time, nextcheck is set to that expiry time.
274  * If the flush_time is ever set to a time earlier than the nextcheck
275  * time, the nextcheck time is then set to that flush_time.
276  *
277  * A table is then only scanned if the current time is at least
278  * the nextcheck time.
279  *
280  */
281 
282 static LIST_HEAD(cache_list);
283 static DEFINE_SPINLOCK(cache_list_lock);
284 static struct cache_detail *current_detail;
285 static int current_index;
286 
287 static const struct file_operations cache_file_operations;
288 static const struct file_operations content_file_operations;
289 static const struct file_operations cache_flush_operations;
290 
291 static void do_cache_clean(struct work_struct *work);
292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293 
294 static void remove_cache_proc_entries(struct cache_detail *cd)
295 {
296 	if (cd->proc_ent == NULL)
297 		return;
298 	if (cd->flush_ent)
299 		remove_proc_entry("flush", cd->proc_ent);
300 	if (cd->channel_ent)
301 		remove_proc_entry("channel", cd->proc_ent);
302 	if (cd->content_ent)
303 		remove_proc_entry("content", cd->proc_ent);
304 	cd->proc_ent = NULL;
305 	remove_proc_entry(cd->name, proc_net_rpc);
306 }
307 
308 #ifdef CONFIG_PROC_FS
309 static int create_cache_proc_entries(struct cache_detail *cd)
310 {
311 	struct proc_dir_entry *p;
312 
313 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314 	if (cd->proc_ent == NULL)
315 		goto out_nomem;
316 	cd->proc_ent->owner = cd->owner;
317 	cd->channel_ent = cd->content_ent = NULL;
318 
319 	p = proc_create("flush", S_IFREG|S_IRUSR|S_IWUSR,
320 			cd->proc_ent, &cache_flush_operations);
321 	cd->flush_ent = p;
322 	if (p == NULL)
323 		goto out_nomem;
324 	p->owner = cd->owner;
325 	p->data = cd;
326 
327 	if (cd->cache_request || cd->cache_parse) {
328 		p = proc_create("channel", S_IFREG|S_IRUSR|S_IWUSR,
329 				cd->proc_ent, &cache_file_operations);
330 		cd->channel_ent = p;
331 		if (p == NULL)
332 			goto out_nomem;
333 		p->owner = cd->owner;
334 		p->data = cd;
335 	}
336 	if (cd->cache_show) {
337 		p = proc_create("content", S_IFREG|S_IRUSR|S_IWUSR,
338 				cd->proc_ent, &content_file_operations);
339 		cd->content_ent = p;
340 		if (p == NULL)
341 			goto out_nomem;
342 		p->owner = cd->owner;
343 		p->data = cd;
344 	}
345 	return 0;
346 out_nomem:
347 	remove_cache_proc_entries(cd);
348 	return -ENOMEM;
349 }
350 #else /* CONFIG_PROC_FS */
351 static int create_cache_proc_entries(struct cache_detail *cd)
352 {
353 	return 0;
354 }
355 #endif
356 
357 int cache_register(struct cache_detail *cd)
358 {
359 	int ret;
360 
361 	ret = create_cache_proc_entries(cd);
362 	if (ret)
363 		return ret;
364 	rwlock_init(&cd->hash_lock);
365 	INIT_LIST_HEAD(&cd->queue);
366 	spin_lock(&cache_list_lock);
367 	cd->nextcheck = 0;
368 	cd->entries = 0;
369 	atomic_set(&cd->readers, 0);
370 	cd->last_close = 0;
371 	cd->last_warn = -1;
372 	list_add(&cd->others, &cache_list);
373 	spin_unlock(&cache_list_lock);
374 
375 	/* start the cleaning process */
376 	schedule_delayed_work(&cache_cleaner, 0);
377 	return 0;
378 }
379 EXPORT_SYMBOL(cache_register);
380 
381 void cache_unregister(struct cache_detail *cd)
382 {
383 	cache_purge(cd);
384 	spin_lock(&cache_list_lock);
385 	write_lock(&cd->hash_lock);
386 	if (cd->entries || atomic_read(&cd->inuse)) {
387 		write_unlock(&cd->hash_lock);
388 		spin_unlock(&cache_list_lock);
389 		goto out;
390 	}
391 	if (current_detail == cd)
392 		current_detail = NULL;
393 	list_del_init(&cd->others);
394 	write_unlock(&cd->hash_lock);
395 	spin_unlock(&cache_list_lock);
396 	remove_cache_proc_entries(cd);
397 	if (list_empty(&cache_list)) {
398 		/* module must be being unloaded so its safe to kill the worker */
399 		cancel_delayed_work_sync(&cache_cleaner);
400 	}
401 	return;
402 out:
403 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
404 }
405 EXPORT_SYMBOL(cache_unregister);
406 
407 /* clean cache tries to find something to clean
408  * and cleans it.
409  * It returns 1 if it cleaned something,
410  *            0 if it didn't find anything this time
411  *           -1 if it fell off the end of the list.
412  */
413 static int cache_clean(void)
414 {
415 	int rv = 0;
416 	struct list_head *next;
417 
418 	spin_lock(&cache_list_lock);
419 
420 	/* find a suitable table if we don't already have one */
421 	while (current_detail == NULL ||
422 	    current_index >= current_detail->hash_size) {
423 		if (current_detail)
424 			next = current_detail->others.next;
425 		else
426 			next = cache_list.next;
427 		if (next == &cache_list) {
428 			current_detail = NULL;
429 			spin_unlock(&cache_list_lock);
430 			return -1;
431 		}
432 		current_detail = list_entry(next, struct cache_detail, others);
433 		if (current_detail->nextcheck > get_seconds())
434 			current_index = current_detail->hash_size;
435 		else {
436 			current_index = 0;
437 			current_detail->nextcheck = get_seconds()+30*60;
438 		}
439 	}
440 
441 	/* find a non-empty bucket in the table */
442 	while (current_detail &&
443 	       current_index < current_detail->hash_size &&
444 	       current_detail->hash_table[current_index] == NULL)
445 		current_index++;
446 
447 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
448 
449 	if (current_detail && current_index < current_detail->hash_size) {
450 		struct cache_head *ch, **cp;
451 		struct cache_detail *d;
452 
453 		write_lock(&current_detail->hash_lock);
454 
455 		/* Ok, now to clean this strand */
456 
457 		cp = & current_detail->hash_table[current_index];
458 		ch = *cp;
459 		for (; ch; cp= & ch->next, ch= *cp) {
460 			if (current_detail->nextcheck > ch->expiry_time)
461 				current_detail->nextcheck = ch->expiry_time+1;
462 			if (ch->expiry_time >= get_seconds()
463 			    && ch->last_refresh >= current_detail->flush_time
464 				)
465 				continue;
466 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
467 				queue_loose(current_detail, ch);
468 
469 			if (atomic_read(&ch->ref.refcount) == 1)
470 				break;
471 		}
472 		if (ch) {
473 			*cp = ch->next;
474 			ch->next = NULL;
475 			current_detail->entries--;
476 			rv = 1;
477 		}
478 		write_unlock(&current_detail->hash_lock);
479 		d = current_detail;
480 		if (!ch)
481 			current_index ++;
482 		spin_unlock(&cache_list_lock);
483 		if (ch)
484 			cache_put(ch, d);
485 	} else
486 		spin_unlock(&cache_list_lock);
487 
488 	return rv;
489 }
490 
491 /*
492  * We want to regularly clean the cache, so we need to schedule some work ...
493  */
494 static void do_cache_clean(struct work_struct *work)
495 {
496 	int delay = 5;
497 	if (cache_clean() == -1)
498 		delay = 30*HZ;
499 
500 	if (list_empty(&cache_list))
501 		delay = 0;
502 
503 	if (delay)
504 		schedule_delayed_work(&cache_cleaner, delay);
505 }
506 
507 
508 /*
509  * Clean all caches promptly.  This just calls cache_clean
510  * repeatedly until we are sure that every cache has had a chance to
511  * be fully cleaned
512  */
513 void cache_flush(void)
514 {
515 	while (cache_clean() != -1)
516 		cond_resched();
517 	while (cache_clean() != -1)
518 		cond_resched();
519 }
520 EXPORT_SYMBOL(cache_flush);
521 
522 void cache_purge(struct cache_detail *detail)
523 {
524 	detail->flush_time = LONG_MAX;
525 	detail->nextcheck = get_seconds();
526 	cache_flush();
527 	detail->flush_time = 1;
528 }
529 EXPORT_SYMBOL(cache_purge);
530 
531 
532 /*
533  * Deferral and Revisiting of Requests.
534  *
535  * If a cache lookup finds a pending entry, we
536  * need to defer the request and revisit it later.
537  * All deferred requests are stored in a hash table,
538  * indexed by "struct cache_head *".
539  * As it may be wasteful to store a whole request
540  * structure, we allow the request to provide a
541  * deferred form, which must contain a
542  * 'struct cache_deferred_req'
543  * This cache_deferred_req contains a method to allow
544  * it to be revisited when cache info is available
545  */
546 
547 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
548 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
549 
550 #define	DFR_MAX	300	/* ??? */
551 
552 static DEFINE_SPINLOCK(cache_defer_lock);
553 static LIST_HEAD(cache_defer_list);
554 static struct list_head cache_defer_hash[DFR_HASHSIZE];
555 static int cache_defer_cnt;
556 
557 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
558 {
559 	struct cache_deferred_req *dreq;
560 	int hash = DFR_HASH(item);
561 
562 	if (cache_defer_cnt >= DFR_MAX) {
563 		/* too much in the cache, randomly drop this one,
564 		 * or continue and drop the oldest below
565 		 */
566 		if (net_random()&1)
567 			return -ETIMEDOUT;
568 	}
569 	dreq = req->defer(req);
570 	if (dreq == NULL)
571 		return -ETIMEDOUT;
572 
573 	dreq->item = item;
574 	dreq->recv_time = get_seconds();
575 
576 	spin_lock(&cache_defer_lock);
577 
578 	list_add(&dreq->recent, &cache_defer_list);
579 
580 	if (cache_defer_hash[hash].next == NULL)
581 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
582 	list_add(&dreq->hash, &cache_defer_hash[hash]);
583 
584 	/* it is in, now maybe clean up */
585 	dreq = NULL;
586 	if (++cache_defer_cnt > DFR_MAX) {
587 		dreq = list_entry(cache_defer_list.prev,
588 				  struct cache_deferred_req, recent);
589 		list_del(&dreq->recent);
590 		list_del(&dreq->hash);
591 		cache_defer_cnt--;
592 	}
593 	spin_unlock(&cache_defer_lock);
594 
595 	if (dreq) {
596 		/* there was one too many */
597 		dreq->revisit(dreq, 1);
598 	}
599 	if (!test_bit(CACHE_PENDING, &item->flags)) {
600 		/* must have just been validated... */
601 		cache_revisit_request(item);
602 	}
603 	return 0;
604 }
605 
606 static void cache_revisit_request(struct cache_head *item)
607 {
608 	struct cache_deferred_req *dreq;
609 	struct list_head pending;
610 
611 	struct list_head *lp;
612 	int hash = DFR_HASH(item);
613 
614 	INIT_LIST_HEAD(&pending);
615 	spin_lock(&cache_defer_lock);
616 
617 	lp = cache_defer_hash[hash].next;
618 	if (lp) {
619 		while (lp != &cache_defer_hash[hash]) {
620 			dreq = list_entry(lp, struct cache_deferred_req, hash);
621 			lp = lp->next;
622 			if (dreq->item == item) {
623 				list_del(&dreq->hash);
624 				list_move(&dreq->recent, &pending);
625 				cache_defer_cnt--;
626 			}
627 		}
628 	}
629 	spin_unlock(&cache_defer_lock);
630 
631 	while (!list_empty(&pending)) {
632 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
633 		list_del_init(&dreq->recent);
634 		dreq->revisit(dreq, 0);
635 	}
636 }
637 
638 void cache_clean_deferred(void *owner)
639 {
640 	struct cache_deferred_req *dreq, *tmp;
641 	struct list_head pending;
642 
643 
644 	INIT_LIST_HEAD(&pending);
645 	spin_lock(&cache_defer_lock);
646 
647 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
648 		if (dreq->owner == owner) {
649 			list_del(&dreq->hash);
650 			list_move(&dreq->recent, &pending);
651 			cache_defer_cnt--;
652 		}
653 	}
654 	spin_unlock(&cache_defer_lock);
655 
656 	while (!list_empty(&pending)) {
657 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
658 		list_del_init(&dreq->recent);
659 		dreq->revisit(dreq, 1);
660 	}
661 }
662 
663 /*
664  * communicate with user-space
665  *
666  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
667  * On read, you get a full request, or block.
668  * On write, an update request is processed.
669  * Poll works if anything to read, and always allows write.
670  *
671  * Implemented by linked list of requests.  Each open file has
672  * a ->private that also exists in this list.  New requests are added
673  * to the end and may wakeup and preceding readers.
674  * New readers are added to the head.  If, on read, an item is found with
675  * CACHE_UPCALLING clear, we free it from the list.
676  *
677  */
678 
679 static DEFINE_SPINLOCK(queue_lock);
680 static DEFINE_MUTEX(queue_io_mutex);
681 
682 struct cache_queue {
683 	struct list_head	list;
684 	int			reader;	/* if 0, then request */
685 };
686 struct cache_request {
687 	struct cache_queue	q;
688 	struct cache_head	*item;
689 	char			* buf;
690 	int			len;
691 	int			readers;
692 };
693 struct cache_reader {
694 	struct cache_queue	q;
695 	int			offset;	/* if non-0, we have a refcnt on next request */
696 };
697 
698 static ssize_t
699 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
700 {
701 	struct cache_reader *rp = filp->private_data;
702 	struct cache_request *rq;
703 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
704 	int err;
705 
706 	if (count == 0)
707 		return 0;
708 
709 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
710 			      * readers on this file */
711  again:
712 	spin_lock(&queue_lock);
713 	/* need to find next request */
714 	while (rp->q.list.next != &cd->queue &&
715 	       list_entry(rp->q.list.next, struct cache_queue, list)
716 	       ->reader) {
717 		struct list_head *next = rp->q.list.next;
718 		list_move(&rp->q.list, next);
719 	}
720 	if (rp->q.list.next == &cd->queue) {
721 		spin_unlock(&queue_lock);
722 		mutex_unlock(&queue_io_mutex);
723 		BUG_ON(rp->offset);
724 		return 0;
725 	}
726 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
727 	BUG_ON(rq->q.reader);
728 	if (rp->offset == 0)
729 		rq->readers++;
730 	spin_unlock(&queue_lock);
731 
732 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
733 		err = -EAGAIN;
734 		spin_lock(&queue_lock);
735 		list_move(&rp->q.list, &rq->q.list);
736 		spin_unlock(&queue_lock);
737 	} else {
738 		if (rp->offset + count > rq->len)
739 			count = rq->len - rp->offset;
740 		err = -EFAULT;
741 		if (copy_to_user(buf, rq->buf + rp->offset, count))
742 			goto out;
743 		rp->offset += count;
744 		if (rp->offset >= rq->len) {
745 			rp->offset = 0;
746 			spin_lock(&queue_lock);
747 			list_move(&rp->q.list, &rq->q.list);
748 			spin_unlock(&queue_lock);
749 		}
750 		err = 0;
751 	}
752  out:
753 	if (rp->offset == 0) {
754 		/* need to release rq */
755 		spin_lock(&queue_lock);
756 		rq->readers--;
757 		if (rq->readers == 0 &&
758 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
759 			list_del(&rq->q.list);
760 			spin_unlock(&queue_lock);
761 			cache_put(rq->item, cd);
762 			kfree(rq->buf);
763 			kfree(rq);
764 		} else
765 			spin_unlock(&queue_lock);
766 	}
767 	if (err == -EAGAIN)
768 		goto again;
769 	mutex_unlock(&queue_io_mutex);
770 	return err ? err :  count;
771 }
772 
773 static char write_buf[8192]; /* protected by queue_io_mutex */
774 
775 static ssize_t
776 cache_write(struct file *filp, const char __user *buf, size_t count,
777 	    loff_t *ppos)
778 {
779 	int err;
780 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
781 
782 	if (count == 0)
783 		return 0;
784 	if (count >= sizeof(write_buf))
785 		return -EINVAL;
786 
787 	mutex_lock(&queue_io_mutex);
788 
789 	if (copy_from_user(write_buf, buf, count)) {
790 		mutex_unlock(&queue_io_mutex);
791 		return -EFAULT;
792 	}
793 	write_buf[count] = '\0';
794 	if (cd->cache_parse)
795 		err = cd->cache_parse(cd, write_buf, count);
796 	else
797 		err = -EINVAL;
798 
799 	mutex_unlock(&queue_io_mutex);
800 	return err ? err : count;
801 }
802 
803 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
804 
805 static unsigned int
806 cache_poll(struct file *filp, poll_table *wait)
807 {
808 	unsigned int mask;
809 	struct cache_reader *rp = filp->private_data;
810 	struct cache_queue *cq;
811 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
812 
813 	poll_wait(filp, &queue_wait, wait);
814 
815 	/* alway allow write */
816 	mask = POLL_OUT | POLLWRNORM;
817 
818 	if (!rp)
819 		return mask;
820 
821 	spin_lock(&queue_lock);
822 
823 	for (cq= &rp->q; &cq->list != &cd->queue;
824 	     cq = list_entry(cq->list.next, struct cache_queue, list))
825 		if (!cq->reader) {
826 			mask |= POLLIN | POLLRDNORM;
827 			break;
828 		}
829 	spin_unlock(&queue_lock);
830 	return mask;
831 }
832 
833 static int
834 cache_ioctl(struct inode *ino, struct file *filp,
835 	    unsigned int cmd, unsigned long arg)
836 {
837 	int len = 0;
838 	struct cache_reader *rp = filp->private_data;
839 	struct cache_queue *cq;
840 	struct cache_detail *cd = PDE(ino)->data;
841 
842 	if (cmd != FIONREAD || !rp)
843 		return -EINVAL;
844 
845 	spin_lock(&queue_lock);
846 
847 	/* only find the length remaining in current request,
848 	 * or the length of the next request
849 	 */
850 	for (cq= &rp->q; &cq->list != &cd->queue;
851 	     cq = list_entry(cq->list.next, struct cache_queue, list))
852 		if (!cq->reader) {
853 			struct cache_request *cr =
854 				container_of(cq, struct cache_request, q);
855 			len = cr->len - rp->offset;
856 			break;
857 		}
858 	spin_unlock(&queue_lock);
859 
860 	return put_user(len, (int __user *)arg);
861 }
862 
863 static int
864 cache_open(struct inode *inode, struct file *filp)
865 {
866 	struct cache_reader *rp = NULL;
867 
868 	nonseekable_open(inode, filp);
869 	if (filp->f_mode & FMODE_READ) {
870 		struct cache_detail *cd = PDE(inode)->data;
871 
872 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
873 		if (!rp)
874 			return -ENOMEM;
875 		rp->offset = 0;
876 		rp->q.reader = 1;
877 		atomic_inc(&cd->readers);
878 		spin_lock(&queue_lock);
879 		list_add(&rp->q.list, &cd->queue);
880 		spin_unlock(&queue_lock);
881 	}
882 	filp->private_data = rp;
883 	return 0;
884 }
885 
886 static int
887 cache_release(struct inode *inode, struct file *filp)
888 {
889 	struct cache_reader *rp = filp->private_data;
890 	struct cache_detail *cd = PDE(inode)->data;
891 
892 	if (rp) {
893 		spin_lock(&queue_lock);
894 		if (rp->offset) {
895 			struct cache_queue *cq;
896 			for (cq= &rp->q; &cq->list != &cd->queue;
897 			     cq = list_entry(cq->list.next, struct cache_queue, list))
898 				if (!cq->reader) {
899 					container_of(cq, struct cache_request, q)
900 						->readers--;
901 					break;
902 				}
903 			rp->offset = 0;
904 		}
905 		list_del(&rp->q.list);
906 		spin_unlock(&queue_lock);
907 
908 		filp->private_data = NULL;
909 		kfree(rp);
910 
911 		cd->last_close = get_seconds();
912 		atomic_dec(&cd->readers);
913 	}
914 	return 0;
915 }
916 
917 
918 
919 static const struct file_operations cache_file_operations = {
920 	.owner		= THIS_MODULE,
921 	.llseek		= no_llseek,
922 	.read		= cache_read,
923 	.write		= cache_write,
924 	.poll		= cache_poll,
925 	.ioctl		= cache_ioctl, /* for FIONREAD */
926 	.open		= cache_open,
927 	.release	= cache_release,
928 };
929 
930 
931 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
932 {
933 	struct cache_queue *cq;
934 	spin_lock(&queue_lock);
935 	list_for_each_entry(cq, &detail->queue, list)
936 		if (!cq->reader) {
937 			struct cache_request *cr = container_of(cq, struct cache_request, q);
938 			if (cr->item != ch)
939 				continue;
940 			if (cr->readers != 0)
941 				continue;
942 			list_del(&cr->q.list);
943 			spin_unlock(&queue_lock);
944 			cache_put(cr->item, detail);
945 			kfree(cr->buf);
946 			kfree(cr);
947 			return;
948 		}
949 	spin_unlock(&queue_lock);
950 }
951 
952 /*
953  * Support routines for text-based upcalls.
954  * Fields are separated by spaces.
955  * Fields are either mangled to quote space tab newline slosh with slosh
956  * or a hexified with a leading \x
957  * Record is terminated with newline.
958  *
959  */
960 
961 void qword_add(char **bpp, int *lp, char *str)
962 {
963 	char *bp = *bpp;
964 	int len = *lp;
965 	char c;
966 
967 	if (len < 0) return;
968 
969 	while ((c=*str++) && len)
970 		switch(c) {
971 		case ' ':
972 		case '\t':
973 		case '\n':
974 		case '\\':
975 			if (len >= 4) {
976 				*bp++ = '\\';
977 				*bp++ = '0' + ((c & 0300)>>6);
978 				*bp++ = '0' + ((c & 0070)>>3);
979 				*bp++ = '0' + ((c & 0007)>>0);
980 			}
981 			len -= 4;
982 			break;
983 		default:
984 			*bp++ = c;
985 			len--;
986 		}
987 	if (c || len <1) len = -1;
988 	else {
989 		*bp++ = ' ';
990 		len--;
991 	}
992 	*bpp = bp;
993 	*lp = len;
994 }
995 EXPORT_SYMBOL(qword_add);
996 
997 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
998 {
999 	char *bp = *bpp;
1000 	int len = *lp;
1001 
1002 	if (len < 0) return;
1003 
1004 	if (len > 2) {
1005 		*bp++ = '\\';
1006 		*bp++ = 'x';
1007 		len -= 2;
1008 		while (blen && len >= 2) {
1009 			unsigned char c = *buf++;
1010 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1011 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1012 			len -= 2;
1013 			blen--;
1014 		}
1015 	}
1016 	if (blen || len<1) len = -1;
1017 	else {
1018 		*bp++ = ' ';
1019 		len--;
1020 	}
1021 	*bpp = bp;
1022 	*lp = len;
1023 }
1024 EXPORT_SYMBOL(qword_addhex);
1025 
1026 static void warn_no_listener(struct cache_detail *detail)
1027 {
1028 	if (detail->last_warn != detail->last_close) {
1029 		detail->last_warn = detail->last_close;
1030 		if (detail->warn_no_listener)
1031 			detail->warn_no_listener(detail);
1032 	}
1033 }
1034 
1035 /*
1036  * register an upcall request to user-space.
1037  * Each request is at most one page long.
1038  */
1039 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1040 {
1041 
1042 	char *buf;
1043 	struct cache_request *crq;
1044 	char *bp;
1045 	int len;
1046 
1047 	if (detail->cache_request == NULL)
1048 		return -EINVAL;
1049 
1050 	if (atomic_read(&detail->readers) == 0 &&
1051 	    detail->last_close < get_seconds() - 30) {
1052 			warn_no_listener(detail);
1053 			return -EINVAL;
1054 	}
1055 
1056 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1057 	if (!buf)
1058 		return -EAGAIN;
1059 
1060 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1061 	if (!crq) {
1062 		kfree(buf);
1063 		return -EAGAIN;
1064 	}
1065 
1066 	bp = buf; len = PAGE_SIZE;
1067 
1068 	detail->cache_request(detail, h, &bp, &len);
1069 
1070 	if (len < 0) {
1071 		kfree(buf);
1072 		kfree(crq);
1073 		return -EAGAIN;
1074 	}
1075 	crq->q.reader = 0;
1076 	crq->item = cache_get(h);
1077 	crq->buf = buf;
1078 	crq->len = PAGE_SIZE - len;
1079 	crq->readers = 0;
1080 	spin_lock(&queue_lock);
1081 	list_add_tail(&crq->q.list, &detail->queue);
1082 	spin_unlock(&queue_lock);
1083 	wake_up(&queue_wait);
1084 	return 0;
1085 }
1086 
1087 /*
1088  * parse a message from user-space and pass it
1089  * to an appropriate cache
1090  * Messages are, like requests, separated into fields by
1091  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1092  *
1093  * Message is
1094  *   reply cachename expiry key ... content....
1095  *
1096  * key and content are both parsed by cache
1097  */
1098 
1099 #define isodigit(c) (isdigit(c) && c <= '7')
1100 int qword_get(char **bpp, char *dest, int bufsize)
1101 {
1102 	/* return bytes copied, or -1 on error */
1103 	char *bp = *bpp;
1104 	int len = 0;
1105 
1106 	while (*bp == ' ') bp++;
1107 
1108 	if (bp[0] == '\\' && bp[1] == 'x') {
1109 		/* HEX STRING */
1110 		bp += 2;
1111 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1112 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1113 			bp++;
1114 			byte <<= 4;
1115 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1116 			*dest++ = byte;
1117 			bp++;
1118 			len++;
1119 		}
1120 	} else {
1121 		/* text with \nnn octal quoting */
1122 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1123 			if (*bp == '\\' &&
1124 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1125 			    isodigit(bp[2]) &&
1126 			    isodigit(bp[3])) {
1127 				int byte = (*++bp -'0');
1128 				bp++;
1129 				byte = (byte << 3) | (*bp++ - '0');
1130 				byte = (byte << 3) | (*bp++ - '0');
1131 				*dest++ = byte;
1132 				len++;
1133 			} else {
1134 				*dest++ = *bp++;
1135 				len++;
1136 			}
1137 		}
1138 	}
1139 
1140 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1141 		return -1;
1142 	while (*bp == ' ') bp++;
1143 	*bpp = bp;
1144 	*dest = '\0';
1145 	return len;
1146 }
1147 EXPORT_SYMBOL(qword_get);
1148 
1149 
1150 /*
1151  * support /proc/sunrpc/cache/$CACHENAME/content
1152  * as a seqfile.
1153  * We call ->cache_show passing NULL for the item to
1154  * get a header, then pass each real item in the cache
1155  */
1156 
1157 struct handle {
1158 	struct cache_detail *cd;
1159 };
1160 
1161 static void *c_start(struct seq_file *m, loff_t *pos)
1162 	__acquires(cd->hash_lock)
1163 {
1164 	loff_t n = *pos;
1165 	unsigned hash, entry;
1166 	struct cache_head *ch;
1167 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1168 
1169 
1170 	read_lock(&cd->hash_lock);
1171 	if (!n--)
1172 		return SEQ_START_TOKEN;
1173 	hash = n >> 32;
1174 	entry = n & ((1LL<<32) - 1);
1175 
1176 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1177 		if (!entry--)
1178 			return ch;
1179 	n &= ~((1LL<<32) - 1);
1180 	do {
1181 		hash++;
1182 		n += 1LL<<32;
1183 	} while(hash < cd->hash_size &&
1184 		cd->hash_table[hash]==NULL);
1185 	if (hash >= cd->hash_size)
1186 		return NULL;
1187 	*pos = n+1;
1188 	return cd->hash_table[hash];
1189 }
1190 
1191 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1192 {
1193 	struct cache_head *ch = p;
1194 	int hash = (*pos >> 32);
1195 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1196 
1197 	if (p == SEQ_START_TOKEN)
1198 		hash = 0;
1199 	else if (ch->next == NULL) {
1200 		hash++;
1201 		*pos += 1LL<<32;
1202 	} else {
1203 		++*pos;
1204 		return ch->next;
1205 	}
1206 	*pos &= ~((1LL<<32) - 1);
1207 	while (hash < cd->hash_size &&
1208 	       cd->hash_table[hash] == NULL) {
1209 		hash++;
1210 		*pos += 1LL<<32;
1211 	}
1212 	if (hash >= cd->hash_size)
1213 		return NULL;
1214 	++*pos;
1215 	return cd->hash_table[hash];
1216 }
1217 
1218 static void c_stop(struct seq_file *m, void *p)
1219 	__releases(cd->hash_lock)
1220 {
1221 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1222 	read_unlock(&cd->hash_lock);
1223 }
1224 
1225 static int c_show(struct seq_file *m, void *p)
1226 {
1227 	struct cache_head *cp = p;
1228 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1229 
1230 	if (p == SEQ_START_TOKEN)
1231 		return cd->cache_show(m, cd, NULL);
1232 
1233 	ifdebug(CACHE)
1234 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1235 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1236 	cache_get(cp);
1237 	if (cache_check(cd, cp, NULL))
1238 		/* cache_check does a cache_put on failure */
1239 		seq_printf(m, "# ");
1240 	else
1241 		cache_put(cp, cd);
1242 
1243 	return cd->cache_show(m, cd, cp);
1244 }
1245 
1246 static const struct seq_operations cache_content_op = {
1247 	.start	= c_start,
1248 	.next	= c_next,
1249 	.stop	= c_stop,
1250 	.show	= c_show,
1251 };
1252 
1253 static int content_open(struct inode *inode, struct file *file)
1254 {
1255 	struct handle *han;
1256 	struct cache_detail *cd = PDE(inode)->data;
1257 
1258 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1259 	if (han == NULL)
1260 		return -ENOMEM;
1261 
1262 	han->cd = cd;
1263 	return 0;
1264 }
1265 
1266 static const struct file_operations content_file_operations = {
1267 	.open		= content_open,
1268 	.read		= seq_read,
1269 	.llseek		= seq_lseek,
1270 	.release	= seq_release_private,
1271 };
1272 
1273 static ssize_t read_flush(struct file *file, char __user *buf,
1274 			    size_t count, loff_t *ppos)
1275 {
1276 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1277 	char tbuf[20];
1278 	unsigned long p = *ppos;
1279 	size_t len;
1280 
1281 	sprintf(tbuf, "%lu\n", cd->flush_time);
1282 	len = strlen(tbuf);
1283 	if (p >= len)
1284 		return 0;
1285 	len -= p;
1286 	if (len > count)
1287 		len = count;
1288 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1289 		return -EFAULT;
1290 	*ppos += len;
1291 	return len;
1292 }
1293 
1294 static ssize_t write_flush(struct file * file, const char __user * buf,
1295 			     size_t count, loff_t *ppos)
1296 {
1297 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1298 	char tbuf[20];
1299 	char *ep;
1300 	long flushtime;
1301 	if (*ppos || count > sizeof(tbuf)-1)
1302 		return -EINVAL;
1303 	if (copy_from_user(tbuf, buf, count))
1304 		return -EFAULT;
1305 	tbuf[count] = 0;
1306 	flushtime = simple_strtoul(tbuf, &ep, 0);
1307 	if (*ep && *ep != '\n')
1308 		return -EINVAL;
1309 
1310 	cd->flush_time = flushtime;
1311 	cd->nextcheck = get_seconds();
1312 	cache_flush();
1313 
1314 	*ppos += count;
1315 	return count;
1316 }
1317 
1318 static const struct file_operations cache_flush_operations = {
1319 	.open		= nonseekable_open,
1320 	.read		= read_flush,
1321 	.write		= write_flush,
1322 };
1323