xref: /openbmc/linux/net/sunrpc/cache.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include "netns.h"
36 
37 #define	 RPCDBG_FACILITY RPCDBG_CACHE
38 
39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 static bool cache_listeners_exist(struct cache_detail *detail);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static inline int cache_is_valid(struct cache_head *h);
57 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
58 				struct cache_detail *detail);
59 static void cache_fresh_unlocked(struct cache_head *head,
60 				struct cache_detail *detail);
61 
62 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
63 						struct cache_head *key,
64 						int hash)
65 {
66 	struct hlist_head *head = &detail->hash_table[hash];
67 	struct cache_head *tmp;
68 
69 	rcu_read_lock();
70 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
71 		if (detail->match(tmp, key)) {
72 			if (cache_is_expired(detail, tmp))
73 				continue;
74 			tmp = cache_get_rcu(tmp);
75 			rcu_read_unlock();
76 			return tmp;
77 		}
78 	}
79 	rcu_read_unlock();
80 	return NULL;
81 }
82 
83 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
84 						 struct cache_head *key,
85 						 int hash)
86 {
87 	struct cache_head *new, *tmp, *freeme = NULL;
88 	struct hlist_head *head = &detail->hash_table[hash];
89 
90 	new = detail->alloc();
91 	if (!new)
92 		return NULL;
93 	/* must fully initialise 'new', else
94 	 * we might get lose if we need to
95 	 * cache_put it soon.
96 	 */
97 	cache_init(new, detail);
98 	detail->init(new, key);
99 
100 	spin_lock(&detail->hash_lock);
101 
102 	/* check if entry appeared while we slept */
103 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
104 		if (detail->match(tmp, key)) {
105 			if (cache_is_expired(detail, tmp)) {
106 				hlist_del_init_rcu(&tmp->cache_list);
107 				detail->entries --;
108 				if (cache_is_valid(tmp) == -EAGAIN)
109 					set_bit(CACHE_NEGATIVE, &tmp->flags);
110 				cache_fresh_locked(tmp, 0, detail);
111 				freeme = tmp;
112 				break;
113 			}
114 			cache_get(tmp);
115 			spin_unlock(&detail->hash_lock);
116 			cache_put(new, detail);
117 			return tmp;
118 		}
119 	}
120 
121 	hlist_add_head_rcu(&new->cache_list, head);
122 	detail->entries++;
123 	cache_get(new);
124 	spin_unlock(&detail->hash_lock);
125 
126 	if (freeme) {
127 		cache_fresh_unlocked(freeme, detail);
128 		cache_put(freeme, detail);
129 	}
130 	return new;
131 }
132 
133 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
134 					   struct cache_head *key, int hash)
135 {
136 	struct cache_head *ret;
137 
138 	ret = sunrpc_cache_find_rcu(detail, key, hash);
139 	if (ret)
140 		return ret;
141 	/* Didn't find anything, insert an empty entry */
142 	return sunrpc_cache_add_entry(detail, key, hash);
143 }
144 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
145 
146 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
147 
148 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
149 			       struct cache_detail *detail)
150 {
151 	time_t now = seconds_since_boot();
152 	if (now <= detail->flush_time)
153 		/* ensure it isn't immediately treated as expired */
154 		now = detail->flush_time + 1;
155 	head->expiry_time = expiry;
156 	head->last_refresh = now;
157 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
158 	set_bit(CACHE_VALID, &head->flags);
159 }
160 
161 static void cache_fresh_unlocked(struct cache_head *head,
162 				 struct cache_detail *detail)
163 {
164 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
165 		cache_revisit_request(head);
166 		cache_dequeue(detail, head);
167 	}
168 }
169 
170 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
171 				       struct cache_head *new, struct cache_head *old, int hash)
172 {
173 	/* The 'old' entry is to be replaced by 'new'.
174 	 * If 'old' is not VALID, we update it directly,
175 	 * otherwise we need to replace it
176 	 */
177 	struct cache_head *tmp;
178 
179 	if (!test_bit(CACHE_VALID, &old->flags)) {
180 		spin_lock(&detail->hash_lock);
181 		if (!test_bit(CACHE_VALID, &old->flags)) {
182 			if (test_bit(CACHE_NEGATIVE, &new->flags))
183 				set_bit(CACHE_NEGATIVE, &old->flags);
184 			else
185 				detail->update(old, new);
186 			cache_fresh_locked(old, new->expiry_time, detail);
187 			spin_unlock(&detail->hash_lock);
188 			cache_fresh_unlocked(old, detail);
189 			return old;
190 		}
191 		spin_unlock(&detail->hash_lock);
192 	}
193 	/* We need to insert a new entry */
194 	tmp = detail->alloc();
195 	if (!tmp) {
196 		cache_put(old, detail);
197 		return NULL;
198 	}
199 	cache_init(tmp, detail);
200 	detail->init(tmp, old);
201 
202 	spin_lock(&detail->hash_lock);
203 	if (test_bit(CACHE_NEGATIVE, &new->flags))
204 		set_bit(CACHE_NEGATIVE, &tmp->flags);
205 	else
206 		detail->update(tmp, new);
207 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
208 	detail->entries++;
209 	cache_get(tmp);
210 	cache_fresh_locked(tmp, new->expiry_time, detail);
211 	cache_fresh_locked(old, 0, detail);
212 	spin_unlock(&detail->hash_lock);
213 	cache_fresh_unlocked(tmp, detail);
214 	cache_fresh_unlocked(old, detail);
215 	cache_put(old, detail);
216 	return tmp;
217 }
218 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
219 
220 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
221 {
222 	if (cd->cache_upcall)
223 		return cd->cache_upcall(cd, h);
224 	return sunrpc_cache_pipe_upcall(cd, h);
225 }
226 
227 static inline int cache_is_valid(struct cache_head *h)
228 {
229 	if (!test_bit(CACHE_VALID, &h->flags))
230 		return -EAGAIN;
231 	else {
232 		/* entry is valid */
233 		if (test_bit(CACHE_NEGATIVE, &h->flags))
234 			return -ENOENT;
235 		else {
236 			/*
237 			 * In combination with write barrier in
238 			 * sunrpc_cache_update, ensures that anyone
239 			 * using the cache entry after this sees the
240 			 * updated contents:
241 			 */
242 			smp_rmb();
243 			return 0;
244 		}
245 	}
246 }
247 
248 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
249 {
250 	int rv;
251 
252 	spin_lock(&detail->hash_lock);
253 	rv = cache_is_valid(h);
254 	if (rv == -EAGAIN) {
255 		set_bit(CACHE_NEGATIVE, &h->flags);
256 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
257 				   detail);
258 		rv = -ENOENT;
259 	}
260 	spin_unlock(&detail->hash_lock);
261 	cache_fresh_unlocked(h, detail);
262 	return rv;
263 }
264 
265 /*
266  * This is the generic cache management routine for all
267  * the authentication caches.
268  * It checks the currency of a cache item and will (later)
269  * initiate an upcall to fill it if needed.
270  *
271  *
272  * Returns 0 if the cache_head can be used, or cache_puts it and returns
273  * -EAGAIN if upcall is pending and request has been queued
274  * -ETIMEDOUT if upcall failed or request could not be queue or
275  *           upcall completed but item is still invalid (implying that
276  *           the cache item has been replaced with a newer one).
277  * -ENOENT if cache entry was negative
278  */
279 int cache_check(struct cache_detail *detail,
280 		    struct cache_head *h, struct cache_req *rqstp)
281 {
282 	int rv;
283 	long refresh_age, age;
284 
285 	/* First decide return status as best we can */
286 	rv = cache_is_valid(h);
287 
288 	/* now see if we want to start an upcall */
289 	refresh_age = (h->expiry_time - h->last_refresh);
290 	age = seconds_since_boot() - h->last_refresh;
291 
292 	if (rqstp == NULL) {
293 		if (rv == -EAGAIN)
294 			rv = -ENOENT;
295 	} else if (rv == -EAGAIN ||
296 		   (h->expiry_time != 0 && age > refresh_age/2)) {
297 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
298 				refresh_age, age);
299 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
300 			switch (cache_make_upcall(detail, h)) {
301 			case -EINVAL:
302 				rv = try_to_negate_entry(detail, h);
303 				break;
304 			case -EAGAIN:
305 				cache_fresh_unlocked(h, detail);
306 				break;
307 			}
308 		} else if (!cache_listeners_exist(detail))
309 			rv = try_to_negate_entry(detail, h);
310 	}
311 
312 	if (rv == -EAGAIN) {
313 		if (!cache_defer_req(rqstp, h)) {
314 			/*
315 			 * Request was not deferred; handle it as best
316 			 * we can ourselves:
317 			 */
318 			rv = cache_is_valid(h);
319 			if (rv == -EAGAIN)
320 				rv = -ETIMEDOUT;
321 		}
322 	}
323 	if (rv)
324 		cache_put(h, detail);
325 	return rv;
326 }
327 EXPORT_SYMBOL_GPL(cache_check);
328 
329 /*
330  * caches need to be periodically cleaned.
331  * For this we maintain a list of cache_detail and
332  * a current pointer into that list and into the table
333  * for that entry.
334  *
335  * Each time cache_clean is called it finds the next non-empty entry
336  * in the current table and walks the list in that entry
337  * looking for entries that can be removed.
338  *
339  * An entry gets removed if:
340  * - The expiry is before current time
341  * - The last_refresh time is before the flush_time for that cache
342  *
343  * later we might drop old entries with non-NEVER expiry if that table
344  * is getting 'full' for some definition of 'full'
345  *
346  * The question of "how often to scan a table" is an interesting one
347  * and is answered in part by the use of the "nextcheck" field in the
348  * cache_detail.
349  * When a scan of a table begins, the nextcheck field is set to a time
350  * that is well into the future.
351  * While scanning, if an expiry time is found that is earlier than the
352  * current nextcheck time, nextcheck is set to that expiry time.
353  * If the flush_time is ever set to a time earlier than the nextcheck
354  * time, the nextcheck time is then set to that flush_time.
355  *
356  * A table is then only scanned if the current time is at least
357  * the nextcheck time.
358  *
359  */
360 
361 static LIST_HEAD(cache_list);
362 static DEFINE_SPINLOCK(cache_list_lock);
363 static struct cache_detail *current_detail;
364 static int current_index;
365 
366 static void do_cache_clean(struct work_struct *work);
367 static struct delayed_work cache_cleaner;
368 
369 void sunrpc_init_cache_detail(struct cache_detail *cd)
370 {
371 	spin_lock_init(&cd->hash_lock);
372 	INIT_LIST_HEAD(&cd->queue);
373 	spin_lock(&cache_list_lock);
374 	cd->nextcheck = 0;
375 	cd->entries = 0;
376 	atomic_set(&cd->writers, 0);
377 	cd->last_close = 0;
378 	cd->last_warn = -1;
379 	list_add(&cd->others, &cache_list);
380 	spin_unlock(&cache_list_lock);
381 
382 	/* start the cleaning process */
383 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
384 }
385 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
386 
387 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
388 {
389 	cache_purge(cd);
390 	spin_lock(&cache_list_lock);
391 	spin_lock(&cd->hash_lock);
392 	if (current_detail == cd)
393 		current_detail = NULL;
394 	list_del_init(&cd->others);
395 	spin_unlock(&cd->hash_lock);
396 	spin_unlock(&cache_list_lock);
397 	if (list_empty(&cache_list)) {
398 		/* module must be being unloaded so its safe to kill the worker */
399 		cancel_delayed_work_sync(&cache_cleaner);
400 	}
401 }
402 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
403 
404 /* clean cache tries to find something to clean
405  * and cleans it.
406  * It returns 1 if it cleaned something,
407  *            0 if it didn't find anything this time
408  *           -1 if it fell off the end of the list.
409  */
410 static int cache_clean(void)
411 {
412 	int rv = 0;
413 	struct list_head *next;
414 
415 	spin_lock(&cache_list_lock);
416 
417 	/* find a suitable table if we don't already have one */
418 	while (current_detail == NULL ||
419 	    current_index >= current_detail->hash_size) {
420 		if (current_detail)
421 			next = current_detail->others.next;
422 		else
423 			next = cache_list.next;
424 		if (next == &cache_list) {
425 			current_detail = NULL;
426 			spin_unlock(&cache_list_lock);
427 			return -1;
428 		}
429 		current_detail = list_entry(next, struct cache_detail, others);
430 		if (current_detail->nextcheck > seconds_since_boot())
431 			current_index = current_detail->hash_size;
432 		else {
433 			current_index = 0;
434 			current_detail->nextcheck = seconds_since_boot()+30*60;
435 		}
436 	}
437 
438 	/* find a non-empty bucket in the table */
439 	while (current_detail &&
440 	       current_index < current_detail->hash_size &&
441 	       hlist_empty(&current_detail->hash_table[current_index]))
442 		current_index++;
443 
444 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
445 
446 	if (current_detail && current_index < current_detail->hash_size) {
447 		struct cache_head *ch = NULL;
448 		struct cache_detail *d;
449 		struct hlist_head *head;
450 		struct hlist_node *tmp;
451 
452 		spin_lock(&current_detail->hash_lock);
453 
454 		/* Ok, now to clean this strand */
455 
456 		head = &current_detail->hash_table[current_index];
457 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
458 			if (current_detail->nextcheck > ch->expiry_time)
459 				current_detail->nextcheck = ch->expiry_time+1;
460 			if (!cache_is_expired(current_detail, ch))
461 				continue;
462 
463 			hlist_del_init_rcu(&ch->cache_list);
464 			current_detail->entries--;
465 			rv = 1;
466 			break;
467 		}
468 
469 		spin_unlock(&current_detail->hash_lock);
470 		d = current_detail;
471 		if (!ch)
472 			current_index ++;
473 		spin_unlock(&cache_list_lock);
474 		if (ch) {
475 			set_bit(CACHE_CLEANED, &ch->flags);
476 			cache_fresh_unlocked(ch, d);
477 			cache_put(ch, d);
478 		}
479 	} else
480 		spin_unlock(&cache_list_lock);
481 
482 	return rv;
483 }
484 
485 /*
486  * We want to regularly clean the cache, so we need to schedule some work ...
487  */
488 static void do_cache_clean(struct work_struct *work)
489 {
490 	int delay = 5;
491 	if (cache_clean() == -1)
492 		delay = round_jiffies_relative(30*HZ);
493 
494 	if (list_empty(&cache_list))
495 		delay = 0;
496 
497 	if (delay)
498 		queue_delayed_work(system_power_efficient_wq,
499 				   &cache_cleaner, delay);
500 }
501 
502 
503 /*
504  * Clean all caches promptly.  This just calls cache_clean
505  * repeatedly until we are sure that every cache has had a chance to
506  * be fully cleaned
507  */
508 void cache_flush(void)
509 {
510 	while (cache_clean() != -1)
511 		cond_resched();
512 	while (cache_clean() != -1)
513 		cond_resched();
514 }
515 EXPORT_SYMBOL_GPL(cache_flush);
516 
517 void cache_purge(struct cache_detail *detail)
518 {
519 	struct cache_head *ch = NULL;
520 	struct hlist_head *head = NULL;
521 	struct hlist_node *tmp = NULL;
522 	int i = 0;
523 
524 	spin_lock(&detail->hash_lock);
525 	if (!detail->entries) {
526 		spin_unlock(&detail->hash_lock);
527 		return;
528 	}
529 
530 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
531 	for (i = 0; i < detail->hash_size; i++) {
532 		head = &detail->hash_table[i];
533 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
534 			hlist_del_init_rcu(&ch->cache_list);
535 			detail->entries--;
536 
537 			set_bit(CACHE_CLEANED, &ch->flags);
538 			spin_unlock(&detail->hash_lock);
539 			cache_fresh_unlocked(ch, detail);
540 			cache_put(ch, detail);
541 			spin_lock(&detail->hash_lock);
542 		}
543 	}
544 	spin_unlock(&detail->hash_lock);
545 }
546 EXPORT_SYMBOL_GPL(cache_purge);
547 
548 
549 /*
550  * Deferral and Revisiting of Requests.
551  *
552  * If a cache lookup finds a pending entry, we
553  * need to defer the request and revisit it later.
554  * All deferred requests are stored in a hash table,
555  * indexed by "struct cache_head *".
556  * As it may be wasteful to store a whole request
557  * structure, we allow the request to provide a
558  * deferred form, which must contain a
559  * 'struct cache_deferred_req'
560  * This cache_deferred_req contains a method to allow
561  * it to be revisited when cache info is available
562  */
563 
564 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
565 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
566 
567 #define	DFR_MAX	300	/* ??? */
568 
569 static DEFINE_SPINLOCK(cache_defer_lock);
570 static LIST_HEAD(cache_defer_list);
571 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
572 static int cache_defer_cnt;
573 
574 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
575 {
576 	hlist_del_init(&dreq->hash);
577 	if (!list_empty(&dreq->recent)) {
578 		list_del_init(&dreq->recent);
579 		cache_defer_cnt--;
580 	}
581 }
582 
583 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
584 {
585 	int hash = DFR_HASH(item);
586 
587 	INIT_LIST_HEAD(&dreq->recent);
588 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
589 }
590 
591 static void setup_deferral(struct cache_deferred_req *dreq,
592 			   struct cache_head *item,
593 			   int count_me)
594 {
595 
596 	dreq->item = item;
597 
598 	spin_lock(&cache_defer_lock);
599 
600 	__hash_deferred_req(dreq, item);
601 
602 	if (count_me) {
603 		cache_defer_cnt++;
604 		list_add(&dreq->recent, &cache_defer_list);
605 	}
606 
607 	spin_unlock(&cache_defer_lock);
608 
609 }
610 
611 struct thread_deferred_req {
612 	struct cache_deferred_req handle;
613 	struct completion completion;
614 };
615 
616 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
617 {
618 	struct thread_deferred_req *dr =
619 		container_of(dreq, struct thread_deferred_req, handle);
620 	complete(&dr->completion);
621 }
622 
623 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
624 {
625 	struct thread_deferred_req sleeper;
626 	struct cache_deferred_req *dreq = &sleeper.handle;
627 
628 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
629 	dreq->revisit = cache_restart_thread;
630 
631 	setup_deferral(dreq, item, 0);
632 
633 	if (!test_bit(CACHE_PENDING, &item->flags) ||
634 	    wait_for_completion_interruptible_timeout(
635 		    &sleeper.completion, req->thread_wait) <= 0) {
636 		/* The completion wasn't completed, so we need
637 		 * to clean up
638 		 */
639 		spin_lock(&cache_defer_lock);
640 		if (!hlist_unhashed(&sleeper.handle.hash)) {
641 			__unhash_deferred_req(&sleeper.handle);
642 			spin_unlock(&cache_defer_lock);
643 		} else {
644 			/* cache_revisit_request already removed
645 			 * this from the hash table, but hasn't
646 			 * called ->revisit yet.  It will very soon
647 			 * and we need to wait for it.
648 			 */
649 			spin_unlock(&cache_defer_lock);
650 			wait_for_completion(&sleeper.completion);
651 		}
652 	}
653 }
654 
655 static void cache_limit_defers(void)
656 {
657 	/* Make sure we haven't exceed the limit of allowed deferred
658 	 * requests.
659 	 */
660 	struct cache_deferred_req *discard = NULL;
661 
662 	if (cache_defer_cnt <= DFR_MAX)
663 		return;
664 
665 	spin_lock(&cache_defer_lock);
666 
667 	/* Consider removing either the first or the last */
668 	if (cache_defer_cnt > DFR_MAX) {
669 		if (prandom_u32() & 1)
670 			discard = list_entry(cache_defer_list.next,
671 					     struct cache_deferred_req, recent);
672 		else
673 			discard = list_entry(cache_defer_list.prev,
674 					     struct cache_deferred_req, recent);
675 		__unhash_deferred_req(discard);
676 	}
677 	spin_unlock(&cache_defer_lock);
678 	if (discard)
679 		discard->revisit(discard, 1);
680 }
681 
682 /* Return true if and only if a deferred request is queued. */
683 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
684 {
685 	struct cache_deferred_req *dreq;
686 
687 	if (req->thread_wait) {
688 		cache_wait_req(req, item);
689 		if (!test_bit(CACHE_PENDING, &item->flags))
690 			return false;
691 	}
692 	dreq = req->defer(req);
693 	if (dreq == NULL)
694 		return false;
695 	setup_deferral(dreq, item, 1);
696 	if (!test_bit(CACHE_PENDING, &item->flags))
697 		/* Bit could have been cleared before we managed to
698 		 * set up the deferral, so need to revisit just in case
699 		 */
700 		cache_revisit_request(item);
701 
702 	cache_limit_defers();
703 	return true;
704 }
705 
706 static void cache_revisit_request(struct cache_head *item)
707 {
708 	struct cache_deferred_req *dreq;
709 	struct list_head pending;
710 	struct hlist_node *tmp;
711 	int hash = DFR_HASH(item);
712 
713 	INIT_LIST_HEAD(&pending);
714 	spin_lock(&cache_defer_lock);
715 
716 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
717 		if (dreq->item == item) {
718 			__unhash_deferred_req(dreq);
719 			list_add(&dreq->recent, &pending);
720 		}
721 
722 	spin_unlock(&cache_defer_lock);
723 
724 	while (!list_empty(&pending)) {
725 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
726 		list_del_init(&dreq->recent);
727 		dreq->revisit(dreq, 0);
728 	}
729 }
730 
731 void cache_clean_deferred(void *owner)
732 {
733 	struct cache_deferred_req *dreq, *tmp;
734 	struct list_head pending;
735 
736 
737 	INIT_LIST_HEAD(&pending);
738 	spin_lock(&cache_defer_lock);
739 
740 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
741 		if (dreq->owner == owner) {
742 			__unhash_deferred_req(dreq);
743 			list_add(&dreq->recent, &pending);
744 		}
745 	}
746 	spin_unlock(&cache_defer_lock);
747 
748 	while (!list_empty(&pending)) {
749 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
750 		list_del_init(&dreq->recent);
751 		dreq->revisit(dreq, 1);
752 	}
753 }
754 
755 /*
756  * communicate with user-space
757  *
758  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
759  * On read, you get a full request, or block.
760  * On write, an update request is processed.
761  * Poll works if anything to read, and always allows write.
762  *
763  * Implemented by linked list of requests.  Each open file has
764  * a ->private that also exists in this list.  New requests are added
765  * to the end and may wakeup and preceding readers.
766  * New readers are added to the head.  If, on read, an item is found with
767  * CACHE_UPCALLING clear, we free it from the list.
768  *
769  */
770 
771 static DEFINE_SPINLOCK(queue_lock);
772 static DEFINE_MUTEX(queue_io_mutex);
773 
774 struct cache_queue {
775 	struct list_head	list;
776 	int			reader;	/* if 0, then request */
777 };
778 struct cache_request {
779 	struct cache_queue	q;
780 	struct cache_head	*item;
781 	char			* buf;
782 	int			len;
783 	int			readers;
784 };
785 struct cache_reader {
786 	struct cache_queue	q;
787 	int			offset;	/* if non-0, we have a refcnt on next request */
788 };
789 
790 static int cache_request(struct cache_detail *detail,
791 			       struct cache_request *crq)
792 {
793 	char *bp = crq->buf;
794 	int len = PAGE_SIZE;
795 
796 	detail->cache_request(detail, crq->item, &bp, &len);
797 	if (len < 0)
798 		return -EAGAIN;
799 	return PAGE_SIZE - len;
800 }
801 
802 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
803 			  loff_t *ppos, struct cache_detail *cd)
804 {
805 	struct cache_reader *rp = filp->private_data;
806 	struct cache_request *rq;
807 	struct inode *inode = file_inode(filp);
808 	int err;
809 
810 	if (count == 0)
811 		return 0;
812 
813 	inode_lock(inode); /* protect against multiple concurrent
814 			      * readers on this file */
815  again:
816 	spin_lock(&queue_lock);
817 	/* need to find next request */
818 	while (rp->q.list.next != &cd->queue &&
819 	       list_entry(rp->q.list.next, struct cache_queue, list)
820 	       ->reader) {
821 		struct list_head *next = rp->q.list.next;
822 		list_move(&rp->q.list, next);
823 	}
824 	if (rp->q.list.next == &cd->queue) {
825 		spin_unlock(&queue_lock);
826 		inode_unlock(inode);
827 		WARN_ON_ONCE(rp->offset);
828 		return 0;
829 	}
830 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
831 	WARN_ON_ONCE(rq->q.reader);
832 	if (rp->offset == 0)
833 		rq->readers++;
834 	spin_unlock(&queue_lock);
835 
836 	if (rq->len == 0) {
837 		err = cache_request(cd, rq);
838 		if (err < 0)
839 			goto out;
840 		rq->len = err;
841 	}
842 
843 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
844 		err = -EAGAIN;
845 		spin_lock(&queue_lock);
846 		list_move(&rp->q.list, &rq->q.list);
847 		spin_unlock(&queue_lock);
848 	} else {
849 		if (rp->offset + count > rq->len)
850 			count = rq->len - rp->offset;
851 		err = -EFAULT;
852 		if (copy_to_user(buf, rq->buf + rp->offset, count))
853 			goto out;
854 		rp->offset += count;
855 		if (rp->offset >= rq->len) {
856 			rp->offset = 0;
857 			spin_lock(&queue_lock);
858 			list_move(&rp->q.list, &rq->q.list);
859 			spin_unlock(&queue_lock);
860 		}
861 		err = 0;
862 	}
863  out:
864 	if (rp->offset == 0) {
865 		/* need to release rq */
866 		spin_lock(&queue_lock);
867 		rq->readers--;
868 		if (rq->readers == 0 &&
869 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
870 			list_del(&rq->q.list);
871 			spin_unlock(&queue_lock);
872 			cache_put(rq->item, cd);
873 			kfree(rq->buf);
874 			kfree(rq);
875 		} else
876 			spin_unlock(&queue_lock);
877 	}
878 	if (err == -EAGAIN)
879 		goto again;
880 	inode_unlock(inode);
881 	return err ? err :  count;
882 }
883 
884 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
885 				 size_t count, struct cache_detail *cd)
886 {
887 	ssize_t ret;
888 
889 	if (count == 0)
890 		return -EINVAL;
891 	if (copy_from_user(kaddr, buf, count))
892 		return -EFAULT;
893 	kaddr[count] = '\0';
894 	ret = cd->cache_parse(cd, kaddr, count);
895 	if (!ret)
896 		ret = count;
897 	return ret;
898 }
899 
900 static ssize_t cache_slow_downcall(const char __user *buf,
901 				   size_t count, struct cache_detail *cd)
902 {
903 	static char write_buf[8192]; /* protected by queue_io_mutex */
904 	ssize_t ret = -EINVAL;
905 
906 	if (count >= sizeof(write_buf))
907 		goto out;
908 	mutex_lock(&queue_io_mutex);
909 	ret = cache_do_downcall(write_buf, buf, count, cd);
910 	mutex_unlock(&queue_io_mutex);
911 out:
912 	return ret;
913 }
914 
915 static ssize_t cache_downcall(struct address_space *mapping,
916 			      const char __user *buf,
917 			      size_t count, struct cache_detail *cd)
918 {
919 	struct page *page;
920 	char *kaddr;
921 	ssize_t ret = -ENOMEM;
922 
923 	if (count >= PAGE_SIZE)
924 		goto out_slow;
925 
926 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
927 	if (!page)
928 		goto out_slow;
929 
930 	kaddr = kmap(page);
931 	ret = cache_do_downcall(kaddr, buf, count, cd);
932 	kunmap(page);
933 	unlock_page(page);
934 	put_page(page);
935 	return ret;
936 out_slow:
937 	return cache_slow_downcall(buf, count, cd);
938 }
939 
940 static ssize_t cache_write(struct file *filp, const char __user *buf,
941 			   size_t count, loff_t *ppos,
942 			   struct cache_detail *cd)
943 {
944 	struct address_space *mapping = filp->f_mapping;
945 	struct inode *inode = file_inode(filp);
946 	ssize_t ret = -EINVAL;
947 
948 	if (!cd->cache_parse)
949 		goto out;
950 
951 	inode_lock(inode);
952 	ret = cache_downcall(mapping, buf, count, cd);
953 	inode_unlock(inode);
954 out:
955 	return ret;
956 }
957 
958 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
959 
960 static __poll_t cache_poll(struct file *filp, poll_table *wait,
961 			       struct cache_detail *cd)
962 {
963 	__poll_t mask;
964 	struct cache_reader *rp = filp->private_data;
965 	struct cache_queue *cq;
966 
967 	poll_wait(filp, &queue_wait, wait);
968 
969 	/* alway allow write */
970 	mask = EPOLLOUT | EPOLLWRNORM;
971 
972 	if (!rp)
973 		return mask;
974 
975 	spin_lock(&queue_lock);
976 
977 	for (cq= &rp->q; &cq->list != &cd->queue;
978 	     cq = list_entry(cq->list.next, struct cache_queue, list))
979 		if (!cq->reader) {
980 			mask |= EPOLLIN | EPOLLRDNORM;
981 			break;
982 		}
983 	spin_unlock(&queue_lock);
984 	return mask;
985 }
986 
987 static int cache_ioctl(struct inode *ino, struct file *filp,
988 		       unsigned int cmd, unsigned long arg,
989 		       struct cache_detail *cd)
990 {
991 	int len = 0;
992 	struct cache_reader *rp = filp->private_data;
993 	struct cache_queue *cq;
994 
995 	if (cmd != FIONREAD || !rp)
996 		return -EINVAL;
997 
998 	spin_lock(&queue_lock);
999 
1000 	/* only find the length remaining in current request,
1001 	 * or the length of the next request
1002 	 */
1003 	for (cq= &rp->q; &cq->list != &cd->queue;
1004 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1005 		if (!cq->reader) {
1006 			struct cache_request *cr =
1007 				container_of(cq, struct cache_request, q);
1008 			len = cr->len - rp->offset;
1009 			break;
1010 		}
1011 	spin_unlock(&queue_lock);
1012 
1013 	return put_user(len, (int __user *)arg);
1014 }
1015 
1016 static int cache_open(struct inode *inode, struct file *filp,
1017 		      struct cache_detail *cd)
1018 {
1019 	struct cache_reader *rp = NULL;
1020 
1021 	if (!cd || !try_module_get(cd->owner))
1022 		return -EACCES;
1023 	nonseekable_open(inode, filp);
1024 	if (filp->f_mode & FMODE_READ) {
1025 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1026 		if (!rp) {
1027 			module_put(cd->owner);
1028 			return -ENOMEM;
1029 		}
1030 		rp->offset = 0;
1031 		rp->q.reader = 1;
1032 
1033 		spin_lock(&queue_lock);
1034 		list_add(&rp->q.list, &cd->queue);
1035 		spin_unlock(&queue_lock);
1036 	}
1037 	if (filp->f_mode & FMODE_WRITE)
1038 		atomic_inc(&cd->writers);
1039 	filp->private_data = rp;
1040 	return 0;
1041 }
1042 
1043 static int cache_release(struct inode *inode, struct file *filp,
1044 			 struct cache_detail *cd)
1045 {
1046 	struct cache_reader *rp = filp->private_data;
1047 
1048 	if (rp) {
1049 		spin_lock(&queue_lock);
1050 		if (rp->offset) {
1051 			struct cache_queue *cq;
1052 			for (cq= &rp->q; &cq->list != &cd->queue;
1053 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1054 				if (!cq->reader) {
1055 					container_of(cq, struct cache_request, q)
1056 						->readers--;
1057 					break;
1058 				}
1059 			rp->offset = 0;
1060 		}
1061 		list_del(&rp->q.list);
1062 		spin_unlock(&queue_lock);
1063 
1064 		filp->private_data = NULL;
1065 		kfree(rp);
1066 
1067 	}
1068 	if (filp->f_mode & FMODE_WRITE) {
1069 		atomic_dec(&cd->writers);
1070 		cd->last_close = seconds_since_boot();
1071 	}
1072 	module_put(cd->owner);
1073 	return 0;
1074 }
1075 
1076 
1077 
1078 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1079 {
1080 	struct cache_queue *cq, *tmp;
1081 	struct cache_request *cr;
1082 	struct list_head dequeued;
1083 
1084 	INIT_LIST_HEAD(&dequeued);
1085 	spin_lock(&queue_lock);
1086 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1087 		if (!cq->reader) {
1088 			cr = container_of(cq, struct cache_request, q);
1089 			if (cr->item != ch)
1090 				continue;
1091 			if (test_bit(CACHE_PENDING, &ch->flags))
1092 				/* Lost a race and it is pending again */
1093 				break;
1094 			if (cr->readers != 0)
1095 				continue;
1096 			list_move(&cr->q.list, &dequeued);
1097 		}
1098 	spin_unlock(&queue_lock);
1099 	while (!list_empty(&dequeued)) {
1100 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1101 		list_del(&cr->q.list);
1102 		cache_put(cr->item, detail);
1103 		kfree(cr->buf);
1104 		kfree(cr);
1105 	}
1106 }
1107 
1108 /*
1109  * Support routines for text-based upcalls.
1110  * Fields are separated by spaces.
1111  * Fields are either mangled to quote space tab newline slosh with slosh
1112  * or a hexified with a leading \x
1113  * Record is terminated with newline.
1114  *
1115  */
1116 
1117 void qword_add(char **bpp, int *lp, char *str)
1118 {
1119 	char *bp = *bpp;
1120 	int len = *lp;
1121 	int ret;
1122 
1123 	if (len < 0) return;
1124 
1125 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1126 	if (ret >= len) {
1127 		bp += len;
1128 		len = -1;
1129 	} else {
1130 		bp += ret;
1131 		len -= ret;
1132 		*bp++ = ' ';
1133 		len--;
1134 	}
1135 	*bpp = bp;
1136 	*lp = len;
1137 }
1138 EXPORT_SYMBOL_GPL(qword_add);
1139 
1140 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1141 {
1142 	char *bp = *bpp;
1143 	int len = *lp;
1144 
1145 	if (len < 0) return;
1146 
1147 	if (len > 2) {
1148 		*bp++ = '\\';
1149 		*bp++ = 'x';
1150 		len -= 2;
1151 		while (blen && len >= 2) {
1152 			bp = hex_byte_pack(bp, *buf++);
1153 			len -= 2;
1154 			blen--;
1155 		}
1156 	}
1157 	if (blen || len<1) len = -1;
1158 	else {
1159 		*bp++ = ' ';
1160 		len--;
1161 	}
1162 	*bpp = bp;
1163 	*lp = len;
1164 }
1165 EXPORT_SYMBOL_GPL(qword_addhex);
1166 
1167 static void warn_no_listener(struct cache_detail *detail)
1168 {
1169 	if (detail->last_warn != detail->last_close) {
1170 		detail->last_warn = detail->last_close;
1171 		if (detail->warn_no_listener)
1172 			detail->warn_no_listener(detail, detail->last_close != 0);
1173 	}
1174 }
1175 
1176 static bool cache_listeners_exist(struct cache_detail *detail)
1177 {
1178 	if (atomic_read(&detail->writers))
1179 		return true;
1180 	if (detail->last_close == 0)
1181 		/* This cache was never opened */
1182 		return false;
1183 	if (detail->last_close < seconds_since_boot() - 30)
1184 		/*
1185 		 * We allow for the possibility that someone might
1186 		 * restart a userspace daemon without restarting the
1187 		 * server; but after 30 seconds, we give up.
1188 		 */
1189 		 return false;
1190 	return true;
1191 }
1192 
1193 /*
1194  * register an upcall request to user-space and queue it up for read() by the
1195  * upcall daemon.
1196  *
1197  * Each request is at most one page long.
1198  */
1199 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1200 {
1201 
1202 	char *buf;
1203 	struct cache_request *crq;
1204 	int ret = 0;
1205 
1206 	if (!detail->cache_request)
1207 		return -EINVAL;
1208 
1209 	if (!cache_listeners_exist(detail)) {
1210 		warn_no_listener(detail);
1211 		return -EINVAL;
1212 	}
1213 	if (test_bit(CACHE_CLEANED, &h->flags))
1214 		/* Too late to make an upcall */
1215 		return -EAGAIN;
1216 
1217 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1218 	if (!buf)
1219 		return -EAGAIN;
1220 
1221 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1222 	if (!crq) {
1223 		kfree(buf);
1224 		return -EAGAIN;
1225 	}
1226 
1227 	crq->q.reader = 0;
1228 	crq->buf = buf;
1229 	crq->len = 0;
1230 	crq->readers = 0;
1231 	spin_lock(&queue_lock);
1232 	if (test_bit(CACHE_PENDING, &h->flags)) {
1233 		crq->item = cache_get(h);
1234 		list_add_tail(&crq->q.list, &detail->queue);
1235 	} else
1236 		/* Lost a race, no longer PENDING, so don't enqueue */
1237 		ret = -EAGAIN;
1238 	spin_unlock(&queue_lock);
1239 	wake_up(&queue_wait);
1240 	if (ret == -EAGAIN) {
1241 		kfree(buf);
1242 		kfree(crq);
1243 	}
1244 	return ret;
1245 }
1246 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1247 
1248 /*
1249  * parse a message from user-space and pass it
1250  * to an appropriate cache
1251  * Messages are, like requests, separated into fields by
1252  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1253  *
1254  * Message is
1255  *   reply cachename expiry key ... content....
1256  *
1257  * key and content are both parsed by cache
1258  */
1259 
1260 int qword_get(char **bpp, char *dest, int bufsize)
1261 {
1262 	/* return bytes copied, or -1 on error */
1263 	char *bp = *bpp;
1264 	int len = 0;
1265 
1266 	while (*bp == ' ') bp++;
1267 
1268 	if (bp[0] == '\\' && bp[1] == 'x') {
1269 		/* HEX STRING */
1270 		bp += 2;
1271 		while (len < bufsize - 1) {
1272 			int h, l;
1273 
1274 			h = hex_to_bin(bp[0]);
1275 			if (h < 0)
1276 				break;
1277 
1278 			l = hex_to_bin(bp[1]);
1279 			if (l < 0)
1280 				break;
1281 
1282 			*dest++ = (h << 4) | l;
1283 			bp += 2;
1284 			len++;
1285 		}
1286 	} else {
1287 		/* text with \nnn octal quoting */
1288 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1289 			if (*bp == '\\' &&
1290 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1291 			    isodigit(bp[2]) &&
1292 			    isodigit(bp[3])) {
1293 				int byte = (*++bp -'0');
1294 				bp++;
1295 				byte = (byte << 3) | (*bp++ - '0');
1296 				byte = (byte << 3) | (*bp++ - '0');
1297 				*dest++ = byte;
1298 				len++;
1299 			} else {
1300 				*dest++ = *bp++;
1301 				len++;
1302 			}
1303 		}
1304 	}
1305 
1306 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1307 		return -1;
1308 	while (*bp == ' ') bp++;
1309 	*bpp = bp;
1310 	*dest = '\0';
1311 	return len;
1312 }
1313 EXPORT_SYMBOL_GPL(qword_get);
1314 
1315 
1316 /*
1317  * support /proc/net/rpc/$CACHENAME/content
1318  * as a seqfile.
1319  * We call ->cache_show passing NULL for the item to
1320  * get a header, then pass each real item in the cache
1321  */
1322 
1323 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1324 {
1325 	loff_t n = *pos;
1326 	unsigned int hash, entry;
1327 	struct cache_head *ch;
1328 	struct cache_detail *cd = m->private;
1329 
1330 	if (!n--)
1331 		return SEQ_START_TOKEN;
1332 	hash = n >> 32;
1333 	entry = n & ((1LL<<32) - 1);
1334 
1335 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1336 		if (!entry--)
1337 			return ch;
1338 	n &= ~((1LL<<32) - 1);
1339 	do {
1340 		hash++;
1341 		n += 1LL<<32;
1342 	} while(hash < cd->hash_size &&
1343 		hlist_empty(&cd->hash_table[hash]));
1344 	if (hash >= cd->hash_size)
1345 		return NULL;
1346 	*pos = n+1;
1347 	return hlist_entry_safe(rcu_dereference_raw(
1348 				hlist_first_rcu(&cd->hash_table[hash])),
1349 				struct cache_head, cache_list);
1350 }
1351 
1352 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1353 {
1354 	struct cache_head *ch = p;
1355 	int hash = (*pos >> 32);
1356 	struct cache_detail *cd = m->private;
1357 
1358 	if (p == SEQ_START_TOKEN)
1359 		hash = 0;
1360 	else if (ch->cache_list.next == NULL) {
1361 		hash++;
1362 		*pos += 1LL<<32;
1363 	} else {
1364 		++*pos;
1365 		return hlist_entry_safe(rcu_dereference_raw(
1366 					hlist_next_rcu(&ch->cache_list)),
1367 					struct cache_head, cache_list);
1368 	}
1369 	*pos &= ~((1LL<<32) - 1);
1370 	while (hash < cd->hash_size &&
1371 	       hlist_empty(&cd->hash_table[hash])) {
1372 		hash++;
1373 		*pos += 1LL<<32;
1374 	}
1375 	if (hash >= cd->hash_size)
1376 		return NULL;
1377 	++*pos;
1378 	return hlist_entry_safe(rcu_dereference_raw(
1379 				hlist_first_rcu(&cd->hash_table[hash])),
1380 				struct cache_head, cache_list);
1381 }
1382 
1383 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1384 	__acquires(RCU)
1385 {
1386 	rcu_read_lock();
1387 	return __cache_seq_start(m, pos);
1388 }
1389 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1390 
1391 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1392 {
1393 	return cache_seq_next(file, p, pos);
1394 }
1395 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1396 
1397 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1398 	__releases(RCU)
1399 {
1400 	rcu_read_unlock();
1401 }
1402 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1403 
1404 static int c_show(struct seq_file *m, void *p)
1405 {
1406 	struct cache_head *cp = p;
1407 	struct cache_detail *cd = m->private;
1408 
1409 	if (p == SEQ_START_TOKEN)
1410 		return cd->cache_show(m, cd, NULL);
1411 
1412 	ifdebug(CACHE)
1413 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1414 			   convert_to_wallclock(cp->expiry_time),
1415 			   kref_read(&cp->ref), cp->flags);
1416 	cache_get(cp);
1417 	if (cache_check(cd, cp, NULL))
1418 		/* cache_check does a cache_put on failure */
1419 		seq_printf(m, "# ");
1420 	else {
1421 		if (cache_is_expired(cd, cp))
1422 			seq_printf(m, "# ");
1423 		cache_put(cp, cd);
1424 	}
1425 
1426 	return cd->cache_show(m, cd, cp);
1427 }
1428 
1429 static const struct seq_operations cache_content_op = {
1430 	.start	= cache_seq_start_rcu,
1431 	.next	= cache_seq_next_rcu,
1432 	.stop	= cache_seq_stop_rcu,
1433 	.show	= c_show,
1434 };
1435 
1436 static int content_open(struct inode *inode, struct file *file,
1437 			struct cache_detail *cd)
1438 {
1439 	struct seq_file *seq;
1440 	int err;
1441 
1442 	if (!cd || !try_module_get(cd->owner))
1443 		return -EACCES;
1444 
1445 	err = seq_open(file, &cache_content_op);
1446 	if (err) {
1447 		module_put(cd->owner);
1448 		return err;
1449 	}
1450 
1451 	seq = file->private_data;
1452 	seq->private = cd;
1453 	return 0;
1454 }
1455 
1456 static int content_release(struct inode *inode, struct file *file,
1457 		struct cache_detail *cd)
1458 {
1459 	int ret = seq_release(inode, file);
1460 	module_put(cd->owner);
1461 	return ret;
1462 }
1463 
1464 static int open_flush(struct inode *inode, struct file *file,
1465 			struct cache_detail *cd)
1466 {
1467 	if (!cd || !try_module_get(cd->owner))
1468 		return -EACCES;
1469 	return nonseekable_open(inode, file);
1470 }
1471 
1472 static int release_flush(struct inode *inode, struct file *file,
1473 			struct cache_detail *cd)
1474 {
1475 	module_put(cd->owner);
1476 	return 0;
1477 }
1478 
1479 static ssize_t read_flush(struct file *file, char __user *buf,
1480 			  size_t count, loff_t *ppos,
1481 			  struct cache_detail *cd)
1482 {
1483 	char tbuf[22];
1484 	size_t len;
1485 
1486 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1487 			convert_to_wallclock(cd->flush_time));
1488 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1489 }
1490 
1491 static ssize_t write_flush(struct file *file, const char __user *buf,
1492 			   size_t count, loff_t *ppos,
1493 			   struct cache_detail *cd)
1494 {
1495 	char tbuf[20];
1496 	char *ep;
1497 	time_t now;
1498 
1499 	if (*ppos || count > sizeof(tbuf)-1)
1500 		return -EINVAL;
1501 	if (copy_from_user(tbuf, buf, count))
1502 		return -EFAULT;
1503 	tbuf[count] = 0;
1504 	simple_strtoul(tbuf, &ep, 0);
1505 	if (*ep && *ep != '\n')
1506 		return -EINVAL;
1507 	/* Note that while we check that 'buf' holds a valid number,
1508 	 * we always ignore the value and just flush everything.
1509 	 * Making use of the number leads to races.
1510 	 */
1511 
1512 	now = seconds_since_boot();
1513 	/* Always flush everything, so behave like cache_purge()
1514 	 * Do this by advancing flush_time to the current time,
1515 	 * or by one second if it has already reached the current time.
1516 	 * Newly added cache entries will always have ->last_refresh greater
1517 	 * that ->flush_time, so they don't get flushed prematurely.
1518 	 */
1519 
1520 	if (cd->flush_time >= now)
1521 		now = cd->flush_time + 1;
1522 
1523 	cd->flush_time = now;
1524 	cd->nextcheck = now;
1525 	cache_flush();
1526 
1527 	if (cd->flush)
1528 		cd->flush();
1529 
1530 	*ppos += count;
1531 	return count;
1532 }
1533 
1534 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1535 				 size_t count, loff_t *ppos)
1536 {
1537 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1538 
1539 	return cache_read(filp, buf, count, ppos, cd);
1540 }
1541 
1542 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1543 				  size_t count, loff_t *ppos)
1544 {
1545 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1546 
1547 	return cache_write(filp, buf, count, ppos, cd);
1548 }
1549 
1550 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1551 {
1552 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1553 
1554 	return cache_poll(filp, wait, cd);
1555 }
1556 
1557 static long cache_ioctl_procfs(struct file *filp,
1558 			       unsigned int cmd, unsigned long arg)
1559 {
1560 	struct inode *inode = file_inode(filp);
1561 	struct cache_detail *cd = PDE_DATA(inode);
1562 
1563 	return cache_ioctl(inode, filp, cmd, arg, cd);
1564 }
1565 
1566 static int cache_open_procfs(struct inode *inode, struct file *filp)
1567 {
1568 	struct cache_detail *cd = PDE_DATA(inode);
1569 
1570 	return cache_open(inode, filp, cd);
1571 }
1572 
1573 static int cache_release_procfs(struct inode *inode, struct file *filp)
1574 {
1575 	struct cache_detail *cd = PDE_DATA(inode);
1576 
1577 	return cache_release(inode, filp, cd);
1578 }
1579 
1580 static const struct file_operations cache_file_operations_procfs = {
1581 	.owner		= THIS_MODULE,
1582 	.llseek		= no_llseek,
1583 	.read		= cache_read_procfs,
1584 	.write		= cache_write_procfs,
1585 	.poll		= cache_poll_procfs,
1586 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1587 	.open		= cache_open_procfs,
1588 	.release	= cache_release_procfs,
1589 };
1590 
1591 static int content_open_procfs(struct inode *inode, struct file *filp)
1592 {
1593 	struct cache_detail *cd = PDE_DATA(inode);
1594 
1595 	return content_open(inode, filp, cd);
1596 }
1597 
1598 static int content_release_procfs(struct inode *inode, struct file *filp)
1599 {
1600 	struct cache_detail *cd = PDE_DATA(inode);
1601 
1602 	return content_release(inode, filp, cd);
1603 }
1604 
1605 static const struct file_operations content_file_operations_procfs = {
1606 	.open		= content_open_procfs,
1607 	.read		= seq_read,
1608 	.llseek		= seq_lseek,
1609 	.release	= content_release_procfs,
1610 };
1611 
1612 static int open_flush_procfs(struct inode *inode, struct file *filp)
1613 {
1614 	struct cache_detail *cd = PDE_DATA(inode);
1615 
1616 	return open_flush(inode, filp, cd);
1617 }
1618 
1619 static int release_flush_procfs(struct inode *inode, struct file *filp)
1620 {
1621 	struct cache_detail *cd = PDE_DATA(inode);
1622 
1623 	return release_flush(inode, filp, cd);
1624 }
1625 
1626 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1627 			    size_t count, loff_t *ppos)
1628 {
1629 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1630 
1631 	return read_flush(filp, buf, count, ppos, cd);
1632 }
1633 
1634 static ssize_t write_flush_procfs(struct file *filp,
1635 				  const char __user *buf,
1636 				  size_t count, loff_t *ppos)
1637 {
1638 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1639 
1640 	return write_flush(filp, buf, count, ppos, cd);
1641 }
1642 
1643 static const struct file_operations cache_flush_operations_procfs = {
1644 	.open		= open_flush_procfs,
1645 	.read		= read_flush_procfs,
1646 	.write		= write_flush_procfs,
1647 	.release	= release_flush_procfs,
1648 	.llseek		= no_llseek,
1649 };
1650 
1651 static void remove_cache_proc_entries(struct cache_detail *cd)
1652 {
1653 	if (cd->procfs) {
1654 		proc_remove(cd->procfs);
1655 		cd->procfs = NULL;
1656 	}
1657 }
1658 
1659 #ifdef CONFIG_PROC_FS
1660 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1661 {
1662 	struct proc_dir_entry *p;
1663 	struct sunrpc_net *sn;
1664 
1665 	sn = net_generic(net, sunrpc_net_id);
1666 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1667 	if (cd->procfs == NULL)
1668 		goto out_nomem;
1669 
1670 	p = proc_create_data("flush", S_IFREG | 0600,
1671 			     cd->procfs, &cache_flush_operations_procfs, cd);
1672 	if (p == NULL)
1673 		goto out_nomem;
1674 
1675 	if (cd->cache_request || cd->cache_parse) {
1676 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1677 				     &cache_file_operations_procfs, cd);
1678 		if (p == NULL)
1679 			goto out_nomem;
1680 	}
1681 	if (cd->cache_show) {
1682 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1683 				     &content_file_operations_procfs, cd);
1684 		if (p == NULL)
1685 			goto out_nomem;
1686 	}
1687 	return 0;
1688 out_nomem:
1689 	remove_cache_proc_entries(cd);
1690 	return -ENOMEM;
1691 }
1692 #else /* CONFIG_PROC_FS */
1693 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1694 {
1695 	return 0;
1696 }
1697 #endif
1698 
1699 void __init cache_initialize(void)
1700 {
1701 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1702 }
1703 
1704 int cache_register_net(struct cache_detail *cd, struct net *net)
1705 {
1706 	int ret;
1707 
1708 	sunrpc_init_cache_detail(cd);
1709 	ret = create_cache_proc_entries(cd, net);
1710 	if (ret)
1711 		sunrpc_destroy_cache_detail(cd);
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL_GPL(cache_register_net);
1715 
1716 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1717 {
1718 	remove_cache_proc_entries(cd);
1719 	sunrpc_destroy_cache_detail(cd);
1720 }
1721 EXPORT_SYMBOL_GPL(cache_unregister_net);
1722 
1723 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1724 {
1725 	struct cache_detail *cd;
1726 	int i;
1727 
1728 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1729 	if (cd == NULL)
1730 		return ERR_PTR(-ENOMEM);
1731 
1732 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1733 				 GFP_KERNEL);
1734 	if (cd->hash_table == NULL) {
1735 		kfree(cd);
1736 		return ERR_PTR(-ENOMEM);
1737 	}
1738 
1739 	for (i = 0; i < cd->hash_size; i++)
1740 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1741 	cd->net = net;
1742 	return cd;
1743 }
1744 EXPORT_SYMBOL_GPL(cache_create_net);
1745 
1746 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1747 {
1748 	kfree(cd->hash_table);
1749 	kfree(cd);
1750 }
1751 EXPORT_SYMBOL_GPL(cache_destroy_net);
1752 
1753 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1754 				 size_t count, loff_t *ppos)
1755 {
1756 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1757 
1758 	return cache_read(filp, buf, count, ppos, cd);
1759 }
1760 
1761 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1762 				  size_t count, loff_t *ppos)
1763 {
1764 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1765 
1766 	return cache_write(filp, buf, count, ppos, cd);
1767 }
1768 
1769 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1770 {
1771 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1772 
1773 	return cache_poll(filp, wait, cd);
1774 }
1775 
1776 static long cache_ioctl_pipefs(struct file *filp,
1777 			      unsigned int cmd, unsigned long arg)
1778 {
1779 	struct inode *inode = file_inode(filp);
1780 	struct cache_detail *cd = RPC_I(inode)->private;
1781 
1782 	return cache_ioctl(inode, filp, cmd, arg, cd);
1783 }
1784 
1785 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1786 {
1787 	struct cache_detail *cd = RPC_I(inode)->private;
1788 
1789 	return cache_open(inode, filp, cd);
1790 }
1791 
1792 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1793 {
1794 	struct cache_detail *cd = RPC_I(inode)->private;
1795 
1796 	return cache_release(inode, filp, cd);
1797 }
1798 
1799 const struct file_operations cache_file_operations_pipefs = {
1800 	.owner		= THIS_MODULE,
1801 	.llseek		= no_llseek,
1802 	.read		= cache_read_pipefs,
1803 	.write		= cache_write_pipefs,
1804 	.poll		= cache_poll_pipefs,
1805 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1806 	.open		= cache_open_pipefs,
1807 	.release	= cache_release_pipefs,
1808 };
1809 
1810 static int content_open_pipefs(struct inode *inode, struct file *filp)
1811 {
1812 	struct cache_detail *cd = RPC_I(inode)->private;
1813 
1814 	return content_open(inode, filp, cd);
1815 }
1816 
1817 static int content_release_pipefs(struct inode *inode, struct file *filp)
1818 {
1819 	struct cache_detail *cd = RPC_I(inode)->private;
1820 
1821 	return content_release(inode, filp, cd);
1822 }
1823 
1824 const struct file_operations content_file_operations_pipefs = {
1825 	.open		= content_open_pipefs,
1826 	.read		= seq_read,
1827 	.llseek		= seq_lseek,
1828 	.release	= content_release_pipefs,
1829 };
1830 
1831 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1832 {
1833 	struct cache_detail *cd = RPC_I(inode)->private;
1834 
1835 	return open_flush(inode, filp, cd);
1836 }
1837 
1838 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1839 {
1840 	struct cache_detail *cd = RPC_I(inode)->private;
1841 
1842 	return release_flush(inode, filp, cd);
1843 }
1844 
1845 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1846 			    size_t count, loff_t *ppos)
1847 {
1848 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1849 
1850 	return read_flush(filp, buf, count, ppos, cd);
1851 }
1852 
1853 static ssize_t write_flush_pipefs(struct file *filp,
1854 				  const char __user *buf,
1855 				  size_t count, loff_t *ppos)
1856 {
1857 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1858 
1859 	return write_flush(filp, buf, count, ppos, cd);
1860 }
1861 
1862 const struct file_operations cache_flush_operations_pipefs = {
1863 	.open		= open_flush_pipefs,
1864 	.read		= read_flush_pipefs,
1865 	.write		= write_flush_pipefs,
1866 	.release	= release_flush_pipefs,
1867 	.llseek		= no_llseek,
1868 };
1869 
1870 int sunrpc_cache_register_pipefs(struct dentry *parent,
1871 				 const char *name, umode_t umode,
1872 				 struct cache_detail *cd)
1873 {
1874 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1875 	if (IS_ERR(dir))
1876 		return PTR_ERR(dir);
1877 	cd->pipefs = dir;
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1881 
1882 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1883 {
1884 	if (cd->pipefs) {
1885 		rpc_remove_cache_dir(cd->pipefs);
1886 		cd->pipefs = NULL;
1887 	}
1888 }
1889 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1890 
1891 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1892 {
1893 	spin_lock(&cd->hash_lock);
1894 	if (!hlist_unhashed(&h->cache_list)){
1895 		hlist_del_init_rcu(&h->cache_list);
1896 		cd->entries--;
1897 		spin_unlock(&cd->hash_lock);
1898 		cache_put(h, cd);
1899 	} else
1900 		spin_unlock(&cd->hash_lock);
1901 }
1902 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1903