1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/string_helpers.h> 24 #include <asm/uaccess.h> 25 #include <linux/poll.h> 26 #include <linux/seq_file.h> 27 #include <linux/proc_fs.h> 28 #include <linux/net.h> 29 #include <linux/workqueue.h> 30 #include <linux/mutex.h> 31 #include <linux/pagemap.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include "netns.h" 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h) 45 { 46 time_t now = seconds_since_boot(); 47 INIT_HLIST_NODE(&h->cache_list); 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 h->last_refresh = now; 52 } 53 54 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 55 struct cache_head *key, int hash) 56 { 57 struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL; 58 struct hlist_head *head; 59 60 head = &detail->hash_table[hash]; 61 62 read_lock(&detail->hash_lock); 63 64 hlist_for_each_entry(tmp, head, cache_list) { 65 if (detail->match(tmp, key)) { 66 if (cache_is_expired(detail, tmp)) 67 /* This entry is expired, we will discard it. */ 68 break; 69 cache_get(tmp); 70 read_unlock(&detail->hash_lock); 71 return tmp; 72 } 73 } 74 read_unlock(&detail->hash_lock); 75 /* Didn't find anything, insert an empty entry */ 76 77 new = detail->alloc(); 78 if (!new) 79 return NULL; 80 /* must fully initialise 'new', else 81 * we might get lose if we need to 82 * cache_put it soon. 83 */ 84 cache_init(new); 85 detail->init(new, key); 86 87 write_lock(&detail->hash_lock); 88 89 /* check if entry appeared while we slept */ 90 hlist_for_each_entry(tmp, head, cache_list) { 91 if (detail->match(tmp, key)) { 92 if (cache_is_expired(detail, tmp)) { 93 hlist_del_init(&tmp->cache_list); 94 detail->entries --; 95 freeme = tmp; 96 break; 97 } 98 cache_get(tmp); 99 write_unlock(&detail->hash_lock); 100 cache_put(new, detail); 101 return tmp; 102 } 103 } 104 105 hlist_add_head(&new->cache_list, head); 106 detail->entries++; 107 cache_get(new); 108 write_unlock(&detail->hash_lock); 109 110 if (freeme) 111 cache_put(freeme, detail); 112 return new; 113 } 114 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 115 116 117 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 118 119 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 120 { 121 head->expiry_time = expiry; 122 head->last_refresh = seconds_since_boot(); 123 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 124 set_bit(CACHE_VALID, &head->flags); 125 } 126 127 static void cache_fresh_unlocked(struct cache_head *head, 128 struct cache_detail *detail) 129 { 130 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 131 cache_revisit_request(head); 132 cache_dequeue(detail, head); 133 } 134 } 135 136 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 137 struct cache_head *new, struct cache_head *old, int hash) 138 { 139 /* The 'old' entry is to be replaced by 'new'. 140 * If 'old' is not VALID, we update it directly, 141 * otherwise we need to replace it 142 */ 143 struct cache_head *tmp; 144 145 if (!test_bit(CACHE_VALID, &old->flags)) { 146 write_lock(&detail->hash_lock); 147 if (!test_bit(CACHE_VALID, &old->flags)) { 148 if (test_bit(CACHE_NEGATIVE, &new->flags)) 149 set_bit(CACHE_NEGATIVE, &old->flags); 150 else 151 detail->update(old, new); 152 cache_fresh_locked(old, new->expiry_time); 153 write_unlock(&detail->hash_lock); 154 cache_fresh_unlocked(old, detail); 155 return old; 156 } 157 write_unlock(&detail->hash_lock); 158 } 159 /* We need to insert a new entry */ 160 tmp = detail->alloc(); 161 if (!tmp) { 162 cache_put(old, detail); 163 return NULL; 164 } 165 cache_init(tmp); 166 detail->init(tmp, old); 167 168 write_lock(&detail->hash_lock); 169 if (test_bit(CACHE_NEGATIVE, &new->flags)) 170 set_bit(CACHE_NEGATIVE, &tmp->flags); 171 else 172 detail->update(tmp, new); 173 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 174 detail->entries++; 175 cache_get(tmp); 176 cache_fresh_locked(tmp, new->expiry_time); 177 cache_fresh_locked(old, 0); 178 write_unlock(&detail->hash_lock); 179 cache_fresh_unlocked(tmp, detail); 180 cache_fresh_unlocked(old, detail); 181 cache_put(old, detail); 182 return tmp; 183 } 184 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 185 186 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 187 { 188 if (cd->cache_upcall) 189 return cd->cache_upcall(cd, h); 190 return sunrpc_cache_pipe_upcall(cd, h); 191 } 192 193 static inline int cache_is_valid(struct cache_head *h) 194 { 195 if (!test_bit(CACHE_VALID, &h->flags)) 196 return -EAGAIN; 197 else { 198 /* entry is valid */ 199 if (test_bit(CACHE_NEGATIVE, &h->flags)) 200 return -ENOENT; 201 else { 202 /* 203 * In combination with write barrier in 204 * sunrpc_cache_update, ensures that anyone 205 * using the cache entry after this sees the 206 * updated contents: 207 */ 208 smp_rmb(); 209 return 0; 210 } 211 } 212 } 213 214 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 215 { 216 int rv; 217 218 write_lock(&detail->hash_lock); 219 rv = cache_is_valid(h); 220 if (rv == -EAGAIN) { 221 set_bit(CACHE_NEGATIVE, &h->flags); 222 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY); 223 rv = -ENOENT; 224 } 225 write_unlock(&detail->hash_lock); 226 cache_fresh_unlocked(h, detail); 227 return rv; 228 } 229 230 /* 231 * This is the generic cache management routine for all 232 * the authentication caches. 233 * It checks the currency of a cache item and will (later) 234 * initiate an upcall to fill it if needed. 235 * 236 * 237 * Returns 0 if the cache_head can be used, or cache_puts it and returns 238 * -EAGAIN if upcall is pending and request has been queued 239 * -ETIMEDOUT if upcall failed or request could not be queue or 240 * upcall completed but item is still invalid (implying that 241 * the cache item has been replaced with a newer one). 242 * -ENOENT if cache entry was negative 243 */ 244 int cache_check(struct cache_detail *detail, 245 struct cache_head *h, struct cache_req *rqstp) 246 { 247 int rv; 248 long refresh_age, age; 249 250 /* First decide return status as best we can */ 251 rv = cache_is_valid(h); 252 253 /* now see if we want to start an upcall */ 254 refresh_age = (h->expiry_time - h->last_refresh); 255 age = seconds_since_boot() - h->last_refresh; 256 257 if (rqstp == NULL) { 258 if (rv == -EAGAIN) 259 rv = -ENOENT; 260 } else if (rv == -EAGAIN || 261 (h->expiry_time != 0 && age > refresh_age/2)) { 262 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 263 refresh_age, age); 264 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 265 switch (cache_make_upcall(detail, h)) { 266 case -EINVAL: 267 rv = try_to_negate_entry(detail, h); 268 break; 269 case -EAGAIN: 270 cache_fresh_unlocked(h, detail); 271 break; 272 } 273 } 274 } 275 276 if (rv == -EAGAIN) { 277 if (!cache_defer_req(rqstp, h)) { 278 /* 279 * Request was not deferred; handle it as best 280 * we can ourselves: 281 */ 282 rv = cache_is_valid(h); 283 if (rv == -EAGAIN) 284 rv = -ETIMEDOUT; 285 } 286 } 287 if (rv) 288 cache_put(h, detail); 289 return rv; 290 } 291 EXPORT_SYMBOL_GPL(cache_check); 292 293 /* 294 * caches need to be periodically cleaned. 295 * For this we maintain a list of cache_detail and 296 * a current pointer into that list and into the table 297 * for that entry. 298 * 299 * Each time cache_clean is called it finds the next non-empty entry 300 * in the current table and walks the list in that entry 301 * looking for entries that can be removed. 302 * 303 * An entry gets removed if: 304 * - The expiry is before current time 305 * - The last_refresh time is before the flush_time for that cache 306 * 307 * later we might drop old entries with non-NEVER expiry if that table 308 * is getting 'full' for some definition of 'full' 309 * 310 * The question of "how often to scan a table" is an interesting one 311 * and is answered in part by the use of the "nextcheck" field in the 312 * cache_detail. 313 * When a scan of a table begins, the nextcheck field is set to a time 314 * that is well into the future. 315 * While scanning, if an expiry time is found that is earlier than the 316 * current nextcheck time, nextcheck is set to that expiry time. 317 * If the flush_time is ever set to a time earlier than the nextcheck 318 * time, the nextcheck time is then set to that flush_time. 319 * 320 * A table is then only scanned if the current time is at least 321 * the nextcheck time. 322 * 323 */ 324 325 static LIST_HEAD(cache_list); 326 static DEFINE_SPINLOCK(cache_list_lock); 327 static struct cache_detail *current_detail; 328 static int current_index; 329 330 static void do_cache_clean(struct work_struct *work); 331 static struct delayed_work cache_cleaner; 332 333 void sunrpc_init_cache_detail(struct cache_detail *cd) 334 { 335 rwlock_init(&cd->hash_lock); 336 INIT_LIST_HEAD(&cd->queue); 337 spin_lock(&cache_list_lock); 338 cd->nextcheck = 0; 339 cd->entries = 0; 340 atomic_set(&cd->readers, 0); 341 cd->last_close = 0; 342 cd->last_warn = -1; 343 list_add(&cd->others, &cache_list); 344 spin_unlock(&cache_list_lock); 345 346 /* start the cleaning process */ 347 schedule_delayed_work(&cache_cleaner, 0); 348 } 349 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 350 351 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 352 { 353 cache_purge(cd); 354 spin_lock(&cache_list_lock); 355 write_lock(&cd->hash_lock); 356 if (cd->entries || atomic_read(&cd->inuse)) { 357 write_unlock(&cd->hash_lock); 358 spin_unlock(&cache_list_lock); 359 goto out; 360 } 361 if (current_detail == cd) 362 current_detail = NULL; 363 list_del_init(&cd->others); 364 write_unlock(&cd->hash_lock); 365 spin_unlock(&cache_list_lock); 366 if (list_empty(&cache_list)) { 367 /* module must be being unloaded so its safe to kill the worker */ 368 cancel_delayed_work_sync(&cache_cleaner); 369 } 370 return; 371 out: 372 printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name); 373 } 374 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 375 376 /* clean cache tries to find something to clean 377 * and cleans it. 378 * It returns 1 if it cleaned something, 379 * 0 if it didn't find anything this time 380 * -1 if it fell off the end of the list. 381 */ 382 static int cache_clean(void) 383 { 384 int rv = 0; 385 struct list_head *next; 386 387 spin_lock(&cache_list_lock); 388 389 /* find a suitable table if we don't already have one */ 390 while (current_detail == NULL || 391 current_index >= current_detail->hash_size) { 392 if (current_detail) 393 next = current_detail->others.next; 394 else 395 next = cache_list.next; 396 if (next == &cache_list) { 397 current_detail = NULL; 398 spin_unlock(&cache_list_lock); 399 return -1; 400 } 401 current_detail = list_entry(next, struct cache_detail, others); 402 if (current_detail->nextcheck > seconds_since_boot()) 403 current_index = current_detail->hash_size; 404 else { 405 current_index = 0; 406 current_detail->nextcheck = seconds_since_boot()+30*60; 407 } 408 } 409 410 /* find a non-empty bucket in the table */ 411 while (current_detail && 412 current_index < current_detail->hash_size && 413 hlist_empty(¤t_detail->hash_table[current_index])) 414 current_index++; 415 416 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 417 418 if (current_detail && current_index < current_detail->hash_size) { 419 struct cache_head *ch = NULL; 420 struct cache_detail *d; 421 struct hlist_head *head; 422 struct hlist_node *tmp; 423 424 write_lock(¤t_detail->hash_lock); 425 426 /* Ok, now to clean this strand */ 427 428 head = ¤t_detail->hash_table[current_index]; 429 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 430 if (current_detail->nextcheck > ch->expiry_time) 431 current_detail->nextcheck = ch->expiry_time+1; 432 if (!cache_is_expired(current_detail, ch)) 433 continue; 434 435 hlist_del_init(&ch->cache_list); 436 current_detail->entries--; 437 rv = 1; 438 break; 439 } 440 441 write_unlock(¤t_detail->hash_lock); 442 d = current_detail; 443 if (!ch) 444 current_index ++; 445 spin_unlock(&cache_list_lock); 446 if (ch) { 447 set_bit(CACHE_CLEANED, &ch->flags); 448 cache_fresh_unlocked(ch, d); 449 cache_put(ch, d); 450 } 451 } else 452 spin_unlock(&cache_list_lock); 453 454 return rv; 455 } 456 457 /* 458 * We want to regularly clean the cache, so we need to schedule some work ... 459 */ 460 static void do_cache_clean(struct work_struct *work) 461 { 462 int delay = 5; 463 if (cache_clean() == -1) 464 delay = round_jiffies_relative(30*HZ); 465 466 if (list_empty(&cache_list)) 467 delay = 0; 468 469 if (delay) 470 schedule_delayed_work(&cache_cleaner, delay); 471 } 472 473 474 /* 475 * Clean all caches promptly. This just calls cache_clean 476 * repeatedly until we are sure that every cache has had a chance to 477 * be fully cleaned 478 */ 479 void cache_flush(void) 480 { 481 while (cache_clean() != -1) 482 cond_resched(); 483 while (cache_clean() != -1) 484 cond_resched(); 485 } 486 EXPORT_SYMBOL_GPL(cache_flush); 487 488 void cache_purge(struct cache_detail *detail) 489 { 490 detail->flush_time = LONG_MAX; 491 detail->nextcheck = seconds_since_boot(); 492 cache_flush(); 493 detail->flush_time = 1; 494 } 495 EXPORT_SYMBOL_GPL(cache_purge); 496 497 498 /* 499 * Deferral and Revisiting of Requests. 500 * 501 * If a cache lookup finds a pending entry, we 502 * need to defer the request and revisit it later. 503 * All deferred requests are stored in a hash table, 504 * indexed by "struct cache_head *". 505 * As it may be wasteful to store a whole request 506 * structure, we allow the request to provide a 507 * deferred form, which must contain a 508 * 'struct cache_deferred_req' 509 * This cache_deferred_req contains a method to allow 510 * it to be revisited when cache info is available 511 */ 512 513 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 514 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 515 516 #define DFR_MAX 300 /* ??? */ 517 518 static DEFINE_SPINLOCK(cache_defer_lock); 519 static LIST_HEAD(cache_defer_list); 520 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 521 static int cache_defer_cnt; 522 523 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 524 { 525 hlist_del_init(&dreq->hash); 526 if (!list_empty(&dreq->recent)) { 527 list_del_init(&dreq->recent); 528 cache_defer_cnt--; 529 } 530 } 531 532 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 533 { 534 int hash = DFR_HASH(item); 535 536 INIT_LIST_HEAD(&dreq->recent); 537 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 538 } 539 540 static void setup_deferral(struct cache_deferred_req *dreq, 541 struct cache_head *item, 542 int count_me) 543 { 544 545 dreq->item = item; 546 547 spin_lock(&cache_defer_lock); 548 549 __hash_deferred_req(dreq, item); 550 551 if (count_me) { 552 cache_defer_cnt++; 553 list_add(&dreq->recent, &cache_defer_list); 554 } 555 556 spin_unlock(&cache_defer_lock); 557 558 } 559 560 struct thread_deferred_req { 561 struct cache_deferred_req handle; 562 struct completion completion; 563 }; 564 565 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 566 { 567 struct thread_deferred_req *dr = 568 container_of(dreq, struct thread_deferred_req, handle); 569 complete(&dr->completion); 570 } 571 572 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 573 { 574 struct thread_deferred_req sleeper; 575 struct cache_deferred_req *dreq = &sleeper.handle; 576 577 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 578 dreq->revisit = cache_restart_thread; 579 580 setup_deferral(dreq, item, 0); 581 582 if (!test_bit(CACHE_PENDING, &item->flags) || 583 wait_for_completion_interruptible_timeout( 584 &sleeper.completion, req->thread_wait) <= 0) { 585 /* The completion wasn't completed, so we need 586 * to clean up 587 */ 588 spin_lock(&cache_defer_lock); 589 if (!hlist_unhashed(&sleeper.handle.hash)) { 590 __unhash_deferred_req(&sleeper.handle); 591 spin_unlock(&cache_defer_lock); 592 } else { 593 /* cache_revisit_request already removed 594 * this from the hash table, but hasn't 595 * called ->revisit yet. It will very soon 596 * and we need to wait for it. 597 */ 598 spin_unlock(&cache_defer_lock); 599 wait_for_completion(&sleeper.completion); 600 } 601 } 602 } 603 604 static void cache_limit_defers(void) 605 { 606 /* Make sure we haven't exceed the limit of allowed deferred 607 * requests. 608 */ 609 struct cache_deferred_req *discard = NULL; 610 611 if (cache_defer_cnt <= DFR_MAX) 612 return; 613 614 spin_lock(&cache_defer_lock); 615 616 /* Consider removing either the first or the last */ 617 if (cache_defer_cnt > DFR_MAX) { 618 if (prandom_u32() & 1) 619 discard = list_entry(cache_defer_list.next, 620 struct cache_deferred_req, recent); 621 else 622 discard = list_entry(cache_defer_list.prev, 623 struct cache_deferred_req, recent); 624 __unhash_deferred_req(discard); 625 } 626 spin_unlock(&cache_defer_lock); 627 if (discard) 628 discard->revisit(discard, 1); 629 } 630 631 /* Return true if and only if a deferred request is queued. */ 632 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 633 { 634 struct cache_deferred_req *dreq; 635 636 if (req->thread_wait) { 637 cache_wait_req(req, item); 638 if (!test_bit(CACHE_PENDING, &item->flags)) 639 return false; 640 } 641 dreq = req->defer(req); 642 if (dreq == NULL) 643 return false; 644 setup_deferral(dreq, item, 1); 645 if (!test_bit(CACHE_PENDING, &item->flags)) 646 /* Bit could have been cleared before we managed to 647 * set up the deferral, so need to revisit just in case 648 */ 649 cache_revisit_request(item); 650 651 cache_limit_defers(); 652 return true; 653 } 654 655 static void cache_revisit_request(struct cache_head *item) 656 { 657 struct cache_deferred_req *dreq; 658 struct list_head pending; 659 struct hlist_node *tmp; 660 int hash = DFR_HASH(item); 661 662 INIT_LIST_HEAD(&pending); 663 spin_lock(&cache_defer_lock); 664 665 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 666 if (dreq->item == item) { 667 __unhash_deferred_req(dreq); 668 list_add(&dreq->recent, &pending); 669 } 670 671 spin_unlock(&cache_defer_lock); 672 673 while (!list_empty(&pending)) { 674 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 675 list_del_init(&dreq->recent); 676 dreq->revisit(dreq, 0); 677 } 678 } 679 680 void cache_clean_deferred(void *owner) 681 { 682 struct cache_deferred_req *dreq, *tmp; 683 struct list_head pending; 684 685 686 INIT_LIST_HEAD(&pending); 687 spin_lock(&cache_defer_lock); 688 689 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 690 if (dreq->owner == owner) { 691 __unhash_deferred_req(dreq); 692 list_add(&dreq->recent, &pending); 693 } 694 } 695 spin_unlock(&cache_defer_lock); 696 697 while (!list_empty(&pending)) { 698 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 699 list_del_init(&dreq->recent); 700 dreq->revisit(dreq, 1); 701 } 702 } 703 704 /* 705 * communicate with user-space 706 * 707 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 708 * On read, you get a full request, or block. 709 * On write, an update request is processed. 710 * Poll works if anything to read, and always allows write. 711 * 712 * Implemented by linked list of requests. Each open file has 713 * a ->private that also exists in this list. New requests are added 714 * to the end and may wakeup and preceding readers. 715 * New readers are added to the head. If, on read, an item is found with 716 * CACHE_UPCALLING clear, we free it from the list. 717 * 718 */ 719 720 static DEFINE_SPINLOCK(queue_lock); 721 static DEFINE_MUTEX(queue_io_mutex); 722 723 struct cache_queue { 724 struct list_head list; 725 int reader; /* if 0, then request */ 726 }; 727 struct cache_request { 728 struct cache_queue q; 729 struct cache_head *item; 730 char * buf; 731 int len; 732 int readers; 733 }; 734 struct cache_reader { 735 struct cache_queue q; 736 int offset; /* if non-0, we have a refcnt on next request */ 737 }; 738 739 static int cache_request(struct cache_detail *detail, 740 struct cache_request *crq) 741 { 742 char *bp = crq->buf; 743 int len = PAGE_SIZE; 744 745 detail->cache_request(detail, crq->item, &bp, &len); 746 if (len < 0) 747 return -EAGAIN; 748 return PAGE_SIZE - len; 749 } 750 751 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 752 loff_t *ppos, struct cache_detail *cd) 753 { 754 struct cache_reader *rp = filp->private_data; 755 struct cache_request *rq; 756 struct inode *inode = file_inode(filp); 757 int err; 758 759 if (count == 0) 760 return 0; 761 762 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 763 * readers on this file */ 764 again: 765 spin_lock(&queue_lock); 766 /* need to find next request */ 767 while (rp->q.list.next != &cd->queue && 768 list_entry(rp->q.list.next, struct cache_queue, list) 769 ->reader) { 770 struct list_head *next = rp->q.list.next; 771 list_move(&rp->q.list, next); 772 } 773 if (rp->q.list.next == &cd->queue) { 774 spin_unlock(&queue_lock); 775 mutex_unlock(&inode->i_mutex); 776 WARN_ON_ONCE(rp->offset); 777 return 0; 778 } 779 rq = container_of(rp->q.list.next, struct cache_request, q.list); 780 WARN_ON_ONCE(rq->q.reader); 781 if (rp->offset == 0) 782 rq->readers++; 783 spin_unlock(&queue_lock); 784 785 if (rq->len == 0) { 786 err = cache_request(cd, rq); 787 if (err < 0) 788 goto out; 789 rq->len = err; 790 } 791 792 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 793 err = -EAGAIN; 794 spin_lock(&queue_lock); 795 list_move(&rp->q.list, &rq->q.list); 796 spin_unlock(&queue_lock); 797 } else { 798 if (rp->offset + count > rq->len) 799 count = rq->len - rp->offset; 800 err = -EFAULT; 801 if (copy_to_user(buf, rq->buf + rp->offset, count)) 802 goto out; 803 rp->offset += count; 804 if (rp->offset >= rq->len) { 805 rp->offset = 0; 806 spin_lock(&queue_lock); 807 list_move(&rp->q.list, &rq->q.list); 808 spin_unlock(&queue_lock); 809 } 810 err = 0; 811 } 812 out: 813 if (rp->offset == 0) { 814 /* need to release rq */ 815 spin_lock(&queue_lock); 816 rq->readers--; 817 if (rq->readers == 0 && 818 !test_bit(CACHE_PENDING, &rq->item->flags)) { 819 list_del(&rq->q.list); 820 spin_unlock(&queue_lock); 821 cache_put(rq->item, cd); 822 kfree(rq->buf); 823 kfree(rq); 824 } else 825 spin_unlock(&queue_lock); 826 } 827 if (err == -EAGAIN) 828 goto again; 829 mutex_unlock(&inode->i_mutex); 830 return err ? err : count; 831 } 832 833 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 834 size_t count, struct cache_detail *cd) 835 { 836 ssize_t ret; 837 838 if (count == 0) 839 return -EINVAL; 840 if (copy_from_user(kaddr, buf, count)) 841 return -EFAULT; 842 kaddr[count] = '\0'; 843 ret = cd->cache_parse(cd, kaddr, count); 844 if (!ret) 845 ret = count; 846 return ret; 847 } 848 849 static ssize_t cache_slow_downcall(const char __user *buf, 850 size_t count, struct cache_detail *cd) 851 { 852 static char write_buf[8192]; /* protected by queue_io_mutex */ 853 ssize_t ret = -EINVAL; 854 855 if (count >= sizeof(write_buf)) 856 goto out; 857 mutex_lock(&queue_io_mutex); 858 ret = cache_do_downcall(write_buf, buf, count, cd); 859 mutex_unlock(&queue_io_mutex); 860 out: 861 return ret; 862 } 863 864 static ssize_t cache_downcall(struct address_space *mapping, 865 const char __user *buf, 866 size_t count, struct cache_detail *cd) 867 { 868 struct page *page; 869 char *kaddr; 870 ssize_t ret = -ENOMEM; 871 872 if (count >= PAGE_CACHE_SIZE) 873 goto out_slow; 874 875 page = find_or_create_page(mapping, 0, GFP_KERNEL); 876 if (!page) 877 goto out_slow; 878 879 kaddr = kmap(page); 880 ret = cache_do_downcall(kaddr, buf, count, cd); 881 kunmap(page); 882 unlock_page(page); 883 page_cache_release(page); 884 return ret; 885 out_slow: 886 return cache_slow_downcall(buf, count, cd); 887 } 888 889 static ssize_t cache_write(struct file *filp, const char __user *buf, 890 size_t count, loff_t *ppos, 891 struct cache_detail *cd) 892 { 893 struct address_space *mapping = filp->f_mapping; 894 struct inode *inode = file_inode(filp); 895 ssize_t ret = -EINVAL; 896 897 if (!cd->cache_parse) 898 goto out; 899 900 mutex_lock(&inode->i_mutex); 901 ret = cache_downcall(mapping, buf, count, cd); 902 mutex_unlock(&inode->i_mutex); 903 out: 904 return ret; 905 } 906 907 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 908 909 static unsigned int cache_poll(struct file *filp, poll_table *wait, 910 struct cache_detail *cd) 911 { 912 unsigned int mask; 913 struct cache_reader *rp = filp->private_data; 914 struct cache_queue *cq; 915 916 poll_wait(filp, &queue_wait, wait); 917 918 /* alway allow write */ 919 mask = POLLOUT | POLLWRNORM; 920 921 if (!rp) 922 return mask; 923 924 spin_lock(&queue_lock); 925 926 for (cq= &rp->q; &cq->list != &cd->queue; 927 cq = list_entry(cq->list.next, struct cache_queue, list)) 928 if (!cq->reader) { 929 mask |= POLLIN | POLLRDNORM; 930 break; 931 } 932 spin_unlock(&queue_lock); 933 return mask; 934 } 935 936 static int cache_ioctl(struct inode *ino, struct file *filp, 937 unsigned int cmd, unsigned long arg, 938 struct cache_detail *cd) 939 { 940 int len = 0; 941 struct cache_reader *rp = filp->private_data; 942 struct cache_queue *cq; 943 944 if (cmd != FIONREAD || !rp) 945 return -EINVAL; 946 947 spin_lock(&queue_lock); 948 949 /* only find the length remaining in current request, 950 * or the length of the next request 951 */ 952 for (cq= &rp->q; &cq->list != &cd->queue; 953 cq = list_entry(cq->list.next, struct cache_queue, list)) 954 if (!cq->reader) { 955 struct cache_request *cr = 956 container_of(cq, struct cache_request, q); 957 len = cr->len - rp->offset; 958 break; 959 } 960 spin_unlock(&queue_lock); 961 962 return put_user(len, (int __user *)arg); 963 } 964 965 static int cache_open(struct inode *inode, struct file *filp, 966 struct cache_detail *cd) 967 { 968 struct cache_reader *rp = NULL; 969 970 if (!cd || !try_module_get(cd->owner)) 971 return -EACCES; 972 nonseekable_open(inode, filp); 973 if (filp->f_mode & FMODE_READ) { 974 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 975 if (!rp) { 976 module_put(cd->owner); 977 return -ENOMEM; 978 } 979 rp->offset = 0; 980 rp->q.reader = 1; 981 atomic_inc(&cd->readers); 982 spin_lock(&queue_lock); 983 list_add(&rp->q.list, &cd->queue); 984 spin_unlock(&queue_lock); 985 } 986 filp->private_data = rp; 987 return 0; 988 } 989 990 static int cache_release(struct inode *inode, struct file *filp, 991 struct cache_detail *cd) 992 { 993 struct cache_reader *rp = filp->private_data; 994 995 if (rp) { 996 spin_lock(&queue_lock); 997 if (rp->offset) { 998 struct cache_queue *cq; 999 for (cq= &rp->q; &cq->list != &cd->queue; 1000 cq = list_entry(cq->list.next, struct cache_queue, list)) 1001 if (!cq->reader) { 1002 container_of(cq, struct cache_request, q) 1003 ->readers--; 1004 break; 1005 } 1006 rp->offset = 0; 1007 } 1008 list_del(&rp->q.list); 1009 spin_unlock(&queue_lock); 1010 1011 filp->private_data = NULL; 1012 kfree(rp); 1013 1014 cd->last_close = seconds_since_boot(); 1015 atomic_dec(&cd->readers); 1016 } 1017 module_put(cd->owner); 1018 return 0; 1019 } 1020 1021 1022 1023 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1024 { 1025 struct cache_queue *cq, *tmp; 1026 struct cache_request *cr; 1027 struct list_head dequeued; 1028 1029 INIT_LIST_HEAD(&dequeued); 1030 spin_lock(&queue_lock); 1031 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1032 if (!cq->reader) { 1033 cr = container_of(cq, struct cache_request, q); 1034 if (cr->item != ch) 1035 continue; 1036 if (test_bit(CACHE_PENDING, &ch->flags)) 1037 /* Lost a race and it is pending again */ 1038 break; 1039 if (cr->readers != 0) 1040 continue; 1041 list_move(&cr->q.list, &dequeued); 1042 } 1043 spin_unlock(&queue_lock); 1044 while (!list_empty(&dequeued)) { 1045 cr = list_entry(dequeued.next, struct cache_request, q.list); 1046 list_del(&cr->q.list); 1047 cache_put(cr->item, detail); 1048 kfree(cr->buf); 1049 kfree(cr); 1050 } 1051 } 1052 1053 /* 1054 * Support routines for text-based upcalls. 1055 * Fields are separated by spaces. 1056 * Fields are either mangled to quote space tab newline slosh with slosh 1057 * or a hexified with a leading \x 1058 * Record is terminated with newline. 1059 * 1060 */ 1061 1062 void qword_add(char **bpp, int *lp, char *str) 1063 { 1064 char *bp = *bpp; 1065 int len = *lp; 1066 int ret; 1067 1068 if (len < 0) return; 1069 1070 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1071 if (ret >= len) { 1072 bp += len; 1073 len = -1; 1074 } else { 1075 bp += ret; 1076 len -= ret; 1077 *bp++ = ' '; 1078 len--; 1079 } 1080 *bpp = bp; 1081 *lp = len; 1082 } 1083 EXPORT_SYMBOL_GPL(qword_add); 1084 1085 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1086 { 1087 char *bp = *bpp; 1088 int len = *lp; 1089 1090 if (len < 0) return; 1091 1092 if (len > 2) { 1093 *bp++ = '\\'; 1094 *bp++ = 'x'; 1095 len -= 2; 1096 while (blen && len >= 2) { 1097 bp = hex_byte_pack(bp, *buf++); 1098 len -= 2; 1099 blen--; 1100 } 1101 } 1102 if (blen || len<1) len = -1; 1103 else { 1104 *bp++ = ' '; 1105 len--; 1106 } 1107 *bpp = bp; 1108 *lp = len; 1109 } 1110 EXPORT_SYMBOL_GPL(qword_addhex); 1111 1112 static void warn_no_listener(struct cache_detail *detail) 1113 { 1114 if (detail->last_warn != detail->last_close) { 1115 detail->last_warn = detail->last_close; 1116 if (detail->warn_no_listener) 1117 detail->warn_no_listener(detail, detail->last_close != 0); 1118 } 1119 } 1120 1121 static bool cache_listeners_exist(struct cache_detail *detail) 1122 { 1123 if (atomic_read(&detail->readers)) 1124 return true; 1125 if (detail->last_close == 0) 1126 /* This cache was never opened */ 1127 return false; 1128 if (detail->last_close < seconds_since_boot() - 30) 1129 /* 1130 * We allow for the possibility that someone might 1131 * restart a userspace daemon without restarting the 1132 * server; but after 30 seconds, we give up. 1133 */ 1134 return false; 1135 return true; 1136 } 1137 1138 /* 1139 * register an upcall request to user-space and queue it up for read() by the 1140 * upcall daemon. 1141 * 1142 * Each request is at most one page long. 1143 */ 1144 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1145 { 1146 1147 char *buf; 1148 struct cache_request *crq; 1149 int ret = 0; 1150 1151 if (!detail->cache_request) 1152 return -EINVAL; 1153 1154 if (!cache_listeners_exist(detail)) { 1155 warn_no_listener(detail); 1156 return -EINVAL; 1157 } 1158 if (test_bit(CACHE_CLEANED, &h->flags)) 1159 /* Too late to make an upcall */ 1160 return -EAGAIN; 1161 1162 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1163 if (!buf) 1164 return -EAGAIN; 1165 1166 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1167 if (!crq) { 1168 kfree(buf); 1169 return -EAGAIN; 1170 } 1171 1172 crq->q.reader = 0; 1173 crq->item = cache_get(h); 1174 crq->buf = buf; 1175 crq->len = 0; 1176 crq->readers = 0; 1177 spin_lock(&queue_lock); 1178 if (test_bit(CACHE_PENDING, &h->flags)) 1179 list_add_tail(&crq->q.list, &detail->queue); 1180 else 1181 /* Lost a race, no longer PENDING, so don't enqueue */ 1182 ret = -EAGAIN; 1183 spin_unlock(&queue_lock); 1184 wake_up(&queue_wait); 1185 if (ret == -EAGAIN) { 1186 kfree(buf); 1187 kfree(crq); 1188 } 1189 return ret; 1190 } 1191 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1192 1193 /* 1194 * parse a message from user-space and pass it 1195 * to an appropriate cache 1196 * Messages are, like requests, separated into fields by 1197 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1198 * 1199 * Message is 1200 * reply cachename expiry key ... content.... 1201 * 1202 * key and content are both parsed by cache 1203 */ 1204 1205 int qword_get(char **bpp, char *dest, int bufsize) 1206 { 1207 /* return bytes copied, or -1 on error */ 1208 char *bp = *bpp; 1209 int len = 0; 1210 1211 while (*bp == ' ') bp++; 1212 1213 if (bp[0] == '\\' && bp[1] == 'x') { 1214 /* HEX STRING */ 1215 bp += 2; 1216 while (len < bufsize) { 1217 int h, l; 1218 1219 h = hex_to_bin(bp[0]); 1220 if (h < 0) 1221 break; 1222 1223 l = hex_to_bin(bp[1]); 1224 if (l < 0) 1225 break; 1226 1227 *dest++ = (h << 4) | l; 1228 bp += 2; 1229 len++; 1230 } 1231 } else { 1232 /* text with \nnn octal quoting */ 1233 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1234 if (*bp == '\\' && 1235 isodigit(bp[1]) && (bp[1] <= '3') && 1236 isodigit(bp[2]) && 1237 isodigit(bp[3])) { 1238 int byte = (*++bp -'0'); 1239 bp++; 1240 byte = (byte << 3) | (*bp++ - '0'); 1241 byte = (byte << 3) | (*bp++ - '0'); 1242 *dest++ = byte; 1243 len++; 1244 } else { 1245 *dest++ = *bp++; 1246 len++; 1247 } 1248 } 1249 } 1250 1251 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1252 return -1; 1253 while (*bp == ' ') bp++; 1254 *bpp = bp; 1255 *dest = '\0'; 1256 return len; 1257 } 1258 EXPORT_SYMBOL_GPL(qword_get); 1259 1260 1261 /* 1262 * support /proc/sunrpc/cache/$CACHENAME/content 1263 * as a seqfile. 1264 * We call ->cache_show passing NULL for the item to 1265 * get a header, then pass each real item in the cache 1266 */ 1267 1268 void *cache_seq_start(struct seq_file *m, loff_t *pos) 1269 __acquires(cd->hash_lock) 1270 { 1271 loff_t n = *pos; 1272 unsigned int hash, entry; 1273 struct cache_head *ch; 1274 struct cache_detail *cd = m->private; 1275 1276 read_lock(&cd->hash_lock); 1277 if (!n--) 1278 return SEQ_START_TOKEN; 1279 hash = n >> 32; 1280 entry = n & ((1LL<<32) - 1); 1281 1282 hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list) 1283 if (!entry--) 1284 return ch; 1285 n &= ~((1LL<<32) - 1); 1286 do { 1287 hash++; 1288 n += 1LL<<32; 1289 } while(hash < cd->hash_size && 1290 hlist_empty(&cd->hash_table[hash])); 1291 if (hash >= cd->hash_size) 1292 return NULL; 1293 *pos = n+1; 1294 return hlist_entry_safe(cd->hash_table[hash].first, 1295 struct cache_head, cache_list); 1296 } 1297 EXPORT_SYMBOL_GPL(cache_seq_start); 1298 1299 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1300 { 1301 struct cache_head *ch = p; 1302 int hash = (*pos >> 32); 1303 struct cache_detail *cd = m->private; 1304 1305 if (p == SEQ_START_TOKEN) 1306 hash = 0; 1307 else if (ch->cache_list.next == NULL) { 1308 hash++; 1309 *pos += 1LL<<32; 1310 } else { 1311 ++*pos; 1312 return hlist_entry_safe(ch->cache_list.next, 1313 struct cache_head, cache_list); 1314 } 1315 *pos &= ~((1LL<<32) - 1); 1316 while (hash < cd->hash_size && 1317 hlist_empty(&cd->hash_table[hash])) { 1318 hash++; 1319 *pos += 1LL<<32; 1320 } 1321 if (hash >= cd->hash_size) 1322 return NULL; 1323 ++*pos; 1324 return hlist_entry_safe(cd->hash_table[hash].first, 1325 struct cache_head, cache_list); 1326 } 1327 EXPORT_SYMBOL_GPL(cache_seq_next); 1328 1329 void cache_seq_stop(struct seq_file *m, void *p) 1330 __releases(cd->hash_lock) 1331 { 1332 struct cache_detail *cd = m->private; 1333 read_unlock(&cd->hash_lock); 1334 } 1335 EXPORT_SYMBOL_GPL(cache_seq_stop); 1336 1337 static int c_show(struct seq_file *m, void *p) 1338 { 1339 struct cache_head *cp = p; 1340 struct cache_detail *cd = m->private; 1341 1342 if (p == SEQ_START_TOKEN) 1343 return cd->cache_show(m, cd, NULL); 1344 1345 ifdebug(CACHE) 1346 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1347 convert_to_wallclock(cp->expiry_time), 1348 atomic_read(&cp->ref.refcount), cp->flags); 1349 cache_get(cp); 1350 if (cache_check(cd, cp, NULL)) 1351 /* cache_check does a cache_put on failure */ 1352 seq_printf(m, "# "); 1353 else { 1354 if (cache_is_expired(cd, cp)) 1355 seq_printf(m, "# "); 1356 cache_put(cp, cd); 1357 } 1358 1359 return cd->cache_show(m, cd, cp); 1360 } 1361 1362 static const struct seq_operations cache_content_op = { 1363 .start = cache_seq_start, 1364 .next = cache_seq_next, 1365 .stop = cache_seq_stop, 1366 .show = c_show, 1367 }; 1368 1369 static int content_open(struct inode *inode, struct file *file, 1370 struct cache_detail *cd) 1371 { 1372 struct seq_file *seq; 1373 int err; 1374 1375 if (!cd || !try_module_get(cd->owner)) 1376 return -EACCES; 1377 1378 err = seq_open(file, &cache_content_op); 1379 if (err) { 1380 module_put(cd->owner); 1381 return err; 1382 } 1383 1384 seq = file->private_data; 1385 seq->private = cd; 1386 return 0; 1387 } 1388 1389 static int content_release(struct inode *inode, struct file *file, 1390 struct cache_detail *cd) 1391 { 1392 int ret = seq_release(inode, file); 1393 module_put(cd->owner); 1394 return ret; 1395 } 1396 1397 static int open_flush(struct inode *inode, struct file *file, 1398 struct cache_detail *cd) 1399 { 1400 if (!cd || !try_module_get(cd->owner)) 1401 return -EACCES; 1402 return nonseekable_open(inode, file); 1403 } 1404 1405 static int release_flush(struct inode *inode, struct file *file, 1406 struct cache_detail *cd) 1407 { 1408 module_put(cd->owner); 1409 return 0; 1410 } 1411 1412 static ssize_t read_flush(struct file *file, char __user *buf, 1413 size_t count, loff_t *ppos, 1414 struct cache_detail *cd) 1415 { 1416 char tbuf[22]; 1417 unsigned long p = *ppos; 1418 size_t len; 1419 1420 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time)); 1421 len = strlen(tbuf); 1422 if (p >= len) 1423 return 0; 1424 len -= p; 1425 if (len > count) 1426 len = count; 1427 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1428 return -EFAULT; 1429 *ppos += len; 1430 return len; 1431 } 1432 1433 static ssize_t write_flush(struct file *file, const char __user *buf, 1434 size_t count, loff_t *ppos, 1435 struct cache_detail *cd) 1436 { 1437 char tbuf[20]; 1438 char *bp, *ep; 1439 1440 if (*ppos || count > sizeof(tbuf)-1) 1441 return -EINVAL; 1442 if (copy_from_user(tbuf, buf, count)) 1443 return -EFAULT; 1444 tbuf[count] = 0; 1445 simple_strtoul(tbuf, &ep, 0); 1446 if (*ep && *ep != '\n') 1447 return -EINVAL; 1448 1449 bp = tbuf; 1450 cd->flush_time = get_expiry(&bp); 1451 cd->nextcheck = seconds_since_boot(); 1452 cache_flush(); 1453 1454 *ppos += count; 1455 return count; 1456 } 1457 1458 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1459 size_t count, loff_t *ppos) 1460 { 1461 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1462 1463 return cache_read(filp, buf, count, ppos, cd); 1464 } 1465 1466 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1467 size_t count, loff_t *ppos) 1468 { 1469 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1470 1471 return cache_write(filp, buf, count, ppos, cd); 1472 } 1473 1474 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1475 { 1476 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1477 1478 return cache_poll(filp, wait, cd); 1479 } 1480 1481 static long cache_ioctl_procfs(struct file *filp, 1482 unsigned int cmd, unsigned long arg) 1483 { 1484 struct inode *inode = file_inode(filp); 1485 struct cache_detail *cd = PDE_DATA(inode); 1486 1487 return cache_ioctl(inode, filp, cmd, arg, cd); 1488 } 1489 1490 static int cache_open_procfs(struct inode *inode, struct file *filp) 1491 { 1492 struct cache_detail *cd = PDE_DATA(inode); 1493 1494 return cache_open(inode, filp, cd); 1495 } 1496 1497 static int cache_release_procfs(struct inode *inode, struct file *filp) 1498 { 1499 struct cache_detail *cd = PDE_DATA(inode); 1500 1501 return cache_release(inode, filp, cd); 1502 } 1503 1504 static const struct file_operations cache_file_operations_procfs = { 1505 .owner = THIS_MODULE, 1506 .llseek = no_llseek, 1507 .read = cache_read_procfs, 1508 .write = cache_write_procfs, 1509 .poll = cache_poll_procfs, 1510 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1511 .open = cache_open_procfs, 1512 .release = cache_release_procfs, 1513 }; 1514 1515 static int content_open_procfs(struct inode *inode, struct file *filp) 1516 { 1517 struct cache_detail *cd = PDE_DATA(inode); 1518 1519 return content_open(inode, filp, cd); 1520 } 1521 1522 static int content_release_procfs(struct inode *inode, struct file *filp) 1523 { 1524 struct cache_detail *cd = PDE_DATA(inode); 1525 1526 return content_release(inode, filp, cd); 1527 } 1528 1529 static const struct file_operations content_file_operations_procfs = { 1530 .open = content_open_procfs, 1531 .read = seq_read, 1532 .llseek = seq_lseek, 1533 .release = content_release_procfs, 1534 }; 1535 1536 static int open_flush_procfs(struct inode *inode, struct file *filp) 1537 { 1538 struct cache_detail *cd = PDE_DATA(inode); 1539 1540 return open_flush(inode, filp, cd); 1541 } 1542 1543 static int release_flush_procfs(struct inode *inode, struct file *filp) 1544 { 1545 struct cache_detail *cd = PDE_DATA(inode); 1546 1547 return release_flush(inode, filp, cd); 1548 } 1549 1550 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1551 size_t count, loff_t *ppos) 1552 { 1553 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1554 1555 return read_flush(filp, buf, count, ppos, cd); 1556 } 1557 1558 static ssize_t write_flush_procfs(struct file *filp, 1559 const char __user *buf, 1560 size_t count, loff_t *ppos) 1561 { 1562 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1563 1564 return write_flush(filp, buf, count, ppos, cd); 1565 } 1566 1567 static const struct file_operations cache_flush_operations_procfs = { 1568 .open = open_flush_procfs, 1569 .read = read_flush_procfs, 1570 .write = write_flush_procfs, 1571 .release = release_flush_procfs, 1572 .llseek = no_llseek, 1573 }; 1574 1575 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1576 { 1577 struct sunrpc_net *sn; 1578 1579 if (cd->u.procfs.proc_ent == NULL) 1580 return; 1581 if (cd->u.procfs.flush_ent) 1582 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1583 if (cd->u.procfs.channel_ent) 1584 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1585 if (cd->u.procfs.content_ent) 1586 remove_proc_entry("content", cd->u.procfs.proc_ent); 1587 cd->u.procfs.proc_ent = NULL; 1588 sn = net_generic(net, sunrpc_net_id); 1589 remove_proc_entry(cd->name, sn->proc_net_rpc); 1590 } 1591 1592 #ifdef CONFIG_PROC_FS 1593 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1594 { 1595 struct proc_dir_entry *p; 1596 struct sunrpc_net *sn; 1597 1598 sn = net_generic(net, sunrpc_net_id); 1599 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1600 if (cd->u.procfs.proc_ent == NULL) 1601 goto out_nomem; 1602 cd->u.procfs.channel_ent = NULL; 1603 cd->u.procfs.content_ent = NULL; 1604 1605 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1606 cd->u.procfs.proc_ent, 1607 &cache_flush_operations_procfs, cd); 1608 cd->u.procfs.flush_ent = p; 1609 if (p == NULL) 1610 goto out_nomem; 1611 1612 if (cd->cache_request || cd->cache_parse) { 1613 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1614 cd->u.procfs.proc_ent, 1615 &cache_file_operations_procfs, cd); 1616 cd->u.procfs.channel_ent = p; 1617 if (p == NULL) 1618 goto out_nomem; 1619 } 1620 if (cd->cache_show) { 1621 p = proc_create_data("content", S_IFREG|S_IRUSR, 1622 cd->u.procfs.proc_ent, 1623 &content_file_operations_procfs, cd); 1624 cd->u.procfs.content_ent = p; 1625 if (p == NULL) 1626 goto out_nomem; 1627 } 1628 return 0; 1629 out_nomem: 1630 remove_cache_proc_entries(cd, net); 1631 return -ENOMEM; 1632 } 1633 #else /* CONFIG_PROC_FS */ 1634 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1635 { 1636 return 0; 1637 } 1638 #endif 1639 1640 void __init cache_initialize(void) 1641 { 1642 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1643 } 1644 1645 int cache_register_net(struct cache_detail *cd, struct net *net) 1646 { 1647 int ret; 1648 1649 sunrpc_init_cache_detail(cd); 1650 ret = create_cache_proc_entries(cd, net); 1651 if (ret) 1652 sunrpc_destroy_cache_detail(cd); 1653 return ret; 1654 } 1655 EXPORT_SYMBOL_GPL(cache_register_net); 1656 1657 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1658 { 1659 remove_cache_proc_entries(cd, net); 1660 sunrpc_destroy_cache_detail(cd); 1661 } 1662 EXPORT_SYMBOL_GPL(cache_unregister_net); 1663 1664 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1665 { 1666 struct cache_detail *cd; 1667 int i; 1668 1669 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1670 if (cd == NULL) 1671 return ERR_PTR(-ENOMEM); 1672 1673 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head), 1674 GFP_KERNEL); 1675 if (cd->hash_table == NULL) { 1676 kfree(cd); 1677 return ERR_PTR(-ENOMEM); 1678 } 1679 1680 for (i = 0; i < cd->hash_size; i++) 1681 INIT_HLIST_HEAD(&cd->hash_table[i]); 1682 cd->net = net; 1683 return cd; 1684 } 1685 EXPORT_SYMBOL_GPL(cache_create_net); 1686 1687 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1688 { 1689 kfree(cd->hash_table); 1690 kfree(cd); 1691 } 1692 EXPORT_SYMBOL_GPL(cache_destroy_net); 1693 1694 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1695 size_t count, loff_t *ppos) 1696 { 1697 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1698 1699 return cache_read(filp, buf, count, ppos, cd); 1700 } 1701 1702 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1703 size_t count, loff_t *ppos) 1704 { 1705 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1706 1707 return cache_write(filp, buf, count, ppos, cd); 1708 } 1709 1710 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1711 { 1712 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1713 1714 return cache_poll(filp, wait, cd); 1715 } 1716 1717 static long cache_ioctl_pipefs(struct file *filp, 1718 unsigned int cmd, unsigned long arg) 1719 { 1720 struct inode *inode = file_inode(filp); 1721 struct cache_detail *cd = RPC_I(inode)->private; 1722 1723 return cache_ioctl(inode, filp, cmd, arg, cd); 1724 } 1725 1726 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1727 { 1728 struct cache_detail *cd = RPC_I(inode)->private; 1729 1730 return cache_open(inode, filp, cd); 1731 } 1732 1733 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1734 { 1735 struct cache_detail *cd = RPC_I(inode)->private; 1736 1737 return cache_release(inode, filp, cd); 1738 } 1739 1740 const struct file_operations cache_file_operations_pipefs = { 1741 .owner = THIS_MODULE, 1742 .llseek = no_llseek, 1743 .read = cache_read_pipefs, 1744 .write = cache_write_pipefs, 1745 .poll = cache_poll_pipefs, 1746 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1747 .open = cache_open_pipefs, 1748 .release = cache_release_pipefs, 1749 }; 1750 1751 static int content_open_pipefs(struct inode *inode, struct file *filp) 1752 { 1753 struct cache_detail *cd = RPC_I(inode)->private; 1754 1755 return content_open(inode, filp, cd); 1756 } 1757 1758 static int content_release_pipefs(struct inode *inode, struct file *filp) 1759 { 1760 struct cache_detail *cd = RPC_I(inode)->private; 1761 1762 return content_release(inode, filp, cd); 1763 } 1764 1765 const struct file_operations content_file_operations_pipefs = { 1766 .open = content_open_pipefs, 1767 .read = seq_read, 1768 .llseek = seq_lseek, 1769 .release = content_release_pipefs, 1770 }; 1771 1772 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1773 { 1774 struct cache_detail *cd = RPC_I(inode)->private; 1775 1776 return open_flush(inode, filp, cd); 1777 } 1778 1779 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1780 { 1781 struct cache_detail *cd = RPC_I(inode)->private; 1782 1783 return release_flush(inode, filp, cd); 1784 } 1785 1786 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1787 size_t count, loff_t *ppos) 1788 { 1789 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1790 1791 return read_flush(filp, buf, count, ppos, cd); 1792 } 1793 1794 static ssize_t write_flush_pipefs(struct file *filp, 1795 const char __user *buf, 1796 size_t count, loff_t *ppos) 1797 { 1798 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1799 1800 return write_flush(filp, buf, count, ppos, cd); 1801 } 1802 1803 const struct file_operations cache_flush_operations_pipefs = { 1804 .open = open_flush_pipefs, 1805 .read = read_flush_pipefs, 1806 .write = write_flush_pipefs, 1807 .release = release_flush_pipefs, 1808 .llseek = no_llseek, 1809 }; 1810 1811 int sunrpc_cache_register_pipefs(struct dentry *parent, 1812 const char *name, umode_t umode, 1813 struct cache_detail *cd) 1814 { 1815 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1816 if (IS_ERR(dir)) 1817 return PTR_ERR(dir); 1818 cd->u.pipefs.dir = dir; 1819 return 0; 1820 } 1821 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1822 1823 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1824 { 1825 rpc_remove_cache_dir(cd->u.pipefs.dir); 1826 cd->u.pipefs.dir = NULL; 1827 } 1828 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1829 1830