1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 35 #define RPCDBG_FACILITY RPCDBG_CACHE 36 37 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 38 static void cache_revisit_request(struct cache_head *item); 39 40 static void cache_init(struct cache_head *h) 41 { 42 time_t now = get_seconds(); 43 h->next = NULL; 44 h->flags = 0; 45 kref_init(&h->ref); 46 h->expiry_time = now + CACHE_NEW_EXPIRY; 47 h->last_refresh = now; 48 } 49 50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 51 struct cache_head *key, int hash) 52 { 53 struct cache_head **head, **hp; 54 struct cache_head *new = NULL; 55 56 head = &detail->hash_table[hash]; 57 58 read_lock(&detail->hash_lock); 59 60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 61 struct cache_head *tmp = *hp; 62 if (detail->match(tmp, key)) { 63 cache_get(tmp); 64 read_unlock(&detail->hash_lock); 65 return tmp; 66 } 67 } 68 read_unlock(&detail->hash_lock); 69 /* Didn't find anything, insert an empty entry */ 70 71 new = detail->alloc(); 72 if (!new) 73 return NULL; 74 /* must fully initialise 'new', else 75 * we might get lose if we need to 76 * cache_put it soon. 77 */ 78 cache_init(new); 79 detail->init(new, key); 80 81 write_lock(&detail->hash_lock); 82 83 /* check if entry appeared while we slept */ 84 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 85 struct cache_head *tmp = *hp; 86 if (detail->match(tmp, key)) { 87 cache_get(tmp); 88 write_unlock(&detail->hash_lock); 89 cache_put(new, detail); 90 return tmp; 91 } 92 } 93 new->next = *head; 94 *head = new; 95 detail->entries++; 96 cache_get(new); 97 write_unlock(&detail->hash_lock); 98 99 return new; 100 } 101 EXPORT_SYMBOL(sunrpc_cache_lookup); 102 103 104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch); 105 106 static int cache_fresh_locked(struct cache_head *head, time_t expiry) 107 { 108 head->expiry_time = expiry; 109 head->last_refresh = get_seconds(); 110 return !test_and_set_bit(CACHE_VALID, &head->flags); 111 } 112 113 static void cache_fresh_unlocked(struct cache_head *head, 114 struct cache_detail *detail, int new) 115 { 116 if (new) 117 cache_revisit_request(head); 118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 119 cache_revisit_request(head); 120 queue_loose(detail, head); 121 } 122 } 123 124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 125 struct cache_head *new, struct cache_head *old, int hash) 126 { 127 /* The 'old' entry is to be replaced by 'new'. 128 * If 'old' is not VALID, we update it directly, 129 * otherwise we need to replace it 130 */ 131 struct cache_head **head; 132 struct cache_head *tmp; 133 int is_new; 134 135 if (!test_bit(CACHE_VALID, &old->flags)) { 136 write_lock(&detail->hash_lock); 137 if (!test_bit(CACHE_VALID, &old->flags)) { 138 if (test_bit(CACHE_NEGATIVE, &new->flags)) 139 set_bit(CACHE_NEGATIVE, &old->flags); 140 else 141 detail->update(old, new); 142 is_new = cache_fresh_locked(old, new->expiry_time); 143 write_unlock(&detail->hash_lock); 144 cache_fresh_unlocked(old, detail, is_new); 145 return old; 146 } 147 write_unlock(&detail->hash_lock); 148 } 149 /* We need to insert a new entry */ 150 tmp = detail->alloc(); 151 if (!tmp) { 152 cache_put(old, detail); 153 return NULL; 154 } 155 cache_init(tmp); 156 detail->init(tmp, old); 157 head = &detail->hash_table[hash]; 158 159 write_lock(&detail->hash_lock); 160 if (test_bit(CACHE_NEGATIVE, &new->flags)) 161 set_bit(CACHE_NEGATIVE, &tmp->flags); 162 else 163 detail->update(tmp, new); 164 tmp->next = *head; 165 *head = tmp; 166 detail->entries++; 167 cache_get(tmp); 168 is_new = cache_fresh_locked(tmp, new->expiry_time); 169 cache_fresh_locked(old, 0); 170 write_unlock(&detail->hash_lock); 171 cache_fresh_unlocked(tmp, detail, is_new); 172 cache_fresh_unlocked(old, detail, 0); 173 cache_put(old, detail); 174 return tmp; 175 } 176 EXPORT_SYMBOL(sunrpc_cache_update); 177 178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h); 179 /* 180 * This is the generic cache management routine for all 181 * the authentication caches. 182 * It checks the currency of a cache item and will (later) 183 * initiate an upcall to fill it if needed. 184 * 185 * 186 * Returns 0 if the cache_head can be used, or cache_puts it and returns 187 * -EAGAIN if upcall is pending, 188 * -ETIMEDOUT if upcall failed and should be retried, 189 * -ENOENT if cache entry was negative 190 */ 191 int cache_check(struct cache_detail *detail, 192 struct cache_head *h, struct cache_req *rqstp) 193 { 194 int rv; 195 long refresh_age, age; 196 197 /* First decide return status as best we can */ 198 if (!test_bit(CACHE_VALID, &h->flags) || 199 h->expiry_time < get_seconds()) 200 rv = -EAGAIN; 201 else if (detail->flush_time > h->last_refresh) 202 rv = -EAGAIN; 203 else { 204 /* entry is valid */ 205 if (test_bit(CACHE_NEGATIVE, &h->flags)) 206 rv = -ENOENT; 207 else rv = 0; 208 } 209 210 /* now see if we want to start an upcall */ 211 refresh_age = (h->expiry_time - h->last_refresh); 212 age = get_seconds() - h->last_refresh; 213 214 if (rqstp == NULL) { 215 if (rv == -EAGAIN) 216 rv = -ENOENT; 217 } else if (rv == -EAGAIN || age > refresh_age/2) { 218 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 219 refresh_age, age); 220 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 221 switch (cache_make_upcall(detail, h)) { 222 case -EINVAL: 223 clear_bit(CACHE_PENDING, &h->flags); 224 if (rv == -EAGAIN) { 225 set_bit(CACHE_NEGATIVE, &h->flags); 226 cache_fresh_unlocked(h, detail, 227 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY)); 228 rv = -ENOENT; 229 } 230 break; 231 232 case -EAGAIN: 233 clear_bit(CACHE_PENDING, &h->flags); 234 cache_revisit_request(h); 235 break; 236 } 237 } 238 } 239 240 if (rv == -EAGAIN) 241 if (cache_defer_req(rqstp, h) != 0) 242 rv = -ETIMEDOUT; 243 244 if (rv) 245 cache_put(h, detail); 246 return rv; 247 } 248 EXPORT_SYMBOL(cache_check); 249 250 /* 251 * caches need to be periodically cleaned. 252 * For this we maintain a list of cache_detail and 253 * a current pointer into that list and into the table 254 * for that entry. 255 * 256 * Each time clean_cache is called it finds the next non-empty entry 257 * in the current table and walks the list in that entry 258 * looking for entries that can be removed. 259 * 260 * An entry gets removed if: 261 * - The expiry is before current time 262 * - The last_refresh time is before the flush_time for that cache 263 * 264 * later we might drop old entries with non-NEVER expiry if that table 265 * is getting 'full' for some definition of 'full' 266 * 267 * The question of "how often to scan a table" is an interesting one 268 * and is answered in part by the use of the "nextcheck" field in the 269 * cache_detail. 270 * When a scan of a table begins, the nextcheck field is set to a time 271 * that is well into the future. 272 * While scanning, if an expiry time is found that is earlier than the 273 * current nextcheck time, nextcheck is set to that expiry time. 274 * If the flush_time is ever set to a time earlier than the nextcheck 275 * time, the nextcheck time is then set to that flush_time. 276 * 277 * A table is then only scanned if the current time is at least 278 * the nextcheck time. 279 * 280 */ 281 282 static LIST_HEAD(cache_list); 283 static DEFINE_SPINLOCK(cache_list_lock); 284 static struct cache_detail *current_detail; 285 static int current_index; 286 287 static const struct file_operations cache_file_operations; 288 static const struct file_operations content_file_operations; 289 static const struct file_operations cache_flush_operations; 290 291 static void do_cache_clean(struct work_struct *work); 292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 293 294 static void remove_cache_proc_entries(struct cache_detail *cd) 295 { 296 if (cd->proc_ent == NULL) 297 return; 298 if (cd->flush_ent) 299 remove_proc_entry("flush", cd->proc_ent); 300 if (cd->channel_ent) 301 remove_proc_entry("channel", cd->proc_ent); 302 if (cd->content_ent) 303 remove_proc_entry("content", cd->proc_ent); 304 cd->proc_ent = NULL; 305 remove_proc_entry(cd->name, proc_net_rpc); 306 } 307 308 #ifdef CONFIG_PROC_FS 309 static int create_cache_proc_entries(struct cache_detail *cd) 310 { 311 struct proc_dir_entry *p; 312 313 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc); 314 if (cd->proc_ent == NULL) 315 goto out_nomem; 316 cd->proc_ent->owner = cd->owner; 317 cd->channel_ent = cd->content_ent = NULL; 318 319 p = proc_create("flush", S_IFREG|S_IRUSR|S_IWUSR, 320 cd->proc_ent, &cache_flush_operations); 321 cd->flush_ent = p; 322 if (p == NULL) 323 goto out_nomem; 324 p->owner = cd->owner; 325 p->data = cd; 326 327 if (cd->cache_request || cd->cache_parse) { 328 p = proc_create("channel", S_IFREG|S_IRUSR|S_IWUSR, 329 cd->proc_ent, &cache_file_operations); 330 cd->channel_ent = p; 331 if (p == NULL) 332 goto out_nomem; 333 p->owner = cd->owner; 334 p->data = cd; 335 } 336 if (cd->cache_show) { 337 p = proc_create("content", S_IFREG|S_IRUSR|S_IWUSR, 338 cd->proc_ent, &content_file_operations); 339 cd->content_ent = p; 340 if (p == NULL) 341 goto out_nomem; 342 p->owner = cd->owner; 343 p->data = cd; 344 } 345 return 0; 346 out_nomem: 347 remove_cache_proc_entries(cd); 348 return -ENOMEM; 349 } 350 #else /* CONFIG_PROC_FS */ 351 static int create_cache_proc_entries(struct cache_detail *cd) 352 { 353 return 0; 354 } 355 #endif 356 357 int cache_register(struct cache_detail *cd) 358 { 359 int ret; 360 361 ret = create_cache_proc_entries(cd); 362 if (ret) 363 return ret; 364 rwlock_init(&cd->hash_lock); 365 INIT_LIST_HEAD(&cd->queue); 366 spin_lock(&cache_list_lock); 367 cd->nextcheck = 0; 368 cd->entries = 0; 369 atomic_set(&cd->readers, 0); 370 cd->last_close = 0; 371 cd->last_warn = -1; 372 list_add(&cd->others, &cache_list); 373 spin_unlock(&cache_list_lock); 374 375 /* start the cleaning process */ 376 schedule_delayed_work(&cache_cleaner, 0); 377 return 0; 378 } 379 EXPORT_SYMBOL(cache_register); 380 381 void cache_unregister(struct cache_detail *cd) 382 { 383 cache_purge(cd); 384 spin_lock(&cache_list_lock); 385 write_lock(&cd->hash_lock); 386 if (cd->entries || atomic_read(&cd->inuse)) { 387 write_unlock(&cd->hash_lock); 388 spin_unlock(&cache_list_lock); 389 goto out; 390 } 391 if (current_detail == cd) 392 current_detail = NULL; 393 list_del_init(&cd->others); 394 write_unlock(&cd->hash_lock); 395 spin_unlock(&cache_list_lock); 396 remove_cache_proc_entries(cd); 397 if (list_empty(&cache_list)) { 398 /* module must be being unloaded so its safe to kill the worker */ 399 cancel_delayed_work_sync(&cache_cleaner); 400 } 401 return; 402 out: 403 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 404 } 405 EXPORT_SYMBOL(cache_unregister); 406 407 /* clean cache tries to find something to clean 408 * and cleans it. 409 * It returns 1 if it cleaned something, 410 * 0 if it didn't find anything this time 411 * -1 if it fell off the end of the list. 412 */ 413 static int cache_clean(void) 414 { 415 int rv = 0; 416 struct list_head *next; 417 418 spin_lock(&cache_list_lock); 419 420 /* find a suitable table if we don't already have one */ 421 while (current_detail == NULL || 422 current_index >= current_detail->hash_size) { 423 if (current_detail) 424 next = current_detail->others.next; 425 else 426 next = cache_list.next; 427 if (next == &cache_list) { 428 current_detail = NULL; 429 spin_unlock(&cache_list_lock); 430 return -1; 431 } 432 current_detail = list_entry(next, struct cache_detail, others); 433 if (current_detail->nextcheck > get_seconds()) 434 current_index = current_detail->hash_size; 435 else { 436 current_index = 0; 437 current_detail->nextcheck = get_seconds()+30*60; 438 } 439 } 440 441 /* find a non-empty bucket in the table */ 442 while (current_detail && 443 current_index < current_detail->hash_size && 444 current_detail->hash_table[current_index] == NULL) 445 current_index++; 446 447 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 448 449 if (current_detail && current_index < current_detail->hash_size) { 450 struct cache_head *ch, **cp; 451 struct cache_detail *d; 452 453 write_lock(¤t_detail->hash_lock); 454 455 /* Ok, now to clean this strand */ 456 457 cp = & current_detail->hash_table[current_index]; 458 ch = *cp; 459 for (; ch; cp= & ch->next, ch= *cp) { 460 if (current_detail->nextcheck > ch->expiry_time) 461 current_detail->nextcheck = ch->expiry_time+1; 462 if (ch->expiry_time >= get_seconds() 463 && ch->last_refresh >= current_detail->flush_time 464 ) 465 continue; 466 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 467 queue_loose(current_detail, ch); 468 469 if (atomic_read(&ch->ref.refcount) == 1) 470 break; 471 } 472 if (ch) { 473 *cp = ch->next; 474 ch->next = NULL; 475 current_detail->entries--; 476 rv = 1; 477 } 478 write_unlock(¤t_detail->hash_lock); 479 d = current_detail; 480 if (!ch) 481 current_index ++; 482 spin_unlock(&cache_list_lock); 483 if (ch) 484 cache_put(ch, d); 485 } else 486 spin_unlock(&cache_list_lock); 487 488 return rv; 489 } 490 491 /* 492 * We want to regularly clean the cache, so we need to schedule some work ... 493 */ 494 static void do_cache_clean(struct work_struct *work) 495 { 496 int delay = 5; 497 if (cache_clean() == -1) 498 delay = 30*HZ; 499 500 if (list_empty(&cache_list)) 501 delay = 0; 502 503 if (delay) 504 schedule_delayed_work(&cache_cleaner, delay); 505 } 506 507 508 /* 509 * Clean all caches promptly. This just calls cache_clean 510 * repeatedly until we are sure that every cache has had a chance to 511 * be fully cleaned 512 */ 513 void cache_flush(void) 514 { 515 while (cache_clean() != -1) 516 cond_resched(); 517 while (cache_clean() != -1) 518 cond_resched(); 519 } 520 EXPORT_SYMBOL(cache_flush); 521 522 void cache_purge(struct cache_detail *detail) 523 { 524 detail->flush_time = LONG_MAX; 525 detail->nextcheck = get_seconds(); 526 cache_flush(); 527 detail->flush_time = 1; 528 } 529 EXPORT_SYMBOL(cache_purge); 530 531 532 /* 533 * Deferral and Revisiting of Requests. 534 * 535 * If a cache lookup finds a pending entry, we 536 * need to defer the request and revisit it later. 537 * All deferred requests are stored in a hash table, 538 * indexed by "struct cache_head *". 539 * As it may be wasteful to store a whole request 540 * structure, we allow the request to provide a 541 * deferred form, which must contain a 542 * 'struct cache_deferred_req' 543 * This cache_deferred_req contains a method to allow 544 * it to be revisited when cache info is available 545 */ 546 547 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 548 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 549 550 #define DFR_MAX 300 /* ??? */ 551 552 static DEFINE_SPINLOCK(cache_defer_lock); 553 static LIST_HEAD(cache_defer_list); 554 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 555 static int cache_defer_cnt; 556 557 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 558 { 559 struct cache_deferred_req *dreq; 560 int hash = DFR_HASH(item); 561 562 if (cache_defer_cnt >= DFR_MAX) { 563 /* too much in the cache, randomly drop this one, 564 * or continue and drop the oldest below 565 */ 566 if (net_random()&1) 567 return -ETIMEDOUT; 568 } 569 dreq = req->defer(req); 570 if (dreq == NULL) 571 return -ETIMEDOUT; 572 573 dreq->item = item; 574 dreq->recv_time = get_seconds(); 575 576 spin_lock(&cache_defer_lock); 577 578 list_add(&dreq->recent, &cache_defer_list); 579 580 if (cache_defer_hash[hash].next == NULL) 581 INIT_LIST_HEAD(&cache_defer_hash[hash]); 582 list_add(&dreq->hash, &cache_defer_hash[hash]); 583 584 /* it is in, now maybe clean up */ 585 dreq = NULL; 586 if (++cache_defer_cnt > DFR_MAX) { 587 dreq = list_entry(cache_defer_list.prev, 588 struct cache_deferred_req, recent); 589 list_del(&dreq->recent); 590 list_del(&dreq->hash); 591 cache_defer_cnt--; 592 } 593 spin_unlock(&cache_defer_lock); 594 595 if (dreq) { 596 /* there was one too many */ 597 dreq->revisit(dreq, 1); 598 } 599 if (!test_bit(CACHE_PENDING, &item->flags)) { 600 /* must have just been validated... */ 601 cache_revisit_request(item); 602 } 603 return 0; 604 } 605 606 static void cache_revisit_request(struct cache_head *item) 607 { 608 struct cache_deferred_req *dreq; 609 struct list_head pending; 610 611 struct list_head *lp; 612 int hash = DFR_HASH(item); 613 614 INIT_LIST_HEAD(&pending); 615 spin_lock(&cache_defer_lock); 616 617 lp = cache_defer_hash[hash].next; 618 if (lp) { 619 while (lp != &cache_defer_hash[hash]) { 620 dreq = list_entry(lp, struct cache_deferred_req, hash); 621 lp = lp->next; 622 if (dreq->item == item) { 623 list_del(&dreq->hash); 624 list_move(&dreq->recent, &pending); 625 cache_defer_cnt--; 626 } 627 } 628 } 629 spin_unlock(&cache_defer_lock); 630 631 while (!list_empty(&pending)) { 632 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 633 list_del_init(&dreq->recent); 634 dreq->revisit(dreq, 0); 635 } 636 } 637 638 void cache_clean_deferred(void *owner) 639 { 640 struct cache_deferred_req *dreq, *tmp; 641 struct list_head pending; 642 643 644 INIT_LIST_HEAD(&pending); 645 spin_lock(&cache_defer_lock); 646 647 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 648 if (dreq->owner == owner) { 649 list_del(&dreq->hash); 650 list_move(&dreq->recent, &pending); 651 cache_defer_cnt--; 652 } 653 } 654 spin_unlock(&cache_defer_lock); 655 656 while (!list_empty(&pending)) { 657 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 658 list_del_init(&dreq->recent); 659 dreq->revisit(dreq, 1); 660 } 661 } 662 663 /* 664 * communicate with user-space 665 * 666 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 667 * On read, you get a full request, or block. 668 * On write, an update request is processed. 669 * Poll works if anything to read, and always allows write. 670 * 671 * Implemented by linked list of requests. Each open file has 672 * a ->private that also exists in this list. New requests are added 673 * to the end and may wakeup and preceding readers. 674 * New readers are added to the head. If, on read, an item is found with 675 * CACHE_UPCALLING clear, we free it from the list. 676 * 677 */ 678 679 static DEFINE_SPINLOCK(queue_lock); 680 static DEFINE_MUTEX(queue_io_mutex); 681 682 struct cache_queue { 683 struct list_head list; 684 int reader; /* if 0, then request */ 685 }; 686 struct cache_request { 687 struct cache_queue q; 688 struct cache_head *item; 689 char * buf; 690 int len; 691 int readers; 692 }; 693 struct cache_reader { 694 struct cache_queue q; 695 int offset; /* if non-0, we have a refcnt on next request */ 696 }; 697 698 static ssize_t 699 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 700 { 701 struct cache_reader *rp = filp->private_data; 702 struct cache_request *rq; 703 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 704 int err; 705 706 if (count == 0) 707 return 0; 708 709 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent 710 * readers on this file */ 711 again: 712 spin_lock(&queue_lock); 713 /* need to find next request */ 714 while (rp->q.list.next != &cd->queue && 715 list_entry(rp->q.list.next, struct cache_queue, list) 716 ->reader) { 717 struct list_head *next = rp->q.list.next; 718 list_move(&rp->q.list, next); 719 } 720 if (rp->q.list.next == &cd->queue) { 721 spin_unlock(&queue_lock); 722 mutex_unlock(&queue_io_mutex); 723 BUG_ON(rp->offset); 724 return 0; 725 } 726 rq = container_of(rp->q.list.next, struct cache_request, q.list); 727 BUG_ON(rq->q.reader); 728 if (rp->offset == 0) 729 rq->readers++; 730 spin_unlock(&queue_lock); 731 732 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 733 err = -EAGAIN; 734 spin_lock(&queue_lock); 735 list_move(&rp->q.list, &rq->q.list); 736 spin_unlock(&queue_lock); 737 } else { 738 if (rp->offset + count > rq->len) 739 count = rq->len - rp->offset; 740 err = -EFAULT; 741 if (copy_to_user(buf, rq->buf + rp->offset, count)) 742 goto out; 743 rp->offset += count; 744 if (rp->offset >= rq->len) { 745 rp->offset = 0; 746 spin_lock(&queue_lock); 747 list_move(&rp->q.list, &rq->q.list); 748 spin_unlock(&queue_lock); 749 } 750 err = 0; 751 } 752 out: 753 if (rp->offset == 0) { 754 /* need to release rq */ 755 spin_lock(&queue_lock); 756 rq->readers--; 757 if (rq->readers == 0 && 758 !test_bit(CACHE_PENDING, &rq->item->flags)) { 759 list_del(&rq->q.list); 760 spin_unlock(&queue_lock); 761 cache_put(rq->item, cd); 762 kfree(rq->buf); 763 kfree(rq); 764 } else 765 spin_unlock(&queue_lock); 766 } 767 if (err == -EAGAIN) 768 goto again; 769 mutex_unlock(&queue_io_mutex); 770 return err ? err : count; 771 } 772 773 static char write_buf[8192]; /* protected by queue_io_mutex */ 774 775 static ssize_t 776 cache_write(struct file *filp, const char __user *buf, size_t count, 777 loff_t *ppos) 778 { 779 int err; 780 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 781 782 if (count == 0) 783 return 0; 784 if (count >= sizeof(write_buf)) 785 return -EINVAL; 786 787 mutex_lock(&queue_io_mutex); 788 789 if (copy_from_user(write_buf, buf, count)) { 790 mutex_unlock(&queue_io_mutex); 791 return -EFAULT; 792 } 793 write_buf[count] = '\0'; 794 if (cd->cache_parse) 795 err = cd->cache_parse(cd, write_buf, count); 796 else 797 err = -EINVAL; 798 799 mutex_unlock(&queue_io_mutex); 800 return err ? err : count; 801 } 802 803 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 804 805 static unsigned int 806 cache_poll(struct file *filp, poll_table *wait) 807 { 808 unsigned int mask; 809 struct cache_reader *rp = filp->private_data; 810 struct cache_queue *cq; 811 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 812 813 poll_wait(filp, &queue_wait, wait); 814 815 /* alway allow write */ 816 mask = POLL_OUT | POLLWRNORM; 817 818 if (!rp) 819 return mask; 820 821 spin_lock(&queue_lock); 822 823 for (cq= &rp->q; &cq->list != &cd->queue; 824 cq = list_entry(cq->list.next, struct cache_queue, list)) 825 if (!cq->reader) { 826 mask |= POLLIN | POLLRDNORM; 827 break; 828 } 829 spin_unlock(&queue_lock); 830 return mask; 831 } 832 833 static int 834 cache_ioctl(struct inode *ino, struct file *filp, 835 unsigned int cmd, unsigned long arg) 836 { 837 int len = 0; 838 struct cache_reader *rp = filp->private_data; 839 struct cache_queue *cq; 840 struct cache_detail *cd = PDE(ino)->data; 841 842 if (cmd != FIONREAD || !rp) 843 return -EINVAL; 844 845 spin_lock(&queue_lock); 846 847 /* only find the length remaining in current request, 848 * or the length of the next request 849 */ 850 for (cq= &rp->q; &cq->list != &cd->queue; 851 cq = list_entry(cq->list.next, struct cache_queue, list)) 852 if (!cq->reader) { 853 struct cache_request *cr = 854 container_of(cq, struct cache_request, q); 855 len = cr->len - rp->offset; 856 break; 857 } 858 spin_unlock(&queue_lock); 859 860 return put_user(len, (int __user *)arg); 861 } 862 863 static int 864 cache_open(struct inode *inode, struct file *filp) 865 { 866 struct cache_reader *rp = NULL; 867 868 nonseekable_open(inode, filp); 869 if (filp->f_mode & FMODE_READ) { 870 struct cache_detail *cd = PDE(inode)->data; 871 872 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 873 if (!rp) 874 return -ENOMEM; 875 rp->offset = 0; 876 rp->q.reader = 1; 877 atomic_inc(&cd->readers); 878 spin_lock(&queue_lock); 879 list_add(&rp->q.list, &cd->queue); 880 spin_unlock(&queue_lock); 881 } 882 filp->private_data = rp; 883 return 0; 884 } 885 886 static int 887 cache_release(struct inode *inode, struct file *filp) 888 { 889 struct cache_reader *rp = filp->private_data; 890 struct cache_detail *cd = PDE(inode)->data; 891 892 if (rp) { 893 spin_lock(&queue_lock); 894 if (rp->offset) { 895 struct cache_queue *cq; 896 for (cq= &rp->q; &cq->list != &cd->queue; 897 cq = list_entry(cq->list.next, struct cache_queue, list)) 898 if (!cq->reader) { 899 container_of(cq, struct cache_request, q) 900 ->readers--; 901 break; 902 } 903 rp->offset = 0; 904 } 905 list_del(&rp->q.list); 906 spin_unlock(&queue_lock); 907 908 filp->private_data = NULL; 909 kfree(rp); 910 911 cd->last_close = get_seconds(); 912 atomic_dec(&cd->readers); 913 } 914 return 0; 915 } 916 917 918 919 static const struct file_operations cache_file_operations = { 920 .owner = THIS_MODULE, 921 .llseek = no_llseek, 922 .read = cache_read, 923 .write = cache_write, 924 .poll = cache_poll, 925 .ioctl = cache_ioctl, /* for FIONREAD */ 926 .open = cache_open, 927 .release = cache_release, 928 }; 929 930 931 static void queue_loose(struct cache_detail *detail, struct cache_head *ch) 932 { 933 struct cache_queue *cq; 934 spin_lock(&queue_lock); 935 list_for_each_entry(cq, &detail->queue, list) 936 if (!cq->reader) { 937 struct cache_request *cr = container_of(cq, struct cache_request, q); 938 if (cr->item != ch) 939 continue; 940 if (cr->readers != 0) 941 continue; 942 list_del(&cr->q.list); 943 spin_unlock(&queue_lock); 944 cache_put(cr->item, detail); 945 kfree(cr->buf); 946 kfree(cr); 947 return; 948 } 949 spin_unlock(&queue_lock); 950 } 951 952 /* 953 * Support routines for text-based upcalls. 954 * Fields are separated by spaces. 955 * Fields are either mangled to quote space tab newline slosh with slosh 956 * or a hexified with a leading \x 957 * Record is terminated with newline. 958 * 959 */ 960 961 void qword_add(char **bpp, int *lp, char *str) 962 { 963 char *bp = *bpp; 964 int len = *lp; 965 char c; 966 967 if (len < 0) return; 968 969 while ((c=*str++) && len) 970 switch(c) { 971 case ' ': 972 case '\t': 973 case '\n': 974 case '\\': 975 if (len >= 4) { 976 *bp++ = '\\'; 977 *bp++ = '0' + ((c & 0300)>>6); 978 *bp++ = '0' + ((c & 0070)>>3); 979 *bp++ = '0' + ((c & 0007)>>0); 980 } 981 len -= 4; 982 break; 983 default: 984 *bp++ = c; 985 len--; 986 } 987 if (c || len <1) len = -1; 988 else { 989 *bp++ = ' '; 990 len--; 991 } 992 *bpp = bp; 993 *lp = len; 994 } 995 EXPORT_SYMBOL(qword_add); 996 997 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 998 { 999 char *bp = *bpp; 1000 int len = *lp; 1001 1002 if (len < 0) return; 1003 1004 if (len > 2) { 1005 *bp++ = '\\'; 1006 *bp++ = 'x'; 1007 len -= 2; 1008 while (blen && len >= 2) { 1009 unsigned char c = *buf++; 1010 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1011 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1012 len -= 2; 1013 blen--; 1014 } 1015 } 1016 if (blen || len<1) len = -1; 1017 else { 1018 *bp++ = ' '; 1019 len--; 1020 } 1021 *bpp = bp; 1022 *lp = len; 1023 } 1024 EXPORT_SYMBOL(qword_addhex); 1025 1026 static void warn_no_listener(struct cache_detail *detail) 1027 { 1028 if (detail->last_warn != detail->last_close) { 1029 detail->last_warn = detail->last_close; 1030 if (detail->warn_no_listener) 1031 detail->warn_no_listener(detail); 1032 } 1033 } 1034 1035 /* 1036 * register an upcall request to user-space. 1037 * Each request is at most one page long. 1038 */ 1039 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h) 1040 { 1041 1042 char *buf; 1043 struct cache_request *crq; 1044 char *bp; 1045 int len; 1046 1047 if (detail->cache_request == NULL) 1048 return -EINVAL; 1049 1050 if (atomic_read(&detail->readers) == 0 && 1051 detail->last_close < get_seconds() - 30) { 1052 warn_no_listener(detail); 1053 return -EINVAL; 1054 } 1055 1056 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1057 if (!buf) 1058 return -EAGAIN; 1059 1060 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1061 if (!crq) { 1062 kfree(buf); 1063 return -EAGAIN; 1064 } 1065 1066 bp = buf; len = PAGE_SIZE; 1067 1068 detail->cache_request(detail, h, &bp, &len); 1069 1070 if (len < 0) { 1071 kfree(buf); 1072 kfree(crq); 1073 return -EAGAIN; 1074 } 1075 crq->q.reader = 0; 1076 crq->item = cache_get(h); 1077 crq->buf = buf; 1078 crq->len = PAGE_SIZE - len; 1079 crq->readers = 0; 1080 spin_lock(&queue_lock); 1081 list_add_tail(&crq->q.list, &detail->queue); 1082 spin_unlock(&queue_lock); 1083 wake_up(&queue_wait); 1084 return 0; 1085 } 1086 1087 /* 1088 * parse a message from user-space and pass it 1089 * to an appropriate cache 1090 * Messages are, like requests, separated into fields by 1091 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1092 * 1093 * Message is 1094 * reply cachename expiry key ... content.... 1095 * 1096 * key and content are both parsed by cache 1097 */ 1098 1099 #define isodigit(c) (isdigit(c) && c <= '7') 1100 int qword_get(char **bpp, char *dest, int bufsize) 1101 { 1102 /* return bytes copied, or -1 on error */ 1103 char *bp = *bpp; 1104 int len = 0; 1105 1106 while (*bp == ' ') bp++; 1107 1108 if (bp[0] == '\\' && bp[1] == 'x') { 1109 /* HEX STRING */ 1110 bp += 2; 1111 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1112 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1113 bp++; 1114 byte <<= 4; 1115 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1116 *dest++ = byte; 1117 bp++; 1118 len++; 1119 } 1120 } else { 1121 /* text with \nnn octal quoting */ 1122 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1123 if (*bp == '\\' && 1124 isodigit(bp[1]) && (bp[1] <= '3') && 1125 isodigit(bp[2]) && 1126 isodigit(bp[3])) { 1127 int byte = (*++bp -'0'); 1128 bp++; 1129 byte = (byte << 3) | (*bp++ - '0'); 1130 byte = (byte << 3) | (*bp++ - '0'); 1131 *dest++ = byte; 1132 len++; 1133 } else { 1134 *dest++ = *bp++; 1135 len++; 1136 } 1137 } 1138 } 1139 1140 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1141 return -1; 1142 while (*bp == ' ') bp++; 1143 *bpp = bp; 1144 *dest = '\0'; 1145 return len; 1146 } 1147 EXPORT_SYMBOL(qword_get); 1148 1149 1150 /* 1151 * support /proc/sunrpc/cache/$CACHENAME/content 1152 * as a seqfile. 1153 * We call ->cache_show passing NULL for the item to 1154 * get a header, then pass each real item in the cache 1155 */ 1156 1157 struct handle { 1158 struct cache_detail *cd; 1159 }; 1160 1161 static void *c_start(struct seq_file *m, loff_t *pos) 1162 __acquires(cd->hash_lock) 1163 { 1164 loff_t n = *pos; 1165 unsigned hash, entry; 1166 struct cache_head *ch; 1167 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1168 1169 1170 read_lock(&cd->hash_lock); 1171 if (!n--) 1172 return SEQ_START_TOKEN; 1173 hash = n >> 32; 1174 entry = n & ((1LL<<32) - 1); 1175 1176 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1177 if (!entry--) 1178 return ch; 1179 n &= ~((1LL<<32) - 1); 1180 do { 1181 hash++; 1182 n += 1LL<<32; 1183 } while(hash < cd->hash_size && 1184 cd->hash_table[hash]==NULL); 1185 if (hash >= cd->hash_size) 1186 return NULL; 1187 *pos = n+1; 1188 return cd->hash_table[hash]; 1189 } 1190 1191 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1192 { 1193 struct cache_head *ch = p; 1194 int hash = (*pos >> 32); 1195 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1196 1197 if (p == SEQ_START_TOKEN) 1198 hash = 0; 1199 else if (ch->next == NULL) { 1200 hash++; 1201 *pos += 1LL<<32; 1202 } else { 1203 ++*pos; 1204 return ch->next; 1205 } 1206 *pos &= ~((1LL<<32) - 1); 1207 while (hash < cd->hash_size && 1208 cd->hash_table[hash] == NULL) { 1209 hash++; 1210 *pos += 1LL<<32; 1211 } 1212 if (hash >= cd->hash_size) 1213 return NULL; 1214 ++*pos; 1215 return cd->hash_table[hash]; 1216 } 1217 1218 static void c_stop(struct seq_file *m, void *p) 1219 __releases(cd->hash_lock) 1220 { 1221 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1222 read_unlock(&cd->hash_lock); 1223 } 1224 1225 static int c_show(struct seq_file *m, void *p) 1226 { 1227 struct cache_head *cp = p; 1228 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1229 1230 if (p == SEQ_START_TOKEN) 1231 return cd->cache_show(m, cd, NULL); 1232 1233 ifdebug(CACHE) 1234 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1235 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1236 cache_get(cp); 1237 if (cache_check(cd, cp, NULL)) 1238 /* cache_check does a cache_put on failure */ 1239 seq_printf(m, "# "); 1240 else 1241 cache_put(cp, cd); 1242 1243 return cd->cache_show(m, cd, cp); 1244 } 1245 1246 static const struct seq_operations cache_content_op = { 1247 .start = c_start, 1248 .next = c_next, 1249 .stop = c_stop, 1250 .show = c_show, 1251 }; 1252 1253 static int content_open(struct inode *inode, struct file *file) 1254 { 1255 struct handle *han; 1256 struct cache_detail *cd = PDE(inode)->data; 1257 1258 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1259 if (han == NULL) 1260 return -ENOMEM; 1261 1262 han->cd = cd; 1263 return 0; 1264 } 1265 1266 static const struct file_operations content_file_operations = { 1267 .open = content_open, 1268 .read = seq_read, 1269 .llseek = seq_lseek, 1270 .release = seq_release_private, 1271 }; 1272 1273 static ssize_t read_flush(struct file *file, char __user *buf, 1274 size_t count, loff_t *ppos) 1275 { 1276 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1277 char tbuf[20]; 1278 unsigned long p = *ppos; 1279 size_t len; 1280 1281 sprintf(tbuf, "%lu\n", cd->flush_time); 1282 len = strlen(tbuf); 1283 if (p >= len) 1284 return 0; 1285 len -= p; 1286 if (len > count) 1287 len = count; 1288 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1289 return -EFAULT; 1290 *ppos += len; 1291 return len; 1292 } 1293 1294 static ssize_t write_flush(struct file * file, const char __user * buf, 1295 size_t count, loff_t *ppos) 1296 { 1297 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1298 char tbuf[20]; 1299 char *ep; 1300 long flushtime; 1301 if (*ppos || count > sizeof(tbuf)-1) 1302 return -EINVAL; 1303 if (copy_from_user(tbuf, buf, count)) 1304 return -EFAULT; 1305 tbuf[count] = 0; 1306 flushtime = simple_strtoul(tbuf, &ep, 0); 1307 if (*ep && *ep != '\n') 1308 return -EINVAL; 1309 1310 cd->flush_time = flushtime; 1311 cd->nextcheck = get_seconds(); 1312 cache_flush(); 1313 1314 *ppos += count; 1315 return count; 1316 } 1317 1318 static const struct file_operations cache_flush_operations = { 1319 .open = nonseekable_open, 1320 .read = read_flush, 1321 .write = write_flush, 1322 }; 1323