xref: /openbmc/linux/net/sunrpc/cache.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h)
44 {
45 	time_t now = seconds_since_boot();
46 	h->next = NULL;
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	h->last_refresh = now;
51 }
52 
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55 	return  (h->expiry_time < seconds_since_boot()) ||
56 		(detail->flush_time > h->last_refresh);
57 }
58 
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60 				       struct cache_head *key, int hash)
61 {
62 	struct cache_head **head,  **hp;
63 	struct cache_head *new = NULL, *freeme = NULL;
64 
65 	head = &detail->hash_table[hash];
66 
67 	read_lock(&detail->hash_lock);
68 
69 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70 		struct cache_head *tmp = *hp;
71 		if (detail->match(tmp, key)) {
72 			if (cache_is_expired(detail, tmp))
73 				/* This entry is expired, we will discard it. */
74 				break;
75 			cache_get(tmp);
76 			read_unlock(&detail->hash_lock);
77 			return tmp;
78 		}
79 	}
80 	read_unlock(&detail->hash_lock);
81 	/* Didn't find anything, insert an empty entry */
82 
83 	new = detail->alloc();
84 	if (!new)
85 		return NULL;
86 	/* must fully initialise 'new', else
87 	 * we might get lose if we need to
88 	 * cache_put it soon.
89 	 */
90 	cache_init(new);
91 	detail->init(new, key);
92 
93 	write_lock(&detail->hash_lock);
94 
95 	/* check if entry appeared while we slept */
96 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97 		struct cache_head *tmp = *hp;
98 		if (detail->match(tmp, key)) {
99 			if (cache_is_expired(detail, tmp)) {
100 				*hp = tmp->next;
101 				tmp->next = NULL;
102 				detail->entries --;
103 				freeme = tmp;
104 				break;
105 			}
106 			cache_get(tmp);
107 			write_unlock(&detail->hash_lock);
108 			cache_put(new, detail);
109 			return tmp;
110 		}
111 	}
112 	new->next = *head;
113 	*head = new;
114 	detail->entries++;
115 	cache_get(new);
116 	write_unlock(&detail->hash_lock);
117 
118 	if (freeme)
119 		cache_put(freeme, detail);
120 	return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123 
124 
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126 
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129 	head->expiry_time = expiry;
130 	head->last_refresh = seconds_since_boot();
131 	set_bit(CACHE_VALID, &head->flags);
132 }
133 
134 static void cache_fresh_unlocked(struct cache_head *head,
135 				 struct cache_detail *detail)
136 {
137 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
138 		cache_revisit_request(head);
139 		cache_dequeue(detail, head);
140 	}
141 }
142 
143 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
144 				       struct cache_head *new, struct cache_head *old, int hash)
145 {
146 	/* The 'old' entry is to be replaced by 'new'.
147 	 * If 'old' is not VALID, we update it directly,
148 	 * otherwise we need to replace it
149 	 */
150 	struct cache_head **head;
151 	struct cache_head *tmp;
152 
153 	if (!test_bit(CACHE_VALID, &old->flags)) {
154 		write_lock(&detail->hash_lock);
155 		if (!test_bit(CACHE_VALID, &old->flags)) {
156 			if (test_bit(CACHE_NEGATIVE, &new->flags))
157 				set_bit(CACHE_NEGATIVE, &old->flags);
158 			else
159 				detail->update(old, new);
160 			cache_fresh_locked(old, new->expiry_time);
161 			write_unlock(&detail->hash_lock);
162 			cache_fresh_unlocked(old, detail);
163 			return old;
164 		}
165 		write_unlock(&detail->hash_lock);
166 	}
167 	/* We need to insert a new entry */
168 	tmp = detail->alloc();
169 	if (!tmp) {
170 		cache_put(old, detail);
171 		return NULL;
172 	}
173 	cache_init(tmp);
174 	detail->init(tmp, old);
175 	head = &detail->hash_table[hash];
176 
177 	write_lock(&detail->hash_lock);
178 	if (test_bit(CACHE_NEGATIVE, &new->flags))
179 		set_bit(CACHE_NEGATIVE, &tmp->flags);
180 	else
181 		detail->update(tmp, new);
182 	tmp->next = *head;
183 	*head = tmp;
184 	detail->entries++;
185 	cache_get(tmp);
186 	cache_fresh_locked(tmp, new->expiry_time);
187 	cache_fresh_locked(old, 0);
188 	write_unlock(&detail->hash_lock);
189 	cache_fresh_unlocked(tmp, detail);
190 	cache_fresh_unlocked(old, detail);
191 	cache_put(old, detail);
192 	return tmp;
193 }
194 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
195 
196 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
197 {
198 	if (!cd->cache_upcall)
199 		return -EINVAL;
200 	return cd->cache_upcall(cd, h);
201 }
202 
203 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
204 {
205 	if (!test_bit(CACHE_VALID, &h->flags))
206 		return -EAGAIN;
207 	else {
208 		/* entry is valid */
209 		if (test_bit(CACHE_NEGATIVE, &h->flags))
210 			return -ENOENT;
211 		else
212 			return 0;
213 	}
214 }
215 
216 /*
217  * This is the generic cache management routine for all
218  * the authentication caches.
219  * It checks the currency of a cache item and will (later)
220  * initiate an upcall to fill it if needed.
221  *
222  *
223  * Returns 0 if the cache_head can be used, or cache_puts it and returns
224  * -EAGAIN if upcall is pending and request has been queued
225  * -ETIMEDOUT if upcall failed or request could not be queue or
226  *           upcall completed but item is still invalid (implying that
227  *           the cache item has been replaced with a newer one).
228  * -ENOENT if cache entry was negative
229  */
230 int cache_check(struct cache_detail *detail,
231 		    struct cache_head *h, struct cache_req *rqstp)
232 {
233 	int rv;
234 	long refresh_age, age;
235 
236 	/* First decide return status as best we can */
237 	rv = cache_is_valid(detail, h);
238 
239 	/* now see if we want to start an upcall */
240 	refresh_age = (h->expiry_time - h->last_refresh);
241 	age = seconds_since_boot() - h->last_refresh;
242 
243 	if (rqstp == NULL) {
244 		if (rv == -EAGAIN)
245 			rv = -ENOENT;
246 	} else if (rv == -EAGAIN || age > refresh_age/2) {
247 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
248 				refresh_age, age);
249 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
250 			switch (cache_make_upcall(detail, h)) {
251 			case -EINVAL:
252 				clear_bit(CACHE_PENDING, &h->flags);
253 				cache_revisit_request(h);
254 				if (rv == -EAGAIN) {
255 					set_bit(CACHE_NEGATIVE, &h->flags);
256 					cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
257 					cache_fresh_unlocked(h, detail);
258 					rv = -ENOENT;
259 				}
260 				break;
261 
262 			case -EAGAIN:
263 				clear_bit(CACHE_PENDING, &h->flags);
264 				cache_revisit_request(h);
265 				break;
266 			}
267 		}
268 	}
269 
270 	if (rv == -EAGAIN) {
271 		cache_defer_req(rqstp, h);
272 		if (!test_bit(CACHE_PENDING, &h->flags)) {
273 			/* Request is not deferred */
274 			rv = cache_is_valid(detail, h);
275 			if (rv == -EAGAIN)
276 				rv = -ETIMEDOUT;
277 		}
278 	}
279 	if (rv)
280 		cache_put(h, detail);
281 	return rv;
282 }
283 EXPORT_SYMBOL_GPL(cache_check);
284 
285 /*
286  * caches need to be periodically cleaned.
287  * For this we maintain a list of cache_detail and
288  * a current pointer into that list and into the table
289  * for that entry.
290  *
291  * Each time clean_cache is called it finds the next non-empty entry
292  * in the current table and walks the list in that entry
293  * looking for entries that can be removed.
294  *
295  * An entry gets removed if:
296  * - The expiry is before current time
297  * - The last_refresh time is before the flush_time for that cache
298  *
299  * later we might drop old entries with non-NEVER expiry if that table
300  * is getting 'full' for some definition of 'full'
301  *
302  * The question of "how often to scan a table" is an interesting one
303  * and is answered in part by the use of the "nextcheck" field in the
304  * cache_detail.
305  * When a scan of a table begins, the nextcheck field is set to a time
306  * that is well into the future.
307  * While scanning, if an expiry time is found that is earlier than the
308  * current nextcheck time, nextcheck is set to that expiry time.
309  * If the flush_time is ever set to a time earlier than the nextcheck
310  * time, the nextcheck time is then set to that flush_time.
311  *
312  * A table is then only scanned if the current time is at least
313  * the nextcheck time.
314  *
315  */
316 
317 static LIST_HEAD(cache_list);
318 static DEFINE_SPINLOCK(cache_list_lock);
319 static struct cache_detail *current_detail;
320 static int current_index;
321 
322 static void do_cache_clean(struct work_struct *work);
323 static struct delayed_work cache_cleaner;
324 
325 static void sunrpc_init_cache_detail(struct cache_detail *cd)
326 {
327 	rwlock_init(&cd->hash_lock);
328 	INIT_LIST_HEAD(&cd->queue);
329 	spin_lock(&cache_list_lock);
330 	cd->nextcheck = 0;
331 	cd->entries = 0;
332 	atomic_set(&cd->readers, 0);
333 	cd->last_close = 0;
334 	cd->last_warn = -1;
335 	list_add(&cd->others, &cache_list);
336 	spin_unlock(&cache_list_lock);
337 
338 	/* start the cleaning process */
339 	schedule_delayed_work(&cache_cleaner, 0);
340 }
341 
342 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
343 {
344 	cache_purge(cd);
345 	spin_lock(&cache_list_lock);
346 	write_lock(&cd->hash_lock);
347 	if (cd->entries || atomic_read(&cd->inuse)) {
348 		write_unlock(&cd->hash_lock);
349 		spin_unlock(&cache_list_lock);
350 		goto out;
351 	}
352 	if (current_detail == cd)
353 		current_detail = NULL;
354 	list_del_init(&cd->others);
355 	write_unlock(&cd->hash_lock);
356 	spin_unlock(&cache_list_lock);
357 	if (list_empty(&cache_list)) {
358 		/* module must be being unloaded so its safe to kill the worker */
359 		cancel_delayed_work_sync(&cache_cleaner);
360 	}
361 	return;
362 out:
363 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
364 }
365 
366 /* clean cache tries to find something to clean
367  * and cleans it.
368  * It returns 1 if it cleaned something,
369  *            0 if it didn't find anything this time
370  *           -1 if it fell off the end of the list.
371  */
372 static int cache_clean(void)
373 {
374 	int rv = 0;
375 	struct list_head *next;
376 
377 	spin_lock(&cache_list_lock);
378 
379 	/* find a suitable table if we don't already have one */
380 	while (current_detail == NULL ||
381 	    current_index >= current_detail->hash_size) {
382 		if (current_detail)
383 			next = current_detail->others.next;
384 		else
385 			next = cache_list.next;
386 		if (next == &cache_list) {
387 			current_detail = NULL;
388 			spin_unlock(&cache_list_lock);
389 			return -1;
390 		}
391 		current_detail = list_entry(next, struct cache_detail, others);
392 		if (current_detail->nextcheck > seconds_since_boot())
393 			current_index = current_detail->hash_size;
394 		else {
395 			current_index = 0;
396 			current_detail->nextcheck = seconds_since_boot()+30*60;
397 		}
398 	}
399 
400 	/* find a non-empty bucket in the table */
401 	while (current_detail &&
402 	       current_index < current_detail->hash_size &&
403 	       current_detail->hash_table[current_index] == NULL)
404 		current_index++;
405 
406 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
407 
408 	if (current_detail && current_index < current_detail->hash_size) {
409 		struct cache_head *ch, **cp;
410 		struct cache_detail *d;
411 
412 		write_lock(&current_detail->hash_lock);
413 
414 		/* Ok, now to clean this strand */
415 
416 		cp = & current_detail->hash_table[current_index];
417 		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
418 			if (current_detail->nextcheck > ch->expiry_time)
419 				current_detail->nextcheck = ch->expiry_time+1;
420 			if (!cache_is_expired(current_detail, ch))
421 				continue;
422 
423 			*cp = ch->next;
424 			ch->next = NULL;
425 			current_detail->entries--;
426 			rv = 1;
427 			break;
428 		}
429 
430 		write_unlock(&current_detail->hash_lock);
431 		d = current_detail;
432 		if (!ch)
433 			current_index ++;
434 		spin_unlock(&cache_list_lock);
435 		if (ch) {
436 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
437 				cache_dequeue(current_detail, ch);
438 			cache_revisit_request(ch);
439 			cache_put(ch, d);
440 		}
441 	} else
442 		spin_unlock(&cache_list_lock);
443 
444 	return rv;
445 }
446 
447 /*
448  * We want to regularly clean the cache, so we need to schedule some work ...
449  */
450 static void do_cache_clean(struct work_struct *work)
451 {
452 	int delay = 5;
453 	if (cache_clean() == -1)
454 		delay = round_jiffies_relative(30*HZ);
455 
456 	if (list_empty(&cache_list))
457 		delay = 0;
458 
459 	if (delay)
460 		schedule_delayed_work(&cache_cleaner, delay);
461 }
462 
463 
464 /*
465  * Clean all caches promptly.  This just calls cache_clean
466  * repeatedly until we are sure that every cache has had a chance to
467  * be fully cleaned
468  */
469 void cache_flush(void)
470 {
471 	while (cache_clean() != -1)
472 		cond_resched();
473 	while (cache_clean() != -1)
474 		cond_resched();
475 }
476 EXPORT_SYMBOL_GPL(cache_flush);
477 
478 void cache_purge(struct cache_detail *detail)
479 {
480 	detail->flush_time = LONG_MAX;
481 	detail->nextcheck = seconds_since_boot();
482 	cache_flush();
483 	detail->flush_time = 1;
484 }
485 EXPORT_SYMBOL_GPL(cache_purge);
486 
487 
488 /*
489  * Deferral and Revisiting of Requests.
490  *
491  * If a cache lookup finds a pending entry, we
492  * need to defer the request and revisit it later.
493  * All deferred requests are stored in a hash table,
494  * indexed by "struct cache_head *".
495  * As it may be wasteful to store a whole request
496  * structure, we allow the request to provide a
497  * deferred form, which must contain a
498  * 'struct cache_deferred_req'
499  * This cache_deferred_req contains a method to allow
500  * it to be revisited when cache info is available
501  */
502 
503 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
504 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
505 
506 #define	DFR_MAX	300	/* ??? */
507 
508 static DEFINE_SPINLOCK(cache_defer_lock);
509 static LIST_HEAD(cache_defer_list);
510 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
511 static int cache_defer_cnt;
512 
513 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
514 {
515 	hlist_del_init(&dreq->hash);
516 	if (!list_empty(&dreq->recent)) {
517 		list_del_init(&dreq->recent);
518 		cache_defer_cnt--;
519 	}
520 }
521 
522 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
523 {
524 	int hash = DFR_HASH(item);
525 
526 	INIT_LIST_HEAD(&dreq->recent);
527 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
528 }
529 
530 static void setup_deferral(struct cache_deferred_req *dreq,
531 			   struct cache_head *item,
532 			   int count_me)
533 {
534 
535 	dreq->item = item;
536 
537 	spin_lock(&cache_defer_lock);
538 
539 	__hash_deferred_req(dreq, item);
540 
541 	if (count_me) {
542 		cache_defer_cnt++;
543 		list_add(&dreq->recent, &cache_defer_list);
544 	}
545 
546 	spin_unlock(&cache_defer_lock);
547 
548 }
549 
550 struct thread_deferred_req {
551 	struct cache_deferred_req handle;
552 	struct completion completion;
553 };
554 
555 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
556 {
557 	struct thread_deferred_req *dr =
558 		container_of(dreq, struct thread_deferred_req, handle);
559 	complete(&dr->completion);
560 }
561 
562 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
563 {
564 	struct thread_deferred_req sleeper;
565 	struct cache_deferred_req *dreq = &sleeper.handle;
566 
567 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
568 	dreq->revisit = cache_restart_thread;
569 
570 	setup_deferral(dreq, item, 0);
571 
572 	if (!test_bit(CACHE_PENDING, &item->flags) ||
573 	    wait_for_completion_interruptible_timeout(
574 		    &sleeper.completion, req->thread_wait) <= 0) {
575 		/* The completion wasn't completed, so we need
576 		 * to clean up
577 		 */
578 		spin_lock(&cache_defer_lock);
579 		if (!hlist_unhashed(&sleeper.handle.hash)) {
580 			__unhash_deferred_req(&sleeper.handle);
581 			spin_unlock(&cache_defer_lock);
582 		} else {
583 			/* cache_revisit_request already removed
584 			 * this from the hash table, but hasn't
585 			 * called ->revisit yet.  It will very soon
586 			 * and we need to wait for it.
587 			 */
588 			spin_unlock(&cache_defer_lock);
589 			wait_for_completion(&sleeper.completion);
590 		}
591 	}
592 }
593 
594 static void cache_limit_defers(void)
595 {
596 	/* Make sure we haven't exceed the limit of allowed deferred
597 	 * requests.
598 	 */
599 	struct cache_deferred_req *discard = NULL;
600 
601 	if (cache_defer_cnt <= DFR_MAX)
602 		return;
603 
604 	spin_lock(&cache_defer_lock);
605 
606 	/* Consider removing either the first or the last */
607 	if (cache_defer_cnt > DFR_MAX) {
608 		if (net_random() & 1)
609 			discard = list_entry(cache_defer_list.next,
610 					     struct cache_deferred_req, recent);
611 		else
612 			discard = list_entry(cache_defer_list.prev,
613 					     struct cache_deferred_req, recent);
614 		__unhash_deferred_req(discard);
615 	}
616 	spin_unlock(&cache_defer_lock);
617 	if (discard)
618 		discard->revisit(discard, 1);
619 }
620 
621 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
622 {
623 	struct cache_deferred_req *dreq;
624 
625 	if (req->thread_wait) {
626 		cache_wait_req(req, item);
627 		if (!test_bit(CACHE_PENDING, &item->flags))
628 			return;
629 	}
630 	dreq = req->defer(req);
631 	if (dreq == NULL)
632 		return;
633 	setup_deferral(dreq, item, 1);
634 	if (!test_bit(CACHE_PENDING, &item->flags))
635 		/* Bit could have been cleared before we managed to
636 		 * set up the deferral, so need to revisit just in case
637 		 */
638 		cache_revisit_request(item);
639 
640 	cache_limit_defers();
641 }
642 
643 static void cache_revisit_request(struct cache_head *item)
644 {
645 	struct cache_deferred_req *dreq;
646 	struct list_head pending;
647 	struct hlist_node *lp, *tmp;
648 	int hash = DFR_HASH(item);
649 
650 	INIT_LIST_HEAD(&pending);
651 	spin_lock(&cache_defer_lock);
652 
653 	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
654 		if (dreq->item == item) {
655 			__unhash_deferred_req(dreq);
656 			list_add(&dreq->recent, &pending);
657 		}
658 
659 	spin_unlock(&cache_defer_lock);
660 
661 	while (!list_empty(&pending)) {
662 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
663 		list_del_init(&dreq->recent);
664 		dreq->revisit(dreq, 0);
665 	}
666 }
667 
668 void cache_clean_deferred(void *owner)
669 {
670 	struct cache_deferred_req *dreq, *tmp;
671 	struct list_head pending;
672 
673 
674 	INIT_LIST_HEAD(&pending);
675 	spin_lock(&cache_defer_lock);
676 
677 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
678 		if (dreq->owner == owner) {
679 			__unhash_deferred_req(dreq);
680 			list_add(&dreq->recent, &pending);
681 		}
682 	}
683 	spin_unlock(&cache_defer_lock);
684 
685 	while (!list_empty(&pending)) {
686 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
687 		list_del_init(&dreq->recent);
688 		dreq->revisit(dreq, 1);
689 	}
690 }
691 
692 /*
693  * communicate with user-space
694  *
695  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
696  * On read, you get a full request, or block.
697  * On write, an update request is processed.
698  * Poll works if anything to read, and always allows write.
699  *
700  * Implemented by linked list of requests.  Each open file has
701  * a ->private that also exists in this list.  New requests are added
702  * to the end and may wakeup and preceding readers.
703  * New readers are added to the head.  If, on read, an item is found with
704  * CACHE_UPCALLING clear, we free it from the list.
705  *
706  */
707 
708 static DEFINE_SPINLOCK(queue_lock);
709 static DEFINE_MUTEX(queue_io_mutex);
710 
711 struct cache_queue {
712 	struct list_head	list;
713 	int			reader;	/* if 0, then request */
714 };
715 struct cache_request {
716 	struct cache_queue	q;
717 	struct cache_head	*item;
718 	char			* buf;
719 	int			len;
720 	int			readers;
721 };
722 struct cache_reader {
723 	struct cache_queue	q;
724 	int			offset;	/* if non-0, we have a refcnt on next request */
725 };
726 
727 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
728 			  loff_t *ppos, struct cache_detail *cd)
729 {
730 	struct cache_reader *rp = filp->private_data;
731 	struct cache_request *rq;
732 	struct inode *inode = filp->f_path.dentry->d_inode;
733 	int err;
734 
735 	if (count == 0)
736 		return 0;
737 
738 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
739 			      * readers on this file */
740  again:
741 	spin_lock(&queue_lock);
742 	/* need to find next request */
743 	while (rp->q.list.next != &cd->queue &&
744 	       list_entry(rp->q.list.next, struct cache_queue, list)
745 	       ->reader) {
746 		struct list_head *next = rp->q.list.next;
747 		list_move(&rp->q.list, next);
748 	}
749 	if (rp->q.list.next == &cd->queue) {
750 		spin_unlock(&queue_lock);
751 		mutex_unlock(&inode->i_mutex);
752 		BUG_ON(rp->offset);
753 		return 0;
754 	}
755 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
756 	BUG_ON(rq->q.reader);
757 	if (rp->offset == 0)
758 		rq->readers++;
759 	spin_unlock(&queue_lock);
760 
761 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
762 		err = -EAGAIN;
763 		spin_lock(&queue_lock);
764 		list_move(&rp->q.list, &rq->q.list);
765 		spin_unlock(&queue_lock);
766 	} else {
767 		if (rp->offset + count > rq->len)
768 			count = rq->len - rp->offset;
769 		err = -EFAULT;
770 		if (copy_to_user(buf, rq->buf + rp->offset, count))
771 			goto out;
772 		rp->offset += count;
773 		if (rp->offset >= rq->len) {
774 			rp->offset = 0;
775 			spin_lock(&queue_lock);
776 			list_move(&rp->q.list, &rq->q.list);
777 			spin_unlock(&queue_lock);
778 		}
779 		err = 0;
780 	}
781  out:
782 	if (rp->offset == 0) {
783 		/* need to release rq */
784 		spin_lock(&queue_lock);
785 		rq->readers--;
786 		if (rq->readers == 0 &&
787 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
788 			list_del(&rq->q.list);
789 			spin_unlock(&queue_lock);
790 			cache_put(rq->item, cd);
791 			kfree(rq->buf);
792 			kfree(rq);
793 		} else
794 			spin_unlock(&queue_lock);
795 	}
796 	if (err == -EAGAIN)
797 		goto again;
798 	mutex_unlock(&inode->i_mutex);
799 	return err ? err :  count;
800 }
801 
802 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
803 				 size_t count, struct cache_detail *cd)
804 {
805 	ssize_t ret;
806 
807 	if (copy_from_user(kaddr, buf, count))
808 		return -EFAULT;
809 	kaddr[count] = '\0';
810 	ret = cd->cache_parse(cd, kaddr, count);
811 	if (!ret)
812 		ret = count;
813 	return ret;
814 }
815 
816 static ssize_t cache_slow_downcall(const char __user *buf,
817 				   size_t count, struct cache_detail *cd)
818 {
819 	static char write_buf[8192]; /* protected by queue_io_mutex */
820 	ssize_t ret = -EINVAL;
821 
822 	if (count >= sizeof(write_buf))
823 		goto out;
824 	mutex_lock(&queue_io_mutex);
825 	ret = cache_do_downcall(write_buf, buf, count, cd);
826 	mutex_unlock(&queue_io_mutex);
827 out:
828 	return ret;
829 }
830 
831 static ssize_t cache_downcall(struct address_space *mapping,
832 			      const char __user *buf,
833 			      size_t count, struct cache_detail *cd)
834 {
835 	struct page *page;
836 	char *kaddr;
837 	ssize_t ret = -ENOMEM;
838 
839 	if (count >= PAGE_CACHE_SIZE)
840 		goto out_slow;
841 
842 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
843 	if (!page)
844 		goto out_slow;
845 
846 	kaddr = kmap(page);
847 	ret = cache_do_downcall(kaddr, buf, count, cd);
848 	kunmap(page);
849 	unlock_page(page);
850 	page_cache_release(page);
851 	return ret;
852 out_slow:
853 	return cache_slow_downcall(buf, count, cd);
854 }
855 
856 static ssize_t cache_write(struct file *filp, const char __user *buf,
857 			   size_t count, loff_t *ppos,
858 			   struct cache_detail *cd)
859 {
860 	struct address_space *mapping = filp->f_mapping;
861 	struct inode *inode = filp->f_path.dentry->d_inode;
862 	ssize_t ret = -EINVAL;
863 
864 	if (!cd->cache_parse)
865 		goto out;
866 
867 	mutex_lock(&inode->i_mutex);
868 	ret = cache_downcall(mapping, buf, count, cd);
869 	mutex_unlock(&inode->i_mutex);
870 out:
871 	return ret;
872 }
873 
874 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
875 
876 static unsigned int cache_poll(struct file *filp, poll_table *wait,
877 			       struct cache_detail *cd)
878 {
879 	unsigned int mask;
880 	struct cache_reader *rp = filp->private_data;
881 	struct cache_queue *cq;
882 
883 	poll_wait(filp, &queue_wait, wait);
884 
885 	/* alway allow write */
886 	mask = POLL_OUT | POLLWRNORM;
887 
888 	if (!rp)
889 		return mask;
890 
891 	spin_lock(&queue_lock);
892 
893 	for (cq= &rp->q; &cq->list != &cd->queue;
894 	     cq = list_entry(cq->list.next, struct cache_queue, list))
895 		if (!cq->reader) {
896 			mask |= POLLIN | POLLRDNORM;
897 			break;
898 		}
899 	spin_unlock(&queue_lock);
900 	return mask;
901 }
902 
903 static int cache_ioctl(struct inode *ino, struct file *filp,
904 		       unsigned int cmd, unsigned long arg,
905 		       struct cache_detail *cd)
906 {
907 	int len = 0;
908 	struct cache_reader *rp = filp->private_data;
909 	struct cache_queue *cq;
910 
911 	if (cmd != FIONREAD || !rp)
912 		return -EINVAL;
913 
914 	spin_lock(&queue_lock);
915 
916 	/* only find the length remaining in current request,
917 	 * or the length of the next request
918 	 */
919 	for (cq= &rp->q; &cq->list != &cd->queue;
920 	     cq = list_entry(cq->list.next, struct cache_queue, list))
921 		if (!cq->reader) {
922 			struct cache_request *cr =
923 				container_of(cq, struct cache_request, q);
924 			len = cr->len - rp->offset;
925 			break;
926 		}
927 	spin_unlock(&queue_lock);
928 
929 	return put_user(len, (int __user *)arg);
930 }
931 
932 static int cache_open(struct inode *inode, struct file *filp,
933 		      struct cache_detail *cd)
934 {
935 	struct cache_reader *rp = NULL;
936 
937 	if (!cd || !try_module_get(cd->owner))
938 		return -EACCES;
939 	nonseekable_open(inode, filp);
940 	if (filp->f_mode & FMODE_READ) {
941 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
942 		if (!rp)
943 			return -ENOMEM;
944 		rp->offset = 0;
945 		rp->q.reader = 1;
946 		atomic_inc(&cd->readers);
947 		spin_lock(&queue_lock);
948 		list_add(&rp->q.list, &cd->queue);
949 		spin_unlock(&queue_lock);
950 	}
951 	filp->private_data = rp;
952 	return 0;
953 }
954 
955 static int cache_release(struct inode *inode, struct file *filp,
956 			 struct cache_detail *cd)
957 {
958 	struct cache_reader *rp = filp->private_data;
959 
960 	if (rp) {
961 		spin_lock(&queue_lock);
962 		if (rp->offset) {
963 			struct cache_queue *cq;
964 			for (cq= &rp->q; &cq->list != &cd->queue;
965 			     cq = list_entry(cq->list.next, struct cache_queue, list))
966 				if (!cq->reader) {
967 					container_of(cq, struct cache_request, q)
968 						->readers--;
969 					break;
970 				}
971 			rp->offset = 0;
972 		}
973 		list_del(&rp->q.list);
974 		spin_unlock(&queue_lock);
975 
976 		filp->private_data = NULL;
977 		kfree(rp);
978 
979 		cd->last_close = seconds_since_boot();
980 		atomic_dec(&cd->readers);
981 	}
982 	module_put(cd->owner);
983 	return 0;
984 }
985 
986 
987 
988 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
989 {
990 	struct cache_queue *cq;
991 	spin_lock(&queue_lock);
992 	list_for_each_entry(cq, &detail->queue, list)
993 		if (!cq->reader) {
994 			struct cache_request *cr = container_of(cq, struct cache_request, q);
995 			if (cr->item != ch)
996 				continue;
997 			if (cr->readers != 0)
998 				continue;
999 			list_del(&cr->q.list);
1000 			spin_unlock(&queue_lock);
1001 			cache_put(cr->item, detail);
1002 			kfree(cr->buf);
1003 			kfree(cr);
1004 			return;
1005 		}
1006 	spin_unlock(&queue_lock);
1007 }
1008 
1009 /*
1010  * Support routines for text-based upcalls.
1011  * Fields are separated by spaces.
1012  * Fields are either mangled to quote space tab newline slosh with slosh
1013  * or a hexified with a leading \x
1014  * Record is terminated with newline.
1015  *
1016  */
1017 
1018 void qword_add(char **bpp, int *lp, char *str)
1019 {
1020 	char *bp = *bpp;
1021 	int len = *lp;
1022 	char c;
1023 
1024 	if (len < 0) return;
1025 
1026 	while ((c=*str++) && len)
1027 		switch(c) {
1028 		case ' ':
1029 		case '\t':
1030 		case '\n':
1031 		case '\\':
1032 			if (len >= 4) {
1033 				*bp++ = '\\';
1034 				*bp++ = '0' + ((c & 0300)>>6);
1035 				*bp++ = '0' + ((c & 0070)>>3);
1036 				*bp++ = '0' + ((c & 0007)>>0);
1037 			}
1038 			len -= 4;
1039 			break;
1040 		default:
1041 			*bp++ = c;
1042 			len--;
1043 		}
1044 	if (c || len <1) len = -1;
1045 	else {
1046 		*bp++ = ' ';
1047 		len--;
1048 	}
1049 	*bpp = bp;
1050 	*lp = len;
1051 }
1052 EXPORT_SYMBOL_GPL(qword_add);
1053 
1054 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1055 {
1056 	char *bp = *bpp;
1057 	int len = *lp;
1058 
1059 	if (len < 0) return;
1060 
1061 	if (len > 2) {
1062 		*bp++ = '\\';
1063 		*bp++ = 'x';
1064 		len -= 2;
1065 		while (blen && len >= 2) {
1066 			unsigned char c = *buf++;
1067 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1068 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1069 			len -= 2;
1070 			blen--;
1071 		}
1072 	}
1073 	if (blen || len<1) len = -1;
1074 	else {
1075 		*bp++ = ' ';
1076 		len--;
1077 	}
1078 	*bpp = bp;
1079 	*lp = len;
1080 }
1081 EXPORT_SYMBOL_GPL(qword_addhex);
1082 
1083 static void warn_no_listener(struct cache_detail *detail)
1084 {
1085 	if (detail->last_warn != detail->last_close) {
1086 		detail->last_warn = detail->last_close;
1087 		if (detail->warn_no_listener)
1088 			detail->warn_no_listener(detail, detail->last_close != 0);
1089 	}
1090 }
1091 
1092 static bool cache_listeners_exist(struct cache_detail *detail)
1093 {
1094 	if (atomic_read(&detail->readers))
1095 		return true;
1096 	if (detail->last_close == 0)
1097 		/* This cache was never opened */
1098 		return false;
1099 	if (detail->last_close < seconds_since_boot() - 30)
1100 		/*
1101 		 * We allow for the possibility that someone might
1102 		 * restart a userspace daemon without restarting the
1103 		 * server; but after 30 seconds, we give up.
1104 		 */
1105 		 return false;
1106 	return true;
1107 }
1108 
1109 /*
1110  * register an upcall request to user-space and queue it up for read() by the
1111  * upcall daemon.
1112  *
1113  * Each request is at most one page long.
1114  */
1115 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1116 		void (*cache_request)(struct cache_detail *,
1117 				      struct cache_head *,
1118 				      char **,
1119 				      int *))
1120 {
1121 
1122 	char *buf;
1123 	struct cache_request *crq;
1124 	char *bp;
1125 	int len;
1126 
1127 	if (!cache_listeners_exist(detail)) {
1128 		warn_no_listener(detail);
1129 		return -EINVAL;
1130 	}
1131 
1132 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1133 	if (!buf)
1134 		return -EAGAIN;
1135 
1136 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1137 	if (!crq) {
1138 		kfree(buf);
1139 		return -EAGAIN;
1140 	}
1141 
1142 	bp = buf; len = PAGE_SIZE;
1143 
1144 	cache_request(detail, h, &bp, &len);
1145 
1146 	if (len < 0) {
1147 		kfree(buf);
1148 		kfree(crq);
1149 		return -EAGAIN;
1150 	}
1151 	crq->q.reader = 0;
1152 	crq->item = cache_get(h);
1153 	crq->buf = buf;
1154 	crq->len = PAGE_SIZE - len;
1155 	crq->readers = 0;
1156 	spin_lock(&queue_lock);
1157 	list_add_tail(&crq->q.list, &detail->queue);
1158 	spin_unlock(&queue_lock);
1159 	wake_up(&queue_wait);
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1163 
1164 /*
1165  * parse a message from user-space and pass it
1166  * to an appropriate cache
1167  * Messages are, like requests, separated into fields by
1168  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1169  *
1170  * Message is
1171  *   reply cachename expiry key ... content....
1172  *
1173  * key and content are both parsed by cache
1174  */
1175 
1176 #define isodigit(c) (isdigit(c) && c <= '7')
1177 int qword_get(char **bpp, char *dest, int bufsize)
1178 {
1179 	/* return bytes copied, or -1 on error */
1180 	char *bp = *bpp;
1181 	int len = 0;
1182 
1183 	while (*bp == ' ') bp++;
1184 
1185 	if (bp[0] == '\\' && bp[1] == 'x') {
1186 		/* HEX STRING */
1187 		bp += 2;
1188 		while (len < bufsize) {
1189 			int h, l;
1190 
1191 			h = hex_to_bin(bp[0]);
1192 			if (h < 0)
1193 				break;
1194 
1195 			l = hex_to_bin(bp[1]);
1196 			if (l < 0)
1197 				break;
1198 
1199 			*dest++ = (h << 4) | l;
1200 			bp += 2;
1201 			len++;
1202 		}
1203 	} else {
1204 		/* text with \nnn octal quoting */
1205 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1206 			if (*bp == '\\' &&
1207 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1208 			    isodigit(bp[2]) &&
1209 			    isodigit(bp[3])) {
1210 				int byte = (*++bp -'0');
1211 				bp++;
1212 				byte = (byte << 3) | (*bp++ - '0');
1213 				byte = (byte << 3) | (*bp++ - '0');
1214 				*dest++ = byte;
1215 				len++;
1216 			} else {
1217 				*dest++ = *bp++;
1218 				len++;
1219 			}
1220 		}
1221 	}
1222 
1223 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1224 		return -1;
1225 	while (*bp == ' ') bp++;
1226 	*bpp = bp;
1227 	*dest = '\0';
1228 	return len;
1229 }
1230 EXPORT_SYMBOL_GPL(qword_get);
1231 
1232 
1233 /*
1234  * support /proc/sunrpc/cache/$CACHENAME/content
1235  * as a seqfile.
1236  * We call ->cache_show passing NULL for the item to
1237  * get a header, then pass each real item in the cache
1238  */
1239 
1240 struct handle {
1241 	struct cache_detail *cd;
1242 };
1243 
1244 static void *c_start(struct seq_file *m, loff_t *pos)
1245 	__acquires(cd->hash_lock)
1246 {
1247 	loff_t n = *pos;
1248 	unsigned hash, entry;
1249 	struct cache_head *ch;
1250 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1251 
1252 
1253 	read_lock(&cd->hash_lock);
1254 	if (!n--)
1255 		return SEQ_START_TOKEN;
1256 	hash = n >> 32;
1257 	entry = n & ((1LL<<32) - 1);
1258 
1259 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1260 		if (!entry--)
1261 			return ch;
1262 	n &= ~((1LL<<32) - 1);
1263 	do {
1264 		hash++;
1265 		n += 1LL<<32;
1266 	} while(hash < cd->hash_size &&
1267 		cd->hash_table[hash]==NULL);
1268 	if (hash >= cd->hash_size)
1269 		return NULL;
1270 	*pos = n+1;
1271 	return cd->hash_table[hash];
1272 }
1273 
1274 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1275 {
1276 	struct cache_head *ch = p;
1277 	int hash = (*pos >> 32);
1278 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1279 
1280 	if (p == SEQ_START_TOKEN)
1281 		hash = 0;
1282 	else if (ch->next == NULL) {
1283 		hash++;
1284 		*pos += 1LL<<32;
1285 	} else {
1286 		++*pos;
1287 		return ch->next;
1288 	}
1289 	*pos &= ~((1LL<<32) - 1);
1290 	while (hash < cd->hash_size &&
1291 	       cd->hash_table[hash] == NULL) {
1292 		hash++;
1293 		*pos += 1LL<<32;
1294 	}
1295 	if (hash >= cd->hash_size)
1296 		return NULL;
1297 	++*pos;
1298 	return cd->hash_table[hash];
1299 }
1300 
1301 static void c_stop(struct seq_file *m, void *p)
1302 	__releases(cd->hash_lock)
1303 {
1304 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1305 	read_unlock(&cd->hash_lock);
1306 }
1307 
1308 static int c_show(struct seq_file *m, void *p)
1309 {
1310 	struct cache_head *cp = p;
1311 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1312 
1313 	if (p == SEQ_START_TOKEN)
1314 		return cd->cache_show(m, cd, NULL);
1315 
1316 	ifdebug(CACHE)
1317 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1318 			   convert_to_wallclock(cp->expiry_time),
1319 			   atomic_read(&cp->ref.refcount), cp->flags);
1320 	cache_get(cp);
1321 	if (cache_check(cd, cp, NULL))
1322 		/* cache_check does a cache_put on failure */
1323 		seq_printf(m, "# ");
1324 	else
1325 		cache_put(cp, cd);
1326 
1327 	return cd->cache_show(m, cd, cp);
1328 }
1329 
1330 static const struct seq_operations cache_content_op = {
1331 	.start	= c_start,
1332 	.next	= c_next,
1333 	.stop	= c_stop,
1334 	.show	= c_show,
1335 };
1336 
1337 static int content_open(struct inode *inode, struct file *file,
1338 			struct cache_detail *cd)
1339 {
1340 	struct handle *han;
1341 
1342 	if (!cd || !try_module_get(cd->owner))
1343 		return -EACCES;
1344 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1345 	if (han == NULL) {
1346 		module_put(cd->owner);
1347 		return -ENOMEM;
1348 	}
1349 
1350 	han->cd = cd;
1351 	return 0;
1352 }
1353 
1354 static int content_release(struct inode *inode, struct file *file,
1355 		struct cache_detail *cd)
1356 {
1357 	int ret = seq_release_private(inode, file);
1358 	module_put(cd->owner);
1359 	return ret;
1360 }
1361 
1362 static int open_flush(struct inode *inode, struct file *file,
1363 			struct cache_detail *cd)
1364 {
1365 	if (!cd || !try_module_get(cd->owner))
1366 		return -EACCES;
1367 	return nonseekable_open(inode, file);
1368 }
1369 
1370 static int release_flush(struct inode *inode, struct file *file,
1371 			struct cache_detail *cd)
1372 {
1373 	module_put(cd->owner);
1374 	return 0;
1375 }
1376 
1377 static ssize_t read_flush(struct file *file, char __user *buf,
1378 			  size_t count, loff_t *ppos,
1379 			  struct cache_detail *cd)
1380 {
1381 	char tbuf[20];
1382 	unsigned long p = *ppos;
1383 	size_t len;
1384 
1385 	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1386 	len = strlen(tbuf);
1387 	if (p >= len)
1388 		return 0;
1389 	len -= p;
1390 	if (len > count)
1391 		len = count;
1392 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1393 		return -EFAULT;
1394 	*ppos += len;
1395 	return len;
1396 }
1397 
1398 static ssize_t write_flush(struct file *file, const char __user *buf,
1399 			   size_t count, loff_t *ppos,
1400 			   struct cache_detail *cd)
1401 {
1402 	char tbuf[20];
1403 	char *bp, *ep;
1404 
1405 	if (*ppos || count > sizeof(tbuf)-1)
1406 		return -EINVAL;
1407 	if (copy_from_user(tbuf, buf, count))
1408 		return -EFAULT;
1409 	tbuf[count] = 0;
1410 	simple_strtoul(tbuf, &ep, 0);
1411 	if (*ep && *ep != '\n')
1412 		return -EINVAL;
1413 
1414 	bp = tbuf;
1415 	cd->flush_time = get_expiry(&bp);
1416 	cd->nextcheck = seconds_since_boot();
1417 	cache_flush();
1418 
1419 	*ppos += count;
1420 	return count;
1421 }
1422 
1423 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1424 				 size_t count, loff_t *ppos)
1425 {
1426 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1427 
1428 	return cache_read(filp, buf, count, ppos, cd);
1429 }
1430 
1431 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1432 				  size_t count, loff_t *ppos)
1433 {
1434 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1435 
1436 	return cache_write(filp, buf, count, ppos, cd);
1437 }
1438 
1439 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1440 {
1441 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1442 
1443 	return cache_poll(filp, wait, cd);
1444 }
1445 
1446 static long cache_ioctl_procfs(struct file *filp,
1447 			       unsigned int cmd, unsigned long arg)
1448 {
1449 	struct inode *inode = filp->f_path.dentry->d_inode;
1450 	struct cache_detail *cd = PDE(inode)->data;
1451 
1452 	return cache_ioctl(inode, filp, cmd, arg, cd);
1453 }
1454 
1455 static int cache_open_procfs(struct inode *inode, struct file *filp)
1456 {
1457 	struct cache_detail *cd = PDE(inode)->data;
1458 
1459 	return cache_open(inode, filp, cd);
1460 }
1461 
1462 static int cache_release_procfs(struct inode *inode, struct file *filp)
1463 {
1464 	struct cache_detail *cd = PDE(inode)->data;
1465 
1466 	return cache_release(inode, filp, cd);
1467 }
1468 
1469 static const struct file_operations cache_file_operations_procfs = {
1470 	.owner		= THIS_MODULE,
1471 	.llseek		= no_llseek,
1472 	.read		= cache_read_procfs,
1473 	.write		= cache_write_procfs,
1474 	.poll		= cache_poll_procfs,
1475 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1476 	.open		= cache_open_procfs,
1477 	.release	= cache_release_procfs,
1478 };
1479 
1480 static int content_open_procfs(struct inode *inode, struct file *filp)
1481 {
1482 	struct cache_detail *cd = PDE(inode)->data;
1483 
1484 	return content_open(inode, filp, cd);
1485 }
1486 
1487 static int content_release_procfs(struct inode *inode, struct file *filp)
1488 {
1489 	struct cache_detail *cd = PDE(inode)->data;
1490 
1491 	return content_release(inode, filp, cd);
1492 }
1493 
1494 static const struct file_operations content_file_operations_procfs = {
1495 	.open		= content_open_procfs,
1496 	.read		= seq_read,
1497 	.llseek		= seq_lseek,
1498 	.release	= content_release_procfs,
1499 };
1500 
1501 static int open_flush_procfs(struct inode *inode, struct file *filp)
1502 {
1503 	struct cache_detail *cd = PDE(inode)->data;
1504 
1505 	return open_flush(inode, filp, cd);
1506 }
1507 
1508 static int release_flush_procfs(struct inode *inode, struct file *filp)
1509 {
1510 	struct cache_detail *cd = PDE(inode)->data;
1511 
1512 	return release_flush(inode, filp, cd);
1513 }
1514 
1515 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1516 			    size_t count, loff_t *ppos)
1517 {
1518 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1519 
1520 	return read_flush(filp, buf, count, ppos, cd);
1521 }
1522 
1523 static ssize_t write_flush_procfs(struct file *filp,
1524 				  const char __user *buf,
1525 				  size_t count, loff_t *ppos)
1526 {
1527 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1528 
1529 	return write_flush(filp, buf, count, ppos, cd);
1530 }
1531 
1532 static const struct file_operations cache_flush_operations_procfs = {
1533 	.open		= open_flush_procfs,
1534 	.read		= read_flush_procfs,
1535 	.write		= write_flush_procfs,
1536 	.release	= release_flush_procfs,
1537 	.llseek		= no_llseek,
1538 };
1539 
1540 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1541 {
1542 	struct sunrpc_net *sn;
1543 
1544 	if (cd->u.procfs.proc_ent == NULL)
1545 		return;
1546 	if (cd->u.procfs.flush_ent)
1547 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1548 	if (cd->u.procfs.channel_ent)
1549 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1550 	if (cd->u.procfs.content_ent)
1551 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1552 	cd->u.procfs.proc_ent = NULL;
1553 	sn = net_generic(net, sunrpc_net_id);
1554 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1555 }
1556 
1557 #ifdef CONFIG_PROC_FS
1558 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1559 {
1560 	struct proc_dir_entry *p;
1561 	struct sunrpc_net *sn;
1562 
1563 	sn = net_generic(net, sunrpc_net_id);
1564 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1565 	if (cd->u.procfs.proc_ent == NULL)
1566 		goto out_nomem;
1567 	cd->u.procfs.channel_ent = NULL;
1568 	cd->u.procfs.content_ent = NULL;
1569 
1570 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1571 			     cd->u.procfs.proc_ent,
1572 			     &cache_flush_operations_procfs, cd);
1573 	cd->u.procfs.flush_ent = p;
1574 	if (p == NULL)
1575 		goto out_nomem;
1576 
1577 	if (cd->cache_upcall || cd->cache_parse) {
1578 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1579 				     cd->u.procfs.proc_ent,
1580 				     &cache_file_operations_procfs, cd);
1581 		cd->u.procfs.channel_ent = p;
1582 		if (p == NULL)
1583 			goto out_nomem;
1584 	}
1585 	if (cd->cache_show) {
1586 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1587 				cd->u.procfs.proc_ent,
1588 				&content_file_operations_procfs, cd);
1589 		cd->u.procfs.content_ent = p;
1590 		if (p == NULL)
1591 			goto out_nomem;
1592 	}
1593 	return 0;
1594 out_nomem:
1595 	remove_cache_proc_entries(cd, net);
1596 	return -ENOMEM;
1597 }
1598 #else /* CONFIG_PROC_FS */
1599 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1600 {
1601 	return 0;
1602 }
1603 #endif
1604 
1605 void __init cache_initialize(void)
1606 {
1607 	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1608 }
1609 
1610 int cache_register_net(struct cache_detail *cd, struct net *net)
1611 {
1612 	int ret;
1613 
1614 	sunrpc_init_cache_detail(cd);
1615 	ret = create_cache_proc_entries(cd, net);
1616 	if (ret)
1617 		sunrpc_destroy_cache_detail(cd);
1618 	return ret;
1619 }
1620 
1621 int cache_register(struct cache_detail *cd)
1622 {
1623 	return cache_register_net(cd, &init_net);
1624 }
1625 EXPORT_SYMBOL_GPL(cache_register);
1626 
1627 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1628 {
1629 	remove_cache_proc_entries(cd, net);
1630 	sunrpc_destroy_cache_detail(cd);
1631 }
1632 
1633 void cache_unregister(struct cache_detail *cd)
1634 {
1635 	cache_unregister_net(cd, &init_net);
1636 }
1637 EXPORT_SYMBOL_GPL(cache_unregister);
1638 
1639 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1640 				 size_t count, loff_t *ppos)
1641 {
1642 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1643 
1644 	return cache_read(filp, buf, count, ppos, cd);
1645 }
1646 
1647 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1648 				  size_t count, loff_t *ppos)
1649 {
1650 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1651 
1652 	return cache_write(filp, buf, count, ppos, cd);
1653 }
1654 
1655 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1656 {
1657 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1658 
1659 	return cache_poll(filp, wait, cd);
1660 }
1661 
1662 static long cache_ioctl_pipefs(struct file *filp,
1663 			      unsigned int cmd, unsigned long arg)
1664 {
1665 	struct inode *inode = filp->f_dentry->d_inode;
1666 	struct cache_detail *cd = RPC_I(inode)->private;
1667 
1668 	return cache_ioctl(inode, filp, cmd, arg, cd);
1669 }
1670 
1671 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1672 {
1673 	struct cache_detail *cd = RPC_I(inode)->private;
1674 
1675 	return cache_open(inode, filp, cd);
1676 }
1677 
1678 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1679 {
1680 	struct cache_detail *cd = RPC_I(inode)->private;
1681 
1682 	return cache_release(inode, filp, cd);
1683 }
1684 
1685 const struct file_operations cache_file_operations_pipefs = {
1686 	.owner		= THIS_MODULE,
1687 	.llseek		= no_llseek,
1688 	.read		= cache_read_pipefs,
1689 	.write		= cache_write_pipefs,
1690 	.poll		= cache_poll_pipefs,
1691 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1692 	.open		= cache_open_pipefs,
1693 	.release	= cache_release_pipefs,
1694 };
1695 
1696 static int content_open_pipefs(struct inode *inode, struct file *filp)
1697 {
1698 	struct cache_detail *cd = RPC_I(inode)->private;
1699 
1700 	return content_open(inode, filp, cd);
1701 }
1702 
1703 static int content_release_pipefs(struct inode *inode, struct file *filp)
1704 {
1705 	struct cache_detail *cd = RPC_I(inode)->private;
1706 
1707 	return content_release(inode, filp, cd);
1708 }
1709 
1710 const struct file_operations content_file_operations_pipefs = {
1711 	.open		= content_open_pipefs,
1712 	.read		= seq_read,
1713 	.llseek		= seq_lseek,
1714 	.release	= content_release_pipefs,
1715 };
1716 
1717 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1718 {
1719 	struct cache_detail *cd = RPC_I(inode)->private;
1720 
1721 	return open_flush(inode, filp, cd);
1722 }
1723 
1724 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1725 {
1726 	struct cache_detail *cd = RPC_I(inode)->private;
1727 
1728 	return release_flush(inode, filp, cd);
1729 }
1730 
1731 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1732 			    size_t count, loff_t *ppos)
1733 {
1734 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1735 
1736 	return read_flush(filp, buf, count, ppos, cd);
1737 }
1738 
1739 static ssize_t write_flush_pipefs(struct file *filp,
1740 				  const char __user *buf,
1741 				  size_t count, loff_t *ppos)
1742 {
1743 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1744 
1745 	return write_flush(filp, buf, count, ppos, cd);
1746 }
1747 
1748 const struct file_operations cache_flush_operations_pipefs = {
1749 	.open		= open_flush_pipefs,
1750 	.read		= read_flush_pipefs,
1751 	.write		= write_flush_pipefs,
1752 	.release	= release_flush_pipefs,
1753 	.llseek		= no_llseek,
1754 };
1755 
1756 int sunrpc_cache_register_pipefs(struct dentry *parent,
1757 				 const char *name, mode_t umode,
1758 				 struct cache_detail *cd)
1759 {
1760 	struct qstr q;
1761 	struct dentry *dir;
1762 	int ret = 0;
1763 
1764 	sunrpc_init_cache_detail(cd);
1765 	q.name = name;
1766 	q.len = strlen(name);
1767 	q.hash = full_name_hash(q.name, q.len);
1768 	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1769 	if (!IS_ERR(dir))
1770 		cd->u.pipefs.dir = dir;
1771 	else {
1772 		sunrpc_destroy_cache_detail(cd);
1773 		ret = PTR_ERR(dir);
1774 	}
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1778 
1779 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1780 {
1781 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1782 	cd->u.pipefs.dir = NULL;
1783 	sunrpc_destroy_cache_detail(cd);
1784 }
1785 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1786 
1787