xref: /openbmc/linux/net/sunrpc/cache.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time64_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static void cache_fresh_unlocked(struct cache_head *head,
57 				struct cache_detail *detail);
58 
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 						struct cache_head *key,
61 						int hash)
62 {
63 	struct hlist_head *head = &detail->hash_table[hash];
64 	struct cache_head *tmp;
65 
66 	rcu_read_lock();
67 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 		if (!detail->match(tmp, key))
69 			continue;
70 		if (test_bit(CACHE_VALID, &tmp->flags) &&
71 		    cache_is_expired(detail, tmp))
72 			continue;
73 		tmp = cache_get_rcu(tmp);
74 		rcu_read_unlock();
75 		return tmp;
76 	}
77 	rcu_read_unlock();
78 	return NULL;
79 }
80 
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82 					    struct cache_detail *cd)
83 {
84 	/* Must be called under cd->hash_lock */
85 	hlist_del_init_rcu(&ch->cache_list);
86 	set_bit(CACHE_CLEANED, &ch->flags);
87 	cd->entries --;
88 }
89 
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91 					  struct cache_detail *cd)
92 {
93 	cache_fresh_unlocked(ch, cd);
94 	cache_put(ch, cd);
95 }
96 
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98 						 struct cache_head *key,
99 						 int hash)
100 {
101 	struct cache_head *new, *tmp, *freeme = NULL;
102 	struct hlist_head *head = &detail->hash_table[hash];
103 
104 	new = detail->alloc();
105 	if (!new)
106 		return NULL;
107 	/* must fully initialise 'new', else
108 	 * we might get lose if we need to
109 	 * cache_put it soon.
110 	 */
111 	cache_init(new, detail);
112 	detail->init(new, key);
113 
114 	spin_lock(&detail->hash_lock);
115 
116 	/* check if entry appeared while we slept */
117 	hlist_for_each_entry_rcu(tmp, head, cache_list,
118 				 lockdep_is_held(&detail->hash_lock)) {
119 		if (!detail->match(tmp, key))
120 			continue;
121 		if (test_bit(CACHE_VALID, &tmp->flags) &&
122 		    cache_is_expired(detail, tmp)) {
123 			sunrpc_begin_cache_remove_entry(tmp, detail);
124 			trace_cache_entry_expired(detail, tmp);
125 			freeme = tmp;
126 			break;
127 		}
128 		cache_get(tmp);
129 		spin_unlock(&detail->hash_lock);
130 		cache_put(new, detail);
131 		return tmp;
132 	}
133 
134 	hlist_add_head_rcu(&new->cache_list, head);
135 	detail->entries++;
136 	cache_get(new);
137 	spin_unlock(&detail->hash_lock);
138 
139 	if (freeme)
140 		sunrpc_end_cache_remove_entry(freeme, detail);
141 	return new;
142 }
143 
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145 					   struct cache_head *key, int hash)
146 {
147 	struct cache_head *ret;
148 
149 	ret = sunrpc_cache_find_rcu(detail, key, hash);
150 	if (ret)
151 		return ret;
152 	/* Didn't find anything, insert an empty entry */
153 	return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156 
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158 
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160 			       struct cache_detail *detail)
161 {
162 	time64_t now = seconds_since_boot();
163 	if (now <= detail->flush_time)
164 		/* ensure it isn't immediately treated as expired */
165 		now = detail->flush_time + 1;
166 	head->expiry_time = expiry;
167 	head->last_refresh = now;
168 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169 	set_bit(CACHE_VALID, &head->flags);
170 }
171 
172 static void cache_fresh_unlocked(struct cache_head *head,
173 				 struct cache_detail *detail)
174 {
175 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176 		cache_revisit_request(head);
177 		cache_dequeue(detail, head);
178 	}
179 }
180 
181 static void cache_make_negative(struct cache_detail *detail,
182 				struct cache_head *h)
183 {
184 	set_bit(CACHE_NEGATIVE, &h->flags);
185 	trace_cache_entry_make_negative(detail, h);
186 }
187 
188 static void cache_entry_update(struct cache_detail *detail,
189 			       struct cache_head *h,
190 			       struct cache_head *new)
191 {
192 	if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193 		detail->update(h, new);
194 		trace_cache_entry_update(detail, h);
195 	} else {
196 		cache_make_negative(detail, h);
197 	}
198 }
199 
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201 				       struct cache_head *new, struct cache_head *old, int hash)
202 {
203 	/* The 'old' entry is to be replaced by 'new'.
204 	 * If 'old' is not VALID, we update it directly,
205 	 * otherwise we need to replace it
206 	 */
207 	struct cache_head *tmp;
208 
209 	if (!test_bit(CACHE_VALID, &old->flags)) {
210 		spin_lock(&detail->hash_lock);
211 		if (!test_bit(CACHE_VALID, &old->flags)) {
212 			cache_entry_update(detail, old, new);
213 			cache_fresh_locked(old, new->expiry_time, detail);
214 			spin_unlock(&detail->hash_lock);
215 			cache_fresh_unlocked(old, detail);
216 			return old;
217 		}
218 		spin_unlock(&detail->hash_lock);
219 	}
220 	/* We need to insert a new entry */
221 	tmp = detail->alloc();
222 	if (!tmp) {
223 		cache_put(old, detail);
224 		return NULL;
225 	}
226 	cache_init(tmp, detail);
227 	detail->init(tmp, old);
228 
229 	spin_lock(&detail->hash_lock);
230 	cache_entry_update(detail, tmp, new);
231 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232 	detail->entries++;
233 	cache_get(tmp);
234 	cache_fresh_locked(tmp, new->expiry_time, detail);
235 	cache_fresh_locked(old, 0, detail);
236 	spin_unlock(&detail->hash_lock);
237 	cache_fresh_unlocked(tmp, detail);
238 	cache_fresh_unlocked(old, detail);
239 	cache_put(old, detail);
240 	return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243 
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246 	if (!test_bit(CACHE_VALID, &h->flags))
247 		return -EAGAIN;
248 	else {
249 		/* entry is valid */
250 		if (test_bit(CACHE_NEGATIVE, &h->flags))
251 			return -ENOENT;
252 		else {
253 			/*
254 			 * In combination with write barrier in
255 			 * sunrpc_cache_update, ensures that anyone
256 			 * using the cache entry after this sees the
257 			 * updated contents:
258 			 */
259 			smp_rmb();
260 			return 0;
261 		}
262 	}
263 }
264 
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267 	int rv;
268 
269 	spin_lock(&detail->hash_lock);
270 	rv = cache_is_valid(h);
271 	if (rv == -EAGAIN) {
272 		cache_make_negative(detail, h);
273 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274 				   detail);
275 		rv = -ENOENT;
276 	}
277 	spin_unlock(&detail->hash_lock);
278 	cache_fresh_unlocked(h, detail);
279 	return rv;
280 }
281 
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297 		    struct cache_head *h, struct cache_req *rqstp)
298 {
299 	int rv;
300 	time64_t refresh_age, age;
301 
302 	/* First decide return status as best we can */
303 	rv = cache_is_valid(h);
304 
305 	/* now see if we want to start an upcall */
306 	refresh_age = (h->expiry_time - h->last_refresh);
307 	age = seconds_since_boot() - h->last_refresh;
308 
309 	if (rqstp == NULL) {
310 		if (rv == -EAGAIN)
311 			rv = -ENOENT;
312 	} else if (rv == -EAGAIN ||
313 		   (h->expiry_time != 0 && age > refresh_age/2)) {
314 		dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315 				refresh_age, age);
316 		switch (detail->cache_upcall(detail, h)) {
317 		case -EINVAL:
318 			rv = try_to_negate_entry(detail, h);
319 			break;
320 		case -EAGAIN:
321 			cache_fresh_unlocked(h, detail);
322 			break;
323 		}
324 	}
325 
326 	if (rv == -EAGAIN) {
327 		if (!cache_defer_req(rqstp, h)) {
328 			/*
329 			 * Request was not deferred; handle it as best
330 			 * we can ourselves:
331 			 */
332 			rv = cache_is_valid(h);
333 			if (rv == -EAGAIN)
334 				rv = -ETIMEDOUT;
335 		}
336 	}
337 	if (rv)
338 		cache_put(h, detail);
339 	return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342 
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374 
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379 
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382 
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385 	spin_lock_init(&cd->hash_lock);
386 	INIT_LIST_HEAD(&cd->queue);
387 	spin_lock(&cache_list_lock);
388 	cd->nextcheck = 0;
389 	cd->entries = 0;
390 	atomic_set(&cd->writers, 0);
391 	cd->last_close = 0;
392 	cd->last_warn = -1;
393 	list_add(&cd->others, &cache_list);
394 	spin_unlock(&cache_list_lock);
395 
396 	/* start the cleaning process */
397 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400 
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403 	cache_purge(cd);
404 	spin_lock(&cache_list_lock);
405 	spin_lock(&cd->hash_lock);
406 	if (current_detail == cd)
407 		current_detail = NULL;
408 	list_del_init(&cd->others);
409 	spin_unlock(&cd->hash_lock);
410 	spin_unlock(&cache_list_lock);
411 	if (list_empty(&cache_list)) {
412 		/* module must be being unloaded so its safe to kill the worker */
413 		cancel_delayed_work_sync(&cache_cleaner);
414 	}
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417 
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426 	int rv = 0;
427 	struct list_head *next;
428 
429 	spin_lock(&cache_list_lock);
430 
431 	/* find a suitable table if we don't already have one */
432 	while (current_detail == NULL ||
433 	    current_index >= current_detail->hash_size) {
434 		if (current_detail)
435 			next = current_detail->others.next;
436 		else
437 			next = cache_list.next;
438 		if (next == &cache_list) {
439 			current_detail = NULL;
440 			spin_unlock(&cache_list_lock);
441 			return -1;
442 		}
443 		current_detail = list_entry(next, struct cache_detail, others);
444 		if (current_detail->nextcheck > seconds_since_boot())
445 			current_index = current_detail->hash_size;
446 		else {
447 			current_index = 0;
448 			current_detail->nextcheck = seconds_since_boot()+30*60;
449 		}
450 	}
451 
452 	/* find a non-empty bucket in the table */
453 	while (current_detail &&
454 	       current_index < current_detail->hash_size &&
455 	       hlist_empty(&current_detail->hash_table[current_index]))
456 		current_index++;
457 
458 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
459 
460 	if (current_detail && current_index < current_detail->hash_size) {
461 		struct cache_head *ch = NULL;
462 		struct cache_detail *d;
463 		struct hlist_head *head;
464 		struct hlist_node *tmp;
465 
466 		spin_lock(&current_detail->hash_lock);
467 
468 		/* Ok, now to clean this strand */
469 
470 		head = &current_detail->hash_table[current_index];
471 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472 			if (current_detail->nextcheck > ch->expiry_time)
473 				current_detail->nextcheck = ch->expiry_time+1;
474 			if (!cache_is_expired(current_detail, ch))
475 				continue;
476 
477 			sunrpc_begin_cache_remove_entry(ch, current_detail);
478 			trace_cache_entry_expired(current_detail, ch);
479 			rv = 1;
480 			break;
481 		}
482 
483 		spin_unlock(&current_detail->hash_lock);
484 		d = current_detail;
485 		if (!ch)
486 			current_index ++;
487 		spin_unlock(&cache_list_lock);
488 		if (ch)
489 			sunrpc_end_cache_remove_entry(ch, d);
490 	} else
491 		spin_unlock(&cache_list_lock);
492 
493 	return rv;
494 }
495 
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501 	int delay = 5;
502 	if (cache_clean() == -1)
503 		delay = round_jiffies_relative(30*HZ);
504 
505 	if (list_empty(&cache_list))
506 		delay = 0;
507 
508 	if (delay)
509 		queue_delayed_work(system_power_efficient_wq,
510 				   &cache_cleaner, delay);
511 }
512 
513 
514 /*
515  * Clean all caches promptly.  This just calls cache_clean
516  * repeatedly until we are sure that every cache has had a chance to
517  * be fully cleaned
518  */
519 void cache_flush(void)
520 {
521 	while (cache_clean() != -1)
522 		cond_resched();
523 	while (cache_clean() != -1)
524 		cond_resched();
525 }
526 EXPORT_SYMBOL_GPL(cache_flush);
527 
528 void cache_purge(struct cache_detail *detail)
529 {
530 	struct cache_head *ch = NULL;
531 	struct hlist_head *head = NULL;
532 	struct hlist_node *tmp = NULL;
533 	int i = 0;
534 
535 	spin_lock(&detail->hash_lock);
536 	if (!detail->entries) {
537 		spin_unlock(&detail->hash_lock);
538 		return;
539 	}
540 
541 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542 	for (i = 0; i < detail->hash_size; i++) {
543 		head = &detail->hash_table[i];
544 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
545 			sunrpc_begin_cache_remove_entry(ch, detail);
546 			spin_unlock(&detail->hash_lock);
547 			sunrpc_end_cache_remove_entry(ch, detail);
548 			spin_lock(&detail->hash_lock);
549 		}
550 	}
551 	spin_unlock(&detail->hash_lock);
552 }
553 EXPORT_SYMBOL_GPL(cache_purge);
554 
555 
556 /*
557  * Deferral and Revisiting of Requests.
558  *
559  * If a cache lookup finds a pending entry, we
560  * need to defer the request and revisit it later.
561  * All deferred requests are stored in a hash table,
562  * indexed by "struct cache_head *".
563  * As it may be wasteful to store a whole request
564  * structure, we allow the request to provide a
565  * deferred form, which must contain a
566  * 'struct cache_deferred_req'
567  * This cache_deferred_req contains a method to allow
568  * it to be revisited when cache info is available
569  */
570 
571 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
572 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
573 
574 #define	DFR_MAX	300	/* ??? */
575 
576 static DEFINE_SPINLOCK(cache_defer_lock);
577 static LIST_HEAD(cache_defer_list);
578 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
579 static int cache_defer_cnt;
580 
581 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
582 {
583 	hlist_del_init(&dreq->hash);
584 	if (!list_empty(&dreq->recent)) {
585 		list_del_init(&dreq->recent);
586 		cache_defer_cnt--;
587 	}
588 }
589 
590 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
591 {
592 	int hash = DFR_HASH(item);
593 
594 	INIT_LIST_HEAD(&dreq->recent);
595 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
596 }
597 
598 static void setup_deferral(struct cache_deferred_req *dreq,
599 			   struct cache_head *item,
600 			   int count_me)
601 {
602 
603 	dreq->item = item;
604 
605 	spin_lock(&cache_defer_lock);
606 
607 	__hash_deferred_req(dreq, item);
608 
609 	if (count_me) {
610 		cache_defer_cnt++;
611 		list_add(&dreq->recent, &cache_defer_list);
612 	}
613 
614 	spin_unlock(&cache_defer_lock);
615 
616 }
617 
618 struct thread_deferred_req {
619 	struct cache_deferred_req handle;
620 	struct completion completion;
621 };
622 
623 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
624 {
625 	struct thread_deferred_req *dr =
626 		container_of(dreq, struct thread_deferred_req, handle);
627 	complete(&dr->completion);
628 }
629 
630 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
631 {
632 	struct thread_deferred_req sleeper;
633 	struct cache_deferred_req *dreq = &sleeper.handle;
634 
635 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
636 	dreq->revisit = cache_restart_thread;
637 
638 	setup_deferral(dreq, item, 0);
639 
640 	if (!test_bit(CACHE_PENDING, &item->flags) ||
641 	    wait_for_completion_interruptible_timeout(
642 		    &sleeper.completion, req->thread_wait) <= 0) {
643 		/* The completion wasn't completed, so we need
644 		 * to clean up
645 		 */
646 		spin_lock(&cache_defer_lock);
647 		if (!hlist_unhashed(&sleeper.handle.hash)) {
648 			__unhash_deferred_req(&sleeper.handle);
649 			spin_unlock(&cache_defer_lock);
650 		} else {
651 			/* cache_revisit_request already removed
652 			 * this from the hash table, but hasn't
653 			 * called ->revisit yet.  It will very soon
654 			 * and we need to wait for it.
655 			 */
656 			spin_unlock(&cache_defer_lock);
657 			wait_for_completion(&sleeper.completion);
658 		}
659 	}
660 }
661 
662 static void cache_limit_defers(void)
663 {
664 	/* Make sure we haven't exceed the limit of allowed deferred
665 	 * requests.
666 	 */
667 	struct cache_deferred_req *discard = NULL;
668 
669 	if (cache_defer_cnt <= DFR_MAX)
670 		return;
671 
672 	spin_lock(&cache_defer_lock);
673 
674 	/* Consider removing either the first or the last */
675 	if (cache_defer_cnt > DFR_MAX) {
676 		if (prandom_u32() & 1)
677 			discard = list_entry(cache_defer_list.next,
678 					     struct cache_deferred_req, recent);
679 		else
680 			discard = list_entry(cache_defer_list.prev,
681 					     struct cache_deferred_req, recent);
682 		__unhash_deferred_req(discard);
683 	}
684 	spin_unlock(&cache_defer_lock);
685 	if (discard)
686 		discard->revisit(discard, 1);
687 }
688 
689 /* Return true if and only if a deferred request is queued. */
690 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
691 {
692 	struct cache_deferred_req *dreq;
693 
694 	if (req->thread_wait) {
695 		cache_wait_req(req, item);
696 		if (!test_bit(CACHE_PENDING, &item->flags))
697 			return false;
698 	}
699 	dreq = req->defer(req);
700 	if (dreq == NULL)
701 		return false;
702 	setup_deferral(dreq, item, 1);
703 	if (!test_bit(CACHE_PENDING, &item->flags))
704 		/* Bit could have been cleared before we managed to
705 		 * set up the deferral, so need to revisit just in case
706 		 */
707 		cache_revisit_request(item);
708 
709 	cache_limit_defers();
710 	return true;
711 }
712 
713 static void cache_revisit_request(struct cache_head *item)
714 {
715 	struct cache_deferred_req *dreq;
716 	struct list_head pending;
717 	struct hlist_node *tmp;
718 	int hash = DFR_HASH(item);
719 
720 	INIT_LIST_HEAD(&pending);
721 	spin_lock(&cache_defer_lock);
722 
723 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
724 		if (dreq->item == item) {
725 			__unhash_deferred_req(dreq);
726 			list_add(&dreq->recent, &pending);
727 		}
728 
729 	spin_unlock(&cache_defer_lock);
730 
731 	while (!list_empty(&pending)) {
732 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
733 		list_del_init(&dreq->recent);
734 		dreq->revisit(dreq, 0);
735 	}
736 }
737 
738 void cache_clean_deferred(void *owner)
739 {
740 	struct cache_deferred_req *dreq, *tmp;
741 	struct list_head pending;
742 
743 
744 	INIT_LIST_HEAD(&pending);
745 	spin_lock(&cache_defer_lock);
746 
747 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
748 		if (dreq->owner == owner) {
749 			__unhash_deferred_req(dreq);
750 			list_add(&dreq->recent, &pending);
751 		}
752 	}
753 	spin_unlock(&cache_defer_lock);
754 
755 	while (!list_empty(&pending)) {
756 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
757 		list_del_init(&dreq->recent);
758 		dreq->revisit(dreq, 1);
759 	}
760 }
761 
762 /*
763  * communicate with user-space
764  *
765  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
766  * On read, you get a full request, or block.
767  * On write, an update request is processed.
768  * Poll works if anything to read, and always allows write.
769  *
770  * Implemented by linked list of requests.  Each open file has
771  * a ->private that also exists in this list.  New requests are added
772  * to the end and may wakeup and preceding readers.
773  * New readers are added to the head.  If, on read, an item is found with
774  * CACHE_UPCALLING clear, we free it from the list.
775  *
776  */
777 
778 static DEFINE_SPINLOCK(queue_lock);
779 static DEFINE_MUTEX(queue_io_mutex);
780 
781 struct cache_queue {
782 	struct list_head	list;
783 	int			reader;	/* if 0, then request */
784 };
785 struct cache_request {
786 	struct cache_queue	q;
787 	struct cache_head	*item;
788 	char			* buf;
789 	int			len;
790 	int			readers;
791 };
792 struct cache_reader {
793 	struct cache_queue	q;
794 	int			offset;	/* if non-0, we have a refcnt on next request */
795 };
796 
797 static int cache_request(struct cache_detail *detail,
798 			       struct cache_request *crq)
799 {
800 	char *bp = crq->buf;
801 	int len = PAGE_SIZE;
802 
803 	detail->cache_request(detail, crq->item, &bp, &len);
804 	if (len < 0)
805 		return -EAGAIN;
806 	return PAGE_SIZE - len;
807 }
808 
809 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
810 			  loff_t *ppos, struct cache_detail *cd)
811 {
812 	struct cache_reader *rp = filp->private_data;
813 	struct cache_request *rq;
814 	struct inode *inode = file_inode(filp);
815 	int err;
816 
817 	if (count == 0)
818 		return 0;
819 
820 	inode_lock(inode); /* protect against multiple concurrent
821 			      * readers on this file */
822  again:
823 	spin_lock(&queue_lock);
824 	/* need to find next request */
825 	while (rp->q.list.next != &cd->queue &&
826 	       list_entry(rp->q.list.next, struct cache_queue, list)
827 	       ->reader) {
828 		struct list_head *next = rp->q.list.next;
829 		list_move(&rp->q.list, next);
830 	}
831 	if (rp->q.list.next == &cd->queue) {
832 		spin_unlock(&queue_lock);
833 		inode_unlock(inode);
834 		WARN_ON_ONCE(rp->offset);
835 		return 0;
836 	}
837 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
838 	WARN_ON_ONCE(rq->q.reader);
839 	if (rp->offset == 0)
840 		rq->readers++;
841 	spin_unlock(&queue_lock);
842 
843 	if (rq->len == 0) {
844 		err = cache_request(cd, rq);
845 		if (err < 0)
846 			goto out;
847 		rq->len = err;
848 	}
849 
850 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
851 		err = -EAGAIN;
852 		spin_lock(&queue_lock);
853 		list_move(&rp->q.list, &rq->q.list);
854 		spin_unlock(&queue_lock);
855 	} else {
856 		if (rp->offset + count > rq->len)
857 			count = rq->len - rp->offset;
858 		err = -EFAULT;
859 		if (copy_to_user(buf, rq->buf + rp->offset, count))
860 			goto out;
861 		rp->offset += count;
862 		if (rp->offset >= rq->len) {
863 			rp->offset = 0;
864 			spin_lock(&queue_lock);
865 			list_move(&rp->q.list, &rq->q.list);
866 			spin_unlock(&queue_lock);
867 		}
868 		err = 0;
869 	}
870  out:
871 	if (rp->offset == 0) {
872 		/* need to release rq */
873 		spin_lock(&queue_lock);
874 		rq->readers--;
875 		if (rq->readers == 0 &&
876 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
877 			list_del(&rq->q.list);
878 			spin_unlock(&queue_lock);
879 			cache_put(rq->item, cd);
880 			kfree(rq->buf);
881 			kfree(rq);
882 		} else
883 			spin_unlock(&queue_lock);
884 	}
885 	if (err == -EAGAIN)
886 		goto again;
887 	inode_unlock(inode);
888 	return err ? err :  count;
889 }
890 
891 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
892 				 size_t count, struct cache_detail *cd)
893 {
894 	ssize_t ret;
895 
896 	if (count == 0)
897 		return -EINVAL;
898 	if (copy_from_user(kaddr, buf, count))
899 		return -EFAULT;
900 	kaddr[count] = '\0';
901 	ret = cd->cache_parse(cd, kaddr, count);
902 	if (!ret)
903 		ret = count;
904 	return ret;
905 }
906 
907 static ssize_t cache_slow_downcall(const char __user *buf,
908 				   size_t count, struct cache_detail *cd)
909 {
910 	static char write_buf[8192]; /* protected by queue_io_mutex */
911 	ssize_t ret = -EINVAL;
912 
913 	if (count >= sizeof(write_buf))
914 		goto out;
915 	mutex_lock(&queue_io_mutex);
916 	ret = cache_do_downcall(write_buf, buf, count, cd);
917 	mutex_unlock(&queue_io_mutex);
918 out:
919 	return ret;
920 }
921 
922 static ssize_t cache_downcall(struct address_space *mapping,
923 			      const char __user *buf,
924 			      size_t count, struct cache_detail *cd)
925 {
926 	struct page *page;
927 	char *kaddr;
928 	ssize_t ret = -ENOMEM;
929 
930 	if (count >= PAGE_SIZE)
931 		goto out_slow;
932 
933 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
934 	if (!page)
935 		goto out_slow;
936 
937 	kaddr = kmap(page);
938 	ret = cache_do_downcall(kaddr, buf, count, cd);
939 	kunmap(page);
940 	unlock_page(page);
941 	put_page(page);
942 	return ret;
943 out_slow:
944 	return cache_slow_downcall(buf, count, cd);
945 }
946 
947 static ssize_t cache_write(struct file *filp, const char __user *buf,
948 			   size_t count, loff_t *ppos,
949 			   struct cache_detail *cd)
950 {
951 	struct address_space *mapping = filp->f_mapping;
952 	struct inode *inode = file_inode(filp);
953 	ssize_t ret = -EINVAL;
954 
955 	if (!cd->cache_parse)
956 		goto out;
957 
958 	inode_lock(inode);
959 	ret = cache_downcall(mapping, buf, count, cd);
960 	inode_unlock(inode);
961 out:
962 	return ret;
963 }
964 
965 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
966 
967 static __poll_t cache_poll(struct file *filp, poll_table *wait,
968 			       struct cache_detail *cd)
969 {
970 	__poll_t mask;
971 	struct cache_reader *rp = filp->private_data;
972 	struct cache_queue *cq;
973 
974 	poll_wait(filp, &queue_wait, wait);
975 
976 	/* alway allow write */
977 	mask = EPOLLOUT | EPOLLWRNORM;
978 
979 	if (!rp)
980 		return mask;
981 
982 	spin_lock(&queue_lock);
983 
984 	for (cq= &rp->q; &cq->list != &cd->queue;
985 	     cq = list_entry(cq->list.next, struct cache_queue, list))
986 		if (!cq->reader) {
987 			mask |= EPOLLIN | EPOLLRDNORM;
988 			break;
989 		}
990 	spin_unlock(&queue_lock);
991 	return mask;
992 }
993 
994 static int cache_ioctl(struct inode *ino, struct file *filp,
995 		       unsigned int cmd, unsigned long arg,
996 		       struct cache_detail *cd)
997 {
998 	int len = 0;
999 	struct cache_reader *rp = filp->private_data;
1000 	struct cache_queue *cq;
1001 
1002 	if (cmd != FIONREAD || !rp)
1003 		return -EINVAL;
1004 
1005 	spin_lock(&queue_lock);
1006 
1007 	/* only find the length remaining in current request,
1008 	 * or the length of the next request
1009 	 */
1010 	for (cq= &rp->q; &cq->list != &cd->queue;
1011 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1012 		if (!cq->reader) {
1013 			struct cache_request *cr =
1014 				container_of(cq, struct cache_request, q);
1015 			len = cr->len - rp->offset;
1016 			break;
1017 		}
1018 	spin_unlock(&queue_lock);
1019 
1020 	return put_user(len, (int __user *)arg);
1021 }
1022 
1023 static int cache_open(struct inode *inode, struct file *filp,
1024 		      struct cache_detail *cd)
1025 {
1026 	struct cache_reader *rp = NULL;
1027 
1028 	if (!cd || !try_module_get(cd->owner))
1029 		return -EACCES;
1030 	nonseekable_open(inode, filp);
1031 	if (filp->f_mode & FMODE_READ) {
1032 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1033 		if (!rp) {
1034 			module_put(cd->owner);
1035 			return -ENOMEM;
1036 		}
1037 		rp->offset = 0;
1038 		rp->q.reader = 1;
1039 
1040 		spin_lock(&queue_lock);
1041 		list_add(&rp->q.list, &cd->queue);
1042 		spin_unlock(&queue_lock);
1043 	}
1044 	if (filp->f_mode & FMODE_WRITE)
1045 		atomic_inc(&cd->writers);
1046 	filp->private_data = rp;
1047 	return 0;
1048 }
1049 
1050 static int cache_release(struct inode *inode, struct file *filp,
1051 			 struct cache_detail *cd)
1052 {
1053 	struct cache_reader *rp = filp->private_data;
1054 
1055 	if (rp) {
1056 		spin_lock(&queue_lock);
1057 		if (rp->offset) {
1058 			struct cache_queue *cq;
1059 			for (cq= &rp->q; &cq->list != &cd->queue;
1060 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1061 				if (!cq->reader) {
1062 					container_of(cq, struct cache_request, q)
1063 						->readers--;
1064 					break;
1065 				}
1066 			rp->offset = 0;
1067 		}
1068 		list_del(&rp->q.list);
1069 		spin_unlock(&queue_lock);
1070 
1071 		filp->private_data = NULL;
1072 		kfree(rp);
1073 
1074 	}
1075 	if (filp->f_mode & FMODE_WRITE) {
1076 		atomic_dec(&cd->writers);
1077 		cd->last_close = seconds_since_boot();
1078 	}
1079 	module_put(cd->owner);
1080 	return 0;
1081 }
1082 
1083 
1084 
1085 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1086 {
1087 	struct cache_queue *cq, *tmp;
1088 	struct cache_request *cr;
1089 	struct list_head dequeued;
1090 
1091 	INIT_LIST_HEAD(&dequeued);
1092 	spin_lock(&queue_lock);
1093 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1094 		if (!cq->reader) {
1095 			cr = container_of(cq, struct cache_request, q);
1096 			if (cr->item != ch)
1097 				continue;
1098 			if (test_bit(CACHE_PENDING, &ch->flags))
1099 				/* Lost a race and it is pending again */
1100 				break;
1101 			if (cr->readers != 0)
1102 				continue;
1103 			list_move(&cr->q.list, &dequeued);
1104 		}
1105 	spin_unlock(&queue_lock);
1106 	while (!list_empty(&dequeued)) {
1107 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1108 		list_del(&cr->q.list);
1109 		cache_put(cr->item, detail);
1110 		kfree(cr->buf);
1111 		kfree(cr);
1112 	}
1113 }
1114 
1115 /*
1116  * Support routines for text-based upcalls.
1117  * Fields are separated by spaces.
1118  * Fields are either mangled to quote space tab newline slosh with slosh
1119  * or a hexified with a leading \x
1120  * Record is terminated with newline.
1121  *
1122  */
1123 
1124 void qword_add(char **bpp, int *lp, char *str)
1125 {
1126 	char *bp = *bpp;
1127 	int len = *lp;
1128 	int ret;
1129 
1130 	if (len < 0) return;
1131 
1132 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1133 	if (ret >= len) {
1134 		bp += len;
1135 		len = -1;
1136 	} else {
1137 		bp += ret;
1138 		len -= ret;
1139 		*bp++ = ' ';
1140 		len--;
1141 	}
1142 	*bpp = bp;
1143 	*lp = len;
1144 }
1145 EXPORT_SYMBOL_GPL(qword_add);
1146 
1147 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1148 {
1149 	char *bp = *bpp;
1150 	int len = *lp;
1151 
1152 	if (len < 0) return;
1153 
1154 	if (len > 2) {
1155 		*bp++ = '\\';
1156 		*bp++ = 'x';
1157 		len -= 2;
1158 		while (blen && len >= 2) {
1159 			bp = hex_byte_pack(bp, *buf++);
1160 			len -= 2;
1161 			blen--;
1162 		}
1163 	}
1164 	if (blen || len<1) len = -1;
1165 	else {
1166 		*bp++ = ' ';
1167 		len--;
1168 	}
1169 	*bpp = bp;
1170 	*lp = len;
1171 }
1172 EXPORT_SYMBOL_GPL(qword_addhex);
1173 
1174 static void warn_no_listener(struct cache_detail *detail)
1175 {
1176 	if (detail->last_warn != detail->last_close) {
1177 		detail->last_warn = detail->last_close;
1178 		if (detail->warn_no_listener)
1179 			detail->warn_no_listener(detail, detail->last_close != 0);
1180 	}
1181 }
1182 
1183 static bool cache_listeners_exist(struct cache_detail *detail)
1184 {
1185 	if (atomic_read(&detail->writers))
1186 		return true;
1187 	if (detail->last_close == 0)
1188 		/* This cache was never opened */
1189 		return false;
1190 	if (detail->last_close < seconds_since_boot() - 30)
1191 		/*
1192 		 * We allow for the possibility that someone might
1193 		 * restart a userspace daemon without restarting the
1194 		 * server; but after 30 seconds, we give up.
1195 		 */
1196 		 return false;
1197 	return true;
1198 }
1199 
1200 /*
1201  * register an upcall request to user-space and queue it up for read() by the
1202  * upcall daemon.
1203  *
1204  * Each request is at most one page long.
1205  */
1206 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1207 {
1208 	char *buf;
1209 	struct cache_request *crq;
1210 	int ret = 0;
1211 
1212 	if (test_bit(CACHE_CLEANED, &h->flags))
1213 		/* Too late to make an upcall */
1214 		return -EAGAIN;
1215 
1216 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1217 	if (!buf)
1218 		return -EAGAIN;
1219 
1220 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1221 	if (!crq) {
1222 		kfree(buf);
1223 		return -EAGAIN;
1224 	}
1225 
1226 	crq->q.reader = 0;
1227 	crq->buf = buf;
1228 	crq->len = 0;
1229 	crq->readers = 0;
1230 	spin_lock(&queue_lock);
1231 	if (test_bit(CACHE_PENDING, &h->flags)) {
1232 		crq->item = cache_get(h);
1233 		list_add_tail(&crq->q.list, &detail->queue);
1234 		trace_cache_entry_upcall(detail, h);
1235 	} else
1236 		/* Lost a race, no longer PENDING, so don't enqueue */
1237 		ret = -EAGAIN;
1238 	spin_unlock(&queue_lock);
1239 	wake_up(&queue_wait);
1240 	if (ret == -EAGAIN) {
1241 		kfree(buf);
1242 		kfree(crq);
1243 	}
1244 	return ret;
1245 }
1246 
1247 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1248 {
1249 	if (test_and_set_bit(CACHE_PENDING, &h->flags))
1250 		return 0;
1251 	return cache_pipe_upcall(detail, h);
1252 }
1253 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1254 
1255 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1256 				     struct cache_head *h)
1257 {
1258 	if (!cache_listeners_exist(detail)) {
1259 		warn_no_listener(detail);
1260 		trace_cache_entry_no_listener(detail, h);
1261 		return -EINVAL;
1262 	}
1263 	return sunrpc_cache_pipe_upcall(detail, h);
1264 }
1265 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1266 
1267 /*
1268  * parse a message from user-space and pass it
1269  * to an appropriate cache
1270  * Messages are, like requests, separated into fields by
1271  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1272  *
1273  * Message is
1274  *   reply cachename expiry key ... content....
1275  *
1276  * key and content are both parsed by cache
1277  */
1278 
1279 int qword_get(char **bpp, char *dest, int bufsize)
1280 {
1281 	/* return bytes copied, or -1 on error */
1282 	char *bp = *bpp;
1283 	int len = 0;
1284 
1285 	while (*bp == ' ') bp++;
1286 
1287 	if (bp[0] == '\\' && bp[1] == 'x') {
1288 		/* HEX STRING */
1289 		bp += 2;
1290 		while (len < bufsize - 1) {
1291 			int h, l;
1292 
1293 			h = hex_to_bin(bp[0]);
1294 			if (h < 0)
1295 				break;
1296 
1297 			l = hex_to_bin(bp[1]);
1298 			if (l < 0)
1299 				break;
1300 
1301 			*dest++ = (h << 4) | l;
1302 			bp += 2;
1303 			len++;
1304 		}
1305 	} else {
1306 		/* text with \nnn octal quoting */
1307 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1308 			if (*bp == '\\' &&
1309 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1310 			    isodigit(bp[2]) &&
1311 			    isodigit(bp[3])) {
1312 				int byte = (*++bp -'0');
1313 				bp++;
1314 				byte = (byte << 3) | (*bp++ - '0');
1315 				byte = (byte << 3) | (*bp++ - '0');
1316 				*dest++ = byte;
1317 				len++;
1318 			} else {
1319 				*dest++ = *bp++;
1320 				len++;
1321 			}
1322 		}
1323 	}
1324 
1325 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1326 		return -1;
1327 	while (*bp == ' ') bp++;
1328 	*bpp = bp;
1329 	*dest = '\0';
1330 	return len;
1331 }
1332 EXPORT_SYMBOL_GPL(qword_get);
1333 
1334 
1335 /*
1336  * support /proc/net/rpc/$CACHENAME/content
1337  * as a seqfile.
1338  * We call ->cache_show passing NULL for the item to
1339  * get a header, then pass each real item in the cache
1340  */
1341 
1342 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1343 {
1344 	loff_t n = *pos;
1345 	unsigned int hash, entry;
1346 	struct cache_head *ch;
1347 	struct cache_detail *cd = m->private;
1348 
1349 	if (!n--)
1350 		return SEQ_START_TOKEN;
1351 	hash = n >> 32;
1352 	entry = n & ((1LL<<32) - 1);
1353 
1354 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1355 		if (!entry--)
1356 			return ch;
1357 	n &= ~((1LL<<32) - 1);
1358 	do {
1359 		hash++;
1360 		n += 1LL<<32;
1361 	} while(hash < cd->hash_size &&
1362 		hlist_empty(&cd->hash_table[hash]));
1363 	if (hash >= cd->hash_size)
1364 		return NULL;
1365 	*pos = n+1;
1366 	return hlist_entry_safe(rcu_dereference_raw(
1367 				hlist_first_rcu(&cd->hash_table[hash])),
1368 				struct cache_head, cache_list);
1369 }
1370 
1371 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1372 {
1373 	struct cache_head *ch = p;
1374 	int hash = (*pos >> 32);
1375 	struct cache_detail *cd = m->private;
1376 
1377 	if (p == SEQ_START_TOKEN)
1378 		hash = 0;
1379 	else if (ch->cache_list.next == NULL) {
1380 		hash++;
1381 		*pos += 1LL<<32;
1382 	} else {
1383 		++*pos;
1384 		return hlist_entry_safe(rcu_dereference_raw(
1385 					hlist_next_rcu(&ch->cache_list)),
1386 					struct cache_head, cache_list);
1387 	}
1388 	*pos &= ~((1LL<<32) - 1);
1389 	while (hash < cd->hash_size &&
1390 	       hlist_empty(&cd->hash_table[hash])) {
1391 		hash++;
1392 		*pos += 1LL<<32;
1393 	}
1394 	if (hash >= cd->hash_size)
1395 		return NULL;
1396 	++*pos;
1397 	return hlist_entry_safe(rcu_dereference_raw(
1398 				hlist_first_rcu(&cd->hash_table[hash])),
1399 				struct cache_head, cache_list);
1400 }
1401 
1402 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1403 	__acquires(RCU)
1404 {
1405 	rcu_read_lock();
1406 	return __cache_seq_start(m, pos);
1407 }
1408 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1409 
1410 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1411 {
1412 	return cache_seq_next(file, p, pos);
1413 }
1414 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1415 
1416 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1417 	__releases(RCU)
1418 {
1419 	rcu_read_unlock();
1420 }
1421 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1422 
1423 static int c_show(struct seq_file *m, void *p)
1424 {
1425 	struct cache_head *cp = p;
1426 	struct cache_detail *cd = m->private;
1427 
1428 	if (p == SEQ_START_TOKEN)
1429 		return cd->cache_show(m, cd, NULL);
1430 
1431 	ifdebug(CACHE)
1432 		seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1433 			   convert_to_wallclock(cp->expiry_time),
1434 			   kref_read(&cp->ref), cp->flags);
1435 	cache_get(cp);
1436 	if (cache_check(cd, cp, NULL))
1437 		/* cache_check does a cache_put on failure */
1438 		seq_printf(m, "# ");
1439 	else {
1440 		if (cache_is_expired(cd, cp))
1441 			seq_printf(m, "# ");
1442 		cache_put(cp, cd);
1443 	}
1444 
1445 	return cd->cache_show(m, cd, cp);
1446 }
1447 
1448 static const struct seq_operations cache_content_op = {
1449 	.start	= cache_seq_start_rcu,
1450 	.next	= cache_seq_next_rcu,
1451 	.stop	= cache_seq_stop_rcu,
1452 	.show	= c_show,
1453 };
1454 
1455 static int content_open(struct inode *inode, struct file *file,
1456 			struct cache_detail *cd)
1457 {
1458 	struct seq_file *seq;
1459 	int err;
1460 
1461 	if (!cd || !try_module_get(cd->owner))
1462 		return -EACCES;
1463 
1464 	err = seq_open(file, &cache_content_op);
1465 	if (err) {
1466 		module_put(cd->owner);
1467 		return err;
1468 	}
1469 
1470 	seq = file->private_data;
1471 	seq->private = cd;
1472 	return 0;
1473 }
1474 
1475 static int content_release(struct inode *inode, struct file *file,
1476 		struct cache_detail *cd)
1477 {
1478 	int ret = seq_release(inode, file);
1479 	module_put(cd->owner);
1480 	return ret;
1481 }
1482 
1483 static int open_flush(struct inode *inode, struct file *file,
1484 			struct cache_detail *cd)
1485 {
1486 	if (!cd || !try_module_get(cd->owner))
1487 		return -EACCES;
1488 	return nonseekable_open(inode, file);
1489 }
1490 
1491 static int release_flush(struct inode *inode, struct file *file,
1492 			struct cache_detail *cd)
1493 {
1494 	module_put(cd->owner);
1495 	return 0;
1496 }
1497 
1498 static ssize_t read_flush(struct file *file, char __user *buf,
1499 			  size_t count, loff_t *ppos,
1500 			  struct cache_detail *cd)
1501 {
1502 	char tbuf[22];
1503 	size_t len;
1504 
1505 	len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1506 			convert_to_wallclock(cd->flush_time));
1507 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1508 }
1509 
1510 static ssize_t write_flush(struct file *file, const char __user *buf,
1511 			   size_t count, loff_t *ppos,
1512 			   struct cache_detail *cd)
1513 {
1514 	char tbuf[20];
1515 	char *ep;
1516 	time64_t now;
1517 
1518 	if (*ppos || count > sizeof(tbuf)-1)
1519 		return -EINVAL;
1520 	if (copy_from_user(tbuf, buf, count))
1521 		return -EFAULT;
1522 	tbuf[count] = 0;
1523 	simple_strtoul(tbuf, &ep, 0);
1524 	if (*ep && *ep != '\n')
1525 		return -EINVAL;
1526 	/* Note that while we check that 'buf' holds a valid number,
1527 	 * we always ignore the value and just flush everything.
1528 	 * Making use of the number leads to races.
1529 	 */
1530 
1531 	now = seconds_since_boot();
1532 	/* Always flush everything, so behave like cache_purge()
1533 	 * Do this by advancing flush_time to the current time,
1534 	 * or by one second if it has already reached the current time.
1535 	 * Newly added cache entries will always have ->last_refresh greater
1536 	 * that ->flush_time, so they don't get flushed prematurely.
1537 	 */
1538 
1539 	if (cd->flush_time >= now)
1540 		now = cd->flush_time + 1;
1541 
1542 	cd->flush_time = now;
1543 	cd->nextcheck = now;
1544 	cache_flush();
1545 
1546 	if (cd->flush)
1547 		cd->flush();
1548 
1549 	*ppos += count;
1550 	return count;
1551 }
1552 
1553 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1554 				 size_t count, loff_t *ppos)
1555 {
1556 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1557 
1558 	return cache_read(filp, buf, count, ppos, cd);
1559 }
1560 
1561 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1562 				  size_t count, loff_t *ppos)
1563 {
1564 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1565 
1566 	return cache_write(filp, buf, count, ppos, cd);
1567 }
1568 
1569 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1570 {
1571 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1572 
1573 	return cache_poll(filp, wait, cd);
1574 }
1575 
1576 static long cache_ioctl_procfs(struct file *filp,
1577 			       unsigned int cmd, unsigned long arg)
1578 {
1579 	struct inode *inode = file_inode(filp);
1580 	struct cache_detail *cd = PDE_DATA(inode);
1581 
1582 	return cache_ioctl(inode, filp, cmd, arg, cd);
1583 }
1584 
1585 static int cache_open_procfs(struct inode *inode, struct file *filp)
1586 {
1587 	struct cache_detail *cd = PDE_DATA(inode);
1588 
1589 	return cache_open(inode, filp, cd);
1590 }
1591 
1592 static int cache_release_procfs(struct inode *inode, struct file *filp)
1593 {
1594 	struct cache_detail *cd = PDE_DATA(inode);
1595 
1596 	return cache_release(inode, filp, cd);
1597 }
1598 
1599 static const struct proc_ops cache_channel_proc_ops = {
1600 	.proc_lseek	= no_llseek,
1601 	.proc_read	= cache_read_procfs,
1602 	.proc_write	= cache_write_procfs,
1603 	.proc_poll	= cache_poll_procfs,
1604 	.proc_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1605 	.proc_open	= cache_open_procfs,
1606 	.proc_release	= cache_release_procfs,
1607 };
1608 
1609 static int content_open_procfs(struct inode *inode, struct file *filp)
1610 {
1611 	struct cache_detail *cd = PDE_DATA(inode);
1612 
1613 	return content_open(inode, filp, cd);
1614 }
1615 
1616 static int content_release_procfs(struct inode *inode, struct file *filp)
1617 {
1618 	struct cache_detail *cd = PDE_DATA(inode);
1619 
1620 	return content_release(inode, filp, cd);
1621 }
1622 
1623 static const struct proc_ops content_proc_ops = {
1624 	.proc_open	= content_open_procfs,
1625 	.proc_read	= seq_read,
1626 	.proc_lseek	= seq_lseek,
1627 	.proc_release	= content_release_procfs,
1628 };
1629 
1630 static int open_flush_procfs(struct inode *inode, struct file *filp)
1631 {
1632 	struct cache_detail *cd = PDE_DATA(inode);
1633 
1634 	return open_flush(inode, filp, cd);
1635 }
1636 
1637 static int release_flush_procfs(struct inode *inode, struct file *filp)
1638 {
1639 	struct cache_detail *cd = PDE_DATA(inode);
1640 
1641 	return release_flush(inode, filp, cd);
1642 }
1643 
1644 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1645 			    size_t count, loff_t *ppos)
1646 {
1647 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1648 
1649 	return read_flush(filp, buf, count, ppos, cd);
1650 }
1651 
1652 static ssize_t write_flush_procfs(struct file *filp,
1653 				  const char __user *buf,
1654 				  size_t count, loff_t *ppos)
1655 {
1656 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1657 
1658 	return write_flush(filp, buf, count, ppos, cd);
1659 }
1660 
1661 static const struct proc_ops cache_flush_proc_ops = {
1662 	.proc_open	= open_flush_procfs,
1663 	.proc_read	= read_flush_procfs,
1664 	.proc_write	= write_flush_procfs,
1665 	.proc_release	= release_flush_procfs,
1666 	.proc_lseek	= no_llseek,
1667 };
1668 
1669 static void remove_cache_proc_entries(struct cache_detail *cd)
1670 {
1671 	if (cd->procfs) {
1672 		proc_remove(cd->procfs);
1673 		cd->procfs = NULL;
1674 	}
1675 }
1676 
1677 #ifdef CONFIG_PROC_FS
1678 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1679 {
1680 	struct proc_dir_entry *p;
1681 	struct sunrpc_net *sn;
1682 
1683 	sn = net_generic(net, sunrpc_net_id);
1684 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1685 	if (cd->procfs == NULL)
1686 		goto out_nomem;
1687 
1688 	p = proc_create_data("flush", S_IFREG | 0600,
1689 			     cd->procfs, &cache_flush_proc_ops, cd);
1690 	if (p == NULL)
1691 		goto out_nomem;
1692 
1693 	if (cd->cache_request || cd->cache_parse) {
1694 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1695 				     &cache_channel_proc_ops, cd);
1696 		if (p == NULL)
1697 			goto out_nomem;
1698 	}
1699 	if (cd->cache_show) {
1700 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1701 				     &content_proc_ops, cd);
1702 		if (p == NULL)
1703 			goto out_nomem;
1704 	}
1705 	return 0;
1706 out_nomem:
1707 	remove_cache_proc_entries(cd);
1708 	return -ENOMEM;
1709 }
1710 #else /* CONFIG_PROC_FS */
1711 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1712 {
1713 	return 0;
1714 }
1715 #endif
1716 
1717 void __init cache_initialize(void)
1718 {
1719 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1720 }
1721 
1722 int cache_register_net(struct cache_detail *cd, struct net *net)
1723 {
1724 	int ret;
1725 
1726 	sunrpc_init_cache_detail(cd);
1727 	ret = create_cache_proc_entries(cd, net);
1728 	if (ret)
1729 		sunrpc_destroy_cache_detail(cd);
1730 	return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(cache_register_net);
1733 
1734 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1735 {
1736 	remove_cache_proc_entries(cd);
1737 	sunrpc_destroy_cache_detail(cd);
1738 }
1739 EXPORT_SYMBOL_GPL(cache_unregister_net);
1740 
1741 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1742 {
1743 	struct cache_detail *cd;
1744 	int i;
1745 
1746 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1747 	if (cd == NULL)
1748 		return ERR_PTR(-ENOMEM);
1749 
1750 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1751 				 GFP_KERNEL);
1752 	if (cd->hash_table == NULL) {
1753 		kfree(cd);
1754 		return ERR_PTR(-ENOMEM);
1755 	}
1756 
1757 	for (i = 0; i < cd->hash_size; i++)
1758 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1759 	cd->net = net;
1760 	return cd;
1761 }
1762 EXPORT_SYMBOL_GPL(cache_create_net);
1763 
1764 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1765 {
1766 	kfree(cd->hash_table);
1767 	kfree(cd);
1768 }
1769 EXPORT_SYMBOL_GPL(cache_destroy_net);
1770 
1771 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1772 				 size_t count, loff_t *ppos)
1773 {
1774 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1775 
1776 	return cache_read(filp, buf, count, ppos, cd);
1777 }
1778 
1779 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1780 				  size_t count, loff_t *ppos)
1781 {
1782 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1783 
1784 	return cache_write(filp, buf, count, ppos, cd);
1785 }
1786 
1787 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1788 {
1789 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1790 
1791 	return cache_poll(filp, wait, cd);
1792 }
1793 
1794 static long cache_ioctl_pipefs(struct file *filp,
1795 			      unsigned int cmd, unsigned long arg)
1796 {
1797 	struct inode *inode = file_inode(filp);
1798 	struct cache_detail *cd = RPC_I(inode)->private;
1799 
1800 	return cache_ioctl(inode, filp, cmd, arg, cd);
1801 }
1802 
1803 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1804 {
1805 	struct cache_detail *cd = RPC_I(inode)->private;
1806 
1807 	return cache_open(inode, filp, cd);
1808 }
1809 
1810 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1811 {
1812 	struct cache_detail *cd = RPC_I(inode)->private;
1813 
1814 	return cache_release(inode, filp, cd);
1815 }
1816 
1817 const struct file_operations cache_file_operations_pipefs = {
1818 	.owner		= THIS_MODULE,
1819 	.llseek		= no_llseek,
1820 	.read		= cache_read_pipefs,
1821 	.write		= cache_write_pipefs,
1822 	.poll		= cache_poll_pipefs,
1823 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1824 	.open		= cache_open_pipefs,
1825 	.release	= cache_release_pipefs,
1826 };
1827 
1828 static int content_open_pipefs(struct inode *inode, struct file *filp)
1829 {
1830 	struct cache_detail *cd = RPC_I(inode)->private;
1831 
1832 	return content_open(inode, filp, cd);
1833 }
1834 
1835 static int content_release_pipefs(struct inode *inode, struct file *filp)
1836 {
1837 	struct cache_detail *cd = RPC_I(inode)->private;
1838 
1839 	return content_release(inode, filp, cd);
1840 }
1841 
1842 const struct file_operations content_file_operations_pipefs = {
1843 	.open		= content_open_pipefs,
1844 	.read		= seq_read,
1845 	.llseek		= seq_lseek,
1846 	.release	= content_release_pipefs,
1847 };
1848 
1849 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1850 {
1851 	struct cache_detail *cd = RPC_I(inode)->private;
1852 
1853 	return open_flush(inode, filp, cd);
1854 }
1855 
1856 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1857 {
1858 	struct cache_detail *cd = RPC_I(inode)->private;
1859 
1860 	return release_flush(inode, filp, cd);
1861 }
1862 
1863 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1864 			    size_t count, loff_t *ppos)
1865 {
1866 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1867 
1868 	return read_flush(filp, buf, count, ppos, cd);
1869 }
1870 
1871 static ssize_t write_flush_pipefs(struct file *filp,
1872 				  const char __user *buf,
1873 				  size_t count, loff_t *ppos)
1874 {
1875 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1876 
1877 	return write_flush(filp, buf, count, ppos, cd);
1878 }
1879 
1880 const struct file_operations cache_flush_operations_pipefs = {
1881 	.open		= open_flush_pipefs,
1882 	.read		= read_flush_pipefs,
1883 	.write		= write_flush_pipefs,
1884 	.release	= release_flush_pipefs,
1885 	.llseek		= no_llseek,
1886 };
1887 
1888 int sunrpc_cache_register_pipefs(struct dentry *parent,
1889 				 const char *name, umode_t umode,
1890 				 struct cache_detail *cd)
1891 {
1892 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1893 	if (IS_ERR(dir))
1894 		return PTR_ERR(dir);
1895 	cd->pipefs = dir;
1896 	return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1899 
1900 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1901 {
1902 	if (cd->pipefs) {
1903 		rpc_remove_cache_dir(cd->pipefs);
1904 		cd->pipefs = NULL;
1905 	}
1906 }
1907 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1908 
1909 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1910 {
1911 	spin_lock(&cd->hash_lock);
1912 	if (!hlist_unhashed(&h->cache_list)){
1913 		sunrpc_begin_cache_remove_entry(h, cd);
1914 		spin_unlock(&cd->hash_lock);
1915 		sunrpc_end_cache_remove_entry(h, cd);
1916 	} else
1917 		spin_unlock(&cd->hash_lock);
1918 }
1919 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1920