1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 35 #define RPCDBG_FACILITY RPCDBG_CACHE 36 37 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 38 static void cache_revisit_request(struct cache_head *item); 39 40 static void cache_init(struct cache_head *h) 41 { 42 time_t now = get_seconds(); 43 h->next = NULL; 44 h->flags = 0; 45 kref_init(&h->ref); 46 h->expiry_time = now + CACHE_NEW_EXPIRY; 47 h->last_refresh = now; 48 } 49 50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 51 struct cache_head *key, int hash) 52 { 53 struct cache_head **head, **hp; 54 struct cache_head *new = NULL; 55 56 head = &detail->hash_table[hash]; 57 58 read_lock(&detail->hash_lock); 59 60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 61 struct cache_head *tmp = *hp; 62 if (detail->match(tmp, key)) { 63 cache_get(tmp); 64 read_unlock(&detail->hash_lock); 65 return tmp; 66 } 67 } 68 read_unlock(&detail->hash_lock); 69 /* Didn't find anything, insert an empty entry */ 70 71 new = detail->alloc(); 72 if (!new) 73 return NULL; 74 /* must fully initialise 'new', else 75 * we might get lose if we need to 76 * cache_put it soon. 77 */ 78 cache_init(new); 79 detail->init(new, key); 80 81 write_lock(&detail->hash_lock); 82 83 /* check if entry appeared while we slept */ 84 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 85 struct cache_head *tmp = *hp; 86 if (detail->match(tmp, key)) { 87 cache_get(tmp); 88 write_unlock(&detail->hash_lock); 89 cache_put(new, detail); 90 return tmp; 91 } 92 } 93 new->next = *head; 94 *head = new; 95 detail->entries++; 96 cache_get(new); 97 write_unlock(&detail->hash_lock); 98 99 return new; 100 } 101 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 102 103 104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch); 105 106 static int cache_fresh_locked(struct cache_head *head, time_t expiry) 107 { 108 head->expiry_time = expiry; 109 head->last_refresh = get_seconds(); 110 return !test_and_set_bit(CACHE_VALID, &head->flags); 111 } 112 113 static void cache_fresh_unlocked(struct cache_head *head, 114 struct cache_detail *detail, int new) 115 { 116 if (new) 117 cache_revisit_request(head); 118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 119 cache_revisit_request(head); 120 queue_loose(detail, head); 121 } 122 } 123 124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 125 struct cache_head *new, struct cache_head *old, int hash) 126 { 127 /* The 'old' entry is to be replaced by 'new'. 128 * If 'old' is not VALID, we update it directly, 129 * otherwise we need to replace it 130 */ 131 struct cache_head **head; 132 struct cache_head *tmp; 133 int is_new; 134 135 if (!test_bit(CACHE_VALID, &old->flags)) { 136 write_lock(&detail->hash_lock); 137 if (!test_bit(CACHE_VALID, &old->flags)) { 138 if (test_bit(CACHE_NEGATIVE, &new->flags)) 139 set_bit(CACHE_NEGATIVE, &old->flags); 140 else 141 detail->update(old, new); 142 is_new = cache_fresh_locked(old, new->expiry_time); 143 write_unlock(&detail->hash_lock); 144 cache_fresh_unlocked(old, detail, is_new); 145 return old; 146 } 147 write_unlock(&detail->hash_lock); 148 } 149 /* We need to insert a new entry */ 150 tmp = detail->alloc(); 151 if (!tmp) { 152 cache_put(old, detail); 153 return NULL; 154 } 155 cache_init(tmp); 156 detail->init(tmp, old); 157 head = &detail->hash_table[hash]; 158 159 write_lock(&detail->hash_lock); 160 if (test_bit(CACHE_NEGATIVE, &new->flags)) 161 set_bit(CACHE_NEGATIVE, &tmp->flags); 162 else 163 detail->update(tmp, new); 164 tmp->next = *head; 165 *head = tmp; 166 detail->entries++; 167 cache_get(tmp); 168 is_new = cache_fresh_locked(tmp, new->expiry_time); 169 cache_fresh_locked(old, 0); 170 write_unlock(&detail->hash_lock); 171 cache_fresh_unlocked(tmp, detail, is_new); 172 cache_fresh_unlocked(old, detail, 0); 173 cache_put(old, detail); 174 return tmp; 175 } 176 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 177 178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h); 179 /* 180 * This is the generic cache management routine for all 181 * the authentication caches. 182 * It checks the currency of a cache item and will (later) 183 * initiate an upcall to fill it if needed. 184 * 185 * 186 * Returns 0 if the cache_head can be used, or cache_puts it and returns 187 * -EAGAIN if upcall is pending, 188 * -ETIMEDOUT if upcall failed and should be retried, 189 * -ENOENT if cache entry was negative 190 */ 191 int cache_check(struct cache_detail *detail, 192 struct cache_head *h, struct cache_req *rqstp) 193 { 194 int rv; 195 long refresh_age, age; 196 197 /* First decide return status as best we can */ 198 if (!test_bit(CACHE_VALID, &h->flags) || 199 h->expiry_time < get_seconds()) 200 rv = -EAGAIN; 201 else if (detail->flush_time > h->last_refresh) 202 rv = -EAGAIN; 203 else { 204 /* entry is valid */ 205 if (test_bit(CACHE_NEGATIVE, &h->flags)) 206 rv = -ENOENT; 207 else rv = 0; 208 } 209 210 /* now see if we want to start an upcall */ 211 refresh_age = (h->expiry_time - h->last_refresh); 212 age = get_seconds() - h->last_refresh; 213 214 if (rqstp == NULL) { 215 if (rv == -EAGAIN) 216 rv = -ENOENT; 217 } else if (rv == -EAGAIN || age > refresh_age/2) { 218 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 219 refresh_age, age); 220 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 221 switch (cache_make_upcall(detail, h)) { 222 case -EINVAL: 223 clear_bit(CACHE_PENDING, &h->flags); 224 if (rv == -EAGAIN) { 225 set_bit(CACHE_NEGATIVE, &h->flags); 226 cache_fresh_unlocked(h, detail, 227 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY)); 228 rv = -ENOENT; 229 } 230 break; 231 232 case -EAGAIN: 233 clear_bit(CACHE_PENDING, &h->flags); 234 cache_revisit_request(h); 235 break; 236 } 237 } 238 } 239 240 if (rv == -EAGAIN) 241 if (cache_defer_req(rqstp, h) != 0) 242 rv = -ETIMEDOUT; 243 244 if (rv) 245 cache_put(h, detail); 246 return rv; 247 } 248 EXPORT_SYMBOL_GPL(cache_check); 249 250 /* 251 * caches need to be periodically cleaned. 252 * For this we maintain a list of cache_detail and 253 * a current pointer into that list and into the table 254 * for that entry. 255 * 256 * Each time clean_cache is called it finds the next non-empty entry 257 * in the current table and walks the list in that entry 258 * looking for entries that can be removed. 259 * 260 * An entry gets removed if: 261 * - The expiry is before current time 262 * - The last_refresh time is before the flush_time for that cache 263 * 264 * later we might drop old entries with non-NEVER expiry if that table 265 * is getting 'full' for some definition of 'full' 266 * 267 * The question of "how often to scan a table" is an interesting one 268 * and is answered in part by the use of the "nextcheck" field in the 269 * cache_detail. 270 * When a scan of a table begins, the nextcheck field is set to a time 271 * that is well into the future. 272 * While scanning, if an expiry time is found that is earlier than the 273 * current nextcheck time, nextcheck is set to that expiry time. 274 * If the flush_time is ever set to a time earlier than the nextcheck 275 * time, the nextcheck time is then set to that flush_time. 276 * 277 * A table is then only scanned if the current time is at least 278 * the nextcheck time. 279 * 280 */ 281 282 static LIST_HEAD(cache_list); 283 static DEFINE_SPINLOCK(cache_list_lock); 284 static struct cache_detail *current_detail; 285 static int current_index; 286 287 static const struct file_operations cache_file_operations; 288 static const struct file_operations content_file_operations; 289 static const struct file_operations cache_flush_operations; 290 291 static void do_cache_clean(struct work_struct *work); 292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 293 294 static void remove_cache_proc_entries(struct cache_detail *cd) 295 { 296 if (cd->proc_ent == NULL) 297 return; 298 if (cd->flush_ent) 299 remove_proc_entry("flush", cd->proc_ent); 300 if (cd->channel_ent) 301 remove_proc_entry("channel", cd->proc_ent); 302 if (cd->content_ent) 303 remove_proc_entry("content", cd->proc_ent); 304 cd->proc_ent = NULL; 305 remove_proc_entry(cd->name, proc_net_rpc); 306 } 307 308 #ifdef CONFIG_PROC_FS 309 static int create_cache_proc_entries(struct cache_detail *cd) 310 { 311 struct proc_dir_entry *p; 312 313 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc); 314 if (cd->proc_ent == NULL) 315 goto out_nomem; 316 cd->channel_ent = cd->content_ent = NULL; 317 318 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 319 cd->proc_ent, &cache_flush_operations, cd); 320 cd->flush_ent = p; 321 if (p == NULL) 322 goto out_nomem; 323 324 if (cd->cache_request || cd->cache_parse) { 325 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 326 cd->proc_ent, &cache_file_operations, cd); 327 cd->channel_ent = p; 328 if (p == NULL) 329 goto out_nomem; 330 } 331 if (cd->cache_show) { 332 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 333 cd->proc_ent, &content_file_operations, cd); 334 cd->content_ent = p; 335 if (p == NULL) 336 goto out_nomem; 337 } 338 return 0; 339 out_nomem: 340 remove_cache_proc_entries(cd); 341 return -ENOMEM; 342 } 343 #else /* CONFIG_PROC_FS */ 344 static int create_cache_proc_entries(struct cache_detail *cd) 345 { 346 return 0; 347 } 348 #endif 349 350 int cache_register(struct cache_detail *cd) 351 { 352 int ret; 353 354 ret = create_cache_proc_entries(cd); 355 if (ret) 356 return ret; 357 rwlock_init(&cd->hash_lock); 358 INIT_LIST_HEAD(&cd->queue); 359 spin_lock(&cache_list_lock); 360 cd->nextcheck = 0; 361 cd->entries = 0; 362 atomic_set(&cd->readers, 0); 363 cd->last_close = 0; 364 cd->last_warn = -1; 365 list_add(&cd->others, &cache_list); 366 spin_unlock(&cache_list_lock); 367 368 /* start the cleaning process */ 369 schedule_delayed_work(&cache_cleaner, 0); 370 return 0; 371 } 372 EXPORT_SYMBOL_GPL(cache_register); 373 374 void cache_unregister(struct cache_detail *cd) 375 { 376 cache_purge(cd); 377 spin_lock(&cache_list_lock); 378 write_lock(&cd->hash_lock); 379 if (cd->entries || atomic_read(&cd->inuse)) { 380 write_unlock(&cd->hash_lock); 381 spin_unlock(&cache_list_lock); 382 goto out; 383 } 384 if (current_detail == cd) 385 current_detail = NULL; 386 list_del_init(&cd->others); 387 write_unlock(&cd->hash_lock); 388 spin_unlock(&cache_list_lock); 389 remove_cache_proc_entries(cd); 390 if (list_empty(&cache_list)) { 391 /* module must be being unloaded so its safe to kill the worker */ 392 cancel_delayed_work_sync(&cache_cleaner); 393 } 394 return; 395 out: 396 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 397 } 398 EXPORT_SYMBOL_GPL(cache_unregister); 399 400 /* clean cache tries to find something to clean 401 * and cleans it. 402 * It returns 1 if it cleaned something, 403 * 0 if it didn't find anything this time 404 * -1 if it fell off the end of the list. 405 */ 406 static int cache_clean(void) 407 { 408 int rv = 0; 409 struct list_head *next; 410 411 spin_lock(&cache_list_lock); 412 413 /* find a suitable table if we don't already have one */ 414 while (current_detail == NULL || 415 current_index >= current_detail->hash_size) { 416 if (current_detail) 417 next = current_detail->others.next; 418 else 419 next = cache_list.next; 420 if (next == &cache_list) { 421 current_detail = NULL; 422 spin_unlock(&cache_list_lock); 423 return -1; 424 } 425 current_detail = list_entry(next, struct cache_detail, others); 426 if (current_detail->nextcheck > get_seconds()) 427 current_index = current_detail->hash_size; 428 else { 429 current_index = 0; 430 current_detail->nextcheck = get_seconds()+30*60; 431 } 432 } 433 434 /* find a non-empty bucket in the table */ 435 while (current_detail && 436 current_index < current_detail->hash_size && 437 current_detail->hash_table[current_index] == NULL) 438 current_index++; 439 440 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 441 442 if (current_detail && current_index < current_detail->hash_size) { 443 struct cache_head *ch, **cp; 444 struct cache_detail *d; 445 446 write_lock(¤t_detail->hash_lock); 447 448 /* Ok, now to clean this strand */ 449 450 cp = & current_detail->hash_table[current_index]; 451 ch = *cp; 452 for (; ch; cp= & ch->next, ch= *cp) { 453 if (current_detail->nextcheck > ch->expiry_time) 454 current_detail->nextcheck = ch->expiry_time+1; 455 if (ch->expiry_time >= get_seconds() 456 && ch->last_refresh >= current_detail->flush_time 457 ) 458 continue; 459 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 460 queue_loose(current_detail, ch); 461 462 if (atomic_read(&ch->ref.refcount) == 1) 463 break; 464 } 465 if (ch) { 466 *cp = ch->next; 467 ch->next = NULL; 468 current_detail->entries--; 469 rv = 1; 470 } 471 write_unlock(¤t_detail->hash_lock); 472 d = current_detail; 473 if (!ch) 474 current_index ++; 475 spin_unlock(&cache_list_lock); 476 if (ch) 477 cache_put(ch, d); 478 } else 479 spin_unlock(&cache_list_lock); 480 481 return rv; 482 } 483 484 /* 485 * We want to regularly clean the cache, so we need to schedule some work ... 486 */ 487 static void do_cache_clean(struct work_struct *work) 488 { 489 int delay = 5; 490 if (cache_clean() == -1) 491 delay = 30*HZ; 492 493 if (list_empty(&cache_list)) 494 delay = 0; 495 496 if (delay) 497 schedule_delayed_work(&cache_cleaner, delay); 498 } 499 500 501 /* 502 * Clean all caches promptly. This just calls cache_clean 503 * repeatedly until we are sure that every cache has had a chance to 504 * be fully cleaned 505 */ 506 void cache_flush(void) 507 { 508 while (cache_clean() != -1) 509 cond_resched(); 510 while (cache_clean() != -1) 511 cond_resched(); 512 } 513 EXPORT_SYMBOL_GPL(cache_flush); 514 515 void cache_purge(struct cache_detail *detail) 516 { 517 detail->flush_time = LONG_MAX; 518 detail->nextcheck = get_seconds(); 519 cache_flush(); 520 detail->flush_time = 1; 521 } 522 EXPORT_SYMBOL_GPL(cache_purge); 523 524 525 /* 526 * Deferral and Revisiting of Requests. 527 * 528 * If a cache lookup finds a pending entry, we 529 * need to defer the request and revisit it later. 530 * All deferred requests are stored in a hash table, 531 * indexed by "struct cache_head *". 532 * As it may be wasteful to store a whole request 533 * structure, we allow the request to provide a 534 * deferred form, which must contain a 535 * 'struct cache_deferred_req' 536 * This cache_deferred_req contains a method to allow 537 * it to be revisited when cache info is available 538 */ 539 540 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 541 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 542 543 #define DFR_MAX 300 /* ??? */ 544 545 static DEFINE_SPINLOCK(cache_defer_lock); 546 static LIST_HEAD(cache_defer_list); 547 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 548 static int cache_defer_cnt; 549 550 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 551 { 552 struct cache_deferred_req *dreq; 553 int hash = DFR_HASH(item); 554 555 if (cache_defer_cnt >= DFR_MAX) { 556 /* too much in the cache, randomly drop this one, 557 * or continue and drop the oldest below 558 */ 559 if (net_random()&1) 560 return -ETIMEDOUT; 561 } 562 dreq = req->defer(req); 563 if (dreq == NULL) 564 return -ETIMEDOUT; 565 566 dreq->item = item; 567 568 spin_lock(&cache_defer_lock); 569 570 list_add(&dreq->recent, &cache_defer_list); 571 572 if (cache_defer_hash[hash].next == NULL) 573 INIT_LIST_HEAD(&cache_defer_hash[hash]); 574 list_add(&dreq->hash, &cache_defer_hash[hash]); 575 576 /* it is in, now maybe clean up */ 577 dreq = NULL; 578 if (++cache_defer_cnt > DFR_MAX) { 579 dreq = list_entry(cache_defer_list.prev, 580 struct cache_deferred_req, recent); 581 list_del(&dreq->recent); 582 list_del(&dreq->hash); 583 cache_defer_cnt--; 584 } 585 spin_unlock(&cache_defer_lock); 586 587 if (dreq) { 588 /* there was one too many */ 589 dreq->revisit(dreq, 1); 590 } 591 if (!test_bit(CACHE_PENDING, &item->flags)) { 592 /* must have just been validated... */ 593 cache_revisit_request(item); 594 } 595 return 0; 596 } 597 598 static void cache_revisit_request(struct cache_head *item) 599 { 600 struct cache_deferred_req *dreq; 601 struct list_head pending; 602 603 struct list_head *lp; 604 int hash = DFR_HASH(item); 605 606 INIT_LIST_HEAD(&pending); 607 spin_lock(&cache_defer_lock); 608 609 lp = cache_defer_hash[hash].next; 610 if (lp) { 611 while (lp != &cache_defer_hash[hash]) { 612 dreq = list_entry(lp, struct cache_deferred_req, hash); 613 lp = lp->next; 614 if (dreq->item == item) { 615 list_del(&dreq->hash); 616 list_move(&dreq->recent, &pending); 617 cache_defer_cnt--; 618 } 619 } 620 } 621 spin_unlock(&cache_defer_lock); 622 623 while (!list_empty(&pending)) { 624 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 625 list_del_init(&dreq->recent); 626 dreq->revisit(dreq, 0); 627 } 628 } 629 630 void cache_clean_deferred(void *owner) 631 { 632 struct cache_deferred_req *dreq, *tmp; 633 struct list_head pending; 634 635 636 INIT_LIST_HEAD(&pending); 637 spin_lock(&cache_defer_lock); 638 639 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 640 if (dreq->owner == owner) { 641 list_del(&dreq->hash); 642 list_move(&dreq->recent, &pending); 643 cache_defer_cnt--; 644 } 645 } 646 spin_unlock(&cache_defer_lock); 647 648 while (!list_empty(&pending)) { 649 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 650 list_del_init(&dreq->recent); 651 dreq->revisit(dreq, 1); 652 } 653 } 654 655 /* 656 * communicate with user-space 657 * 658 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 659 * On read, you get a full request, or block. 660 * On write, an update request is processed. 661 * Poll works if anything to read, and always allows write. 662 * 663 * Implemented by linked list of requests. Each open file has 664 * a ->private that also exists in this list. New requests are added 665 * to the end and may wakeup and preceding readers. 666 * New readers are added to the head. If, on read, an item is found with 667 * CACHE_UPCALLING clear, we free it from the list. 668 * 669 */ 670 671 static DEFINE_SPINLOCK(queue_lock); 672 static DEFINE_MUTEX(queue_io_mutex); 673 674 struct cache_queue { 675 struct list_head list; 676 int reader; /* if 0, then request */ 677 }; 678 struct cache_request { 679 struct cache_queue q; 680 struct cache_head *item; 681 char * buf; 682 int len; 683 int readers; 684 }; 685 struct cache_reader { 686 struct cache_queue q; 687 int offset; /* if non-0, we have a refcnt on next request */ 688 }; 689 690 static ssize_t 691 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 692 { 693 struct cache_reader *rp = filp->private_data; 694 struct cache_request *rq; 695 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 696 int err; 697 698 if (count == 0) 699 return 0; 700 701 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent 702 * readers on this file */ 703 again: 704 spin_lock(&queue_lock); 705 /* need to find next request */ 706 while (rp->q.list.next != &cd->queue && 707 list_entry(rp->q.list.next, struct cache_queue, list) 708 ->reader) { 709 struct list_head *next = rp->q.list.next; 710 list_move(&rp->q.list, next); 711 } 712 if (rp->q.list.next == &cd->queue) { 713 spin_unlock(&queue_lock); 714 mutex_unlock(&queue_io_mutex); 715 BUG_ON(rp->offset); 716 return 0; 717 } 718 rq = container_of(rp->q.list.next, struct cache_request, q.list); 719 BUG_ON(rq->q.reader); 720 if (rp->offset == 0) 721 rq->readers++; 722 spin_unlock(&queue_lock); 723 724 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 725 err = -EAGAIN; 726 spin_lock(&queue_lock); 727 list_move(&rp->q.list, &rq->q.list); 728 spin_unlock(&queue_lock); 729 } else { 730 if (rp->offset + count > rq->len) 731 count = rq->len - rp->offset; 732 err = -EFAULT; 733 if (copy_to_user(buf, rq->buf + rp->offset, count)) 734 goto out; 735 rp->offset += count; 736 if (rp->offset >= rq->len) { 737 rp->offset = 0; 738 spin_lock(&queue_lock); 739 list_move(&rp->q.list, &rq->q.list); 740 spin_unlock(&queue_lock); 741 } 742 err = 0; 743 } 744 out: 745 if (rp->offset == 0) { 746 /* need to release rq */ 747 spin_lock(&queue_lock); 748 rq->readers--; 749 if (rq->readers == 0 && 750 !test_bit(CACHE_PENDING, &rq->item->flags)) { 751 list_del(&rq->q.list); 752 spin_unlock(&queue_lock); 753 cache_put(rq->item, cd); 754 kfree(rq->buf); 755 kfree(rq); 756 } else 757 spin_unlock(&queue_lock); 758 } 759 if (err == -EAGAIN) 760 goto again; 761 mutex_unlock(&queue_io_mutex); 762 return err ? err : count; 763 } 764 765 static char write_buf[8192]; /* protected by queue_io_mutex */ 766 767 static ssize_t 768 cache_write(struct file *filp, const char __user *buf, size_t count, 769 loff_t *ppos) 770 { 771 int err; 772 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 773 774 if (count == 0) 775 return 0; 776 if (count >= sizeof(write_buf)) 777 return -EINVAL; 778 779 mutex_lock(&queue_io_mutex); 780 781 if (copy_from_user(write_buf, buf, count)) { 782 mutex_unlock(&queue_io_mutex); 783 return -EFAULT; 784 } 785 write_buf[count] = '\0'; 786 if (cd->cache_parse) 787 err = cd->cache_parse(cd, write_buf, count); 788 else 789 err = -EINVAL; 790 791 mutex_unlock(&queue_io_mutex); 792 return err ? err : count; 793 } 794 795 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 796 797 static unsigned int 798 cache_poll(struct file *filp, poll_table *wait) 799 { 800 unsigned int mask; 801 struct cache_reader *rp = filp->private_data; 802 struct cache_queue *cq; 803 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 804 805 poll_wait(filp, &queue_wait, wait); 806 807 /* alway allow write */ 808 mask = POLL_OUT | POLLWRNORM; 809 810 if (!rp) 811 return mask; 812 813 spin_lock(&queue_lock); 814 815 for (cq= &rp->q; &cq->list != &cd->queue; 816 cq = list_entry(cq->list.next, struct cache_queue, list)) 817 if (!cq->reader) { 818 mask |= POLLIN | POLLRDNORM; 819 break; 820 } 821 spin_unlock(&queue_lock); 822 return mask; 823 } 824 825 static int 826 cache_ioctl(struct inode *ino, struct file *filp, 827 unsigned int cmd, unsigned long arg) 828 { 829 int len = 0; 830 struct cache_reader *rp = filp->private_data; 831 struct cache_queue *cq; 832 struct cache_detail *cd = PDE(ino)->data; 833 834 if (cmd != FIONREAD || !rp) 835 return -EINVAL; 836 837 spin_lock(&queue_lock); 838 839 /* only find the length remaining in current request, 840 * or the length of the next request 841 */ 842 for (cq= &rp->q; &cq->list != &cd->queue; 843 cq = list_entry(cq->list.next, struct cache_queue, list)) 844 if (!cq->reader) { 845 struct cache_request *cr = 846 container_of(cq, struct cache_request, q); 847 len = cr->len - rp->offset; 848 break; 849 } 850 spin_unlock(&queue_lock); 851 852 return put_user(len, (int __user *)arg); 853 } 854 855 static int 856 cache_open(struct inode *inode, struct file *filp) 857 { 858 struct cache_reader *rp = NULL; 859 860 nonseekable_open(inode, filp); 861 if (filp->f_mode & FMODE_READ) { 862 struct cache_detail *cd = PDE(inode)->data; 863 864 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 865 if (!rp) 866 return -ENOMEM; 867 rp->offset = 0; 868 rp->q.reader = 1; 869 atomic_inc(&cd->readers); 870 spin_lock(&queue_lock); 871 list_add(&rp->q.list, &cd->queue); 872 spin_unlock(&queue_lock); 873 } 874 filp->private_data = rp; 875 return 0; 876 } 877 878 static int 879 cache_release(struct inode *inode, struct file *filp) 880 { 881 struct cache_reader *rp = filp->private_data; 882 struct cache_detail *cd = PDE(inode)->data; 883 884 if (rp) { 885 spin_lock(&queue_lock); 886 if (rp->offset) { 887 struct cache_queue *cq; 888 for (cq= &rp->q; &cq->list != &cd->queue; 889 cq = list_entry(cq->list.next, struct cache_queue, list)) 890 if (!cq->reader) { 891 container_of(cq, struct cache_request, q) 892 ->readers--; 893 break; 894 } 895 rp->offset = 0; 896 } 897 list_del(&rp->q.list); 898 spin_unlock(&queue_lock); 899 900 filp->private_data = NULL; 901 kfree(rp); 902 903 cd->last_close = get_seconds(); 904 atomic_dec(&cd->readers); 905 } 906 return 0; 907 } 908 909 910 911 static const struct file_operations cache_file_operations = { 912 .owner = THIS_MODULE, 913 .llseek = no_llseek, 914 .read = cache_read, 915 .write = cache_write, 916 .poll = cache_poll, 917 .ioctl = cache_ioctl, /* for FIONREAD */ 918 .open = cache_open, 919 .release = cache_release, 920 }; 921 922 923 static void queue_loose(struct cache_detail *detail, struct cache_head *ch) 924 { 925 struct cache_queue *cq; 926 spin_lock(&queue_lock); 927 list_for_each_entry(cq, &detail->queue, list) 928 if (!cq->reader) { 929 struct cache_request *cr = container_of(cq, struct cache_request, q); 930 if (cr->item != ch) 931 continue; 932 if (cr->readers != 0) 933 continue; 934 list_del(&cr->q.list); 935 spin_unlock(&queue_lock); 936 cache_put(cr->item, detail); 937 kfree(cr->buf); 938 kfree(cr); 939 return; 940 } 941 spin_unlock(&queue_lock); 942 } 943 944 /* 945 * Support routines for text-based upcalls. 946 * Fields are separated by spaces. 947 * Fields are either mangled to quote space tab newline slosh with slosh 948 * or a hexified with a leading \x 949 * Record is terminated with newline. 950 * 951 */ 952 953 void qword_add(char **bpp, int *lp, char *str) 954 { 955 char *bp = *bpp; 956 int len = *lp; 957 char c; 958 959 if (len < 0) return; 960 961 while ((c=*str++) && len) 962 switch(c) { 963 case ' ': 964 case '\t': 965 case '\n': 966 case '\\': 967 if (len >= 4) { 968 *bp++ = '\\'; 969 *bp++ = '0' + ((c & 0300)>>6); 970 *bp++ = '0' + ((c & 0070)>>3); 971 *bp++ = '0' + ((c & 0007)>>0); 972 } 973 len -= 4; 974 break; 975 default: 976 *bp++ = c; 977 len--; 978 } 979 if (c || len <1) len = -1; 980 else { 981 *bp++ = ' '; 982 len--; 983 } 984 *bpp = bp; 985 *lp = len; 986 } 987 EXPORT_SYMBOL_GPL(qword_add); 988 989 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 990 { 991 char *bp = *bpp; 992 int len = *lp; 993 994 if (len < 0) return; 995 996 if (len > 2) { 997 *bp++ = '\\'; 998 *bp++ = 'x'; 999 len -= 2; 1000 while (blen && len >= 2) { 1001 unsigned char c = *buf++; 1002 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1003 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1004 len -= 2; 1005 blen--; 1006 } 1007 } 1008 if (blen || len<1) len = -1; 1009 else { 1010 *bp++ = ' '; 1011 len--; 1012 } 1013 *bpp = bp; 1014 *lp = len; 1015 } 1016 EXPORT_SYMBOL_GPL(qword_addhex); 1017 1018 static void warn_no_listener(struct cache_detail *detail) 1019 { 1020 if (detail->last_warn != detail->last_close) { 1021 detail->last_warn = detail->last_close; 1022 if (detail->warn_no_listener) 1023 detail->warn_no_listener(detail); 1024 } 1025 } 1026 1027 /* 1028 * register an upcall request to user-space. 1029 * Each request is at most one page long. 1030 */ 1031 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h) 1032 { 1033 1034 char *buf; 1035 struct cache_request *crq; 1036 char *bp; 1037 int len; 1038 1039 if (detail->cache_request == NULL) 1040 return -EINVAL; 1041 1042 if (atomic_read(&detail->readers) == 0 && 1043 detail->last_close < get_seconds() - 30) { 1044 warn_no_listener(detail); 1045 return -EINVAL; 1046 } 1047 1048 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1049 if (!buf) 1050 return -EAGAIN; 1051 1052 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1053 if (!crq) { 1054 kfree(buf); 1055 return -EAGAIN; 1056 } 1057 1058 bp = buf; len = PAGE_SIZE; 1059 1060 detail->cache_request(detail, h, &bp, &len); 1061 1062 if (len < 0) { 1063 kfree(buf); 1064 kfree(crq); 1065 return -EAGAIN; 1066 } 1067 crq->q.reader = 0; 1068 crq->item = cache_get(h); 1069 crq->buf = buf; 1070 crq->len = PAGE_SIZE - len; 1071 crq->readers = 0; 1072 spin_lock(&queue_lock); 1073 list_add_tail(&crq->q.list, &detail->queue); 1074 spin_unlock(&queue_lock); 1075 wake_up(&queue_wait); 1076 return 0; 1077 } 1078 1079 /* 1080 * parse a message from user-space and pass it 1081 * to an appropriate cache 1082 * Messages are, like requests, separated into fields by 1083 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1084 * 1085 * Message is 1086 * reply cachename expiry key ... content.... 1087 * 1088 * key and content are both parsed by cache 1089 */ 1090 1091 #define isodigit(c) (isdigit(c) && c <= '7') 1092 int qword_get(char **bpp, char *dest, int bufsize) 1093 { 1094 /* return bytes copied, or -1 on error */ 1095 char *bp = *bpp; 1096 int len = 0; 1097 1098 while (*bp == ' ') bp++; 1099 1100 if (bp[0] == '\\' && bp[1] == 'x') { 1101 /* HEX STRING */ 1102 bp += 2; 1103 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1104 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1105 bp++; 1106 byte <<= 4; 1107 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1108 *dest++ = byte; 1109 bp++; 1110 len++; 1111 } 1112 } else { 1113 /* text with \nnn octal quoting */ 1114 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1115 if (*bp == '\\' && 1116 isodigit(bp[1]) && (bp[1] <= '3') && 1117 isodigit(bp[2]) && 1118 isodigit(bp[3])) { 1119 int byte = (*++bp -'0'); 1120 bp++; 1121 byte = (byte << 3) | (*bp++ - '0'); 1122 byte = (byte << 3) | (*bp++ - '0'); 1123 *dest++ = byte; 1124 len++; 1125 } else { 1126 *dest++ = *bp++; 1127 len++; 1128 } 1129 } 1130 } 1131 1132 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1133 return -1; 1134 while (*bp == ' ') bp++; 1135 *bpp = bp; 1136 *dest = '\0'; 1137 return len; 1138 } 1139 EXPORT_SYMBOL_GPL(qword_get); 1140 1141 1142 /* 1143 * support /proc/sunrpc/cache/$CACHENAME/content 1144 * as a seqfile. 1145 * We call ->cache_show passing NULL for the item to 1146 * get a header, then pass each real item in the cache 1147 */ 1148 1149 struct handle { 1150 struct cache_detail *cd; 1151 }; 1152 1153 static void *c_start(struct seq_file *m, loff_t *pos) 1154 __acquires(cd->hash_lock) 1155 { 1156 loff_t n = *pos; 1157 unsigned hash, entry; 1158 struct cache_head *ch; 1159 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1160 1161 1162 read_lock(&cd->hash_lock); 1163 if (!n--) 1164 return SEQ_START_TOKEN; 1165 hash = n >> 32; 1166 entry = n & ((1LL<<32) - 1); 1167 1168 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1169 if (!entry--) 1170 return ch; 1171 n &= ~((1LL<<32) - 1); 1172 do { 1173 hash++; 1174 n += 1LL<<32; 1175 } while(hash < cd->hash_size && 1176 cd->hash_table[hash]==NULL); 1177 if (hash >= cd->hash_size) 1178 return NULL; 1179 *pos = n+1; 1180 return cd->hash_table[hash]; 1181 } 1182 1183 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1184 { 1185 struct cache_head *ch = p; 1186 int hash = (*pos >> 32); 1187 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1188 1189 if (p == SEQ_START_TOKEN) 1190 hash = 0; 1191 else if (ch->next == NULL) { 1192 hash++; 1193 *pos += 1LL<<32; 1194 } else { 1195 ++*pos; 1196 return ch->next; 1197 } 1198 *pos &= ~((1LL<<32) - 1); 1199 while (hash < cd->hash_size && 1200 cd->hash_table[hash] == NULL) { 1201 hash++; 1202 *pos += 1LL<<32; 1203 } 1204 if (hash >= cd->hash_size) 1205 return NULL; 1206 ++*pos; 1207 return cd->hash_table[hash]; 1208 } 1209 1210 static void c_stop(struct seq_file *m, void *p) 1211 __releases(cd->hash_lock) 1212 { 1213 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1214 read_unlock(&cd->hash_lock); 1215 } 1216 1217 static int c_show(struct seq_file *m, void *p) 1218 { 1219 struct cache_head *cp = p; 1220 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1221 1222 if (p == SEQ_START_TOKEN) 1223 return cd->cache_show(m, cd, NULL); 1224 1225 ifdebug(CACHE) 1226 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1227 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1228 cache_get(cp); 1229 if (cache_check(cd, cp, NULL)) 1230 /* cache_check does a cache_put on failure */ 1231 seq_printf(m, "# "); 1232 else 1233 cache_put(cp, cd); 1234 1235 return cd->cache_show(m, cd, cp); 1236 } 1237 1238 static const struct seq_operations cache_content_op = { 1239 .start = c_start, 1240 .next = c_next, 1241 .stop = c_stop, 1242 .show = c_show, 1243 }; 1244 1245 static int content_open(struct inode *inode, struct file *file) 1246 { 1247 struct handle *han; 1248 struct cache_detail *cd = PDE(inode)->data; 1249 1250 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1251 if (han == NULL) 1252 return -ENOMEM; 1253 1254 han->cd = cd; 1255 return 0; 1256 } 1257 1258 static const struct file_operations content_file_operations = { 1259 .open = content_open, 1260 .read = seq_read, 1261 .llseek = seq_lseek, 1262 .release = seq_release_private, 1263 }; 1264 1265 static ssize_t read_flush(struct file *file, char __user *buf, 1266 size_t count, loff_t *ppos) 1267 { 1268 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1269 char tbuf[20]; 1270 unsigned long p = *ppos; 1271 size_t len; 1272 1273 sprintf(tbuf, "%lu\n", cd->flush_time); 1274 len = strlen(tbuf); 1275 if (p >= len) 1276 return 0; 1277 len -= p; 1278 if (len > count) 1279 len = count; 1280 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1281 return -EFAULT; 1282 *ppos += len; 1283 return len; 1284 } 1285 1286 static ssize_t write_flush(struct file * file, const char __user * buf, 1287 size_t count, loff_t *ppos) 1288 { 1289 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1290 char tbuf[20]; 1291 char *ep; 1292 long flushtime; 1293 if (*ppos || count > sizeof(tbuf)-1) 1294 return -EINVAL; 1295 if (copy_from_user(tbuf, buf, count)) 1296 return -EFAULT; 1297 tbuf[count] = 0; 1298 flushtime = simple_strtoul(tbuf, &ep, 0); 1299 if (*ep && *ep != '\n') 1300 return -EINVAL; 1301 1302 cd->flush_time = flushtime; 1303 cd->nextcheck = get_seconds(); 1304 cache_flush(); 1305 1306 *ppos += count; 1307 return count; 1308 } 1309 1310 static const struct file_operations cache_flush_operations = { 1311 .open = nonseekable_open, 1312 .read = read_flush, 1313 .write = write_flush, 1314 }; 1315