xref: /openbmc/linux/net/sunrpc/cache.c (revision b627b4ed)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	/* must fully initialise 'new', else
75 	 * we might get lose if we need to
76 	 * cache_put it soon.
77 	 */
78 	cache_init(new);
79 	detail->init(new, key);
80 
81 	write_lock(&detail->hash_lock);
82 
83 	/* check if entry appeared while we slept */
84 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 		struct cache_head *tmp = *hp;
86 		if (detail->match(tmp, key)) {
87 			cache_get(tmp);
88 			write_unlock(&detail->hash_lock);
89 			cache_put(new, detail);
90 			return tmp;
91 		}
92 	}
93 	new->next = *head;
94 	*head = new;
95 	detail->entries++;
96 	cache_get(new);
97 	write_unlock(&detail->hash_lock);
98 
99 	return new;
100 }
101 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
102 
103 
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105 
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108 	head->expiry_time = expiry;
109 	head->last_refresh = get_seconds();
110 	return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112 
113 static void cache_fresh_unlocked(struct cache_head *head,
114 			struct cache_detail *detail, int new)
115 {
116 	if (new)
117 		cache_revisit_request(head);
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		queue_loose(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 	int is_new;
134 
135 	if (!test_bit(CACHE_VALID, &old->flags)) {
136 		write_lock(&detail->hash_lock);
137 		if (!test_bit(CACHE_VALID, &old->flags)) {
138 			if (test_bit(CACHE_NEGATIVE, &new->flags))
139 				set_bit(CACHE_NEGATIVE, &old->flags);
140 			else
141 				detail->update(old, new);
142 			is_new = cache_fresh_locked(old, new->expiry_time);
143 			write_unlock(&detail->hash_lock);
144 			cache_fresh_unlocked(old, detail, is_new);
145 			return old;
146 		}
147 		write_unlock(&detail->hash_lock);
148 	}
149 	/* We need to insert a new entry */
150 	tmp = detail->alloc();
151 	if (!tmp) {
152 		cache_put(old, detail);
153 		return NULL;
154 	}
155 	cache_init(tmp);
156 	detail->init(tmp, old);
157 	head = &detail->hash_table[hash];
158 
159 	write_lock(&detail->hash_lock);
160 	if (test_bit(CACHE_NEGATIVE, &new->flags))
161 		set_bit(CACHE_NEGATIVE, &tmp->flags);
162 	else
163 		detail->update(tmp, new);
164 	tmp->next = *head;
165 	*head = tmp;
166 	detail->entries++;
167 	cache_get(tmp);
168 	is_new = cache_fresh_locked(tmp, new->expiry_time);
169 	cache_fresh_locked(old, 0);
170 	write_unlock(&detail->hash_lock);
171 	cache_fresh_unlocked(tmp, detail, is_new);
172 	cache_fresh_unlocked(old, detail, 0);
173 	cache_put(old, detail);
174 	return tmp;
175 }
176 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
177 
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192 		    struct cache_head *h, struct cache_req *rqstp)
193 {
194 	int rv;
195 	long refresh_age, age;
196 
197 	/* First decide return status as best we can */
198 	if (!test_bit(CACHE_VALID, &h->flags) ||
199 	    h->expiry_time < get_seconds())
200 		rv = -EAGAIN;
201 	else if (detail->flush_time > h->last_refresh)
202 		rv = -EAGAIN;
203 	else {
204 		/* entry is valid */
205 		if (test_bit(CACHE_NEGATIVE, &h->flags))
206 			rv = -ENOENT;
207 		else rv = 0;
208 	}
209 
210 	/* now see if we want to start an upcall */
211 	refresh_age = (h->expiry_time - h->last_refresh);
212 	age = get_seconds() - h->last_refresh;
213 
214 	if (rqstp == NULL) {
215 		if (rv == -EAGAIN)
216 			rv = -ENOENT;
217 	} else if (rv == -EAGAIN || age > refresh_age/2) {
218 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219 				refresh_age, age);
220 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221 			switch (cache_make_upcall(detail, h)) {
222 			case -EINVAL:
223 				clear_bit(CACHE_PENDING, &h->flags);
224 				if (rv == -EAGAIN) {
225 					set_bit(CACHE_NEGATIVE, &h->flags);
226 					cache_fresh_unlocked(h, detail,
227 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228 					rv = -ENOENT;
229 				}
230 				break;
231 
232 			case -EAGAIN:
233 				clear_bit(CACHE_PENDING, &h->flags);
234 				cache_revisit_request(h);
235 				break;
236 			}
237 		}
238 	}
239 
240 	if (rv == -EAGAIN)
241 		if (cache_defer_req(rqstp, h) != 0)
242 			rv = -ETIMEDOUT;
243 
244 	if (rv)
245 		cache_put(h, detail);
246 	return rv;
247 }
248 EXPORT_SYMBOL_GPL(cache_check);
249 
250 /*
251  * caches need to be periodically cleaned.
252  * For this we maintain a list of cache_detail and
253  * a current pointer into that list and into the table
254  * for that entry.
255  *
256  * Each time clean_cache is called it finds the next non-empty entry
257  * in the current table and walks the list in that entry
258  * looking for entries that can be removed.
259  *
260  * An entry gets removed if:
261  * - The expiry is before current time
262  * - The last_refresh time is before the flush_time for that cache
263  *
264  * later we might drop old entries with non-NEVER expiry if that table
265  * is getting 'full' for some definition of 'full'
266  *
267  * The question of "how often to scan a table" is an interesting one
268  * and is answered in part by the use of the "nextcheck" field in the
269  * cache_detail.
270  * When a scan of a table begins, the nextcheck field is set to a time
271  * that is well into the future.
272  * While scanning, if an expiry time is found that is earlier than the
273  * current nextcheck time, nextcheck is set to that expiry time.
274  * If the flush_time is ever set to a time earlier than the nextcheck
275  * time, the nextcheck time is then set to that flush_time.
276  *
277  * A table is then only scanned if the current time is at least
278  * the nextcheck time.
279  *
280  */
281 
282 static LIST_HEAD(cache_list);
283 static DEFINE_SPINLOCK(cache_list_lock);
284 static struct cache_detail *current_detail;
285 static int current_index;
286 
287 static const struct file_operations cache_file_operations;
288 static const struct file_operations content_file_operations;
289 static const struct file_operations cache_flush_operations;
290 
291 static void do_cache_clean(struct work_struct *work);
292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293 
294 static void remove_cache_proc_entries(struct cache_detail *cd)
295 {
296 	if (cd->proc_ent == NULL)
297 		return;
298 	if (cd->flush_ent)
299 		remove_proc_entry("flush", cd->proc_ent);
300 	if (cd->channel_ent)
301 		remove_proc_entry("channel", cd->proc_ent);
302 	if (cd->content_ent)
303 		remove_proc_entry("content", cd->proc_ent);
304 	cd->proc_ent = NULL;
305 	remove_proc_entry(cd->name, proc_net_rpc);
306 }
307 
308 #ifdef CONFIG_PROC_FS
309 static int create_cache_proc_entries(struct cache_detail *cd)
310 {
311 	struct proc_dir_entry *p;
312 
313 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314 	if (cd->proc_ent == NULL)
315 		goto out_nomem;
316 	cd->channel_ent = cd->content_ent = NULL;
317 
318 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
319 			     cd->proc_ent, &cache_flush_operations, cd);
320 	cd->flush_ent = p;
321 	if (p == NULL)
322 		goto out_nomem;
323 
324 	if (cd->cache_request || cd->cache_parse) {
325 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
326 				     cd->proc_ent, &cache_file_operations, cd);
327 		cd->channel_ent = p;
328 		if (p == NULL)
329 			goto out_nomem;
330 	}
331 	if (cd->cache_show) {
332 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
333 				cd->proc_ent, &content_file_operations, cd);
334 		cd->content_ent = p;
335 		if (p == NULL)
336 			goto out_nomem;
337 	}
338 	return 0;
339 out_nomem:
340 	remove_cache_proc_entries(cd);
341 	return -ENOMEM;
342 }
343 #else /* CONFIG_PROC_FS */
344 static int create_cache_proc_entries(struct cache_detail *cd)
345 {
346 	return 0;
347 }
348 #endif
349 
350 int cache_register(struct cache_detail *cd)
351 {
352 	int ret;
353 
354 	ret = create_cache_proc_entries(cd);
355 	if (ret)
356 		return ret;
357 	rwlock_init(&cd->hash_lock);
358 	INIT_LIST_HEAD(&cd->queue);
359 	spin_lock(&cache_list_lock);
360 	cd->nextcheck = 0;
361 	cd->entries = 0;
362 	atomic_set(&cd->readers, 0);
363 	cd->last_close = 0;
364 	cd->last_warn = -1;
365 	list_add(&cd->others, &cache_list);
366 	spin_unlock(&cache_list_lock);
367 
368 	/* start the cleaning process */
369 	schedule_delayed_work(&cache_cleaner, 0);
370 	return 0;
371 }
372 EXPORT_SYMBOL_GPL(cache_register);
373 
374 void cache_unregister(struct cache_detail *cd)
375 {
376 	cache_purge(cd);
377 	spin_lock(&cache_list_lock);
378 	write_lock(&cd->hash_lock);
379 	if (cd->entries || atomic_read(&cd->inuse)) {
380 		write_unlock(&cd->hash_lock);
381 		spin_unlock(&cache_list_lock);
382 		goto out;
383 	}
384 	if (current_detail == cd)
385 		current_detail = NULL;
386 	list_del_init(&cd->others);
387 	write_unlock(&cd->hash_lock);
388 	spin_unlock(&cache_list_lock);
389 	remove_cache_proc_entries(cd);
390 	if (list_empty(&cache_list)) {
391 		/* module must be being unloaded so its safe to kill the worker */
392 		cancel_delayed_work_sync(&cache_cleaner);
393 	}
394 	return;
395 out:
396 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
397 }
398 EXPORT_SYMBOL_GPL(cache_unregister);
399 
400 /* clean cache tries to find something to clean
401  * and cleans it.
402  * It returns 1 if it cleaned something,
403  *            0 if it didn't find anything this time
404  *           -1 if it fell off the end of the list.
405  */
406 static int cache_clean(void)
407 {
408 	int rv = 0;
409 	struct list_head *next;
410 
411 	spin_lock(&cache_list_lock);
412 
413 	/* find a suitable table if we don't already have one */
414 	while (current_detail == NULL ||
415 	    current_index >= current_detail->hash_size) {
416 		if (current_detail)
417 			next = current_detail->others.next;
418 		else
419 			next = cache_list.next;
420 		if (next == &cache_list) {
421 			current_detail = NULL;
422 			spin_unlock(&cache_list_lock);
423 			return -1;
424 		}
425 		current_detail = list_entry(next, struct cache_detail, others);
426 		if (current_detail->nextcheck > get_seconds())
427 			current_index = current_detail->hash_size;
428 		else {
429 			current_index = 0;
430 			current_detail->nextcheck = get_seconds()+30*60;
431 		}
432 	}
433 
434 	/* find a non-empty bucket in the table */
435 	while (current_detail &&
436 	       current_index < current_detail->hash_size &&
437 	       current_detail->hash_table[current_index] == NULL)
438 		current_index++;
439 
440 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
441 
442 	if (current_detail && current_index < current_detail->hash_size) {
443 		struct cache_head *ch, **cp;
444 		struct cache_detail *d;
445 
446 		write_lock(&current_detail->hash_lock);
447 
448 		/* Ok, now to clean this strand */
449 
450 		cp = & current_detail->hash_table[current_index];
451 		ch = *cp;
452 		for (; ch; cp= & ch->next, ch= *cp) {
453 			if (current_detail->nextcheck > ch->expiry_time)
454 				current_detail->nextcheck = ch->expiry_time+1;
455 			if (ch->expiry_time >= get_seconds()
456 			    && ch->last_refresh >= current_detail->flush_time
457 				)
458 				continue;
459 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
460 				queue_loose(current_detail, ch);
461 
462 			if (atomic_read(&ch->ref.refcount) == 1)
463 				break;
464 		}
465 		if (ch) {
466 			*cp = ch->next;
467 			ch->next = NULL;
468 			current_detail->entries--;
469 			rv = 1;
470 		}
471 		write_unlock(&current_detail->hash_lock);
472 		d = current_detail;
473 		if (!ch)
474 			current_index ++;
475 		spin_unlock(&cache_list_lock);
476 		if (ch)
477 			cache_put(ch, d);
478 	} else
479 		spin_unlock(&cache_list_lock);
480 
481 	return rv;
482 }
483 
484 /*
485  * We want to regularly clean the cache, so we need to schedule some work ...
486  */
487 static void do_cache_clean(struct work_struct *work)
488 {
489 	int delay = 5;
490 	if (cache_clean() == -1)
491 		delay = 30*HZ;
492 
493 	if (list_empty(&cache_list))
494 		delay = 0;
495 
496 	if (delay)
497 		schedule_delayed_work(&cache_cleaner, delay);
498 }
499 
500 
501 /*
502  * Clean all caches promptly.  This just calls cache_clean
503  * repeatedly until we are sure that every cache has had a chance to
504  * be fully cleaned
505  */
506 void cache_flush(void)
507 {
508 	while (cache_clean() != -1)
509 		cond_resched();
510 	while (cache_clean() != -1)
511 		cond_resched();
512 }
513 EXPORT_SYMBOL_GPL(cache_flush);
514 
515 void cache_purge(struct cache_detail *detail)
516 {
517 	detail->flush_time = LONG_MAX;
518 	detail->nextcheck = get_seconds();
519 	cache_flush();
520 	detail->flush_time = 1;
521 }
522 EXPORT_SYMBOL_GPL(cache_purge);
523 
524 
525 /*
526  * Deferral and Revisiting of Requests.
527  *
528  * If a cache lookup finds a pending entry, we
529  * need to defer the request and revisit it later.
530  * All deferred requests are stored in a hash table,
531  * indexed by "struct cache_head *".
532  * As it may be wasteful to store a whole request
533  * structure, we allow the request to provide a
534  * deferred form, which must contain a
535  * 'struct cache_deferred_req'
536  * This cache_deferred_req contains a method to allow
537  * it to be revisited when cache info is available
538  */
539 
540 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
541 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
542 
543 #define	DFR_MAX	300	/* ??? */
544 
545 static DEFINE_SPINLOCK(cache_defer_lock);
546 static LIST_HEAD(cache_defer_list);
547 static struct list_head cache_defer_hash[DFR_HASHSIZE];
548 static int cache_defer_cnt;
549 
550 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
551 {
552 	struct cache_deferred_req *dreq;
553 	int hash = DFR_HASH(item);
554 
555 	if (cache_defer_cnt >= DFR_MAX) {
556 		/* too much in the cache, randomly drop this one,
557 		 * or continue and drop the oldest below
558 		 */
559 		if (net_random()&1)
560 			return -ETIMEDOUT;
561 	}
562 	dreq = req->defer(req);
563 	if (dreq == NULL)
564 		return -ETIMEDOUT;
565 
566 	dreq->item = item;
567 
568 	spin_lock(&cache_defer_lock);
569 
570 	list_add(&dreq->recent, &cache_defer_list);
571 
572 	if (cache_defer_hash[hash].next == NULL)
573 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
574 	list_add(&dreq->hash, &cache_defer_hash[hash]);
575 
576 	/* it is in, now maybe clean up */
577 	dreq = NULL;
578 	if (++cache_defer_cnt > DFR_MAX) {
579 		dreq = list_entry(cache_defer_list.prev,
580 				  struct cache_deferred_req, recent);
581 		list_del(&dreq->recent);
582 		list_del(&dreq->hash);
583 		cache_defer_cnt--;
584 	}
585 	spin_unlock(&cache_defer_lock);
586 
587 	if (dreq) {
588 		/* there was one too many */
589 		dreq->revisit(dreq, 1);
590 	}
591 	if (!test_bit(CACHE_PENDING, &item->flags)) {
592 		/* must have just been validated... */
593 		cache_revisit_request(item);
594 	}
595 	return 0;
596 }
597 
598 static void cache_revisit_request(struct cache_head *item)
599 {
600 	struct cache_deferred_req *dreq;
601 	struct list_head pending;
602 
603 	struct list_head *lp;
604 	int hash = DFR_HASH(item);
605 
606 	INIT_LIST_HEAD(&pending);
607 	spin_lock(&cache_defer_lock);
608 
609 	lp = cache_defer_hash[hash].next;
610 	if (lp) {
611 		while (lp != &cache_defer_hash[hash]) {
612 			dreq = list_entry(lp, struct cache_deferred_req, hash);
613 			lp = lp->next;
614 			if (dreq->item == item) {
615 				list_del(&dreq->hash);
616 				list_move(&dreq->recent, &pending);
617 				cache_defer_cnt--;
618 			}
619 		}
620 	}
621 	spin_unlock(&cache_defer_lock);
622 
623 	while (!list_empty(&pending)) {
624 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
625 		list_del_init(&dreq->recent);
626 		dreq->revisit(dreq, 0);
627 	}
628 }
629 
630 void cache_clean_deferred(void *owner)
631 {
632 	struct cache_deferred_req *dreq, *tmp;
633 	struct list_head pending;
634 
635 
636 	INIT_LIST_HEAD(&pending);
637 	spin_lock(&cache_defer_lock);
638 
639 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
640 		if (dreq->owner == owner) {
641 			list_del(&dreq->hash);
642 			list_move(&dreq->recent, &pending);
643 			cache_defer_cnt--;
644 		}
645 	}
646 	spin_unlock(&cache_defer_lock);
647 
648 	while (!list_empty(&pending)) {
649 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
650 		list_del_init(&dreq->recent);
651 		dreq->revisit(dreq, 1);
652 	}
653 }
654 
655 /*
656  * communicate with user-space
657  *
658  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
659  * On read, you get a full request, or block.
660  * On write, an update request is processed.
661  * Poll works if anything to read, and always allows write.
662  *
663  * Implemented by linked list of requests.  Each open file has
664  * a ->private that also exists in this list.  New requests are added
665  * to the end and may wakeup and preceding readers.
666  * New readers are added to the head.  If, on read, an item is found with
667  * CACHE_UPCALLING clear, we free it from the list.
668  *
669  */
670 
671 static DEFINE_SPINLOCK(queue_lock);
672 static DEFINE_MUTEX(queue_io_mutex);
673 
674 struct cache_queue {
675 	struct list_head	list;
676 	int			reader;	/* if 0, then request */
677 };
678 struct cache_request {
679 	struct cache_queue	q;
680 	struct cache_head	*item;
681 	char			* buf;
682 	int			len;
683 	int			readers;
684 };
685 struct cache_reader {
686 	struct cache_queue	q;
687 	int			offset;	/* if non-0, we have a refcnt on next request */
688 };
689 
690 static ssize_t
691 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
692 {
693 	struct cache_reader *rp = filp->private_data;
694 	struct cache_request *rq;
695 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
696 	int err;
697 
698 	if (count == 0)
699 		return 0;
700 
701 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
702 			      * readers on this file */
703  again:
704 	spin_lock(&queue_lock);
705 	/* need to find next request */
706 	while (rp->q.list.next != &cd->queue &&
707 	       list_entry(rp->q.list.next, struct cache_queue, list)
708 	       ->reader) {
709 		struct list_head *next = rp->q.list.next;
710 		list_move(&rp->q.list, next);
711 	}
712 	if (rp->q.list.next == &cd->queue) {
713 		spin_unlock(&queue_lock);
714 		mutex_unlock(&queue_io_mutex);
715 		BUG_ON(rp->offset);
716 		return 0;
717 	}
718 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
719 	BUG_ON(rq->q.reader);
720 	if (rp->offset == 0)
721 		rq->readers++;
722 	spin_unlock(&queue_lock);
723 
724 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
725 		err = -EAGAIN;
726 		spin_lock(&queue_lock);
727 		list_move(&rp->q.list, &rq->q.list);
728 		spin_unlock(&queue_lock);
729 	} else {
730 		if (rp->offset + count > rq->len)
731 			count = rq->len - rp->offset;
732 		err = -EFAULT;
733 		if (copy_to_user(buf, rq->buf + rp->offset, count))
734 			goto out;
735 		rp->offset += count;
736 		if (rp->offset >= rq->len) {
737 			rp->offset = 0;
738 			spin_lock(&queue_lock);
739 			list_move(&rp->q.list, &rq->q.list);
740 			spin_unlock(&queue_lock);
741 		}
742 		err = 0;
743 	}
744  out:
745 	if (rp->offset == 0) {
746 		/* need to release rq */
747 		spin_lock(&queue_lock);
748 		rq->readers--;
749 		if (rq->readers == 0 &&
750 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
751 			list_del(&rq->q.list);
752 			spin_unlock(&queue_lock);
753 			cache_put(rq->item, cd);
754 			kfree(rq->buf);
755 			kfree(rq);
756 		} else
757 			spin_unlock(&queue_lock);
758 	}
759 	if (err == -EAGAIN)
760 		goto again;
761 	mutex_unlock(&queue_io_mutex);
762 	return err ? err :  count;
763 }
764 
765 static char write_buf[8192]; /* protected by queue_io_mutex */
766 
767 static ssize_t
768 cache_write(struct file *filp, const char __user *buf, size_t count,
769 	    loff_t *ppos)
770 {
771 	int err;
772 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
773 
774 	if (count == 0)
775 		return 0;
776 	if (count >= sizeof(write_buf))
777 		return -EINVAL;
778 
779 	mutex_lock(&queue_io_mutex);
780 
781 	if (copy_from_user(write_buf, buf, count)) {
782 		mutex_unlock(&queue_io_mutex);
783 		return -EFAULT;
784 	}
785 	write_buf[count] = '\0';
786 	if (cd->cache_parse)
787 		err = cd->cache_parse(cd, write_buf, count);
788 	else
789 		err = -EINVAL;
790 
791 	mutex_unlock(&queue_io_mutex);
792 	return err ? err : count;
793 }
794 
795 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
796 
797 static unsigned int
798 cache_poll(struct file *filp, poll_table *wait)
799 {
800 	unsigned int mask;
801 	struct cache_reader *rp = filp->private_data;
802 	struct cache_queue *cq;
803 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
804 
805 	poll_wait(filp, &queue_wait, wait);
806 
807 	/* alway allow write */
808 	mask = POLL_OUT | POLLWRNORM;
809 
810 	if (!rp)
811 		return mask;
812 
813 	spin_lock(&queue_lock);
814 
815 	for (cq= &rp->q; &cq->list != &cd->queue;
816 	     cq = list_entry(cq->list.next, struct cache_queue, list))
817 		if (!cq->reader) {
818 			mask |= POLLIN | POLLRDNORM;
819 			break;
820 		}
821 	spin_unlock(&queue_lock);
822 	return mask;
823 }
824 
825 static int
826 cache_ioctl(struct inode *ino, struct file *filp,
827 	    unsigned int cmd, unsigned long arg)
828 {
829 	int len = 0;
830 	struct cache_reader *rp = filp->private_data;
831 	struct cache_queue *cq;
832 	struct cache_detail *cd = PDE(ino)->data;
833 
834 	if (cmd != FIONREAD || !rp)
835 		return -EINVAL;
836 
837 	spin_lock(&queue_lock);
838 
839 	/* only find the length remaining in current request,
840 	 * or the length of the next request
841 	 */
842 	for (cq= &rp->q; &cq->list != &cd->queue;
843 	     cq = list_entry(cq->list.next, struct cache_queue, list))
844 		if (!cq->reader) {
845 			struct cache_request *cr =
846 				container_of(cq, struct cache_request, q);
847 			len = cr->len - rp->offset;
848 			break;
849 		}
850 	spin_unlock(&queue_lock);
851 
852 	return put_user(len, (int __user *)arg);
853 }
854 
855 static int
856 cache_open(struct inode *inode, struct file *filp)
857 {
858 	struct cache_reader *rp = NULL;
859 
860 	nonseekable_open(inode, filp);
861 	if (filp->f_mode & FMODE_READ) {
862 		struct cache_detail *cd = PDE(inode)->data;
863 
864 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
865 		if (!rp)
866 			return -ENOMEM;
867 		rp->offset = 0;
868 		rp->q.reader = 1;
869 		atomic_inc(&cd->readers);
870 		spin_lock(&queue_lock);
871 		list_add(&rp->q.list, &cd->queue);
872 		spin_unlock(&queue_lock);
873 	}
874 	filp->private_data = rp;
875 	return 0;
876 }
877 
878 static int
879 cache_release(struct inode *inode, struct file *filp)
880 {
881 	struct cache_reader *rp = filp->private_data;
882 	struct cache_detail *cd = PDE(inode)->data;
883 
884 	if (rp) {
885 		spin_lock(&queue_lock);
886 		if (rp->offset) {
887 			struct cache_queue *cq;
888 			for (cq= &rp->q; &cq->list != &cd->queue;
889 			     cq = list_entry(cq->list.next, struct cache_queue, list))
890 				if (!cq->reader) {
891 					container_of(cq, struct cache_request, q)
892 						->readers--;
893 					break;
894 				}
895 			rp->offset = 0;
896 		}
897 		list_del(&rp->q.list);
898 		spin_unlock(&queue_lock);
899 
900 		filp->private_data = NULL;
901 		kfree(rp);
902 
903 		cd->last_close = get_seconds();
904 		atomic_dec(&cd->readers);
905 	}
906 	return 0;
907 }
908 
909 
910 
911 static const struct file_operations cache_file_operations = {
912 	.owner		= THIS_MODULE,
913 	.llseek		= no_llseek,
914 	.read		= cache_read,
915 	.write		= cache_write,
916 	.poll		= cache_poll,
917 	.ioctl		= cache_ioctl, /* for FIONREAD */
918 	.open		= cache_open,
919 	.release	= cache_release,
920 };
921 
922 
923 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
924 {
925 	struct cache_queue *cq;
926 	spin_lock(&queue_lock);
927 	list_for_each_entry(cq, &detail->queue, list)
928 		if (!cq->reader) {
929 			struct cache_request *cr = container_of(cq, struct cache_request, q);
930 			if (cr->item != ch)
931 				continue;
932 			if (cr->readers != 0)
933 				continue;
934 			list_del(&cr->q.list);
935 			spin_unlock(&queue_lock);
936 			cache_put(cr->item, detail);
937 			kfree(cr->buf);
938 			kfree(cr);
939 			return;
940 		}
941 	spin_unlock(&queue_lock);
942 }
943 
944 /*
945  * Support routines for text-based upcalls.
946  * Fields are separated by spaces.
947  * Fields are either mangled to quote space tab newline slosh with slosh
948  * or a hexified with a leading \x
949  * Record is terminated with newline.
950  *
951  */
952 
953 void qword_add(char **bpp, int *lp, char *str)
954 {
955 	char *bp = *bpp;
956 	int len = *lp;
957 	char c;
958 
959 	if (len < 0) return;
960 
961 	while ((c=*str++) && len)
962 		switch(c) {
963 		case ' ':
964 		case '\t':
965 		case '\n':
966 		case '\\':
967 			if (len >= 4) {
968 				*bp++ = '\\';
969 				*bp++ = '0' + ((c & 0300)>>6);
970 				*bp++ = '0' + ((c & 0070)>>3);
971 				*bp++ = '0' + ((c & 0007)>>0);
972 			}
973 			len -= 4;
974 			break;
975 		default:
976 			*bp++ = c;
977 			len--;
978 		}
979 	if (c || len <1) len = -1;
980 	else {
981 		*bp++ = ' ';
982 		len--;
983 	}
984 	*bpp = bp;
985 	*lp = len;
986 }
987 EXPORT_SYMBOL_GPL(qword_add);
988 
989 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
990 {
991 	char *bp = *bpp;
992 	int len = *lp;
993 
994 	if (len < 0) return;
995 
996 	if (len > 2) {
997 		*bp++ = '\\';
998 		*bp++ = 'x';
999 		len -= 2;
1000 		while (blen && len >= 2) {
1001 			unsigned char c = *buf++;
1002 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1003 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1004 			len -= 2;
1005 			blen--;
1006 		}
1007 	}
1008 	if (blen || len<1) len = -1;
1009 	else {
1010 		*bp++ = ' ';
1011 		len--;
1012 	}
1013 	*bpp = bp;
1014 	*lp = len;
1015 }
1016 EXPORT_SYMBOL_GPL(qword_addhex);
1017 
1018 static void warn_no_listener(struct cache_detail *detail)
1019 {
1020 	if (detail->last_warn != detail->last_close) {
1021 		detail->last_warn = detail->last_close;
1022 		if (detail->warn_no_listener)
1023 			detail->warn_no_listener(detail);
1024 	}
1025 }
1026 
1027 /*
1028  * register an upcall request to user-space.
1029  * Each request is at most one page long.
1030  */
1031 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1032 {
1033 
1034 	char *buf;
1035 	struct cache_request *crq;
1036 	char *bp;
1037 	int len;
1038 
1039 	if (detail->cache_request == NULL)
1040 		return -EINVAL;
1041 
1042 	if (atomic_read(&detail->readers) == 0 &&
1043 	    detail->last_close < get_seconds() - 30) {
1044 			warn_no_listener(detail);
1045 			return -EINVAL;
1046 	}
1047 
1048 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1049 	if (!buf)
1050 		return -EAGAIN;
1051 
1052 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1053 	if (!crq) {
1054 		kfree(buf);
1055 		return -EAGAIN;
1056 	}
1057 
1058 	bp = buf; len = PAGE_SIZE;
1059 
1060 	detail->cache_request(detail, h, &bp, &len);
1061 
1062 	if (len < 0) {
1063 		kfree(buf);
1064 		kfree(crq);
1065 		return -EAGAIN;
1066 	}
1067 	crq->q.reader = 0;
1068 	crq->item = cache_get(h);
1069 	crq->buf = buf;
1070 	crq->len = PAGE_SIZE - len;
1071 	crq->readers = 0;
1072 	spin_lock(&queue_lock);
1073 	list_add_tail(&crq->q.list, &detail->queue);
1074 	spin_unlock(&queue_lock);
1075 	wake_up(&queue_wait);
1076 	return 0;
1077 }
1078 
1079 /*
1080  * parse a message from user-space and pass it
1081  * to an appropriate cache
1082  * Messages are, like requests, separated into fields by
1083  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1084  *
1085  * Message is
1086  *   reply cachename expiry key ... content....
1087  *
1088  * key and content are both parsed by cache
1089  */
1090 
1091 #define isodigit(c) (isdigit(c) && c <= '7')
1092 int qword_get(char **bpp, char *dest, int bufsize)
1093 {
1094 	/* return bytes copied, or -1 on error */
1095 	char *bp = *bpp;
1096 	int len = 0;
1097 
1098 	while (*bp == ' ') bp++;
1099 
1100 	if (bp[0] == '\\' && bp[1] == 'x') {
1101 		/* HEX STRING */
1102 		bp += 2;
1103 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1104 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1105 			bp++;
1106 			byte <<= 4;
1107 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1108 			*dest++ = byte;
1109 			bp++;
1110 			len++;
1111 		}
1112 	} else {
1113 		/* text with \nnn octal quoting */
1114 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1115 			if (*bp == '\\' &&
1116 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1117 			    isodigit(bp[2]) &&
1118 			    isodigit(bp[3])) {
1119 				int byte = (*++bp -'0');
1120 				bp++;
1121 				byte = (byte << 3) | (*bp++ - '0');
1122 				byte = (byte << 3) | (*bp++ - '0');
1123 				*dest++ = byte;
1124 				len++;
1125 			} else {
1126 				*dest++ = *bp++;
1127 				len++;
1128 			}
1129 		}
1130 	}
1131 
1132 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1133 		return -1;
1134 	while (*bp == ' ') bp++;
1135 	*bpp = bp;
1136 	*dest = '\0';
1137 	return len;
1138 }
1139 EXPORT_SYMBOL_GPL(qword_get);
1140 
1141 
1142 /*
1143  * support /proc/sunrpc/cache/$CACHENAME/content
1144  * as a seqfile.
1145  * We call ->cache_show passing NULL for the item to
1146  * get a header, then pass each real item in the cache
1147  */
1148 
1149 struct handle {
1150 	struct cache_detail *cd;
1151 };
1152 
1153 static void *c_start(struct seq_file *m, loff_t *pos)
1154 	__acquires(cd->hash_lock)
1155 {
1156 	loff_t n = *pos;
1157 	unsigned hash, entry;
1158 	struct cache_head *ch;
1159 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1160 
1161 
1162 	read_lock(&cd->hash_lock);
1163 	if (!n--)
1164 		return SEQ_START_TOKEN;
1165 	hash = n >> 32;
1166 	entry = n & ((1LL<<32) - 1);
1167 
1168 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1169 		if (!entry--)
1170 			return ch;
1171 	n &= ~((1LL<<32) - 1);
1172 	do {
1173 		hash++;
1174 		n += 1LL<<32;
1175 	} while(hash < cd->hash_size &&
1176 		cd->hash_table[hash]==NULL);
1177 	if (hash >= cd->hash_size)
1178 		return NULL;
1179 	*pos = n+1;
1180 	return cd->hash_table[hash];
1181 }
1182 
1183 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1184 {
1185 	struct cache_head *ch = p;
1186 	int hash = (*pos >> 32);
1187 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1188 
1189 	if (p == SEQ_START_TOKEN)
1190 		hash = 0;
1191 	else if (ch->next == NULL) {
1192 		hash++;
1193 		*pos += 1LL<<32;
1194 	} else {
1195 		++*pos;
1196 		return ch->next;
1197 	}
1198 	*pos &= ~((1LL<<32) - 1);
1199 	while (hash < cd->hash_size &&
1200 	       cd->hash_table[hash] == NULL) {
1201 		hash++;
1202 		*pos += 1LL<<32;
1203 	}
1204 	if (hash >= cd->hash_size)
1205 		return NULL;
1206 	++*pos;
1207 	return cd->hash_table[hash];
1208 }
1209 
1210 static void c_stop(struct seq_file *m, void *p)
1211 	__releases(cd->hash_lock)
1212 {
1213 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1214 	read_unlock(&cd->hash_lock);
1215 }
1216 
1217 static int c_show(struct seq_file *m, void *p)
1218 {
1219 	struct cache_head *cp = p;
1220 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1221 
1222 	if (p == SEQ_START_TOKEN)
1223 		return cd->cache_show(m, cd, NULL);
1224 
1225 	ifdebug(CACHE)
1226 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1227 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1228 	cache_get(cp);
1229 	if (cache_check(cd, cp, NULL))
1230 		/* cache_check does a cache_put on failure */
1231 		seq_printf(m, "# ");
1232 	else
1233 		cache_put(cp, cd);
1234 
1235 	return cd->cache_show(m, cd, cp);
1236 }
1237 
1238 static const struct seq_operations cache_content_op = {
1239 	.start	= c_start,
1240 	.next	= c_next,
1241 	.stop	= c_stop,
1242 	.show	= c_show,
1243 };
1244 
1245 static int content_open(struct inode *inode, struct file *file)
1246 {
1247 	struct handle *han;
1248 	struct cache_detail *cd = PDE(inode)->data;
1249 
1250 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1251 	if (han == NULL)
1252 		return -ENOMEM;
1253 
1254 	han->cd = cd;
1255 	return 0;
1256 }
1257 
1258 static const struct file_operations content_file_operations = {
1259 	.open		= content_open,
1260 	.read		= seq_read,
1261 	.llseek		= seq_lseek,
1262 	.release	= seq_release_private,
1263 };
1264 
1265 static ssize_t read_flush(struct file *file, char __user *buf,
1266 			    size_t count, loff_t *ppos)
1267 {
1268 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1269 	char tbuf[20];
1270 	unsigned long p = *ppos;
1271 	size_t len;
1272 
1273 	sprintf(tbuf, "%lu\n", cd->flush_time);
1274 	len = strlen(tbuf);
1275 	if (p >= len)
1276 		return 0;
1277 	len -= p;
1278 	if (len > count)
1279 		len = count;
1280 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1281 		return -EFAULT;
1282 	*ppos += len;
1283 	return len;
1284 }
1285 
1286 static ssize_t write_flush(struct file * file, const char __user * buf,
1287 			     size_t count, loff_t *ppos)
1288 {
1289 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1290 	char tbuf[20];
1291 	char *ep;
1292 	long flushtime;
1293 	if (*ppos || count > sizeof(tbuf)-1)
1294 		return -EINVAL;
1295 	if (copy_from_user(tbuf, buf, count))
1296 		return -EFAULT;
1297 	tbuf[count] = 0;
1298 	flushtime = simple_strtoul(tbuf, &ep, 0);
1299 	if (*ep && *ep != '\n')
1300 		return -EINVAL;
1301 
1302 	cd->flush_time = flushtime;
1303 	cd->nextcheck = get_seconds();
1304 	cache_flush();
1305 
1306 	*ppos += count;
1307 	return count;
1308 }
1309 
1310 static const struct file_operations cache_flush_operations = {
1311 	.open		= nonseekable_open,
1312 	.read		= read_flush,
1313 	.write		= write_flush,
1314 };
1315