1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h) 44 { 45 time_t now = seconds_since_boot(); 46 h->next = NULL; 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 h->last_refresh = now; 51 } 52 53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h) 54 { 55 return (h->expiry_time < seconds_since_boot()) || 56 (detail->flush_time > h->last_refresh); 57 } 58 59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 60 struct cache_head *key, int hash) 61 { 62 struct cache_head **head, **hp; 63 struct cache_head *new = NULL, *freeme = NULL; 64 65 head = &detail->hash_table[hash]; 66 67 read_lock(&detail->hash_lock); 68 69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 70 struct cache_head *tmp = *hp; 71 if (detail->match(tmp, key)) { 72 if (cache_is_expired(detail, tmp)) 73 /* This entry is expired, we will discard it. */ 74 break; 75 cache_get(tmp); 76 read_unlock(&detail->hash_lock); 77 return tmp; 78 } 79 } 80 read_unlock(&detail->hash_lock); 81 /* Didn't find anything, insert an empty entry */ 82 83 new = detail->alloc(); 84 if (!new) 85 return NULL; 86 /* must fully initialise 'new', else 87 * we might get lose if we need to 88 * cache_put it soon. 89 */ 90 cache_init(new); 91 detail->init(new, key); 92 93 write_lock(&detail->hash_lock); 94 95 /* check if entry appeared while we slept */ 96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 97 struct cache_head *tmp = *hp; 98 if (detail->match(tmp, key)) { 99 if (cache_is_expired(detail, tmp)) { 100 *hp = tmp->next; 101 tmp->next = NULL; 102 detail->entries --; 103 freeme = tmp; 104 break; 105 } 106 cache_get(tmp); 107 write_unlock(&detail->hash_lock); 108 cache_put(new, detail); 109 return tmp; 110 } 111 } 112 new->next = *head; 113 *head = new; 114 detail->entries++; 115 cache_get(new); 116 write_unlock(&detail->hash_lock); 117 118 if (freeme) 119 cache_put(freeme, detail); 120 return new; 121 } 122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 123 124 125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 126 127 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 128 { 129 head->expiry_time = expiry; 130 head->last_refresh = seconds_since_boot(); 131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 132 set_bit(CACHE_VALID, &head->flags); 133 } 134 135 static void cache_fresh_unlocked(struct cache_head *head, 136 struct cache_detail *detail) 137 { 138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 139 cache_revisit_request(head); 140 cache_dequeue(detail, head); 141 } 142 } 143 144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 145 struct cache_head *new, struct cache_head *old, int hash) 146 { 147 /* The 'old' entry is to be replaced by 'new'. 148 * If 'old' is not VALID, we update it directly, 149 * otherwise we need to replace it 150 */ 151 struct cache_head **head; 152 struct cache_head *tmp; 153 154 if (!test_bit(CACHE_VALID, &old->flags)) { 155 write_lock(&detail->hash_lock); 156 if (!test_bit(CACHE_VALID, &old->flags)) { 157 if (test_bit(CACHE_NEGATIVE, &new->flags)) 158 set_bit(CACHE_NEGATIVE, &old->flags); 159 else 160 detail->update(old, new); 161 cache_fresh_locked(old, new->expiry_time); 162 write_unlock(&detail->hash_lock); 163 cache_fresh_unlocked(old, detail); 164 return old; 165 } 166 write_unlock(&detail->hash_lock); 167 } 168 /* We need to insert a new entry */ 169 tmp = detail->alloc(); 170 if (!tmp) { 171 cache_put(old, detail); 172 return NULL; 173 } 174 cache_init(tmp); 175 detail->init(tmp, old); 176 head = &detail->hash_table[hash]; 177 178 write_lock(&detail->hash_lock); 179 if (test_bit(CACHE_NEGATIVE, &new->flags)) 180 set_bit(CACHE_NEGATIVE, &tmp->flags); 181 else 182 detail->update(tmp, new); 183 tmp->next = *head; 184 *head = tmp; 185 detail->entries++; 186 cache_get(tmp); 187 cache_fresh_locked(tmp, new->expiry_time); 188 cache_fresh_locked(old, 0); 189 write_unlock(&detail->hash_lock); 190 cache_fresh_unlocked(tmp, detail); 191 cache_fresh_unlocked(old, detail); 192 cache_put(old, detail); 193 return tmp; 194 } 195 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 196 197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 198 { 199 if (cd->cache_upcall) 200 return cd->cache_upcall(cd, h); 201 return sunrpc_cache_pipe_upcall(cd, h); 202 } 203 204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) 205 { 206 if (!test_bit(CACHE_VALID, &h->flags)) 207 return -EAGAIN; 208 else { 209 /* entry is valid */ 210 if (test_bit(CACHE_NEGATIVE, &h->flags)) 211 return -ENOENT; 212 else { 213 /* 214 * In combination with write barrier in 215 * sunrpc_cache_update, ensures that anyone 216 * using the cache entry after this sees the 217 * updated contents: 218 */ 219 smp_rmb(); 220 return 0; 221 } 222 } 223 } 224 225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 226 { 227 int rv; 228 229 write_lock(&detail->hash_lock); 230 rv = cache_is_valid(detail, h); 231 if (rv != -EAGAIN) { 232 write_unlock(&detail->hash_lock); 233 return rv; 234 } 235 set_bit(CACHE_NEGATIVE, &h->flags); 236 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY); 237 write_unlock(&detail->hash_lock); 238 cache_fresh_unlocked(h, detail); 239 return -ENOENT; 240 } 241 242 /* 243 * This is the generic cache management routine for all 244 * the authentication caches. 245 * It checks the currency of a cache item and will (later) 246 * initiate an upcall to fill it if needed. 247 * 248 * 249 * Returns 0 if the cache_head can be used, or cache_puts it and returns 250 * -EAGAIN if upcall is pending and request has been queued 251 * -ETIMEDOUT if upcall failed or request could not be queue or 252 * upcall completed but item is still invalid (implying that 253 * the cache item has been replaced with a newer one). 254 * -ENOENT if cache entry was negative 255 */ 256 int cache_check(struct cache_detail *detail, 257 struct cache_head *h, struct cache_req *rqstp) 258 { 259 int rv; 260 long refresh_age, age; 261 262 /* First decide return status as best we can */ 263 rv = cache_is_valid(detail, h); 264 265 /* now see if we want to start an upcall */ 266 refresh_age = (h->expiry_time - h->last_refresh); 267 age = seconds_since_boot() - h->last_refresh; 268 269 if (rqstp == NULL) { 270 if (rv == -EAGAIN) 271 rv = -ENOENT; 272 } else if (rv == -EAGAIN || age > refresh_age/2) { 273 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 274 refresh_age, age); 275 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 276 switch (cache_make_upcall(detail, h)) { 277 case -EINVAL: 278 clear_bit(CACHE_PENDING, &h->flags); 279 cache_revisit_request(h); 280 rv = try_to_negate_entry(detail, h); 281 break; 282 case -EAGAIN: 283 clear_bit(CACHE_PENDING, &h->flags); 284 cache_revisit_request(h); 285 break; 286 } 287 } 288 } 289 290 if (rv == -EAGAIN) { 291 if (!cache_defer_req(rqstp, h)) { 292 /* 293 * Request was not deferred; handle it as best 294 * we can ourselves: 295 */ 296 rv = cache_is_valid(detail, h); 297 if (rv == -EAGAIN) 298 rv = -ETIMEDOUT; 299 } 300 } 301 if (rv) 302 cache_put(h, detail); 303 return rv; 304 } 305 EXPORT_SYMBOL_GPL(cache_check); 306 307 /* 308 * caches need to be periodically cleaned. 309 * For this we maintain a list of cache_detail and 310 * a current pointer into that list and into the table 311 * for that entry. 312 * 313 * Each time clean_cache is called it finds the next non-empty entry 314 * in the current table and walks the list in that entry 315 * looking for entries that can be removed. 316 * 317 * An entry gets removed if: 318 * - The expiry is before current time 319 * - The last_refresh time is before the flush_time for that cache 320 * 321 * later we might drop old entries with non-NEVER expiry if that table 322 * is getting 'full' for some definition of 'full' 323 * 324 * The question of "how often to scan a table" is an interesting one 325 * and is answered in part by the use of the "nextcheck" field in the 326 * cache_detail. 327 * When a scan of a table begins, the nextcheck field is set to a time 328 * that is well into the future. 329 * While scanning, if an expiry time is found that is earlier than the 330 * current nextcheck time, nextcheck is set to that expiry time. 331 * If the flush_time is ever set to a time earlier than the nextcheck 332 * time, the nextcheck time is then set to that flush_time. 333 * 334 * A table is then only scanned if the current time is at least 335 * the nextcheck time. 336 * 337 */ 338 339 static LIST_HEAD(cache_list); 340 static DEFINE_SPINLOCK(cache_list_lock); 341 static struct cache_detail *current_detail; 342 static int current_index; 343 344 static void do_cache_clean(struct work_struct *work); 345 static struct delayed_work cache_cleaner; 346 347 void sunrpc_init_cache_detail(struct cache_detail *cd) 348 { 349 rwlock_init(&cd->hash_lock); 350 INIT_LIST_HEAD(&cd->queue); 351 spin_lock(&cache_list_lock); 352 cd->nextcheck = 0; 353 cd->entries = 0; 354 atomic_set(&cd->readers, 0); 355 cd->last_close = 0; 356 cd->last_warn = -1; 357 list_add(&cd->others, &cache_list); 358 spin_unlock(&cache_list_lock); 359 360 /* start the cleaning process */ 361 schedule_delayed_work(&cache_cleaner, 0); 362 } 363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 364 365 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 366 { 367 cache_purge(cd); 368 spin_lock(&cache_list_lock); 369 write_lock(&cd->hash_lock); 370 if (cd->entries || atomic_read(&cd->inuse)) { 371 write_unlock(&cd->hash_lock); 372 spin_unlock(&cache_list_lock); 373 goto out; 374 } 375 if (current_detail == cd) 376 current_detail = NULL; 377 list_del_init(&cd->others); 378 write_unlock(&cd->hash_lock); 379 spin_unlock(&cache_list_lock); 380 if (list_empty(&cache_list)) { 381 /* module must be being unloaded so its safe to kill the worker */ 382 cancel_delayed_work_sync(&cache_cleaner); 383 } 384 return; 385 out: 386 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 387 } 388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 389 390 /* clean cache tries to find something to clean 391 * and cleans it. 392 * It returns 1 if it cleaned something, 393 * 0 if it didn't find anything this time 394 * -1 if it fell off the end of the list. 395 */ 396 static int cache_clean(void) 397 { 398 int rv = 0; 399 struct list_head *next; 400 401 spin_lock(&cache_list_lock); 402 403 /* find a suitable table if we don't already have one */ 404 while (current_detail == NULL || 405 current_index >= current_detail->hash_size) { 406 if (current_detail) 407 next = current_detail->others.next; 408 else 409 next = cache_list.next; 410 if (next == &cache_list) { 411 current_detail = NULL; 412 spin_unlock(&cache_list_lock); 413 return -1; 414 } 415 current_detail = list_entry(next, struct cache_detail, others); 416 if (current_detail->nextcheck > seconds_since_boot()) 417 current_index = current_detail->hash_size; 418 else { 419 current_index = 0; 420 current_detail->nextcheck = seconds_since_boot()+30*60; 421 } 422 } 423 424 /* find a non-empty bucket in the table */ 425 while (current_detail && 426 current_index < current_detail->hash_size && 427 current_detail->hash_table[current_index] == NULL) 428 current_index++; 429 430 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 431 432 if (current_detail && current_index < current_detail->hash_size) { 433 struct cache_head *ch, **cp; 434 struct cache_detail *d; 435 436 write_lock(¤t_detail->hash_lock); 437 438 /* Ok, now to clean this strand */ 439 440 cp = & current_detail->hash_table[current_index]; 441 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 442 if (current_detail->nextcheck > ch->expiry_time) 443 current_detail->nextcheck = ch->expiry_time+1; 444 if (!cache_is_expired(current_detail, ch)) 445 continue; 446 447 *cp = ch->next; 448 ch->next = NULL; 449 current_detail->entries--; 450 rv = 1; 451 break; 452 } 453 454 write_unlock(¤t_detail->hash_lock); 455 d = current_detail; 456 if (!ch) 457 current_index ++; 458 spin_unlock(&cache_list_lock); 459 if (ch) { 460 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 461 cache_dequeue(current_detail, ch); 462 cache_revisit_request(ch); 463 cache_put(ch, d); 464 } 465 } else 466 spin_unlock(&cache_list_lock); 467 468 return rv; 469 } 470 471 /* 472 * We want to regularly clean the cache, so we need to schedule some work ... 473 */ 474 static void do_cache_clean(struct work_struct *work) 475 { 476 int delay = 5; 477 if (cache_clean() == -1) 478 delay = round_jiffies_relative(30*HZ); 479 480 if (list_empty(&cache_list)) 481 delay = 0; 482 483 if (delay) 484 schedule_delayed_work(&cache_cleaner, delay); 485 } 486 487 488 /* 489 * Clean all caches promptly. This just calls cache_clean 490 * repeatedly until we are sure that every cache has had a chance to 491 * be fully cleaned 492 */ 493 void cache_flush(void) 494 { 495 while (cache_clean() != -1) 496 cond_resched(); 497 while (cache_clean() != -1) 498 cond_resched(); 499 } 500 EXPORT_SYMBOL_GPL(cache_flush); 501 502 void cache_purge(struct cache_detail *detail) 503 { 504 detail->flush_time = LONG_MAX; 505 detail->nextcheck = seconds_since_boot(); 506 cache_flush(); 507 detail->flush_time = 1; 508 } 509 EXPORT_SYMBOL_GPL(cache_purge); 510 511 512 /* 513 * Deferral and Revisiting of Requests. 514 * 515 * If a cache lookup finds a pending entry, we 516 * need to defer the request and revisit it later. 517 * All deferred requests are stored in a hash table, 518 * indexed by "struct cache_head *". 519 * As it may be wasteful to store a whole request 520 * structure, we allow the request to provide a 521 * deferred form, which must contain a 522 * 'struct cache_deferred_req' 523 * This cache_deferred_req contains a method to allow 524 * it to be revisited when cache info is available 525 */ 526 527 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 528 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 529 530 #define DFR_MAX 300 /* ??? */ 531 532 static DEFINE_SPINLOCK(cache_defer_lock); 533 static LIST_HEAD(cache_defer_list); 534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 535 static int cache_defer_cnt; 536 537 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 538 { 539 hlist_del_init(&dreq->hash); 540 if (!list_empty(&dreq->recent)) { 541 list_del_init(&dreq->recent); 542 cache_defer_cnt--; 543 } 544 } 545 546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 547 { 548 int hash = DFR_HASH(item); 549 550 INIT_LIST_HEAD(&dreq->recent); 551 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 552 } 553 554 static void setup_deferral(struct cache_deferred_req *dreq, 555 struct cache_head *item, 556 int count_me) 557 { 558 559 dreq->item = item; 560 561 spin_lock(&cache_defer_lock); 562 563 __hash_deferred_req(dreq, item); 564 565 if (count_me) { 566 cache_defer_cnt++; 567 list_add(&dreq->recent, &cache_defer_list); 568 } 569 570 spin_unlock(&cache_defer_lock); 571 572 } 573 574 struct thread_deferred_req { 575 struct cache_deferred_req handle; 576 struct completion completion; 577 }; 578 579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 580 { 581 struct thread_deferred_req *dr = 582 container_of(dreq, struct thread_deferred_req, handle); 583 complete(&dr->completion); 584 } 585 586 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 587 { 588 struct thread_deferred_req sleeper; 589 struct cache_deferred_req *dreq = &sleeper.handle; 590 591 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 592 dreq->revisit = cache_restart_thread; 593 594 setup_deferral(dreq, item, 0); 595 596 if (!test_bit(CACHE_PENDING, &item->flags) || 597 wait_for_completion_interruptible_timeout( 598 &sleeper.completion, req->thread_wait) <= 0) { 599 /* The completion wasn't completed, so we need 600 * to clean up 601 */ 602 spin_lock(&cache_defer_lock); 603 if (!hlist_unhashed(&sleeper.handle.hash)) { 604 __unhash_deferred_req(&sleeper.handle); 605 spin_unlock(&cache_defer_lock); 606 } else { 607 /* cache_revisit_request already removed 608 * this from the hash table, but hasn't 609 * called ->revisit yet. It will very soon 610 * and we need to wait for it. 611 */ 612 spin_unlock(&cache_defer_lock); 613 wait_for_completion(&sleeper.completion); 614 } 615 } 616 } 617 618 static void cache_limit_defers(void) 619 { 620 /* Make sure we haven't exceed the limit of allowed deferred 621 * requests. 622 */ 623 struct cache_deferred_req *discard = NULL; 624 625 if (cache_defer_cnt <= DFR_MAX) 626 return; 627 628 spin_lock(&cache_defer_lock); 629 630 /* Consider removing either the first or the last */ 631 if (cache_defer_cnt > DFR_MAX) { 632 if (net_random() & 1) 633 discard = list_entry(cache_defer_list.next, 634 struct cache_deferred_req, recent); 635 else 636 discard = list_entry(cache_defer_list.prev, 637 struct cache_deferred_req, recent); 638 __unhash_deferred_req(discard); 639 } 640 spin_unlock(&cache_defer_lock); 641 if (discard) 642 discard->revisit(discard, 1); 643 } 644 645 /* Return true if and only if a deferred request is queued. */ 646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 647 { 648 struct cache_deferred_req *dreq; 649 650 if (req->thread_wait) { 651 cache_wait_req(req, item); 652 if (!test_bit(CACHE_PENDING, &item->flags)) 653 return false; 654 } 655 dreq = req->defer(req); 656 if (dreq == NULL) 657 return false; 658 setup_deferral(dreq, item, 1); 659 if (!test_bit(CACHE_PENDING, &item->flags)) 660 /* Bit could have been cleared before we managed to 661 * set up the deferral, so need to revisit just in case 662 */ 663 cache_revisit_request(item); 664 665 cache_limit_defers(); 666 return true; 667 } 668 669 static void cache_revisit_request(struct cache_head *item) 670 { 671 struct cache_deferred_req *dreq; 672 struct list_head pending; 673 struct hlist_node *tmp; 674 int hash = DFR_HASH(item); 675 676 INIT_LIST_HEAD(&pending); 677 spin_lock(&cache_defer_lock); 678 679 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 680 if (dreq->item == item) { 681 __unhash_deferred_req(dreq); 682 list_add(&dreq->recent, &pending); 683 } 684 685 spin_unlock(&cache_defer_lock); 686 687 while (!list_empty(&pending)) { 688 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 689 list_del_init(&dreq->recent); 690 dreq->revisit(dreq, 0); 691 } 692 } 693 694 void cache_clean_deferred(void *owner) 695 { 696 struct cache_deferred_req *dreq, *tmp; 697 struct list_head pending; 698 699 700 INIT_LIST_HEAD(&pending); 701 spin_lock(&cache_defer_lock); 702 703 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 704 if (dreq->owner == owner) { 705 __unhash_deferred_req(dreq); 706 list_add(&dreq->recent, &pending); 707 } 708 } 709 spin_unlock(&cache_defer_lock); 710 711 while (!list_empty(&pending)) { 712 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 713 list_del_init(&dreq->recent); 714 dreq->revisit(dreq, 1); 715 } 716 } 717 718 /* 719 * communicate with user-space 720 * 721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 722 * On read, you get a full request, or block. 723 * On write, an update request is processed. 724 * Poll works if anything to read, and always allows write. 725 * 726 * Implemented by linked list of requests. Each open file has 727 * a ->private that also exists in this list. New requests are added 728 * to the end and may wakeup and preceding readers. 729 * New readers are added to the head. If, on read, an item is found with 730 * CACHE_UPCALLING clear, we free it from the list. 731 * 732 */ 733 734 static DEFINE_SPINLOCK(queue_lock); 735 static DEFINE_MUTEX(queue_io_mutex); 736 737 struct cache_queue { 738 struct list_head list; 739 int reader; /* if 0, then request */ 740 }; 741 struct cache_request { 742 struct cache_queue q; 743 struct cache_head *item; 744 char * buf; 745 int len; 746 int readers; 747 }; 748 struct cache_reader { 749 struct cache_queue q; 750 int offset; /* if non-0, we have a refcnt on next request */ 751 }; 752 753 static int cache_request(struct cache_detail *detail, 754 struct cache_request *crq) 755 { 756 char *bp = crq->buf; 757 int len = PAGE_SIZE; 758 759 detail->cache_request(detail, crq->item, &bp, &len); 760 if (len < 0) 761 return -EAGAIN; 762 return PAGE_SIZE - len; 763 } 764 765 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 766 loff_t *ppos, struct cache_detail *cd) 767 { 768 struct cache_reader *rp = filp->private_data; 769 struct cache_request *rq; 770 struct inode *inode = file_inode(filp); 771 int err; 772 773 if (count == 0) 774 return 0; 775 776 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 777 * readers on this file */ 778 again: 779 spin_lock(&queue_lock); 780 /* need to find next request */ 781 while (rp->q.list.next != &cd->queue && 782 list_entry(rp->q.list.next, struct cache_queue, list) 783 ->reader) { 784 struct list_head *next = rp->q.list.next; 785 list_move(&rp->q.list, next); 786 } 787 if (rp->q.list.next == &cd->queue) { 788 spin_unlock(&queue_lock); 789 mutex_unlock(&inode->i_mutex); 790 WARN_ON_ONCE(rp->offset); 791 return 0; 792 } 793 rq = container_of(rp->q.list.next, struct cache_request, q.list); 794 WARN_ON_ONCE(rq->q.reader); 795 if (rp->offset == 0) 796 rq->readers++; 797 spin_unlock(&queue_lock); 798 799 if (rq->len == 0) { 800 err = cache_request(cd, rq); 801 if (err < 0) 802 goto out; 803 rq->len = err; 804 } 805 806 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 807 err = -EAGAIN; 808 spin_lock(&queue_lock); 809 list_move(&rp->q.list, &rq->q.list); 810 spin_unlock(&queue_lock); 811 } else { 812 if (rp->offset + count > rq->len) 813 count = rq->len - rp->offset; 814 err = -EFAULT; 815 if (copy_to_user(buf, rq->buf + rp->offset, count)) 816 goto out; 817 rp->offset += count; 818 if (rp->offset >= rq->len) { 819 rp->offset = 0; 820 spin_lock(&queue_lock); 821 list_move(&rp->q.list, &rq->q.list); 822 spin_unlock(&queue_lock); 823 } 824 err = 0; 825 } 826 out: 827 if (rp->offset == 0) { 828 /* need to release rq */ 829 spin_lock(&queue_lock); 830 rq->readers--; 831 if (rq->readers == 0 && 832 !test_bit(CACHE_PENDING, &rq->item->flags)) { 833 list_del(&rq->q.list); 834 spin_unlock(&queue_lock); 835 cache_put(rq->item, cd); 836 kfree(rq->buf); 837 kfree(rq); 838 } else 839 spin_unlock(&queue_lock); 840 } 841 if (err == -EAGAIN) 842 goto again; 843 mutex_unlock(&inode->i_mutex); 844 return err ? err : count; 845 } 846 847 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 848 size_t count, struct cache_detail *cd) 849 { 850 ssize_t ret; 851 852 if (count == 0) 853 return -EINVAL; 854 if (copy_from_user(kaddr, buf, count)) 855 return -EFAULT; 856 kaddr[count] = '\0'; 857 ret = cd->cache_parse(cd, kaddr, count); 858 if (!ret) 859 ret = count; 860 return ret; 861 } 862 863 static ssize_t cache_slow_downcall(const char __user *buf, 864 size_t count, struct cache_detail *cd) 865 { 866 static char write_buf[8192]; /* protected by queue_io_mutex */ 867 ssize_t ret = -EINVAL; 868 869 if (count >= sizeof(write_buf)) 870 goto out; 871 mutex_lock(&queue_io_mutex); 872 ret = cache_do_downcall(write_buf, buf, count, cd); 873 mutex_unlock(&queue_io_mutex); 874 out: 875 return ret; 876 } 877 878 static ssize_t cache_downcall(struct address_space *mapping, 879 const char __user *buf, 880 size_t count, struct cache_detail *cd) 881 { 882 struct page *page; 883 char *kaddr; 884 ssize_t ret = -ENOMEM; 885 886 if (count >= PAGE_CACHE_SIZE) 887 goto out_slow; 888 889 page = find_or_create_page(mapping, 0, GFP_KERNEL); 890 if (!page) 891 goto out_slow; 892 893 kaddr = kmap(page); 894 ret = cache_do_downcall(kaddr, buf, count, cd); 895 kunmap(page); 896 unlock_page(page); 897 page_cache_release(page); 898 return ret; 899 out_slow: 900 return cache_slow_downcall(buf, count, cd); 901 } 902 903 static ssize_t cache_write(struct file *filp, const char __user *buf, 904 size_t count, loff_t *ppos, 905 struct cache_detail *cd) 906 { 907 struct address_space *mapping = filp->f_mapping; 908 struct inode *inode = file_inode(filp); 909 ssize_t ret = -EINVAL; 910 911 if (!cd->cache_parse) 912 goto out; 913 914 mutex_lock(&inode->i_mutex); 915 ret = cache_downcall(mapping, buf, count, cd); 916 mutex_unlock(&inode->i_mutex); 917 out: 918 return ret; 919 } 920 921 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 922 923 static unsigned int cache_poll(struct file *filp, poll_table *wait, 924 struct cache_detail *cd) 925 { 926 unsigned int mask; 927 struct cache_reader *rp = filp->private_data; 928 struct cache_queue *cq; 929 930 poll_wait(filp, &queue_wait, wait); 931 932 /* alway allow write */ 933 mask = POLL_OUT | POLLWRNORM; 934 935 if (!rp) 936 return mask; 937 938 spin_lock(&queue_lock); 939 940 for (cq= &rp->q; &cq->list != &cd->queue; 941 cq = list_entry(cq->list.next, struct cache_queue, list)) 942 if (!cq->reader) { 943 mask |= POLLIN | POLLRDNORM; 944 break; 945 } 946 spin_unlock(&queue_lock); 947 return mask; 948 } 949 950 static int cache_ioctl(struct inode *ino, struct file *filp, 951 unsigned int cmd, unsigned long arg, 952 struct cache_detail *cd) 953 { 954 int len = 0; 955 struct cache_reader *rp = filp->private_data; 956 struct cache_queue *cq; 957 958 if (cmd != FIONREAD || !rp) 959 return -EINVAL; 960 961 spin_lock(&queue_lock); 962 963 /* only find the length remaining in current request, 964 * or the length of the next request 965 */ 966 for (cq= &rp->q; &cq->list != &cd->queue; 967 cq = list_entry(cq->list.next, struct cache_queue, list)) 968 if (!cq->reader) { 969 struct cache_request *cr = 970 container_of(cq, struct cache_request, q); 971 len = cr->len - rp->offset; 972 break; 973 } 974 spin_unlock(&queue_lock); 975 976 return put_user(len, (int __user *)arg); 977 } 978 979 static int cache_open(struct inode *inode, struct file *filp, 980 struct cache_detail *cd) 981 { 982 struct cache_reader *rp = NULL; 983 984 if (!cd || !try_module_get(cd->owner)) 985 return -EACCES; 986 nonseekable_open(inode, filp); 987 if (filp->f_mode & FMODE_READ) { 988 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 989 if (!rp) { 990 module_put(cd->owner); 991 return -ENOMEM; 992 } 993 rp->offset = 0; 994 rp->q.reader = 1; 995 atomic_inc(&cd->readers); 996 spin_lock(&queue_lock); 997 list_add(&rp->q.list, &cd->queue); 998 spin_unlock(&queue_lock); 999 } 1000 filp->private_data = rp; 1001 return 0; 1002 } 1003 1004 static int cache_release(struct inode *inode, struct file *filp, 1005 struct cache_detail *cd) 1006 { 1007 struct cache_reader *rp = filp->private_data; 1008 1009 if (rp) { 1010 spin_lock(&queue_lock); 1011 if (rp->offset) { 1012 struct cache_queue *cq; 1013 for (cq= &rp->q; &cq->list != &cd->queue; 1014 cq = list_entry(cq->list.next, struct cache_queue, list)) 1015 if (!cq->reader) { 1016 container_of(cq, struct cache_request, q) 1017 ->readers--; 1018 break; 1019 } 1020 rp->offset = 0; 1021 } 1022 list_del(&rp->q.list); 1023 spin_unlock(&queue_lock); 1024 1025 filp->private_data = NULL; 1026 kfree(rp); 1027 1028 cd->last_close = seconds_since_boot(); 1029 atomic_dec(&cd->readers); 1030 } 1031 module_put(cd->owner); 1032 return 0; 1033 } 1034 1035 1036 1037 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1038 { 1039 struct cache_queue *cq; 1040 spin_lock(&queue_lock); 1041 list_for_each_entry(cq, &detail->queue, list) 1042 if (!cq->reader) { 1043 struct cache_request *cr = container_of(cq, struct cache_request, q); 1044 if (cr->item != ch) 1045 continue; 1046 if (cr->readers != 0) 1047 continue; 1048 list_del(&cr->q.list); 1049 spin_unlock(&queue_lock); 1050 cache_put(cr->item, detail); 1051 kfree(cr->buf); 1052 kfree(cr); 1053 return; 1054 } 1055 spin_unlock(&queue_lock); 1056 } 1057 1058 /* 1059 * Support routines for text-based upcalls. 1060 * Fields are separated by spaces. 1061 * Fields are either mangled to quote space tab newline slosh with slosh 1062 * or a hexified with a leading \x 1063 * Record is terminated with newline. 1064 * 1065 */ 1066 1067 void qword_add(char **bpp, int *lp, char *str) 1068 { 1069 char *bp = *bpp; 1070 int len = *lp; 1071 char c; 1072 1073 if (len < 0) return; 1074 1075 while ((c=*str++) && len) 1076 switch(c) { 1077 case ' ': 1078 case '\t': 1079 case '\n': 1080 case '\\': 1081 if (len >= 4) { 1082 *bp++ = '\\'; 1083 *bp++ = '0' + ((c & 0300)>>6); 1084 *bp++ = '0' + ((c & 0070)>>3); 1085 *bp++ = '0' + ((c & 0007)>>0); 1086 } 1087 len -= 4; 1088 break; 1089 default: 1090 *bp++ = c; 1091 len--; 1092 } 1093 if (c || len <1) len = -1; 1094 else { 1095 *bp++ = ' '; 1096 len--; 1097 } 1098 *bpp = bp; 1099 *lp = len; 1100 } 1101 EXPORT_SYMBOL_GPL(qword_add); 1102 1103 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1104 { 1105 char *bp = *bpp; 1106 int len = *lp; 1107 1108 if (len < 0) return; 1109 1110 if (len > 2) { 1111 *bp++ = '\\'; 1112 *bp++ = 'x'; 1113 len -= 2; 1114 while (blen && len >= 2) { 1115 unsigned char c = *buf++; 1116 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1117 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1118 len -= 2; 1119 blen--; 1120 } 1121 } 1122 if (blen || len<1) len = -1; 1123 else { 1124 *bp++ = ' '; 1125 len--; 1126 } 1127 *bpp = bp; 1128 *lp = len; 1129 } 1130 EXPORT_SYMBOL_GPL(qword_addhex); 1131 1132 static void warn_no_listener(struct cache_detail *detail) 1133 { 1134 if (detail->last_warn != detail->last_close) { 1135 detail->last_warn = detail->last_close; 1136 if (detail->warn_no_listener) 1137 detail->warn_no_listener(detail, detail->last_close != 0); 1138 } 1139 } 1140 1141 static bool cache_listeners_exist(struct cache_detail *detail) 1142 { 1143 if (atomic_read(&detail->readers)) 1144 return true; 1145 if (detail->last_close == 0) 1146 /* This cache was never opened */ 1147 return false; 1148 if (detail->last_close < seconds_since_boot() - 30) 1149 /* 1150 * We allow for the possibility that someone might 1151 * restart a userspace daemon without restarting the 1152 * server; but after 30 seconds, we give up. 1153 */ 1154 return false; 1155 return true; 1156 } 1157 1158 /* 1159 * register an upcall request to user-space and queue it up for read() by the 1160 * upcall daemon. 1161 * 1162 * Each request is at most one page long. 1163 */ 1164 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1165 { 1166 1167 char *buf; 1168 struct cache_request *crq; 1169 1170 if (!detail->cache_request) 1171 return -EINVAL; 1172 1173 if (!cache_listeners_exist(detail)) { 1174 warn_no_listener(detail); 1175 return -EINVAL; 1176 } 1177 1178 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1179 if (!buf) 1180 return -EAGAIN; 1181 1182 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1183 if (!crq) { 1184 kfree(buf); 1185 return -EAGAIN; 1186 } 1187 1188 crq->q.reader = 0; 1189 crq->item = cache_get(h); 1190 crq->buf = buf; 1191 crq->len = 0; 1192 crq->readers = 0; 1193 spin_lock(&queue_lock); 1194 list_add_tail(&crq->q.list, &detail->queue); 1195 spin_unlock(&queue_lock); 1196 wake_up(&queue_wait); 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1200 1201 /* 1202 * parse a message from user-space and pass it 1203 * to an appropriate cache 1204 * Messages are, like requests, separated into fields by 1205 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1206 * 1207 * Message is 1208 * reply cachename expiry key ... content.... 1209 * 1210 * key and content are both parsed by cache 1211 */ 1212 1213 int qword_get(char **bpp, char *dest, int bufsize) 1214 { 1215 /* return bytes copied, or -1 on error */ 1216 char *bp = *bpp; 1217 int len = 0; 1218 1219 while (*bp == ' ') bp++; 1220 1221 if (bp[0] == '\\' && bp[1] == 'x') { 1222 /* HEX STRING */ 1223 bp += 2; 1224 while (len < bufsize) { 1225 int h, l; 1226 1227 h = hex_to_bin(bp[0]); 1228 if (h < 0) 1229 break; 1230 1231 l = hex_to_bin(bp[1]); 1232 if (l < 0) 1233 break; 1234 1235 *dest++ = (h << 4) | l; 1236 bp += 2; 1237 len++; 1238 } 1239 } else { 1240 /* text with \nnn octal quoting */ 1241 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1242 if (*bp == '\\' && 1243 isodigit(bp[1]) && (bp[1] <= '3') && 1244 isodigit(bp[2]) && 1245 isodigit(bp[3])) { 1246 int byte = (*++bp -'0'); 1247 bp++; 1248 byte = (byte << 3) | (*bp++ - '0'); 1249 byte = (byte << 3) | (*bp++ - '0'); 1250 *dest++ = byte; 1251 len++; 1252 } else { 1253 *dest++ = *bp++; 1254 len++; 1255 } 1256 } 1257 } 1258 1259 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1260 return -1; 1261 while (*bp == ' ') bp++; 1262 *bpp = bp; 1263 *dest = '\0'; 1264 return len; 1265 } 1266 EXPORT_SYMBOL_GPL(qword_get); 1267 1268 1269 /* 1270 * support /proc/sunrpc/cache/$CACHENAME/content 1271 * as a seqfile. 1272 * We call ->cache_show passing NULL for the item to 1273 * get a header, then pass each real item in the cache 1274 */ 1275 1276 struct handle { 1277 struct cache_detail *cd; 1278 }; 1279 1280 static void *c_start(struct seq_file *m, loff_t *pos) 1281 __acquires(cd->hash_lock) 1282 { 1283 loff_t n = *pos; 1284 unsigned int hash, entry; 1285 struct cache_head *ch; 1286 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1287 1288 1289 read_lock(&cd->hash_lock); 1290 if (!n--) 1291 return SEQ_START_TOKEN; 1292 hash = n >> 32; 1293 entry = n & ((1LL<<32) - 1); 1294 1295 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1296 if (!entry--) 1297 return ch; 1298 n &= ~((1LL<<32) - 1); 1299 do { 1300 hash++; 1301 n += 1LL<<32; 1302 } while(hash < cd->hash_size && 1303 cd->hash_table[hash]==NULL); 1304 if (hash >= cd->hash_size) 1305 return NULL; 1306 *pos = n+1; 1307 return cd->hash_table[hash]; 1308 } 1309 1310 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1311 { 1312 struct cache_head *ch = p; 1313 int hash = (*pos >> 32); 1314 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1315 1316 if (p == SEQ_START_TOKEN) 1317 hash = 0; 1318 else if (ch->next == NULL) { 1319 hash++; 1320 *pos += 1LL<<32; 1321 } else { 1322 ++*pos; 1323 return ch->next; 1324 } 1325 *pos &= ~((1LL<<32) - 1); 1326 while (hash < cd->hash_size && 1327 cd->hash_table[hash] == NULL) { 1328 hash++; 1329 *pos += 1LL<<32; 1330 } 1331 if (hash >= cd->hash_size) 1332 return NULL; 1333 ++*pos; 1334 return cd->hash_table[hash]; 1335 } 1336 1337 static void c_stop(struct seq_file *m, void *p) 1338 __releases(cd->hash_lock) 1339 { 1340 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1341 read_unlock(&cd->hash_lock); 1342 } 1343 1344 static int c_show(struct seq_file *m, void *p) 1345 { 1346 struct cache_head *cp = p; 1347 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1348 1349 if (p == SEQ_START_TOKEN) 1350 return cd->cache_show(m, cd, NULL); 1351 1352 ifdebug(CACHE) 1353 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1354 convert_to_wallclock(cp->expiry_time), 1355 atomic_read(&cp->ref.refcount), cp->flags); 1356 cache_get(cp); 1357 if (cache_check(cd, cp, NULL)) 1358 /* cache_check does a cache_put on failure */ 1359 seq_printf(m, "# "); 1360 else { 1361 if (cache_is_expired(cd, cp)) 1362 seq_printf(m, "# "); 1363 cache_put(cp, cd); 1364 } 1365 1366 return cd->cache_show(m, cd, cp); 1367 } 1368 1369 static const struct seq_operations cache_content_op = { 1370 .start = c_start, 1371 .next = c_next, 1372 .stop = c_stop, 1373 .show = c_show, 1374 }; 1375 1376 static int content_open(struct inode *inode, struct file *file, 1377 struct cache_detail *cd) 1378 { 1379 struct handle *han; 1380 1381 if (!cd || !try_module_get(cd->owner)) 1382 return -EACCES; 1383 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1384 if (han == NULL) { 1385 module_put(cd->owner); 1386 return -ENOMEM; 1387 } 1388 1389 han->cd = cd; 1390 return 0; 1391 } 1392 1393 static int content_release(struct inode *inode, struct file *file, 1394 struct cache_detail *cd) 1395 { 1396 int ret = seq_release_private(inode, file); 1397 module_put(cd->owner); 1398 return ret; 1399 } 1400 1401 static int open_flush(struct inode *inode, struct file *file, 1402 struct cache_detail *cd) 1403 { 1404 if (!cd || !try_module_get(cd->owner)) 1405 return -EACCES; 1406 return nonseekable_open(inode, file); 1407 } 1408 1409 static int release_flush(struct inode *inode, struct file *file, 1410 struct cache_detail *cd) 1411 { 1412 module_put(cd->owner); 1413 return 0; 1414 } 1415 1416 static ssize_t read_flush(struct file *file, char __user *buf, 1417 size_t count, loff_t *ppos, 1418 struct cache_detail *cd) 1419 { 1420 char tbuf[22]; 1421 unsigned long p = *ppos; 1422 size_t len; 1423 1424 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time)); 1425 len = strlen(tbuf); 1426 if (p >= len) 1427 return 0; 1428 len -= p; 1429 if (len > count) 1430 len = count; 1431 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1432 return -EFAULT; 1433 *ppos += len; 1434 return len; 1435 } 1436 1437 static ssize_t write_flush(struct file *file, const char __user *buf, 1438 size_t count, loff_t *ppos, 1439 struct cache_detail *cd) 1440 { 1441 char tbuf[20]; 1442 char *bp, *ep; 1443 1444 if (*ppos || count > sizeof(tbuf)-1) 1445 return -EINVAL; 1446 if (copy_from_user(tbuf, buf, count)) 1447 return -EFAULT; 1448 tbuf[count] = 0; 1449 simple_strtoul(tbuf, &ep, 0); 1450 if (*ep && *ep != '\n') 1451 return -EINVAL; 1452 1453 bp = tbuf; 1454 cd->flush_time = get_expiry(&bp); 1455 cd->nextcheck = seconds_since_boot(); 1456 cache_flush(); 1457 1458 *ppos += count; 1459 return count; 1460 } 1461 1462 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1463 size_t count, loff_t *ppos) 1464 { 1465 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1466 1467 return cache_read(filp, buf, count, ppos, cd); 1468 } 1469 1470 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1471 size_t count, loff_t *ppos) 1472 { 1473 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1474 1475 return cache_write(filp, buf, count, ppos, cd); 1476 } 1477 1478 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1479 { 1480 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1481 1482 return cache_poll(filp, wait, cd); 1483 } 1484 1485 static long cache_ioctl_procfs(struct file *filp, 1486 unsigned int cmd, unsigned long arg) 1487 { 1488 struct inode *inode = file_inode(filp); 1489 struct cache_detail *cd = PDE_DATA(inode); 1490 1491 return cache_ioctl(inode, filp, cmd, arg, cd); 1492 } 1493 1494 static int cache_open_procfs(struct inode *inode, struct file *filp) 1495 { 1496 struct cache_detail *cd = PDE_DATA(inode); 1497 1498 return cache_open(inode, filp, cd); 1499 } 1500 1501 static int cache_release_procfs(struct inode *inode, struct file *filp) 1502 { 1503 struct cache_detail *cd = PDE_DATA(inode); 1504 1505 return cache_release(inode, filp, cd); 1506 } 1507 1508 static const struct file_operations cache_file_operations_procfs = { 1509 .owner = THIS_MODULE, 1510 .llseek = no_llseek, 1511 .read = cache_read_procfs, 1512 .write = cache_write_procfs, 1513 .poll = cache_poll_procfs, 1514 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1515 .open = cache_open_procfs, 1516 .release = cache_release_procfs, 1517 }; 1518 1519 static int content_open_procfs(struct inode *inode, struct file *filp) 1520 { 1521 struct cache_detail *cd = PDE_DATA(inode); 1522 1523 return content_open(inode, filp, cd); 1524 } 1525 1526 static int content_release_procfs(struct inode *inode, struct file *filp) 1527 { 1528 struct cache_detail *cd = PDE_DATA(inode); 1529 1530 return content_release(inode, filp, cd); 1531 } 1532 1533 static const struct file_operations content_file_operations_procfs = { 1534 .open = content_open_procfs, 1535 .read = seq_read, 1536 .llseek = seq_lseek, 1537 .release = content_release_procfs, 1538 }; 1539 1540 static int open_flush_procfs(struct inode *inode, struct file *filp) 1541 { 1542 struct cache_detail *cd = PDE_DATA(inode); 1543 1544 return open_flush(inode, filp, cd); 1545 } 1546 1547 static int release_flush_procfs(struct inode *inode, struct file *filp) 1548 { 1549 struct cache_detail *cd = PDE_DATA(inode); 1550 1551 return release_flush(inode, filp, cd); 1552 } 1553 1554 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1555 size_t count, loff_t *ppos) 1556 { 1557 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1558 1559 return read_flush(filp, buf, count, ppos, cd); 1560 } 1561 1562 static ssize_t write_flush_procfs(struct file *filp, 1563 const char __user *buf, 1564 size_t count, loff_t *ppos) 1565 { 1566 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1567 1568 return write_flush(filp, buf, count, ppos, cd); 1569 } 1570 1571 static const struct file_operations cache_flush_operations_procfs = { 1572 .open = open_flush_procfs, 1573 .read = read_flush_procfs, 1574 .write = write_flush_procfs, 1575 .release = release_flush_procfs, 1576 .llseek = no_llseek, 1577 }; 1578 1579 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1580 { 1581 struct sunrpc_net *sn; 1582 1583 if (cd->u.procfs.proc_ent == NULL) 1584 return; 1585 if (cd->u.procfs.flush_ent) 1586 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1587 if (cd->u.procfs.channel_ent) 1588 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1589 if (cd->u.procfs.content_ent) 1590 remove_proc_entry("content", cd->u.procfs.proc_ent); 1591 cd->u.procfs.proc_ent = NULL; 1592 sn = net_generic(net, sunrpc_net_id); 1593 remove_proc_entry(cd->name, sn->proc_net_rpc); 1594 } 1595 1596 #ifdef CONFIG_PROC_FS 1597 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1598 { 1599 struct proc_dir_entry *p; 1600 struct sunrpc_net *sn; 1601 1602 sn = net_generic(net, sunrpc_net_id); 1603 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1604 if (cd->u.procfs.proc_ent == NULL) 1605 goto out_nomem; 1606 cd->u.procfs.channel_ent = NULL; 1607 cd->u.procfs.content_ent = NULL; 1608 1609 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1610 cd->u.procfs.proc_ent, 1611 &cache_flush_operations_procfs, cd); 1612 cd->u.procfs.flush_ent = p; 1613 if (p == NULL) 1614 goto out_nomem; 1615 1616 if (cd->cache_request || cd->cache_parse) { 1617 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1618 cd->u.procfs.proc_ent, 1619 &cache_file_operations_procfs, cd); 1620 cd->u.procfs.channel_ent = p; 1621 if (p == NULL) 1622 goto out_nomem; 1623 } 1624 if (cd->cache_show) { 1625 p = proc_create_data("content", S_IFREG|S_IRUSR, 1626 cd->u.procfs.proc_ent, 1627 &content_file_operations_procfs, cd); 1628 cd->u.procfs.content_ent = p; 1629 if (p == NULL) 1630 goto out_nomem; 1631 } 1632 return 0; 1633 out_nomem: 1634 remove_cache_proc_entries(cd, net); 1635 return -ENOMEM; 1636 } 1637 #else /* CONFIG_PROC_FS */ 1638 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1639 { 1640 return 0; 1641 } 1642 #endif 1643 1644 void __init cache_initialize(void) 1645 { 1646 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1647 } 1648 1649 int cache_register_net(struct cache_detail *cd, struct net *net) 1650 { 1651 int ret; 1652 1653 sunrpc_init_cache_detail(cd); 1654 ret = create_cache_proc_entries(cd, net); 1655 if (ret) 1656 sunrpc_destroy_cache_detail(cd); 1657 return ret; 1658 } 1659 EXPORT_SYMBOL_GPL(cache_register_net); 1660 1661 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1662 { 1663 remove_cache_proc_entries(cd, net); 1664 sunrpc_destroy_cache_detail(cd); 1665 } 1666 EXPORT_SYMBOL_GPL(cache_unregister_net); 1667 1668 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1669 { 1670 struct cache_detail *cd; 1671 1672 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1673 if (cd == NULL) 1674 return ERR_PTR(-ENOMEM); 1675 1676 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *), 1677 GFP_KERNEL); 1678 if (cd->hash_table == NULL) { 1679 kfree(cd); 1680 return ERR_PTR(-ENOMEM); 1681 } 1682 cd->net = net; 1683 return cd; 1684 } 1685 EXPORT_SYMBOL_GPL(cache_create_net); 1686 1687 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1688 { 1689 kfree(cd->hash_table); 1690 kfree(cd); 1691 } 1692 EXPORT_SYMBOL_GPL(cache_destroy_net); 1693 1694 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1695 size_t count, loff_t *ppos) 1696 { 1697 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1698 1699 return cache_read(filp, buf, count, ppos, cd); 1700 } 1701 1702 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1703 size_t count, loff_t *ppos) 1704 { 1705 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1706 1707 return cache_write(filp, buf, count, ppos, cd); 1708 } 1709 1710 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1711 { 1712 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1713 1714 return cache_poll(filp, wait, cd); 1715 } 1716 1717 static long cache_ioctl_pipefs(struct file *filp, 1718 unsigned int cmd, unsigned long arg) 1719 { 1720 struct inode *inode = file_inode(filp); 1721 struct cache_detail *cd = RPC_I(inode)->private; 1722 1723 return cache_ioctl(inode, filp, cmd, arg, cd); 1724 } 1725 1726 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1727 { 1728 struct cache_detail *cd = RPC_I(inode)->private; 1729 1730 return cache_open(inode, filp, cd); 1731 } 1732 1733 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1734 { 1735 struct cache_detail *cd = RPC_I(inode)->private; 1736 1737 return cache_release(inode, filp, cd); 1738 } 1739 1740 const struct file_operations cache_file_operations_pipefs = { 1741 .owner = THIS_MODULE, 1742 .llseek = no_llseek, 1743 .read = cache_read_pipefs, 1744 .write = cache_write_pipefs, 1745 .poll = cache_poll_pipefs, 1746 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1747 .open = cache_open_pipefs, 1748 .release = cache_release_pipefs, 1749 }; 1750 1751 static int content_open_pipefs(struct inode *inode, struct file *filp) 1752 { 1753 struct cache_detail *cd = RPC_I(inode)->private; 1754 1755 return content_open(inode, filp, cd); 1756 } 1757 1758 static int content_release_pipefs(struct inode *inode, struct file *filp) 1759 { 1760 struct cache_detail *cd = RPC_I(inode)->private; 1761 1762 return content_release(inode, filp, cd); 1763 } 1764 1765 const struct file_operations content_file_operations_pipefs = { 1766 .open = content_open_pipefs, 1767 .read = seq_read, 1768 .llseek = seq_lseek, 1769 .release = content_release_pipefs, 1770 }; 1771 1772 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1773 { 1774 struct cache_detail *cd = RPC_I(inode)->private; 1775 1776 return open_flush(inode, filp, cd); 1777 } 1778 1779 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1780 { 1781 struct cache_detail *cd = RPC_I(inode)->private; 1782 1783 return release_flush(inode, filp, cd); 1784 } 1785 1786 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1787 size_t count, loff_t *ppos) 1788 { 1789 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1790 1791 return read_flush(filp, buf, count, ppos, cd); 1792 } 1793 1794 static ssize_t write_flush_pipefs(struct file *filp, 1795 const char __user *buf, 1796 size_t count, loff_t *ppos) 1797 { 1798 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1799 1800 return write_flush(filp, buf, count, ppos, cd); 1801 } 1802 1803 const struct file_operations cache_flush_operations_pipefs = { 1804 .open = open_flush_pipefs, 1805 .read = read_flush_pipefs, 1806 .write = write_flush_pipefs, 1807 .release = release_flush_pipefs, 1808 .llseek = no_llseek, 1809 }; 1810 1811 int sunrpc_cache_register_pipefs(struct dentry *parent, 1812 const char *name, umode_t umode, 1813 struct cache_detail *cd) 1814 { 1815 struct qstr q; 1816 struct dentry *dir; 1817 int ret = 0; 1818 1819 q.name = name; 1820 q.len = strlen(name); 1821 q.hash = full_name_hash(q.name, q.len); 1822 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1823 if (!IS_ERR(dir)) 1824 cd->u.pipefs.dir = dir; 1825 else 1826 ret = PTR_ERR(dir); 1827 return ret; 1828 } 1829 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1830 1831 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1832 { 1833 rpc_remove_cache_dir(cd->u.pipefs.dir); 1834 cd->u.pipefs.dir = NULL; 1835 } 1836 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1837 1838