xref: /openbmc/linux/net/sunrpc/cache.c (revision c1d3fb8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include "netns.h"
36 
37 #define	 RPCDBG_FACILITY RPCDBG_CACHE
38 
39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 static bool cache_listeners_exist(struct cache_detail *detail);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static void cache_fresh_unlocked(struct cache_head *head,
57 				struct cache_detail *detail);
58 
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 						struct cache_head *key,
61 						int hash)
62 {
63 	struct hlist_head *head = &detail->hash_table[hash];
64 	struct cache_head *tmp;
65 
66 	rcu_read_lock();
67 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 		if (detail->match(tmp, key)) {
69 			if (cache_is_expired(detail, tmp))
70 				continue;
71 			tmp = cache_get_rcu(tmp);
72 			rcu_read_unlock();
73 			return tmp;
74 		}
75 	}
76 	rcu_read_unlock();
77 	return NULL;
78 }
79 
80 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
81 						 struct cache_head *key,
82 						 int hash)
83 {
84 	struct cache_head *new, *tmp, *freeme = NULL;
85 	struct hlist_head *head = &detail->hash_table[hash];
86 
87 	new = detail->alloc();
88 	if (!new)
89 		return NULL;
90 	/* must fully initialise 'new', else
91 	 * we might get lose if we need to
92 	 * cache_put it soon.
93 	 */
94 	cache_init(new, detail);
95 	detail->init(new, key);
96 
97 	spin_lock(&detail->hash_lock);
98 
99 	/* check if entry appeared while we slept */
100 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
101 		if (detail->match(tmp, key)) {
102 			if (cache_is_expired(detail, tmp)) {
103 				hlist_del_init_rcu(&tmp->cache_list);
104 				detail->entries --;
105 				freeme = tmp;
106 				break;
107 			}
108 			cache_get(tmp);
109 			spin_unlock(&detail->hash_lock);
110 			cache_put(new, detail);
111 			return tmp;
112 		}
113 	}
114 
115 	hlist_add_head_rcu(&new->cache_list, head);
116 	detail->entries++;
117 	cache_get(new);
118 	spin_unlock(&detail->hash_lock);
119 
120 	if (freeme) {
121 		cache_fresh_unlocked(freeme, detail);
122 		cache_put(freeme, detail);
123 	}
124 	return new;
125 }
126 
127 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
128 					   struct cache_head *key, int hash)
129 {
130 	struct cache_head *ret;
131 
132 	ret = sunrpc_cache_find_rcu(detail, key, hash);
133 	if (ret)
134 		return ret;
135 	/* Didn't find anything, insert an empty entry */
136 	return sunrpc_cache_add_entry(detail, key, hash);
137 }
138 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
139 
140 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
141 
142 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
143 			       struct cache_detail *detail)
144 {
145 	time_t now = seconds_since_boot();
146 	if (now <= detail->flush_time)
147 		/* ensure it isn't immediately treated as expired */
148 		now = detail->flush_time + 1;
149 	head->expiry_time = expiry;
150 	head->last_refresh = now;
151 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
152 	set_bit(CACHE_VALID, &head->flags);
153 }
154 
155 static void cache_fresh_unlocked(struct cache_head *head,
156 				 struct cache_detail *detail)
157 {
158 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
159 		cache_revisit_request(head);
160 		cache_dequeue(detail, head);
161 	}
162 }
163 
164 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
165 				       struct cache_head *new, struct cache_head *old, int hash)
166 {
167 	/* The 'old' entry is to be replaced by 'new'.
168 	 * If 'old' is not VALID, we update it directly,
169 	 * otherwise we need to replace it
170 	 */
171 	struct cache_head *tmp;
172 
173 	if (!test_bit(CACHE_VALID, &old->flags)) {
174 		spin_lock(&detail->hash_lock);
175 		if (!test_bit(CACHE_VALID, &old->flags)) {
176 			if (test_bit(CACHE_NEGATIVE, &new->flags))
177 				set_bit(CACHE_NEGATIVE, &old->flags);
178 			else
179 				detail->update(old, new);
180 			cache_fresh_locked(old, new->expiry_time, detail);
181 			spin_unlock(&detail->hash_lock);
182 			cache_fresh_unlocked(old, detail);
183 			return old;
184 		}
185 		spin_unlock(&detail->hash_lock);
186 	}
187 	/* We need to insert a new entry */
188 	tmp = detail->alloc();
189 	if (!tmp) {
190 		cache_put(old, detail);
191 		return NULL;
192 	}
193 	cache_init(tmp, detail);
194 	detail->init(tmp, old);
195 
196 	spin_lock(&detail->hash_lock);
197 	if (test_bit(CACHE_NEGATIVE, &new->flags))
198 		set_bit(CACHE_NEGATIVE, &tmp->flags);
199 	else
200 		detail->update(tmp, new);
201 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
202 	detail->entries++;
203 	cache_get(tmp);
204 	cache_fresh_locked(tmp, new->expiry_time, detail);
205 	cache_fresh_locked(old, 0, detail);
206 	spin_unlock(&detail->hash_lock);
207 	cache_fresh_unlocked(tmp, detail);
208 	cache_fresh_unlocked(old, detail);
209 	cache_put(old, detail);
210 	return tmp;
211 }
212 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
213 
214 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
215 {
216 	if (cd->cache_upcall)
217 		return cd->cache_upcall(cd, h);
218 	return sunrpc_cache_pipe_upcall(cd, h);
219 }
220 
221 static inline int cache_is_valid(struct cache_head *h)
222 {
223 	if (!test_bit(CACHE_VALID, &h->flags))
224 		return -EAGAIN;
225 	else {
226 		/* entry is valid */
227 		if (test_bit(CACHE_NEGATIVE, &h->flags))
228 			return -ENOENT;
229 		else {
230 			/*
231 			 * In combination with write barrier in
232 			 * sunrpc_cache_update, ensures that anyone
233 			 * using the cache entry after this sees the
234 			 * updated contents:
235 			 */
236 			smp_rmb();
237 			return 0;
238 		}
239 	}
240 }
241 
242 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
243 {
244 	int rv;
245 
246 	spin_lock(&detail->hash_lock);
247 	rv = cache_is_valid(h);
248 	if (rv == -EAGAIN) {
249 		set_bit(CACHE_NEGATIVE, &h->flags);
250 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
251 				   detail);
252 		rv = -ENOENT;
253 	}
254 	spin_unlock(&detail->hash_lock);
255 	cache_fresh_unlocked(h, detail);
256 	return rv;
257 }
258 
259 /*
260  * This is the generic cache management routine for all
261  * the authentication caches.
262  * It checks the currency of a cache item and will (later)
263  * initiate an upcall to fill it if needed.
264  *
265  *
266  * Returns 0 if the cache_head can be used, or cache_puts it and returns
267  * -EAGAIN if upcall is pending and request has been queued
268  * -ETIMEDOUT if upcall failed or request could not be queue or
269  *           upcall completed but item is still invalid (implying that
270  *           the cache item has been replaced with a newer one).
271  * -ENOENT if cache entry was negative
272  */
273 int cache_check(struct cache_detail *detail,
274 		    struct cache_head *h, struct cache_req *rqstp)
275 {
276 	int rv;
277 	long refresh_age, age;
278 
279 	/* First decide return status as best we can */
280 	rv = cache_is_valid(h);
281 
282 	/* now see if we want to start an upcall */
283 	refresh_age = (h->expiry_time - h->last_refresh);
284 	age = seconds_since_boot() - h->last_refresh;
285 
286 	if (rqstp == NULL) {
287 		if (rv == -EAGAIN)
288 			rv = -ENOENT;
289 	} else if (rv == -EAGAIN ||
290 		   (h->expiry_time != 0 && age > refresh_age/2)) {
291 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
292 				refresh_age, age);
293 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
294 			switch (cache_make_upcall(detail, h)) {
295 			case -EINVAL:
296 				rv = try_to_negate_entry(detail, h);
297 				break;
298 			case -EAGAIN:
299 				cache_fresh_unlocked(h, detail);
300 				break;
301 			}
302 		} else if (!cache_listeners_exist(detail))
303 			rv = try_to_negate_entry(detail, h);
304 	}
305 
306 	if (rv == -EAGAIN) {
307 		if (!cache_defer_req(rqstp, h)) {
308 			/*
309 			 * Request was not deferred; handle it as best
310 			 * we can ourselves:
311 			 */
312 			rv = cache_is_valid(h);
313 			if (rv == -EAGAIN)
314 				rv = -ETIMEDOUT;
315 		}
316 	}
317 	if (rv)
318 		cache_put(h, detail);
319 	return rv;
320 }
321 EXPORT_SYMBOL_GPL(cache_check);
322 
323 /*
324  * caches need to be periodically cleaned.
325  * For this we maintain a list of cache_detail and
326  * a current pointer into that list and into the table
327  * for that entry.
328  *
329  * Each time cache_clean is called it finds the next non-empty entry
330  * in the current table and walks the list in that entry
331  * looking for entries that can be removed.
332  *
333  * An entry gets removed if:
334  * - The expiry is before current time
335  * - The last_refresh time is before the flush_time for that cache
336  *
337  * later we might drop old entries with non-NEVER expiry if that table
338  * is getting 'full' for some definition of 'full'
339  *
340  * The question of "how often to scan a table" is an interesting one
341  * and is answered in part by the use of the "nextcheck" field in the
342  * cache_detail.
343  * When a scan of a table begins, the nextcheck field is set to a time
344  * that is well into the future.
345  * While scanning, if an expiry time is found that is earlier than the
346  * current nextcheck time, nextcheck is set to that expiry time.
347  * If the flush_time is ever set to a time earlier than the nextcheck
348  * time, the nextcheck time is then set to that flush_time.
349  *
350  * A table is then only scanned if the current time is at least
351  * the nextcheck time.
352  *
353  */
354 
355 static LIST_HEAD(cache_list);
356 static DEFINE_SPINLOCK(cache_list_lock);
357 static struct cache_detail *current_detail;
358 static int current_index;
359 
360 static void do_cache_clean(struct work_struct *work);
361 static struct delayed_work cache_cleaner;
362 
363 void sunrpc_init_cache_detail(struct cache_detail *cd)
364 {
365 	spin_lock_init(&cd->hash_lock);
366 	INIT_LIST_HEAD(&cd->queue);
367 	spin_lock(&cache_list_lock);
368 	cd->nextcheck = 0;
369 	cd->entries = 0;
370 	atomic_set(&cd->writers, 0);
371 	cd->last_close = 0;
372 	cd->last_warn = -1;
373 	list_add(&cd->others, &cache_list);
374 	spin_unlock(&cache_list_lock);
375 
376 	/* start the cleaning process */
377 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
378 }
379 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
380 
381 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
382 {
383 	cache_purge(cd);
384 	spin_lock(&cache_list_lock);
385 	spin_lock(&cd->hash_lock);
386 	if (current_detail == cd)
387 		current_detail = NULL;
388 	list_del_init(&cd->others);
389 	spin_unlock(&cd->hash_lock);
390 	spin_unlock(&cache_list_lock);
391 	if (list_empty(&cache_list)) {
392 		/* module must be being unloaded so its safe to kill the worker */
393 		cancel_delayed_work_sync(&cache_cleaner);
394 	}
395 }
396 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
397 
398 /* clean cache tries to find something to clean
399  * and cleans it.
400  * It returns 1 if it cleaned something,
401  *            0 if it didn't find anything this time
402  *           -1 if it fell off the end of the list.
403  */
404 static int cache_clean(void)
405 {
406 	int rv = 0;
407 	struct list_head *next;
408 
409 	spin_lock(&cache_list_lock);
410 
411 	/* find a suitable table if we don't already have one */
412 	while (current_detail == NULL ||
413 	    current_index >= current_detail->hash_size) {
414 		if (current_detail)
415 			next = current_detail->others.next;
416 		else
417 			next = cache_list.next;
418 		if (next == &cache_list) {
419 			current_detail = NULL;
420 			spin_unlock(&cache_list_lock);
421 			return -1;
422 		}
423 		current_detail = list_entry(next, struct cache_detail, others);
424 		if (current_detail->nextcheck > seconds_since_boot())
425 			current_index = current_detail->hash_size;
426 		else {
427 			current_index = 0;
428 			current_detail->nextcheck = seconds_since_boot()+30*60;
429 		}
430 	}
431 
432 	/* find a non-empty bucket in the table */
433 	while (current_detail &&
434 	       current_index < current_detail->hash_size &&
435 	       hlist_empty(&current_detail->hash_table[current_index]))
436 		current_index++;
437 
438 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
439 
440 	if (current_detail && current_index < current_detail->hash_size) {
441 		struct cache_head *ch = NULL;
442 		struct cache_detail *d;
443 		struct hlist_head *head;
444 		struct hlist_node *tmp;
445 
446 		spin_lock(&current_detail->hash_lock);
447 
448 		/* Ok, now to clean this strand */
449 
450 		head = &current_detail->hash_table[current_index];
451 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
452 			if (current_detail->nextcheck > ch->expiry_time)
453 				current_detail->nextcheck = ch->expiry_time+1;
454 			if (!cache_is_expired(current_detail, ch))
455 				continue;
456 
457 			hlist_del_init_rcu(&ch->cache_list);
458 			current_detail->entries--;
459 			rv = 1;
460 			break;
461 		}
462 
463 		spin_unlock(&current_detail->hash_lock);
464 		d = current_detail;
465 		if (!ch)
466 			current_index ++;
467 		spin_unlock(&cache_list_lock);
468 		if (ch) {
469 			set_bit(CACHE_CLEANED, &ch->flags);
470 			cache_fresh_unlocked(ch, d);
471 			cache_put(ch, d);
472 		}
473 	} else
474 		spin_unlock(&cache_list_lock);
475 
476 	return rv;
477 }
478 
479 /*
480  * We want to regularly clean the cache, so we need to schedule some work ...
481  */
482 static void do_cache_clean(struct work_struct *work)
483 {
484 	int delay = 5;
485 	if (cache_clean() == -1)
486 		delay = round_jiffies_relative(30*HZ);
487 
488 	if (list_empty(&cache_list))
489 		delay = 0;
490 
491 	if (delay)
492 		queue_delayed_work(system_power_efficient_wq,
493 				   &cache_cleaner, delay);
494 }
495 
496 
497 /*
498  * Clean all caches promptly.  This just calls cache_clean
499  * repeatedly until we are sure that every cache has had a chance to
500  * be fully cleaned
501  */
502 void cache_flush(void)
503 {
504 	while (cache_clean() != -1)
505 		cond_resched();
506 	while (cache_clean() != -1)
507 		cond_resched();
508 }
509 EXPORT_SYMBOL_GPL(cache_flush);
510 
511 void cache_purge(struct cache_detail *detail)
512 {
513 	struct cache_head *ch = NULL;
514 	struct hlist_head *head = NULL;
515 	struct hlist_node *tmp = NULL;
516 	int i = 0;
517 
518 	spin_lock(&detail->hash_lock);
519 	if (!detail->entries) {
520 		spin_unlock(&detail->hash_lock);
521 		return;
522 	}
523 
524 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
525 	for (i = 0; i < detail->hash_size; i++) {
526 		head = &detail->hash_table[i];
527 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
528 			hlist_del_init_rcu(&ch->cache_list);
529 			detail->entries--;
530 
531 			set_bit(CACHE_CLEANED, &ch->flags);
532 			spin_unlock(&detail->hash_lock);
533 			cache_fresh_unlocked(ch, detail);
534 			cache_put(ch, detail);
535 			spin_lock(&detail->hash_lock);
536 		}
537 	}
538 	spin_unlock(&detail->hash_lock);
539 }
540 EXPORT_SYMBOL_GPL(cache_purge);
541 
542 
543 /*
544  * Deferral and Revisiting of Requests.
545  *
546  * If a cache lookup finds a pending entry, we
547  * need to defer the request and revisit it later.
548  * All deferred requests are stored in a hash table,
549  * indexed by "struct cache_head *".
550  * As it may be wasteful to store a whole request
551  * structure, we allow the request to provide a
552  * deferred form, which must contain a
553  * 'struct cache_deferred_req'
554  * This cache_deferred_req contains a method to allow
555  * it to be revisited when cache info is available
556  */
557 
558 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
559 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
560 
561 #define	DFR_MAX	300	/* ??? */
562 
563 static DEFINE_SPINLOCK(cache_defer_lock);
564 static LIST_HEAD(cache_defer_list);
565 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
566 static int cache_defer_cnt;
567 
568 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
569 {
570 	hlist_del_init(&dreq->hash);
571 	if (!list_empty(&dreq->recent)) {
572 		list_del_init(&dreq->recent);
573 		cache_defer_cnt--;
574 	}
575 }
576 
577 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
578 {
579 	int hash = DFR_HASH(item);
580 
581 	INIT_LIST_HEAD(&dreq->recent);
582 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
583 }
584 
585 static void setup_deferral(struct cache_deferred_req *dreq,
586 			   struct cache_head *item,
587 			   int count_me)
588 {
589 
590 	dreq->item = item;
591 
592 	spin_lock(&cache_defer_lock);
593 
594 	__hash_deferred_req(dreq, item);
595 
596 	if (count_me) {
597 		cache_defer_cnt++;
598 		list_add(&dreq->recent, &cache_defer_list);
599 	}
600 
601 	spin_unlock(&cache_defer_lock);
602 
603 }
604 
605 struct thread_deferred_req {
606 	struct cache_deferred_req handle;
607 	struct completion completion;
608 };
609 
610 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
611 {
612 	struct thread_deferred_req *dr =
613 		container_of(dreq, struct thread_deferred_req, handle);
614 	complete(&dr->completion);
615 }
616 
617 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
618 {
619 	struct thread_deferred_req sleeper;
620 	struct cache_deferred_req *dreq = &sleeper.handle;
621 
622 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
623 	dreq->revisit = cache_restart_thread;
624 
625 	setup_deferral(dreq, item, 0);
626 
627 	if (!test_bit(CACHE_PENDING, &item->flags) ||
628 	    wait_for_completion_interruptible_timeout(
629 		    &sleeper.completion, req->thread_wait) <= 0) {
630 		/* The completion wasn't completed, so we need
631 		 * to clean up
632 		 */
633 		spin_lock(&cache_defer_lock);
634 		if (!hlist_unhashed(&sleeper.handle.hash)) {
635 			__unhash_deferred_req(&sleeper.handle);
636 			spin_unlock(&cache_defer_lock);
637 		} else {
638 			/* cache_revisit_request already removed
639 			 * this from the hash table, but hasn't
640 			 * called ->revisit yet.  It will very soon
641 			 * and we need to wait for it.
642 			 */
643 			spin_unlock(&cache_defer_lock);
644 			wait_for_completion(&sleeper.completion);
645 		}
646 	}
647 }
648 
649 static void cache_limit_defers(void)
650 {
651 	/* Make sure we haven't exceed the limit of allowed deferred
652 	 * requests.
653 	 */
654 	struct cache_deferred_req *discard = NULL;
655 
656 	if (cache_defer_cnt <= DFR_MAX)
657 		return;
658 
659 	spin_lock(&cache_defer_lock);
660 
661 	/* Consider removing either the first or the last */
662 	if (cache_defer_cnt > DFR_MAX) {
663 		if (prandom_u32() & 1)
664 			discard = list_entry(cache_defer_list.next,
665 					     struct cache_deferred_req, recent);
666 		else
667 			discard = list_entry(cache_defer_list.prev,
668 					     struct cache_deferred_req, recent);
669 		__unhash_deferred_req(discard);
670 	}
671 	spin_unlock(&cache_defer_lock);
672 	if (discard)
673 		discard->revisit(discard, 1);
674 }
675 
676 /* Return true if and only if a deferred request is queued. */
677 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
678 {
679 	struct cache_deferred_req *dreq;
680 
681 	if (req->thread_wait) {
682 		cache_wait_req(req, item);
683 		if (!test_bit(CACHE_PENDING, &item->flags))
684 			return false;
685 	}
686 	dreq = req->defer(req);
687 	if (dreq == NULL)
688 		return false;
689 	setup_deferral(dreq, item, 1);
690 	if (!test_bit(CACHE_PENDING, &item->flags))
691 		/* Bit could have been cleared before we managed to
692 		 * set up the deferral, so need to revisit just in case
693 		 */
694 		cache_revisit_request(item);
695 
696 	cache_limit_defers();
697 	return true;
698 }
699 
700 static void cache_revisit_request(struct cache_head *item)
701 {
702 	struct cache_deferred_req *dreq;
703 	struct list_head pending;
704 	struct hlist_node *tmp;
705 	int hash = DFR_HASH(item);
706 
707 	INIT_LIST_HEAD(&pending);
708 	spin_lock(&cache_defer_lock);
709 
710 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
711 		if (dreq->item == item) {
712 			__unhash_deferred_req(dreq);
713 			list_add(&dreq->recent, &pending);
714 		}
715 
716 	spin_unlock(&cache_defer_lock);
717 
718 	while (!list_empty(&pending)) {
719 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
720 		list_del_init(&dreq->recent);
721 		dreq->revisit(dreq, 0);
722 	}
723 }
724 
725 void cache_clean_deferred(void *owner)
726 {
727 	struct cache_deferred_req *dreq, *tmp;
728 	struct list_head pending;
729 
730 
731 	INIT_LIST_HEAD(&pending);
732 	spin_lock(&cache_defer_lock);
733 
734 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
735 		if (dreq->owner == owner) {
736 			__unhash_deferred_req(dreq);
737 			list_add(&dreq->recent, &pending);
738 		}
739 	}
740 	spin_unlock(&cache_defer_lock);
741 
742 	while (!list_empty(&pending)) {
743 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
744 		list_del_init(&dreq->recent);
745 		dreq->revisit(dreq, 1);
746 	}
747 }
748 
749 /*
750  * communicate with user-space
751  *
752  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
753  * On read, you get a full request, or block.
754  * On write, an update request is processed.
755  * Poll works if anything to read, and always allows write.
756  *
757  * Implemented by linked list of requests.  Each open file has
758  * a ->private that also exists in this list.  New requests are added
759  * to the end and may wakeup and preceding readers.
760  * New readers are added to the head.  If, on read, an item is found with
761  * CACHE_UPCALLING clear, we free it from the list.
762  *
763  */
764 
765 static DEFINE_SPINLOCK(queue_lock);
766 static DEFINE_MUTEX(queue_io_mutex);
767 
768 struct cache_queue {
769 	struct list_head	list;
770 	int			reader;	/* if 0, then request */
771 };
772 struct cache_request {
773 	struct cache_queue	q;
774 	struct cache_head	*item;
775 	char			* buf;
776 	int			len;
777 	int			readers;
778 };
779 struct cache_reader {
780 	struct cache_queue	q;
781 	int			offset;	/* if non-0, we have a refcnt on next request */
782 };
783 
784 static int cache_request(struct cache_detail *detail,
785 			       struct cache_request *crq)
786 {
787 	char *bp = crq->buf;
788 	int len = PAGE_SIZE;
789 
790 	detail->cache_request(detail, crq->item, &bp, &len);
791 	if (len < 0)
792 		return -EAGAIN;
793 	return PAGE_SIZE - len;
794 }
795 
796 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
797 			  loff_t *ppos, struct cache_detail *cd)
798 {
799 	struct cache_reader *rp = filp->private_data;
800 	struct cache_request *rq;
801 	struct inode *inode = file_inode(filp);
802 	int err;
803 
804 	if (count == 0)
805 		return 0;
806 
807 	inode_lock(inode); /* protect against multiple concurrent
808 			      * readers on this file */
809  again:
810 	spin_lock(&queue_lock);
811 	/* need to find next request */
812 	while (rp->q.list.next != &cd->queue &&
813 	       list_entry(rp->q.list.next, struct cache_queue, list)
814 	       ->reader) {
815 		struct list_head *next = rp->q.list.next;
816 		list_move(&rp->q.list, next);
817 	}
818 	if (rp->q.list.next == &cd->queue) {
819 		spin_unlock(&queue_lock);
820 		inode_unlock(inode);
821 		WARN_ON_ONCE(rp->offset);
822 		return 0;
823 	}
824 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
825 	WARN_ON_ONCE(rq->q.reader);
826 	if (rp->offset == 0)
827 		rq->readers++;
828 	spin_unlock(&queue_lock);
829 
830 	if (rq->len == 0) {
831 		err = cache_request(cd, rq);
832 		if (err < 0)
833 			goto out;
834 		rq->len = err;
835 	}
836 
837 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
838 		err = -EAGAIN;
839 		spin_lock(&queue_lock);
840 		list_move(&rp->q.list, &rq->q.list);
841 		spin_unlock(&queue_lock);
842 	} else {
843 		if (rp->offset + count > rq->len)
844 			count = rq->len - rp->offset;
845 		err = -EFAULT;
846 		if (copy_to_user(buf, rq->buf + rp->offset, count))
847 			goto out;
848 		rp->offset += count;
849 		if (rp->offset >= rq->len) {
850 			rp->offset = 0;
851 			spin_lock(&queue_lock);
852 			list_move(&rp->q.list, &rq->q.list);
853 			spin_unlock(&queue_lock);
854 		}
855 		err = 0;
856 	}
857  out:
858 	if (rp->offset == 0) {
859 		/* need to release rq */
860 		spin_lock(&queue_lock);
861 		rq->readers--;
862 		if (rq->readers == 0 &&
863 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
864 			list_del(&rq->q.list);
865 			spin_unlock(&queue_lock);
866 			cache_put(rq->item, cd);
867 			kfree(rq->buf);
868 			kfree(rq);
869 		} else
870 			spin_unlock(&queue_lock);
871 	}
872 	if (err == -EAGAIN)
873 		goto again;
874 	inode_unlock(inode);
875 	return err ? err :  count;
876 }
877 
878 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
879 				 size_t count, struct cache_detail *cd)
880 {
881 	ssize_t ret;
882 
883 	if (count == 0)
884 		return -EINVAL;
885 	if (copy_from_user(kaddr, buf, count))
886 		return -EFAULT;
887 	kaddr[count] = '\0';
888 	ret = cd->cache_parse(cd, kaddr, count);
889 	if (!ret)
890 		ret = count;
891 	return ret;
892 }
893 
894 static ssize_t cache_slow_downcall(const char __user *buf,
895 				   size_t count, struct cache_detail *cd)
896 {
897 	static char write_buf[8192]; /* protected by queue_io_mutex */
898 	ssize_t ret = -EINVAL;
899 
900 	if (count >= sizeof(write_buf))
901 		goto out;
902 	mutex_lock(&queue_io_mutex);
903 	ret = cache_do_downcall(write_buf, buf, count, cd);
904 	mutex_unlock(&queue_io_mutex);
905 out:
906 	return ret;
907 }
908 
909 static ssize_t cache_downcall(struct address_space *mapping,
910 			      const char __user *buf,
911 			      size_t count, struct cache_detail *cd)
912 {
913 	struct page *page;
914 	char *kaddr;
915 	ssize_t ret = -ENOMEM;
916 
917 	if (count >= PAGE_SIZE)
918 		goto out_slow;
919 
920 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
921 	if (!page)
922 		goto out_slow;
923 
924 	kaddr = kmap(page);
925 	ret = cache_do_downcall(kaddr, buf, count, cd);
926 	kunmap(page);
927 	unlock_page(page);
928 	put_page(page);
929 	return ret;
930 out_slow:
931 	return cache_slow_downcall(buf, count, cd);
932 }
933 
934 static ssize_t cache_write(struct file *filp, const char __user *buf,
935 			   size_t count, loff_t *ppos,
936 			   struct cache_detail *cd)
937 {
938 	struct address_space *mapping = filp->f_mapping;
939 	struct inode *inode = file_inode(filp);
940 	ssize_t ret = -EINVAL;
941 
942 	if (!cd->cache_parse)
943 		goto out;
944 
945 	inode_lock(inode);
946 	ret = cache_downcall(mapping, buf, count, cd);
947 	inode_unlock(inode);
948 out:
949 	return ret;
950 }
951 
952 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
953 
954 static __poll_t cache_poll(struct file *filp, poll_table *wait,
955 			       struct cache_detail *cd)
956 {
957 	__poll_t mask;
958 	struct cache_reader *rp = filp->private_data;
959 	struct cache_queue *cq;
960 
961 	poll_wait(filp, &queue_wait, wait);
962 
963 	/* alway allow write */
964 	mask = EPOLLOUT | EPOLLWRNORM;
965 
966 	if (!rp)
967 		return mask;
968 
969 	spin_lock(&queue_lock);
970 
971 	for (cq= &rp->q; &cq->list != &cd->queue;
972 	     cq = list_entry(cq->list.next, struct cache_queue, list))
973 		if (!cq->reader) {
974 			mask |= EPOLLIN | EPOLLRDNORM;
975 			break;
976 		}
977 	spin_unlock(&queue_lock);
978 	return mask;
979 }
980 
981 static int cache_ioctl(struct inode *ino, struct file *filp,
982 		       unsigned int cmd, unsigned long arg,
983 		       struct cache_detail *cd)
984 {
985 	int len = 0;
986 	struct cache_reader *rp = filp->private_data;
987 	struct cache_queue *cq;
988 
989 	if (cmd != FIONREAD || !rp)
990 		return -EINVAL;
991 
992 	spin_lock(&queue_lock);
993 
994 	/* only find the length remaining in current request,
995 	 * or the length of the next request
996 	 */
997 	for (cq= &rp->q; &cq->list != &cd->queue;
998 	     cq = list_entry(cq->list.next, struct cache_queue, list))
999 		if (!cq->reader) {
1000 			struct cache_request *cr =
1001 				container_of(cq, struct cache_request, q);
1002 			len = cr->len - rp->offset;
1003 			break;
1004 		}
1005 	spin_unlock(&queue_lock);
1006 
1007 	return put_user(len, (int __user *)arg);
1008 }
1009 
1010 static int cache_open(struct inode *inode, struct file *filp,
1011 		      struct cache_detail *cd)
1012 {
1013 	struct cache_reader *rp = NULL;
1014 
1015 	if (!cd || !try_module_get(cd->owner))
1016 		return -EACCES;
1017 	nonseekable_open(inode, filp);
1018 	if (filp->f_mode & FMODE_READ) {
1019 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1020 		if (!rp) {
1021 			module_put(cd->owner);
1022 			return -ENOMEM;
1023 		}
1024 		rp->offset = 0;
1025 		rp->q.reader = 1;
1026 
1027 		spin_lock(&queue_lock);
1028 		list_add(&rp->q.list, &cd->queue);
1029 		spin_unlock(&queue_lock);
1030 	}
1031 	if (filp->f_mode & FMODE_WRITE)
1032 		atomic_inc(&cd->writers);
1033 	filp->private_data = rp;
1034 	return 0;
1035 }
1036 
1037 static int cache_release(struct inode *inode, struct file *filp,
1038 			 struct cache_detail *cd)
1039 {
1040 	struct cache_reader *rp = filp->private_data;
1041 
1042 	if (rp) {
1043 		spin_lock(&queue_lock);
1044 		if (rp->offset) {
1045 			struct cache_queue *cq;
1046 			for (cq= &rp->q; &cq->list != &cd->queue;
1047 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1048 				if (!cq->reader) {
1049 					container_of(cq, struct cache_request, q)
1050 						->readers--;
1051 					break;
1052 				}
1053 			rp->offset = 0;
1054 		}
1055 		list_del(&rp->q.list);
1056 		spin_unlock(&queue_lock);
1057 
1058 		filp->private_data = NULL;
1059 		kfree(rp);
1060 
1061 	}
1062 	if (filp->f_mode & FMODE_WRITE) {
1063 		atomic_dec(&cd->writers);
1064 		cd->last_close = seconds_since_boot();
1065 	}
1066 	module_put(cd->owner);
1067 	return 0;
1068 }
1069 
1070 
1071 
1072 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1073 {
1074 	struct cache_queue *cq, *tmp;
1075 	struct cache_request *cr;
1076 	struct list_head dequeued;
1077 
1078 	INIT_LIST_HEAD(&dequeued);
1079 	spin_lock(&queue_lock);
1080 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1081 		if (!cq->reader) {
1082 			cr = container_of(cq, struct cache_request, q);
1083 			if (cr->item != ch)
1084 				continue;
1085 			if (test_bit(CACHE_PENDING, &ch->flags))
1086 				/* Lost a race and it is pending again */
1087 				break;
1088 			if (cr->readers != 0)
1089 				continue;
1090 			list_move(&cr->q.list, &dequeued);
1091 		}
1092 	spin_unlock(&queue_lock);
1093 	while (!list_empty(&dequeued)) {
1094 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1095 		list_del(&cr->q.list);
1096 		cache_put(cr->item, detail);
1097 		kfree(cr->buf);
1098 		kfree(cr);
1099 	}
1100 }
1101 
1102 /*
1103  * Support routines for text-based upcalls.
1104  * Fields are separated by spaces.
1105  * Fields are either mangled to quote space tab newline slosh with slosh
1106  * or a hexified with a leading \x
1107  * Record is terminated with newline.
1108  *
1109  */
1110 
1111 void qword_add(char **bpp, int *lp, char *str)
1112 {
1113 	char *bp = *bpp;
1114 	int len = *lp;
1115 	int ret;
1116 
1117 	if (len < 0) return;
1118 
1119 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1120 	if (ret >= len) {
1121 		bp += len;
1122 		len = -1;
1123 	} else {
1124 		bp += ret;
1125 		len -= ret;
1126 		*bp++ = ' ';
1127 		len--;
1128 	}
1129 	*bpp = bp;
1130 	*lp = len;
1131 }
1132 EXPORT_SYMBOL_GPL(qword_add);
1133 
1134 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1135 {
1136 	char *bp = *bpp;
1137 	int len = *lp;
1138 
1139 	if (len < 0) return;
1140 
1141 	if (len > 2) {
1142 		*bp++ = '\\';
1143 		*bp++ = 'x';
1144 		len -= 2;
1145 		while (blen && len >= 2) {
1146 			bp = hex_byte_pack(bp, *buf++);
1147 			len -= 2;
1148 			blen--;
1149 		}
1150 	}
1151 	if (blen || len<1) len = -1;
1152 	else {
1153 		*bp++ = ' ';
1154 		len--;
1155 	}
1156 	*bpp = bp;
1157 	*lp = len;
1158 }
1159 EXPORT_SYMBOL_GPL(qword_addhex);
1160 
1161 static void warn_no_listener(struct cache_detail *detail)
1162 {
1163 	if (detail->last_warn != detail->last_close) {
1164 		detail->last_warn = detail->last_close;
1165 		if (detail->warn_no_listener)
1166 			detail->warn_no_listener(detail, detail->last_close != 0);
1167 	}
1168 }
1169 
1170 static bool cache_listeners_exist(struct cache_detail *detail)
1171 {
1172 	if (atomic_read(&detail->writers))
1173 		return true;
1174 	if (detail->last_close == 0)
1175 		/* This cache was never opened */
1176 		return false;
1177 	if (detail->last_close < seconds_since_boot() - 30)
1178 		/*
1179 		 * We allow for the possibility that someone might
1180 		 * restart a userspace daemon without restarting the
1181 		 * server; but after 30 seconds, we give up.
1182 		 */
1183 		 return false;
1184 	return true;
1185 }
1186 
1187 /*
1188  * register an upcall request to user-space and queue it up for read() by the
1189  * upcall daemon.
1190  *
1191  * Each request is at most one page long.
1192  */
1193 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1194 {
1195 
1196 	char *buf;
1197 	struct cache_request *crq;
1198 	int ret = 0;
1199 
1200 	if (!detail->cache_request)
1201 		return -EINVAL;
1202 
1203 	if (!cache_listeners_exist(detail)) {
1204 		warn_no_listener(detail);
1205 		return -EINVAL;
1206 	}
1207 	if (test_bit(CACHE_CLEANED, &h->flags))
1208 		/* Too late to make an upcall */
1209 		return -EAGAIN;
1210 
1211 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1212 	if (!buf)
1213 		return -EAGAIN;
1214 
1215 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1216 	if (!crq) {
1217 		kfree(buf);
1218 		return -EAGAIN;
1219 	}
1220 
1221 	crq->q.reader = 0;
1222 	crq->buf = buf;
1223 	crq->len = 0;
1224 	crq->readers = 0;
1225 	spin_lock(&queue_lock);
1226 	if (test_bit(CACHE_PENDING, &h->flags)) {
1227 		crq->item = cache_get(h);
1228 		list_add_tail(&crq->q.list, &detail->queue);
1229 	} else
1230 		/* Lost a race, no longer PENDING, so don't enqueue */
1231 		ret = -EAGAIN;
1232 	spin_unlock(&queue_lock);
1233 	wake_up(&queue_wait);
1234 	if (ret == -EAGAIN) {
1235 		kfree(buf);
1236 		kfree(crq);
1237 	}
1238 	return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1241 
1242 /*
1243  * parse a message from user-space and pass it
1244  * to an appropriate cache
1245  * Messages are, like requests, separated into fields by
1246  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1247  *
1248  * Message is
1249  *   reply cachename expiry key ... content....
1250  *
1251  * key and content are both parsed by cache
1252  */
1253 
1254 int qword_get(char **bpp, char *dest, int bufsize)
1255 {
1256 	/* return bytes copied, or -1 on error */
1257 	char *bp = *bpp;
1258 	int len = 0;
1259 
1260 	while (*bp == ' ') bp++;
1261 
1262 	if (bp[0] == '\\' && bp[1] == 'x') {
1263 		/* HEX STRING */
1264 		bp += 2;
1265 		while (len < bufsize - 1) {
1266 			int h, l;
1267 
1268 			h = hex_to_bin(bp[0]);
1269 			if (h < 0)
1270 				break;
1271 
1272 			l = hex_to_bin(bp[1]);
1273 			if (l < 0)
1274 				break;
1275 
1276 			*dest++ = (h << 4) | l;
1277 			bp += 2;
1278 			len++;
1279 		}
1280 	} else {
1281 		/* text with \nnn octal quoting */
1282 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1283 			if (*bp == '\\' &&
1284 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1285 			    isodigit(bp[2]) &&
1286 			    isodigit(bp[3])) {
1287 				int byte = (*++bp -'0');
1288 				bp++;
1289 				byte = (byte << 3) | (*bp++ - '0');
1290 				byte = (byte << 3) | (*bp++ - '0');
1291 				*dest++ = byte;
1292 				len++;
1293 			} else {
1294 				*dest++ = *bp++;
1295 				len++;
1296 			}
1297 		}
1298 	}
1299 
1300 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1301 		return -1;
1302 	while (*bp == ' ') bp++;
1303 	*bpp = bp;
1304 	*dest = '\0';
1305 	return len;
1306 }
1307 EXPORT_SYMBOL_GPL(qword_get);
1308 
1309 
1310 /*
1311  * support /proc/net/rpc/$CACHENAME/content
1312  * as a seqfile.
1313  * We call ->cache_show passing NULL for the item to
1314  * get a header, then pass each real item in the cache
1315  */
1316 
1317 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1318 {
1319 	loff_t n = *pos;
1320 	unsigned int hash, entry;
1321 	struct cache_head *ch;
1322 	struct cache_detail *cd = m->private;
1323 
1324 	if (!n--)
1325 		return SEQ_START_TOKEN;
1326 	hash = n >> 32;
1327 	entry = n & ((1LL<<32) - 1);
1328 
1329 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1330 		if (!entry--)
1331 			return ch;
1332 	n &= ~((1LL<<32) - 1);
1333 	do {
1334 		hash++;
1335 		n += 1LL<<32;
1336 	} while(hash < cd->hash_size &&
1337 		hlist_empty(&cd->hash_table[hash]));
1338 	if (hash >= cd->hash_size)
1339 		return NULL;
1340 	*pos = n+1;
1341 	return hlist_entry_safe(rcu_dereference_raw(
1342 				hlist_first_rcu(&cd->hash_table[hash])),
1343 				struct cache_head, cache_list);
1344 }
1345 
1346 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1347 {
1348 	struct cache_head *ch = p;
1349 	int hash = (*pos >> 32);
1350 	struct cache_detail *cd = m->private;
1351 
1352 	if (p == SEQ_START_TOKEN)
1353 		hash = 0;
1354 	else if (ch->cache_list.next == NULL) {
1355 		hash++;
1356 		*pos += 1LL<<32;
1357 	} else {
1358 		++*pos;
1359 		return hlist_entry_safe(rcu_dereference_raw(
1360 					hlist_next_rcu(&ch->cache_list)),
1361 					struct cache_head, cache_list);
1362 	}
1363 	*pos &= ~((1LL<<32) - 1);
1364 	while (hash < cd->hash_size &&
1365 	       hlist_empty(&cd->hash_table[hash])) {
1366 		hash++;
1367 		*pos += 1LL<<32;
1368 	}
1369 	if (hash >= cd->hash_size)
1370 		return NULL;
1371 	++*pos;
1372 	return hlist_entry_safe(rcu_dereference_raw(
1373 				hlist_first_rcu(&cd->hash_table[hash])),
1374 				struct cache_head, cache_list);
1375 }
1376 
1377 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1378 	__acquires(RCU)
1379 {
1380 	rcu_read_lock();
1381 	return __cache_seq_start(m, pos);
1382 }
1383 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1384 
1385 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1386 {
1387 	return cache_seq_next(file, p, pos);
1388 }
1389 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1390 
1391 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1392 	__releases(RCU)
1393 {
1394 	rcu_read_unlock();
1395 }
1396 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1397 
1398 static int c_show(struct seq_file *m, void *p)
1399 {
1400 	struct cache_head *cp = p;
1401 	struct cache_detail *cd = m->private;
1402 
1403 	if (p == SEQ_START_TOKEN)
1404 		return cd->cache_show(m, cd, NULL);
1405 
1406 	ifdebug(CACHE)
1407 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1408 			   convert_to_wallclock(cp->expiry_time),
1409 			   kref_read(&cp->ref), cp->flags);
1410 	cache_get(cp);
1411 	if (cache_check(cd, cp, NULL))
1412 		/* cache_check does a cache_put on failure */
1413 		seq_printf(m, "# ");
1414 	else {
1415 		if (cache_is_expired(cd, cp))
1416 			seq_printf(m, "# ");
1417 		cache_put(cp, cd);
1418 	}
1419 
1420 	return cd->cache_show(m, cd, cp);
1421 }
1422 
1423 static const struct seq_operations cache_content_op = {
1424 	.start	= cache_seq_start_rcu,
1425 	.next	= cache_seq_next_rcu,
1426 	.stop	= cache_seq_stop_rcu,
1427 	.show	= c_show,
1428 };
1429 
1430 static int content_open(struct inode *inode, struct file *file,
1431 			struct cache_detail *cd)
1432 {
1433 	struct seq_file *seq;
1434 	int err;
1435 
1436 	if (!cd || !try_module_get(cd->owner))
1437 		return -EACCES;
1438 
1439 	err = seq_open(file, &cache_content_op);
1440 	if (err) {
1441 		module_put(cd->owner);
1442 		return err;
1443 	}
1444 
1445 	seq = file->private_data;
1446 	seq->private = cd;
1447 	return 0;
1448 }
1449 
1450 static int content_release(struct inode *inode, struct file *file,
1451 		struct cache_detail *cd)
1452 {
1453 	int ret = seq_release(inode, file);
1454 	module_put(cd->owner);
1455 	return ret;
1456 }
1457 
1458 static int open_flush(struct inode *inode, struct file *file,
1459 			struct cache_detail *cd)
1460 {
1461 	if (!cd || !try_module_get(cd->owner))
1462 		return -EACCES;
1463 	return nonseekable_open(inode, file);
1464 }
1465 
1466 static int release_flush(struct inode *inode, struct file *file,
1467 			struct cache_detail *cd)
1468 {
1469 	module_put(cd->owner);
1470 	return 0;
1471 }
1472 
1473 static ssize_t read_flush(struct file *file, char __user *buf,
1474 			  size_t count, loff_t *ppos,
1475 			  struct cache_detail *cd)
1476 {
1477 	char tbuf[22];
1478 	size_t len;
1479 
1480 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1481 			convert_to_wallclock(cd->flush_time));
1482 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1483 }
1484 
1485 static ssize_t write_flush(struct file *file, const char __user *buf,
1486 			   size_t count, loff_t *ppos,
1487 			   struct cache_detail *cd)
1488 {
1489 	char tbuf[20];
1490 	char *ep;
1491 	time_t now;
1492 
1493 	if (*ppos || count > sizeof(tbuf)-1)
1494 		return -EINVAL;
1495 	if (copy_from_user(tbuf, buf, count))
1496 		return -EFAULT;
1497 	tbuf[count] = 0;
1498 	simple_strtoul(tbuf, &ep, 0);
1499 	if (*ep && *ep != '\n')
1500 		return -EINVAL;
1501 	/* Note that while we check that 'buf' holds a valid number,
1502 	 * we always ignore the value and just flush everything.
1503 	 * Making use of the number leads to races.
1504 	 */
1505 
1506 	now = seconds_since_boot();
1507 	/* Always flush everything, so behave like cache_purge()
1508 	 * Do this by advancing flush_time to the current time,
1509 	 * or by one second if it has already reached the current time.
1510 	 * Newly added cache entries will always have ->last_refresh greater
1511 	 * that ->flush_time, so they don't get flushed prematurely.
1512 	 */
1513 
1514 	if (cd->flush_time >= now)
1515 		now = cd->flush_time + 1;
1516 
1517 	cd->flush_time = now;
1518 	cd->nextcheck = now;
1519 	cache_flush();
1520 
1521 	if (cd->flush)
1522 		cd->flush();
1523 
1524 	*ppos += count;
1525 	return count;
1526 }
1527 
1528 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1529 				 size_t count, loff_t *ppos)
1530 {
1531 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1532 
1533 	return cache_read(filp, buf, count, ppos, cd);
1534 }
1535 
1536 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1537 				  size_t count, loff_t *ppos)
1538 {
1539 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1540 
1541 	return cache_write(filp, buf, count, ppos, cd);
1542 }
1543 
1544 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1545 {
1546 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1547 
1548 	return cache_poll(filp, wait, cd);
1549 }
1550 
1551 static long cache_ioctl_procfs(struct file *filp,
1552 			       unsigned int cmd, unsigned long arg)
1553 {
1554 	struct inode *inode = file_inode(filp);
1555 	struct cache_detail *cd = PDE_DATA(inode);
1556 
1557 	return cache_ioctl(inode, filp, cmd, arg, cd);
1558 }
1559 
1560 static int cache_open_procfs(struct inode *inode, struct file *filp)
1561 {
1562 	struct cache_detail *cd = PDE_DATA(inode);
1563 
1564 	return cache_open(inode, filp, cd);
1565 }
1566 
1567 static int cache_release_procfs(struct inode *inode, struct file *filp)
1568 {
1569 	struct cache_detail *cd = PDE_DATA(inode);
1570 
1571 	return cache_release(inode, filp, cd);
1572 }
1573 
1574 static const struct file_operations cache_file_operations_procfs = {
1575 	.owner		= THIS_MODULE,
1576 	.llseek		= no_llseek,
1577 	.read		= cache_read_procfs,
1578 	.write		= cache_write_procfs,
1579 	.poll		= cache_poll_procfs,
1580 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1581 	.open		= cache_open_procfs,
1582 	.release	= cache_release_procfs,
1583 };
1584 
1585 static int content_open_procfs(struct inode *inode, struct file *filp)
1586 {
1587 	struct cache_detail *cd = PDE_DATA(inode);
1588 
1589 	return content_open(inode, filp, cd);
1590 }
1591 
1592 static int content_release_procfs(struct inode *inode, struct file *filp)
1593 {
1594 	struct cache_detail *cd = PDE_DATA(inode);
1595 
1596 	return content_release(inode, filp, cd);
1597 }
1598 
1599 static const struct file_operations content_file_operations_procfs = {
1600 	.open		= content_open_procfs,
1601 	.read		= seq_read,
1602 	.llseek		= seq_lseek,
1603 	.release	= content_release_procfs,
1604 };
1605 
1606 static int open_flush_procfs(struct inode *inode, struct file *filp)
1607 {
1608 	struct cache_detail *cd = PDE_DATA(inode);
1609 
1610 	return open_flush(inode, filp, cd);
1611 }
1612 
1613 static int release_flush_procfs(struct inode *inode, struct file *filp)
1614 {
1615 	struct cache_detail *cd = PDE_DATA(inode);
1616 
1617 	return release_flush(inode, filp, cd);
1618 }
1619 
1620 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1621 			    size_t count, loff_t *ppos)
1622 {
1623 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1624 
1625 	return read_flush(filp, buf, count, ppos, cd);
1626 }
1627 
1628 static ssize_t write_flush_procfs(struct file *filp,
1629 				  const char __user *buf,
1630 				  size_t count, loff_t *ppos)
1631 {
1632 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1633 
1634 	return write_flush(filp, buf, count, ppos, cd);
1635 }
1636 
1637 static const struct file_operations cache_flush_operations_procfs = {
1638 	.open		= open_flush_procfs,
1639 	.read		= read_flush_procfs,
1640 	.write		= write_flush_procfs,
1641 	.release	= release_flush_procfs,
1642 	.llseek		= no_llseek,
1643 };
1644 
1645 static void remove_cache_proc_entries(struct cache_detail *cd)
1646 {
1647 	if (cd->procfs) {
1648 		proc_remove(cd->procfs);
1649 		cd->procfs = NULL;
1650 	}
1651 }
1652 
1653 #ifdef CONFIG_PROC_FS
1654 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1655 {
1656 	struct proc_dir_entry *p;
1657 	struct sunrpc_net *sn;
1658 
1659 	sn = net_generic(net, sunrpc_net_id);
1660 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1661 	if (cd->procfs == NULL)
1662 		goto out_nomem;
1663 
1664 	p = proc_create_data("flush", S_IFREG | 0600,
1665 			     cd->procfs, &cache_flush_operations_procfs, cd);
1666 	if (p == NULL)
1667 		goto out_nomem;
1668 
1669 	if (cd->cache_request || cd->cache_parse) {
1670 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1671 				     &cache_file_operations_procfs, cd);
1672 		if (p == NULL)
1673 			goto out_nomem;
1674 	}
1675 	if (cd->cache_show) {
1676 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1677 				     &content_file_operations_procfs, cd);
1678 		if (p == NULL)
1679 			goto out_nomem;
1680 	}
1681 	return 0;
1682 out_nomem:
1683 	remove_cache_proc_entries(cd);
1684 	return -ENOMEM;
1685 }
1686 #else /* CONFIG_PROC_FS */
1687 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1688 {
1689 	return 0;
1690 }
1691 #endif
1692 
1693 void __init cache_initialize(void)
1694 {
1695 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1696 }
1697 
1698 int cache_register_net(struct cache_detail *cd, struct net *net)
1699 {
1700 	int ret;
1701 
1702 	sunrpc_init_cache_detail(cd);
1703 	ret = create_cache_proc_entries(cd, net);
1704 	if (ret)
1705 		sunrpc_destroy_cache_detail(cd);
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL_GPL(cache_register_net);
1709 
1710 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1711 {
1712 	remove_cache_proc_entries(cd);
1713 	sunrpc_destroy_cache_detail(cd);
1714 }
1715 EXPORT_SYMBOL_GPL(cache_unregister_net);
1716 
1717 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1718 {
1719 	struct cache_detail *cd;
1720 	int i;
1721 
1722 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1723 	if (cd == NULL)
1724 		return ERR_PTR(-ENOMEM);
1725 
1726 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1727 				 GFP_KERNEL);
1728 	if (cd->hash_table == NULL) {
1729 		kfree(cd);
1730 		return ERR_PTR(-ENOMEM);
1731 	}
1732 
1733 	for (i = 0; i < cd->hash_size; i++)
1734 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1735 	cd->net = net;
1736 	return cd;
1737 }
1738 EXPORT_SYMBOL_GPL(cache_create_net);
1739 
1740 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1741 {
1742 	kfree(cd->hash_table);
1743 	kfree(cd);
1744 }
1745 EXPORT_SYMBOL_GPL(cache_destroy_net);
1746 
1747 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1748 				 size_t count, loff_t *ppos)
1749 {
1750 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1751 
1752 	return cache_read(filp, buf, count, ppos, cd);
1753 }
1754 
1755 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1756 				  size_t count, loff_t *ppos)
1757 {
1758 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1759 
1760 	return cache_write(filp, buf, count, ppos, cd);
1761 }
1762 
1763 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1764 {
1765 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1766 
1767 	return cache_poll(filp, wait, cd);
1768 }
1769 
1770 static long cache_ioctl_pipefs(struct file *filp,
1771 			      unsigned int cmd, unsigned long arg)
1772 {
1773 	struct inode *inode = file_inode(filp);
1774 	struct cache_detail *cd = RPC_I(inode)->private;
1775 
1776 	return cache_ioctl(inode, filp, cmd, arg, cd);
1777 }
1778 
1779 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1780 {
1781 	struct cache_detail *cd = RPC_I(inode)->private;
1782 
1783 	return cache_open(inode, filp, cd);
1784 }
1785 
1786 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1787 {
1788 	struct cache_detail *cd = RPC_I(inode)->private;
1789 
1790 	return cache_release(inode, filp, cd);
1791 }
1792 
1793 const struct file_operations cache_file_operations_pipefs = {
1794 	.owner		= THIS_MODULE,
1795 	.llseek		= no_llseek,
1796 	.read		= cache_read_pipefs,
1797 	.write		= cache_write_pipefs,
1798 	.poll		= cache_poll_pipefs,
1799 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1800 	.open		= cache_open_pipefs,
1801 	.release	= cache_release_pipefs,
1802 };
1803 
1804 static int content_open_pipefs(struct inode *inode, struct file *filp)
1805 {
1806 	struct cache_detail *cd = RPC_I(inode)->private;
1807 
1808 	return content_open(inode, filp, cd);
1809 }
1810 
1811 static int content_release_pipefs(struct inode *inode, struct file *filp)
1812 {
1813 	struct cache_detail *cd = RPC_I(inode)->private;
1814 
1815 	return content_release(inode, filp, cd);
1816 }
1817 
1818 const struct file_operations content_file_operations_pipefs = {
1819 	.open		= content_open_pipefs,
1820 	.read		= seq_read,
1821 	.llseek		= seq_lseek,
1822 	.release	= content_release_pipefs,
1823 };
1824 
1825 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1826 {
1827 	struct cache_detail *cd = RPC_I(inode)->private;
1828 
1829 	return open_flush(inode, filp, cd);
1830 }
1831 
1832 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1833 {
1834 	struct cache_detail *cd = RPC_I(inode)->private;
1835 
1836 	return release_flush(inode, filp, cd);
1837 }
1838 
1839 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1840 			    size_t count, loff_t *ppos)
1841 {
1842 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1843 
1844 	return read_flush(filp, buf, count, ppos, cd);
1845 }
1846 
1847 static ssize_t write_flush_pipefs(struct file *filp,
1848 				  const char __user *buf,
1849 				  size_t count, loff_t *ppos)
1850 {
1851 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1852 
1853 	return write_flush(filp, buf, count, ppos, cd);
1854 }
1855 
1856 const struct file_operations cache_flush_operations_pipefs = {
1857 	.open		= open_flush_pipefs,
1858 	.read		= read_flush_pipefs,
1859 	.write		= write_flush_pipefs,
1860 	.release	= release_flush_pipefs,
1861 	.llseek		= no_llseek,
1862 };
1863 
1864 int sunrpc_cache_register_pipefs(struct dentry *parent,
1865 				 const char *name, umode_t umode,
1866 				 struct cache_detail *cd)
1867 {
1868 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1869 	if (IS_ERR(dir))
1870 		return PTR_ERR(dir);
1871 	cd->pipefs = dir;
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1875 
1876 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1877 {
1878 	if (cd->pipefs) {
1879 		rpc_remove_cache_dir(cd->pipefs);
1880 		cd->pipefs = NULL;
1881 	}
1882 }
1883 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1884 
1885 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1886 {
1887 	spin_lock(&cd->hash_lock);
1888 	if (!hlist_unhashed(&h->cache_list)){
1889 		hlist_del_init_rcu(&h->cache_list);
1890 		cd->entries--;
1891 		spin_unlock(&cd->hash_lock);
1892 		cache_put(h, cd);
1893 	} else
1894 		spin_unlock(&cd->hash_lock);
1895 }
1896 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1897