1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h, struct cache_detail *detail) 44 { 45 time64_t now = seconds_since_boot(); 46 INIT_HLIST_NODE(&h->cache_list); 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 if (now <= detail->flush_time) 51 /* ensure it isn't already expired */ 52 now = detail->flush_time + 1; 53 h->last_refresh = now; 54 } 55 56 static void cache_fresh_unlocked(struct cache_head *head, 57 struct cache_detail *detail); 58 59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 60 struct cache_head *key, 61 int hash) 62 { 63 struct hlist_head *head = &detail->hash_table[hash]; 64 struct cache_head *tmp; 65 66 rcu_read_lock(); 67 hlist_for_each_entry_rcu(tmp, head, cache_list) { 68 if (!detail->match(tmp, key)) 69 continue; 70 if (test_bit(CACHE_VALID, &tmp->flags) && 71 cache_is_expired(detail, tmp)) 72 continue; 73 tmp = cache_get_rcu(tmp); 74 rcu_read_unlock(); 75 return tmp; 76 } 77 rcu_read_unlock(); 78 return NULL; 79 } 80 81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 82 struct cache_detail *cd) 83 { 84 /* Must be called under cd->hash_lock */ 85 hlist_del_init_rcu(&ch->cache_list); 86 set_bit(CACHE_CLEANED, &ch->flags); 87 cd->entries --; 88 } 89 90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 91 struct cache_detail *cd) 92 { 93 cache_fresh_unlocked(ch, cd); 94 cache_put(ch, cd); 95 } 96 97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 98 struct cache_head *key, 99 int hash) 100 { 101 struct cache_head *new, *tmp, *freeme = NULL; 102 struct hlist_head *head = &detail->hash_table[hash]; 103 104 new = detail->alloc(); 105 if (!new) 106 return NULL; 107 /* must fully initialise 'new', else 108 * we might get lose if we need to 109 * cache_put it soon. 110 */ 111 cache_init(new, detail); 112 detail->init(new, key); 113 114 spin_lock(&detail->hash_lock); 115 116 /* check if entry appeared while we slept */ 117 hlist_for_each_entry_rcu(tmp, head, cache_list, 118 lockdep_is_held(&detail->hash_lock)) { 119 if (!detail->match(tmp, key)) 120 continue; 121 if (test_bit(CACHE_VALID, &tmp->flags) && 122 cache_is_expired(detail, tmp)) { 123 sunrpc_begin_cache_remove_entry(tmp, detail); 124 trace_cache_entry_expired(detail, tmp); 125 freeme = tmp; 126 break; 127 } 128 cache_get(tmp); 129 spin_unlock(&detail->hash_lock); 130 cache_put(new, detail); 131 return tmp; 132 } 133 134 hlist_add_head_rcu(&new->cache_list, head); 135 detail->entries++; 136 cache_get(new); 137 spin_unlock(&detail->hash_lock); 138 139 if (freeme) 140 sunrpc_end_cache_remove_entry(freeme, detail); 141 return new; 142 } 143 144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 145 struct cache_head *key, int hash) 146 { 147 struct cache_head *ret; 148 149 ret = sunrpc_cache_find_rcu(detail, key, hash); 150 if (ret) 151 return ret; 152 /* Didn't find anything, insert an empty entry */ 153 return sunrpc_cache_add_entry(detail, key, hash); 154 } 155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 156 157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 158 159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 160 struct cache_detail *detail) 161 { 162 time64_t now = seconds_since_boot(); 163 if (now <= detail->flush_time) 164 /* ensure it isn't immediately treated as expired */ 165 now = detail->flush_time + 1; 166 head->expiry_time = expiry; 167 head->last_refresh = now; 168 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 169 set_bit(CACHE_VALID, &head->flags); 170 } 171 172 static void cache_fresh_unlocked(struct cache_head *head, 173 struct cache_detail *detail) 174 { 175 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 176 cache_revisit_request(head); 177 cache_dequeue(detail, head); 178 } 179 } 180 181 static void cache_make_negative(struct cache_detail *detail, 182 struct cache_head *h) 183 { 184 set_bit(CACHE_NEGATIVE, &h->flags); 185 trace_cache_entry_make_negative(detail, h); 186 } 187 188 static void cache_entry_update(struct cache_detail *detail, 189 struct cache_head *h, 190 struct cache_head *new) 191 { 192 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 193 detail->update(h, new); 194 trace_cache_entry_update(detail, h); 195 } else { 196 cache_make_negative(detail, h); 197 } 198 } 199 200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 201 struct cache_head *new, struct cache_head *old, int hash) 202 { 203 /* The 'old' entry is to be replaced by 'new'. 204 * If 'old' is not VALID, we update it directly, 205 * otherwise we need to replace it 206 */ 207 struct cache_head *tmp; 208 209 if (!test_bit(CACHE_VALID, &old->flags)) { 210 spin_lock(&detail->hash_lock); 211 if (!test_bit(CACHE_VALID, &old->flags)) { 212 cache_entry_update(detail, old, new); 213 cache_fresh_locked(old, new->expiry_time, detail); 214 spin_unlock(&detail->hash_lock); 215 cache_fresh_unlocked(old, detail); 216 return old; 217 } 218 spin_unlock(&detail->hash_lock); 219 } 220 /* We need to insert a new entry */ 221 tmp = detail->alloc(); 222 if (!tmp) { 223 cache_put(old, detail); 224 return NULL; 225 } 226 cache_init(tmp, detail); 227 detail->init(tmp, old); 228 229 spin_lock(&detail->hash_lock); 230 cache_entry_update(detail, tmp, new); 231 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 232 detail->entries++; 233 cache_get(tmp); 234 cache_fresh_locked(tmp, new->expiry_time, detail); 235 cache_fresh_locked(old, 0, detail); 236 spin_unlock(&detail->hash_lock); 237 cache_fresh_unlocked(tmp, detail); 238 cache_fresh_unlocked(old, detail); 239 cache_put(old, detail); 240 return tmp; 241 } 242 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 243 244 static inline int cache_is_valid(struct cache_head *h) 245 { 246 if (!test_bit(CACHE_VALID, &h->flags)) 247 return -EAGAIN; 248 else { 249 /* entry is valid */ 250 if (test_bit(CACHE_NEGATIVE, &h->flags)) 251 return -ENOENT; 252 else { 253 /* 254 * In combination with write barrier in 255 * sunrpc_cache_update, ensures that anyone 256 * using the cache entry after this sees the 257 * updated contents: 258 */ 259 smp_rmb(); 260 return 0; 261 } 262 } 263 } 264 265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 266 { 267 int rv; 268 269 spin_lock(&detail->hash_lock); 270 rv = cache_is_valid(h); 271 if (rv == -EAGAIN) { 272 cache_make_negative(detail, h); 273 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 274 detail); 275 rv = -ENOENT; 276 } 277 spin_unlock(&detail->hash_lock); 278 cache_fresh_unlocked(h, detail); 279 return rv; 280 } 281 282 /* 283 * This is the generic cache management routine for all 284 * the authentication caches. 285 * It checks the currency of a cache item and will (later) 286 * initiate an upcall to fill it if needed. 287 * 288 * 289 * Returns 0 if the cache_head can be used, or cache_puts it and returns 290 * -EAGAIN if upcall is pending and request has been queued 291 * -ETIMEDOUT if upcall failed or request could not be queue or 292 * upcall completed but item is still invalid (implying that 293 * the cache item has been replaced with a newer one). 294 * -ENOENT if cache entry was negative 295 */ 296 int cache_check(struct cache_detail *detail, 297 struct cache_head *h, struct cache_req *rqstp) 298 { 299 int rv; 300 time64_t refresh_age, age; 301 302 /* First decide return status as best we can */ 303 rv = cache_is_valid(h); 304 305 /* now see if we want to start an upcall */ 306 refresh_age = (h->expiry_time - h->last_refresh); 307 age = seconds_since_boot() - h->last_refresh; 308 309 if (rqstp == NULL) { 310 if (rv == -EAGAIN) 311 rv = -ENOENT; 312 } else if (rv == -EAGAIN || 313 (h->expiry_time != 0 && age > refresh_age/2)) { 314 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 315 refresh_age, age); 316 switch (detail->cache_upcall(detail, h)) { 317 case -EINVAL: 318 rv = try_to_negate_entry(detail, h); 319 break; 320 case -EAGAIN: 321 cache_fresh_unlocked(h, detail); 322 break; 323 } 324 } 325 326 if (rv == -EAGAIN) { 327 if (!cache_defer_req(rqstp, h)) { 328 /* 329 * Request was not deferred; handle it as best 330 * we can ourselves: 331 */ 332 rv = cache_is_valid(h); 333 if (rv == -EAGAIN) 334 rv = -ETIMEDOUT; 335 } 336 } 337 if (rv) 338 cache_put(h, detail); 339 return rv; 340 } 341 EXPORT_SYMBOL_GPL(cache_check); 342 343 /* 344 * caches need to be periodically cleaned. 345 * For this we maintain a list of cache_detail and 346 * a current pointer into that list and into the table 347 * for that entry. 348 * 349 * Each time cache_clean is called it finds the next non-empty entry 350 * in the current table and walks the list in that entry 351 * looking for entries that can be removed. 352 * 353 * An entry gets removed if: 354 * - The expiry is before current time 355 * - The last_refresh time is before the flush_time for that cache 356 * 357 * later we might drop old entries with non-NEVER expiry if that table 358 * is getting 'full' for some definition of 'full' 359 * 360 * The question of "how often to scan a table" is an interesting one 361 * and is answered in part by the use of the "nextcheck" field in the 362 * cache_detail. 363 * When a scan of a table begins, the nextcheck field is set to a time 364 * that is well into the future. 365 * While scanning, if an expiry time is found that is earlier than the 366 * current nextcheck time, nextcheck is set to that expiry time. 367 * If the flush_time is ever set to a time earlier than the nextcheck 368 * time, the nextcheck time is then set to that flush_time. 369 * 370 * A table is then only scanned if the current time is at least 371 * the nextcheck time. 372 * 373 */ 374 375 static LIST_HEAD(cache_list); 376 static DEFINE_SPINLOCK(cache_list_lock); 377 static struct cache_detail *current_detail; 378 static int current_index; 379 380 static void do_cache_clean(struct work_struct *work); 381 static struct delayed_work cache_cleaner; 382 383 void sunrpc_init_cache_detail(struct cache_detail *cd) 384 { 385 spin_lock_init(&cd->hash_lock); 386 INIT_LIST_HEAD(&cd->queue); 387 spin_lock(&cache_list_lock); 388 cd->nextcheck = 0; 389 cd->entries = 0; 390 atomic_set(&cd->writers, 0); 391 cd->last_close = 0; 392 cd->last_warn = -1; 393 list_add(&cd->others, &cache_list); 394 spin_unlock(&cache_list_lock); 395 396 /* start the cleaning process */ 397 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 398 } 399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 400 401 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 402 { 403 cache_purge(cd); 404 spin_lock(&cache_list_lock); 405 spin_lock(&cd->hash_lock); 406 if (current_detail == cd) 407 current_detail = NULL; 408 list_del_init(&cd->others); 409 spin_unlock(&cd->hash_lock); 410 spin_unlock(&cache_list_lock); 411 if (list_empty(&cache_list)) { 412 /* module must be being unloaded so its safe to kill the worker */ 413 cancel_delayed_work_sync(&cache_cleaner); 414 } 415 } 416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 417 418 /* clean cache tries to find something to clean 419 * and cleans it. 420 * It returns 1 if it cleaned something, 421 * 0 if it didn't find anything this time 422 * -1 if it fell off the end of the list. 423 */ 424 static int cache_clean(void) 425 { 426 int rv = 0; 427 struct list_head *next; 428 429 spin_lock(&cache_list_lock); 430 431 /* find a suitable table if we don't already have one */ 432 while (current_detail == NULL || 433 current_index >= current_detail->hash_size) { 434 if (current_detail) 435 next = current_detail->others.next; 436 else 437 next = cache_list.next; 438 if (next == &cache_list) { 439 current_detail = NULL; 440 spin_unlock(&cache_list_lock); 441 return -1; 442 } 443 current_detail = list_entry(next, struct cache_detail, others); 444 if (current_detail->nextcheck > seconds_since_boot()) 445 current_index = current_detail->hash_size; 446 else { 447 current_index = 0; 448 current_detail->nextcheck = seconds_since_boot()+30*60; 449 } 450 } 451 452 /* find a non-empty bucket in the table */ 453 while (current_detail && 454 current_index < current_detail->hash_size && 455 hlist_empty(¤t_detail->hash_table[current_index])) 456 current_index++; 457 458 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 459 460 if (current_detail && current_index < current_detail->hash_size) { 461 struct cache_head *ch = NULL; 462 struct cache_detail *d; 463 struct hlist_head *head; 464 struct hlist_node *tmp; 465 466 spin_lock(¤t_detail->hash_lock); 467 468 /* Ok, now to clean this strand */ 469 470 head = ¤t_detail->hash_table[current_index]; 471 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 472 if (current_detail->nextcheck > ch->expiry_time) 473 current_detail->nextcheck = ch->expiry_time+1; 474 if (!cache_is_expired(current_detail, ch)) 475 continue; 476 477 sunrpc_begin_cache_remove_entry(ch, current_detail); 478 trace_cache_entry_expired(current_detail, ch); 479 rv = 1; 480 break; 481 } 482 483 spin_unlock(¤t_detail->hash_lock); 484 d = current_detail; 485 if (!ch) 486 current_index ++; 487 spin_unlock(&cache_list_lock); 488 if (ch) 489 sunrpc_end_cache_remove_entry(ch, d); 490 } else 491 spin_unlock(&cache_list_lock); 492 493 return rv; 494 } 495 496 /* 497 * We want to regularly clean the cache, so we need to schedule some work ... 498 */ 499 static void do_cache_clean(struct work_struct *work) 500 { 501 int delay = 5; 502 if (cache_clean() == -1) 503 delay = round_jiffies_relative(30*HZ); 504 505 if (list_empty(&cache_list)) 506 delay = 0; 507 508 if (delay) 509 queue_delayed_work(system_power_efficient_wq, 510 &cache_cleaner, delay); 511 } 512 513 514 /* 515 * Clean all caches promptly. This just calls cache_clean 516 * repeatedly until we are sure that every cache has had a chance to 517 * be fully cleaned 518 */ 519 void cache_flush(void) 520 { 521 while (cache_clean() != -1) 522 cond_resched(); 523 while (cache_clean() != -1) 524 cond_resched(); 525 } 526 EXPORT_SYMBOL_GPL(cache_flush); 527 528 void cache_purge(struct cache_detail *detail) 529 { 530 struct cache_head *ch = NULL; 531 struct hlist_head *head = NULL; 532 int i = 0; 533 534 spin_lock(&detail->hash_lock); 535 if (!detail->entries) { 536 spin_unlock(&detail->hash_lock); 537 return; 538 } 539 540 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 541 for (i = 0; i < detail->hash_size; i++) { 542 head = &detail->hash_table[i]; 543 while (!hlist_empty(head)) { 544 ch = hlist_entry(head->first, struct cache_head, 545 cache_list); 546 sunrpc_begin_cache_remove_entry(ch, detail); 547 spin_unlock(&detail->hash_lock); 548 sunrpc_end_cache_remove_entry(ch, detail); 549 spin_lock(&detail->hash_lock); 550 } 551 } 552 spin_unlock(&detail->hash_lock); 553 } 554 EXPORT_SYMBOL_GPL(cache_purge); 555 556 557 /* 558 * Deferral and Revisiting of Requests. 559 * 560 * If a cache lookup finds a pending entry, we 561 * need to defer the request and revisit it later. 562 * All deferred requests are stored in a hash table, 563 * indexed by "struct cache_head *". 564 * As it may be wasteful to store a whole request 565 * structure, we allow the request to provide a 566 * deferred form, which must contain a 567 * 'struct cache_deferred_req' 568 * This cache_deferred_req contains a method to allow 569 * it to be revisited when cache info is available 570 */ 571 572 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 573 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 574 575 #define DFR_MAX 300 /* ??? */ 576 577 static DEFINE_SPINLOCK(cache_defer_lock); 578 static LIST_HEAD(cache_defer_list); 579 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 580 static int cache_defer_cnt; 581 582 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 583 { 584 hlist_del_init(&dreq->hash); 585 if (!list_empty(&dreq->recent)) { 586 list_del_init(&dreq->recent); 587 cache_defer_cnt--; 588 } 589 } 590 591 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 592 { 593 int hash = DFR_HASH(item); 594 595 INIT_LIST_HEAD(&dreq->recent); 596 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 597 } 598 599 static void setup_deferral(struct cache_deferred_req *dreq, 600 struct cache_head *item, 601 int count_me) 602 { 603 604 dreq->item = item; 605 606 spin_lock(&cache_defer_lock); 607 608 __hash_deferred_req(dreq, item); 609 610 if (count_me) { 611 cache_defer_cnt++; 612 list_add(&dreq->recent, &cache_defer_list); 613 } 614 615 spin_unlock(&cache_defer_lock); 616 617 } 618 619 struct thread_deferred_req { 620 struct cache_deferred_req handle; 621 struct completion completion; 622 }; 623 624 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 625 { 626 struct thread_deferred_req *dr = 627 container_of(dreq, struct thread_deferred_req, handle); 628 complete(&dr->completion); 629 } 630 631 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 632 { 633 struct thread_deferred_req sleeper; 634 struct cache_deferred_req *dreq = &sleeper.handle; 635 636 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 637 dreq->revisit = cache_restart_thread; 638 639 setup_deferral(dreq, item, 0); 640 641 if (!test_bit(CACHE_PENDING, &item->flags) || 642 wait_for_completion_interruptible_timeout( 643 &sleeper.completion, req->thread_wait) <= 0) { 644 /* The completion wasn't completed, so we need 645 * to clean up 646 */ 647 spin_lock(&cache_defer_lock); 648 if (!hlist_unhashed(&sleeper.handle.hash)) { 649 __unhash_deferred_req(&sleeper.handle); 650 spin_unlock(&cache_defer_lock); 651 } else { 652 /* cache_revisit_request already removed 653 * this from the hash table, but hasn't 654 * called ->revisit yet. It will very soon 655 * and we need to wait for it. 656 */ 657 spin_unlock(&cache_defer_lock); 658 wait_for_completion(&sleeper.completion); 659 } 660 } 661 } 662 663 static void cache_limit_defers(void) 664 { 665 /* Make sure we haven't exceed the limit of allowed deferred 666 * requests. 667 */ 668 struct cache_deferred_req *discard = NULL; 669 670 if (cache_defer_cnt <= DFR_MAX) 671 return; 672 673 spin_lock(&cache_defer_lock); 674 675 /* Consider removing either the first or the last */ 676 if (cache_defer_cnt > DFR_MAX) { 677 if (prandom_u32() & 1) 678 discard = list_entry(cache_defer_list.next, 679 struct cache_deferred_req, recent); 680 else 681 discard = list_entry(cache_defer_list.prev, 682 struct cache_deferred_req, recent); 683 __unhash_deferred_req(discard); 684 } 685 spin_unlock(&cache_defer_lock); 686 if (discard) 687 discard->revisit(discard, 1); 688 } 689 690 /* Return true if and only if a deferred request is queued. */ 691 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 692 { 693 struct cache_deferred_req *dreq; 694 695 if (req->thread_wait) { 696 cache_wait_req(req, item); 697 if (!test_bit(CACHE_PENDING, &item->flags)) 698 return false; 699 } 700 dreq = req->defer(req); 701 if (dreq == NULL) 702 return false; 703 setup_deferral(dreq, item, 1); 704 if (!test_bit(CACHE_PENDING, &item->flags)) 705 /* Bit could have been cleared before we managed to 706 * set up the deferral, so need to revisit just in case 707 */ 708 cache_revisit_request(item); 709 710 cache_limit_defers(); 711 return true; 712 } 713 714 static void cache_revisit_request(struct cache_head *item) 715 { 716 struct cache_deferred_req *dreq; 717 struct list_head pending; 718 struct hlist_node *tmp; 719 int hash = DFR_HASH(item); 720 721 INIT_LIST_HEAD(&pending); 722 spin_lock(&cache_defer_lock); 723 724 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 725 if (dreq->item == item) { 726 __unhash_deferred_req(dreq); 727 list_add(&dreq->recent, &pending); 728 } 729 730 spin_unlock(&cache_defer_lock); 731 732 while (!list_empty(&pending)) { 733 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 734 list_del_init(&dreq->recent); 735 dreq->revisit(dreq, 0); 736 } 737 } 738 739 void cache_clean_deferred(void *owner) 740 { 741 struct cache_deferred_req *dreq, *tmp; 742 struct list_head pending; 743 744 745 INIT_LIST_HEAD(&pending); 746 spin_lock(&cache_defer_lock); 747 748 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 749 if (dreq->owner == owner) { 750 __unhash_deferred_req(dreq); 751 list_add(&dreq->recent, &pending); 752 } 753 } 754 spin_unlock(&cache_defer_lock); 755 756 while (!list_empty(&pending)) { 757 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 758 list_del_init(&dreq->recent); 759 dreq->revisit(dreq, 1); 760 } 761 } 762 763 /* 764 * communicate with user-space 765 * 766 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 767 * On read, you get a full request, or block. 768 * On write, an update request is processed. 769 * Poll works if anything to read, and always allows write. 770 * 771 * Implemented by linked list of requests. Each open file has 772 * a ->private that also exists in this list. New requests are added 773 * to the end and may wakeup and preceding readers. 774 * New readers are added to the head. If, on read, an item is found with 775 * CACHE_UPCALLING clear, we free it from the list. 776 * 777 */ 778 779 static DEFINE_SPINLOCK(queue_lock); 780 static DEFINE_MUTEX(queue_io_mutex); 781 782 struct cache_queue { 783 struct list_head list; 784 int reader; /* if 0, then request */ 785 }; 786 struct cache_request { 787 struct cache_queue q; 788 struct cache_head *item; 789 char * buf; 790 int len; 791 int readers; 792 }; 793 struct cache_reader { 794 struct cache_queue q; 795 int offset; /* if non-0, we have a refcnt on next request */ 796 }; 797 798 static int cache_request(struct cache_detail *detail, 799 struct cache_request *crq) 800 { 801 char *bp = crq->buf; 802 int len = PAGE_SIZE; 803 804 detail->cache_request(detail, crq->item, &bp, &len); 805 if (len < 0) 806 return -EAGAIN; 807 return PAGE_SIZE - len; 808 } 809 810 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 811 loff_t *ppos, struct cache_detail *cd) 812 { 813 struct cache_reader *rp = filp->private_data; 814 struct cache_request *rq; 815 struct inode *inode = file_inode(filp); 816 int err; 817 818 if (count == 0) 819 return 0; 820 821 inode_lock(inode); /* protect against multiple concurrent 822 * readers on this file */ 823 again: 824 spin_lock(&queue_lock); 825 /* need to find next request */ 826 while (rp->q.list.next != &cd->queue && 827 list_entry(rp->q.list.next, struct cache_queue, list) 828 ->reader) { 829 struct list_head *next = rp->q.list.next; 830 list_move(&rp->q.list, next); 831 } 832 if (rp->q.list.next == &cd->queue) { 833 spin_unlock(&queue_lock); 834 inode_unlock(inode); 835 WARN_ON_ONCE(rp->offset); 836 return 0; 837 } 838 rq = container_of(rp->q.list.next, struct cache_request, q.list); 839 WARN_ON_ONCE(rq->q.reader); 840 if (rp->offset == 0) 841 rq->readers++; 842 spin_unlock(&queue_lock); 843 844 if (rq->len == 0) { 845 err = cache_request(cd, rq); 846 if (err < 0) 847 goto out; 848 rq->len = err; 849 } 850 851 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 852 err = -EAGAIN; 853 spin_lock(&queue_lock); 854 list_move(&rp->q.list, &rq->q.list); 855 spin_unlock(&queue_lock); 856 } else { 857 if (rp->offset + count > rq->len) 858 count = rq->len - rp->offset; 859 err = -EFAULT; 860 if (copy_to_user(buf, rq->buf + rp->offset, count)) 861 goto out; 862 rp->offset += count; 863 if (rp->offset >= rq->len) { 864 rp->offset = 0; 865 spin_lock(&queue_lock); 866 list_move(&rp->q.list, &rq->q.list); 867 spin_unlock(&queue_lock); 868 } 869 err = 0; 870 } 871 out: 872 if (rp->offset == 0) { 873 /* need to release rq */ 874 spin_lock(&queue_lock); 875 rq->readers--; 876 if (rq->readers == 0 && 877 !test_bit(CACHE_PENDING, &rq->item->flags)) { 878 list_del(&rq->q.list); 879 spin_unlock(&queue_lock); 880 cache_put(rq->item, cd); 881 kfree(rq->buf); 882 kfree(rq); 883 } else 884 spin_unlock(&queue_lock); 885 } 886 if (err == -EAGAIN) 887 goto again; 888 inode_unlock(inode); 889 return err ? err : count; 890 } 891 892 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 893 size_t count, struct cache_detail *cd) 894 { 895 ssize_t ret; 896 897 if (count == 0) 898 return -EINVAL; 899 if (copy_from_user(kaddr, buf, count)) 900 return -EFAULT; 901 kaddr[count] = '\0'; 902 ret = cd->cache_parse(cd, kaddr, count); 903 if (!ret) 904 ret = count; 905 return ret; 906 } 907 908 static ssize_t cache_slow_downcall(const char __user *buf, 909 size_t count, struct cache_detail *cd) 910 { 911 static char write_buf[8192]; /* protected by queue_io_mutex */ 912 ssize_t ret = -EINVAL; 913 914 if (count >= sizeof(write_buf)) 915 goto out; 916 mutex_lock(&queue_io_mutex); 917 ret = cache_do_downcall(write_buf, buf, count, cd); 918 mutex_unlock(&queue_io_mutex); 919 out: 920 return ret; 921 } 922 923 static ssize_t cache_downcall(struct address_space *mapping, 924 const char __user *buf, 925 size_t count, struct cache_detail *cd) 926 { 927 struct page *page; 928 char *kaddr; 929 ssize_t ret = -ENOMEM; 930 931 if (count >= PAGE_SIZE) 932 goto out_slow; 933 934 page = find_or_create_page(mapping, 0, GFP_KERNEL); 935 if (!page) 936 goto out_slow; 937 938 kaddr = kmap(page); 939 ret = cache_do_downcall(kaddr, buf, count, cd); 940 kunmap(page); 941 unlock_page(page); 942 put_page(page); 943 return ret; 944 out_slow: 945 return cache_slow_downcall(buf, count, cd); 946 } 947 948 static ssize_t cache_write(struct file *filp, const char __user *buf, 949 size_t count, loff_t *ppos, 950 struct cache_detail *cd) 951 { 952 struct address_space *mapping = filp->f_mapping; 953 struct inode *inode = file_inode(filp); 954 ssize_t ret = -EINVAL; 955 956 if (!cd->cache_parse) 957 goto out; 958 959 inode_lock(inode); 960 ret = cache_downcall(mapping, buf, count, cd); 961 inode_unlock(inode); 962 out: 963 return ret; 964 } 965 966 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 967 968 static __poll_t cache_poll(struct file *filp, poll_table *wait, 969 struct cache_detail *cd) 970 { 971 __poll_t mask; 972 struct cache_reader *rp = filp->private_data; 973 struct cache_queue *cq; 974 975 poll_wait(filp, &queue_wait, wait); 976 977 /* alway allow write */ 978 mask = EPOLLOUT | EPOLLWRNORM; 979 980 if (!rp) 981 return mask; 982 983 spin_lock(&queue_lock); 984 985 for (cq= &rp->q; &cq->list != &cd->queue; 986 cq = list_entry(cq->list.next, struct cache_queue, list)) 987 if (!cq->reader) { 988 mask |= EPOLLIN | EPOLLRDNORM; 989 break; 990 } 991 spin_unlock(&queue_lock); 992 return mask; 993 } 994 995 static int cache_ioctl(struct inode *ino, struct file *filp, 996 unsigned int cmd, unsigned long arg, 997 struct cache_detail *cd) 998 { 999 int len = 0; 1000 struct cache_reader *rp = filp->private_data; 1001 struct cache_queue *cq; 1002 1003 if (cmd != FIONREAD || !rp) 1004 return -EINVAL; 1005 1006 spin_lock(&queue_lock); 1007 1008 /* only find the length remaining in current request, 1009 * or the length of the next request 1010 */ 1011 for (cq= &rp->q; &cq->list != &cd->queue; 1012 cq = list_entry(cq->list.next, struct cache_queue, list)) 1013 if (!cq->reader) { 1014 struct cache_request *cr = 1015 container_of(cq, struct cache_request, q); 1016 len = cr->len - rp->offset; 1017 break; 1018 } 1019 spin_unlock(&queue_lock); 1020 1021 return put_user(len, (int __user *)arg); 1022 } 1023 1024 static int cache_open(struct inode *inode, struct file *filp, 1025 struct cache_detail *cd) 1026 { 1027 struct cache_reader *rp = NULL; 1028 1029 if (!cd || !try_module_get(cd->owner)) 1030 return -EACCES; 1031 nonseekable_open(inode, filp); 1032 if (filp->f_mode & FMODE_READ) { 1033 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1034 if (!rp) { 1035 module_put(cd->owner); 1036 return -ENOMEM; 1037 } 1038 rp->offset = 0; 1039 rp->q.reader = 1; 1040 1041 spin_lock(&queue_lock); 1042 list_add(&rp->q.list, &cd->queue); 1043 spin_unlock(&queue_lock); 1044 } 1045 if (filp->f_mode & FMODE_WRITE) 1046 atomic_inc(&cd->writers); 1047 filp->private_data = rp; 1048 return 0; 1049 } 1050 1051 static int cache_release(struct inode *inode, struct file *filp, 1052 struct cache_detail *cd) 1053 { 1054 struct cache_reader *rp = filp->private_data; 1055 1056 if (rp) { 1057 spin_lock(&queue_lock); 1058 if (rp->offset) { 1059 struct cache_queue *cq; 1060 for (cq= &rp->q; &cq->list != &cd->queue; 1061 cq = list_entry(cq->list.next, struct cache_queue, list)) 1062 if (!cq->reader) { 1063 container_of(cq, struct cache_request, q) 1064 ->readers--; 1065 break; 1066 } 1067 rp->offset = 0; 1068 } 1069 list_del(&rp->q.list); 1070 spin_unlock(&queue_lock); 1071 1072 filp->private_data = NULL; 1073 kfree(rp); 1074 1075 } 1076 if (filp->f_mode & FMODE_WRITE) { 1077 atomic_dec(&cd->writers); 1078 cd->last_close = seconds_since_boot(); 1079 } 1080 module_put(cd->owner); 1081 return 0; 1082 } 1083 1084 1085 1086 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1087 { 1088 struct cache_queue *cq, *tmp; 1089 struct cache_request *cr; 1090 struct list_head dequeued; 1091 1092 INIT_LIST_HEAD(&dequeued); 1093 spin_lock(&queue_lock); 1094 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1095 if (!cq->reader) { 1096 cr = container_of(cq, struct cache_request, q); 1097 if (cr->item != ch) 1098 continue; 1099 if (test_bit(CACHE_PENDING, &ch->flags)) 1100 /* Lost a race and it is pending again */ 1101 break; 1102 if (cr->readers != 0) 1103 continue; 1104 list_move(&cr->q.list, &dequeued); 1105 } 1106 spin_unlock(&queue_lock); 1107 while (!list_empty(&dequeued)) { 1108 cr = list_entry(dequeued.next, struct cache_request, q.list); 1109 list_del(&cr->q.list); 1110 cache_put(cr->item, detail); 1111 kfree(cr->buf); 1112 kfree(cr); 1113 } 1114 } 1115 1116 /* 1117 * Support routines for text-based upcalls. 1118 * Fields are separated by spaces. 1119 * Fields are either mangled to quote space tab newline slosh with slosh 1120 * or a hexified with a leading \x 1121 * Record is terminated with newline. 1122 * 1123 */ 1124 1125 void qword_add(char **bpp, int *lp, char *str) 1126 { 1127 char *bp = *bpp; 1128 int len = *lp; 1129 int ret; 1130 1131 if (len < 0) return; 1132 1133 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1134 if (ret >= len) { 1135 bp += len; 1136 len = -1; 1137 } else { 1138 bp += ret; 1139 len -= ret; 1140 *bp++ = ' '; 1141 len--; 1142 } 1143 *bpp = bp; 1144 *lp = len; 1145 } 1146 EXPORT_SYMBOL_GPL(qword_add); 1147 1148 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1149 { 1150 char *bp = *bpp; 1151 int len = *lp; 1152 1153 if (len < 0) return; 1154 1155 if (len > 2) { 1156 *bp++ = '\\'; 1157 *bp++ = 'x'; 1158 len -= 2; 1159 while (blen && len >= 2) { 1160 bp = hex_byte_pack(bp, *buf++); 1161 len -= 2; 1162 blen--; 1163 } 1164 } 1165 if (blen || len<1) len = -1; 1166 else { 1167 *bp++ = ' '; 1168 len--; 1169 } 1170 *bpp = bp; 1171 *lp = len; 1172 } 1173 EXPORT_SYMBOL_GPL(qword_addhex); 1174 1175 static void warn_no_listener(struct cache_detail *detail) 1176 { 1177 if (detail->last_warn != detail->last_close) { 1178 detail->last_warn = detail->last_close; 1179 if (detail->warn_no_listener) 1180 detail->warn_no_listener(detail, detail->last_close != 0); 1181 } 1182 } 1183 1184 static bool cache_listeners_exist(struct cache_detail *detail) 1185 { 1186 if (atomic_read(&detail->writers)) 1187 return true; 1188 if (detail->last_close == 0) 1189 /* This cache was never opened */ 1190 return false; 1191 if (detail->last_close < seconds_since_boot() - 30) 1192 /* 1193 * We allow for the possibility that someone might 1194 * restart a userspace daemon without restarting the 1195 * server; but after 30 seconds, we give up. 1196 */ 1197 return false; 1198 return true; 1199 } 1200 1201 /* 1202 * register an upcall request to user-space and queue it up for read() by the 1203 * upcall daemon. 1204 * 1205 * Each request is at most one page long. 1206 */ 1207 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1208 { 1209 char *buf; 1210 struct cache_request *crq; 1211 int ret = 0; 1212 1213 if (test_bit(CACHE_CLEANED, &h->flags)) 1214 /* Too late to make an upcall */ 1215 return -EAGAIN; 1216 1217 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1218 if (!buf) 1219 return -EAGAIN; 1220 1221 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1222 if (!crq) { 1223 kfree(buf); 1224 return -EAGAIN; 1225 } 1226 1227 crq->q.reader = 0; 1228 crq->buf = buf; 1229 crq->len = 0; 1230 crq->readers = 0; 1231 spin_lock(&queue_lock); 1232 if (test_bit(CACHE_PENDING, &h->flags)) { 1233 crq->item = cache_get(h); 1234 list_add_tail(&crq->q.list, &detail->queue); 1235 trace_cache_entry_upcall(detail, h); 1236 } else 1237 /* Lost a race, no longer PENDING, so don't enqueue */ 1238 ret = -EAGAIN; 1239 spin_unlock(&queue_lock); 1240 wake_up(&queue_wait); 1241 if (ret == -EAGAIN) { 1242 kfree(buf); 1243 kfree(crq); 1244 } 1245 return ret; 1246 } 1247 1248 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1249 { 1250 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1251 return 0; 1252 return cache_pipe_upcall(detail, h); 1253 } 1254 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1255 1256 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1257 struct cache_head *h) 1258 { 1259 if (!cache_listeners_exist(detail)) { 1260 warn_no_listener(detail); 1261 trace_cache_entry_no_listener(detail, h); 1262 return -EINVAL; 1263 } 1264 return sunrpc_cache_pipe_upcall(detail, h); 1265 } 1266 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1267 1268 /* 1269 * parse a message from user-space and pass it 1270 * to an appropriate cache 1271 * Messages are, like requests, separated into fields by 1272 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1273 * 1274 * Message is 1275 * reply cachename expiry key ... content.... 1276 * 1277 * key and content are both parsed by cache 1278 */ 1279 1280 int qword_get(char **bpp, char *dest, int bufsize) 1281 { 1282 /* return bytes copied, or -1 on error */ 1283 char *bp = *bpp; 1284 int len = 0; 1285 1286 while (*bp == ' ') bp++; 1287 1288 if (bp[0] == '\\' && bp[1] == 'x') { 1289 /* HEX STRING */ 1290 bp += 2; 1291 while (len < bufsize - 1) { 1292 int h, l; 1293 1294 h = hex_to_bin(bp[0]); 1295 if (h < 0) 1296 break; 1297 1298 l = hex_to_bin(bp[1]); 1299 if (l < 0) 1300 break; 1301 1302 *dest++ = (h << 4) | l; 1303 bp += 2; 1304 len++; 1305 } 1306 } else { 1307 /* text with \nnn octal quoting */ 1308 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1309 if (*bp == '\\' && 1310 isodigit(bp[1]) && (bp[1] <= '3') && 1311 isodigit(bp[2]) && 1312 isodigit(bp[3])) { 1313 int byte = (*++bp -'0'); 1314 bp++; 1315 byte = (byte << 3) | (*bp++ - '0'); 1316 byte = (byte << 3) | (*bp++ - '0'); 1317 *dest++ = byte; 1318 len++; 1319 } else { 1320 *dest++ = *bp++; 1321 len++; 1322 } 1323 } 1324 } 1325 1326 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1327 return -1; 1328 while (*bp == ' ') bp++; 1329 *bpp = bp; 1330 *dest = '\0'; 1331 return len; 1332 } 1333 EXPORT_SYMBOL_GPL(qword_get); 1334 1335 1336 /* 1337 * support /proc/net/rpc/$CACHENAME/content 1338 * as a seqfile. 1339 * We call ->cache_show passing NULL for the item to 1340 * get a header, then pass each real item in the cache 1341 */ 1342 1343 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1344 { 1345 loff_t n = *pos; 1346 unsigned int hash, entry; 1347 struct cache_head *ch; 1348 struct cache_detail *cd = m->private; 1349 1350 if (!n--) 1351 return SEQ_START_TOKEN; 1352 hash = n >> 32; 1353 entry = n & ((1LL<<32) - 1); 1354 1355 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1356 if (!entry--) 1357 return ch; 1358 n &= ~((1LL<<32) - 1); 1359 do { 1360 hash++; 1361 n += 1LL<<32; 1362 } while(hash < cd->hash_size && 1363 hlist_empty(&cd->hash_table[hash])); 1364 if (hash >= cd->hash_size) 1365 return NULL; 1366 *pos = n+1; 1367 return hlist_entry_safe(rcu_dereference_raw( 1368 hlist_first_rcu(&cd->hash_table[hash])), 1369 struct cache_head, cache_list); 1370 } 1371 1372 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1373 { 1374 struct cache_head *ch = p; 1375 int hash = (*pos >> 32); 1376 struct cache_detail *cd = m->private; 1377 1378 if (p == SEQ_START_TOKEN) 1379 hash = 0; 1380 else if (ch->cache_list.next == NULL) { 1381 hash++; 1382 *pos += 1LL<<32; 1383 } else { 1384 ++*pos; 1385 return hlist_entry_safe(rcu_dereference_raw( 1386 hlist_next_rcu(&ch->cache_list)), 1387 struct cache_head, cache_list); 1388 } 1389 *pos &= ~((1LL<<32) - 1); 1390 while (hash < cd->hash_size && 1391 hlist_empty(&cd->hash_table[hash])) { 1392 hash++; 1393 *pos += 1LL<<32; 1394 } 1395 if (hash >= cd->hash_size) 1396 return NULL; 1397 ++*pos; 1398 return hlist_entry_safe(rcu_dereference_raw( 1399 hlist_first_rcu(&cd->hash_table[hash])), 1400 struct cache_head, cache_list); 1401 } 1402 1403 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1404 __acquires(RCU) 1405 { 1406 rcu_read_lock(); 1407 return __cache_seq_start(m, pos); 1408 } 1409 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1410 1411 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1412 { 1413 return cache_seq_next(file, p, pos); 1414 } 1415 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1416 1417 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1418 __releases(RCU) 1419 { 1420 rcu_read_unlock(); 1421 } 1422 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1423 1424 static int c_show(struct seq_file *m, void *p) 1425 { 1426 struct cache_head *cp = p; 1427 struct cache_detail *cd = m->private; 1428 1429 if (p == SEQ_START_TOKEN) 1430 return cd->cache_show(m, cd, NULL); 1431 1432 ifdebug(CACHE) 1433 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1434 convert_to_wallclock(cp->expiry_time), 1435 kref_read(&cp->ref), cp->flags); 1436 cache_get(cp); 1437 if (cache_check(cd, cp, NULL)) 1438 /* cache_check does a cache_put on failure */ 1439 seq_printf(m, "# "); 1440 else { 1441 if (cache_is_expired(cd, cp)) 1442 seq_printf(m, "# "); 1443 cache_put(cp, cd); 1444 } 1445 1446 return cd->cache_show(m, cd, cp); 1447 } 1448 1449 static const struct seq_operations cache_content_op = { 1450 .start = cache_seq_start_rcu, 1451 .next = cache_seq_next_rcu, 1452 .stop = cache_seq_stop_rcu, 1453 .show = c_show, 1454 }; 1455 1456 static int content_open(struct inode *inode, struct file *file, 1457 struct cache_detail *cd) 1458 { 1459 struct seq_file *seq; 1460 int err; 1461 1462 if (!cd || !try_module_get(cd->owner)) 1463 return -EACCES; 1464 1465 err = seq_open(file, &cache_content_op); 1466 if (err) { 1467 module_put(cd->owner); 1468 return err; 1469 } 1470 1471 seq = file->private_data; 1472 seq->private = cd; 1473 return 0; 1474 } 1475 1476 static int content_release(struct inode *inode, struct file *file, 1477 struct cache_detail *cd) 1478 { 1479 int ret = seq_release(inode, file); 1480 module_put(cd->owner); 1481 return ret; 1482 } 1483 1484 static int open_flush(struct inode *inode, struct file *file, 1485 struct cache_detail *cd) 1486 { 1487 if (!cd || !try_module_get(cd->owner)) 1488 return -EACCES; 1489 return nonseekable_open(inode, file); 1490 } 1491 1492 static int release_flush(struct inode *inode, struct file *file, 1493 struct cache_detail *cd) 1494 { 1495 module_put(cd->owner); 1496 return 0; 1497 } 1498 1499 static ssize_t read_flush(struct file *file, char __user *buf, 1500 size_t count, loff_t *ppos, 1501 struct cache_detail *cd) 1502 { 1503 char tbuf[22]; 1504 size_t len; 1505 1506 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1507 convert_to_wallclock(cd->flush_time)); 1508 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1509 } 1510 1511 static ssize_t write_flush(struct file *file, const char __user *buf, 1512 size_t count, loff_t *ppos, 1513 struct cache_detail *cd) 1514 { 1515 char tbuf[20]; 1516 char *ep; 1517 time64_t now; 1518 1519 if (*ppos || count > sizeof(tbuf)-1) 1520 return -EINVAL; 1521 if (copy_from_user(tbuf, buf, count)) 1522 return -EFAULT; 1523 tbuf[count] = 0; 1524 simple_strtoul(tbuf, &ep, 0); 1525 if (*ep && *ep != '\n') 1526 return -EINVAL; 1527 /* Note that while we check that 'buf' holds a valid number, 1528 * we always ignore the value and just flush everything. 1529 * Making use of the number leads to races. 1530 */ 1531 1532 now = seconds_since_boot(); 1533 /* Always flush everything, so behave like cache_purge() 1534 * Do this by advancing flush_time to the current time, 1535 * or by one second if it has already reached the current time. 1536 * Newly added cache entries will always have ->last_refresh greater 1537 * that ->flush_time, so they don't get flushed prematurely. 1538 */ 1539 1540 if (cd->flush_time >= now) 1541 now = cd->flush_time + 1; 1542 1543 cd->flush_time = now; 1544 cd->nextcheck = now; 1545 cache_flush(); 1546 1547 if (cd->flush) 1548 cd->flush(); 1549 1550 *ppos += count; 1551 return count; 1552 } 1553 1554 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1555 size_t count, loff_t *ppos) 1556 { 1557 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1558 1559 return cache_read(filp, buf, count, ppos, cd); 1560 } 1561 1562 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1563 size_t count, loff_t *ppos) 1564 { 1565 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1566 1567 return cache_write(filp, buf, count, ppos, cd); 1568 } 1569 1570 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1571 { 1572 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1573 1574 return cache_poll(filp, wait, cd); 1575 } 1576 1577 static long cache_ioctl_procfs(struct file *filp, 1578 unsigned int cmd, unsigned long arg) 1579 { 1580 struct inode *inode = file_inode(filp); 1581 struct cache_detail *cd = PDE_DATA(inode); 1582 1583 return cache_ioctl(inode, filp, cmd, arg, cd); 1584 } 1585 1586 static int cache_open_procfs(struct inode *inode, struct file *filp) 1587 { 1588 struct cache_detail *cd = PDE_DATA(inode); 1589 1590 return cache_open(inode, filp, cd); 1591 } 1592 1593 static int cache_release_procfs(struct inode *inode, struct file *filp) 1594 { 1595 struct cache_detail *cd = PDE_DATA(inode); 1596 1597 return cache_release(inode, filp, cd); 1598 } 1599 1600 static const struct proc_ops cache_channel_proc_ops = { 1601 .proc_lseek = no_llseek, 1602 .proc_read = cache_read_procfs, 1603 .proc_write = cache_write_procfs, 1604 .proc_poll = cache_poll_procfs, 1605 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1606 .proc_open = cache_open_procfs, 1607 .proc_release = cache_release_procfs, 1608 }; 1609 1610 static int content_open_procfs(struct inode *inode, struct file *filp) 1611 { 1612 struct cache_detail *cd = PDE_DATA(inode); 1613 1614 return content_open(inode, filp, cd); 1615 } 1616 1617 static int content_release_procfs(struct inode *inode, struct file *filp) 1618 { 1619 struct cache_detail *cd = PDE_DATA(inode); 1620 1621 return content_release(inode, filp, cd); 1622 } 1623 1624 static const struct proc_ops content_proc_ops = { 1625 .proc_open = content_open_procfs, 1626 .proc_read = seq_read, 1627 .proc_lseek = seq_lseek, 1628 .proc_release = content_release_procfs, 1629 }; 1630 1631 static int open_flush_procfs(struct inode *inode, struct file *filp) 1632 { 1633 struct cache_detail *cd = PDE_DATA(inode); 1634 1635 return open_flush(inode, filp, cd); 1636 } 1637 1638 static int release_flush_procfs(struct inode *inode, struct file *filp) 1639 { 1640 struct cache_detail *cd = PDE_DATA(inode); 1641 1642 return release_flush(inode, filp, cd); 1643 } 1644 1645 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1646 size_t count, loff_t *ppos) 1647 { 1648 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1649 1650 return read_flush(filp, buf, count, ppos, cd); 1651 } 1652 1653 static ssize_t write_flush_procfs(struct file *filp, 1654 const char __user *buf, 1655 size_t count, loff_t *ppos) 1656 { 1657 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1658 1659 return write_flush(filp, buf, count, ppos, cd); 1660 } 1661 1662 static const struct proc_ops cache_flush_proc_ops = { 1663 .proc_open = open_flush_procfs, 1664 .proc_read = read_flush_procfs, 1665 .proc_write = write_flush_procfs, 1666 .proc_release = release_flush_procfs, 1667 .proc_lseek = no_llseek, 1668 }; 1669 1670 static void remove_cache_proc_entries(struct cache_detail *cd) 1671 { 1672 if (cd->procfs) { 1673 proc_remove(cd->procfs); 1674 cd->procfs = NULL; 1675 } 1676 } 1677 1678 #ifdef CONFIG_PROC_FS 1679 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1680 { 1681 struct proc_dir_entry *p; 1682 struct sunrpc_net *sn; 1683 1684 sn = net_generic(net, sunrpc_net_id); 1685 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1686 if (cd->procfs == NULL) 1687 goto out_nomem; 1688 1689 p = proc_create_data("flush", S_IFREG | 0600, 1690 cd->procfs, &cache_flush_proc_ops, cd); 1691 if (p == NULL) 1692 goto out_nomem; 1693 1694 if (cd->cache_request || cd->cache_parse) { 1695 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1696 &cache_channel_proc_ops, cd); 1697 if (p == NULL) 1698 goto out_nomem; 1699 } 1700 if (cd->cache_show) { 1701 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1702 &content_proc_ops, cd); 1703 if (p == NULL) 1704 goto out_nomem; 1705 } 1706 return 0; 1707 out_nomem: 1708 remove_cache_proc_entries(cd); 1709 return -ENOMEM; 1710 } 1711 #else /* CONFIG_PROC_FS */ 1712 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1713 { 1714 return 0; 1715 } 1716 #endif 1717 1718 void __init cache_initialize(void) 1719 { 1720 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1721 } 1722 1723 int cache_register_net(struct cache_detail *cd, struct net *net) 1724 { 1725 int ret; 1726 1727 sunrpc_init_cache_detail(cd); 1728 ret = create_cache_proc_entries(cd, net); 1729 if (ret) 1730 sunrpc_destroy_cache_detail(cd); 1731 return ret; 1732 } 1733 EXPORT_SYMBOL_GPL(cache_register_net); 1734 1735 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1736 { 1737 remove_cache_proc_entries(cd); 1738 sunrpc_destroy_cache_detail(cd); 1739 } 1740 EXPORT_SYMBOL_GPL(cache_unregister_net); 1741 1742 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1743 { 1744 struct cache_detail *cd; 1745 int i; 1746 1747 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1748 if (cd == NULL) 1749 return ERR_PTR(-ENOMEM); 1750 1751 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1752 GFP_KERNEL); 1753 if (cd->hash_table == NULL) { 1754 kfree(cd); 1755 return ERR_PTR(-ENOMEM); 1756 } 1757 1758 for (i = 0; i < cd->hash_size; i++) 1759 INIT_HLIST_HEAD(&cd->hash_table[i]); 1760 cd->net = net; 1761 return cd; 1762 } 1763 EXPORT_SYMBOL_GPL(cache_create_net); 1764 1765 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1766 { 1767 kfree(cd->hash_table); 1768 kfree(cd); 1769 } 1770 EXPORT_SYMBOL_GPL(cache_destroy_net); 1771 1772 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1773 size_t count, loff_t *ppos) 1774 { 1775 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1776 1777 return cache_read(filp, buf, count, ppos, cd); 1778 } 1779 1780 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1781 size_t count, loff_t *ppos) 1782 { 1783 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1784 1785 return cache_write(filp, buf, count, ppos, cd); 1786 } 1787 1788 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1789 { 1790 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1791 1792 return cache_poll(filp, wait, cd); 1793 } 1794 1795 static long cache_ioctl_pipefs(struct file *filp, 1796 unsigned int cmd, unsigned long arg) 1797 { 1798 struct inode *inode = file_inode(filp); 1799 struct cache_detail *cd = RPC_I(inode)->private; 1800 1801 return cache_ioctl(inode, filp, cmd, arg, cd); 1802 } 1803 1804 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1805 { 1806 struct cache_detail *cd = RPC_I(inode)->private; 1807 1808 return cache_open(inode, filp, cd); 1809 } 1810 1811 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1812 { 1813 struct cache_detail *cd = RPC_I(inode)->private; 1814 1815 return cache_release(inode, filp, cd); 1816 } 1817 1818 const struct file_operations cache_file_operations_pipefs = { 1819 .owner = THIS_MODULE, 1820 .llseek = no_llseek, 1821 .read = cache_read_pipefs, 1822 .write = cache_write_pipefs, 1823 .poll = cache_poll_pipefs, 1824 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1825 .open = cache_open_pipefs, 1826 .release = cache_release_pipefs, 1827 }; 1828 1829 static int content_open_pipefs(struct inode *inode, struct file *filp) 1830 { 1831 struct cache_detail *cd = RPC_I(inode)->private; 1832 1833 return content_open(inode, filp, cd); 1834 } 1835 1836 static int content_release_pipefs(struct inode *inode, struct file *filp) 1837 { 1838 struct cache_detail *cd = RPC_I(inode)->private; 1839 1840 return content_release(inode, filp, cd); 1841 } 1842 1843 const struct file_operations content_file_operations_pipefs = { 1844 .open = content_open_pipefs, 1845 .read = seq_read, 1846 .llseek = seq_lseek, 1847 .release = content_release_pipefs, 1848 }; 1849 1850 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1851 { 1852 struct cache_detail *cd = RPC_I(inode)->private; 1853 1854 return open_flush(inode, filp, cd); 1855 } 1856 1857 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1858 { 1859 struct cache_detail *cd = RPC_I(inode)->private; 1860 1861 return release_flush(inode, filp, cd); 1862 } 1863 1864 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1865 size_t count, loff_t *ppos) 1866 { 1867 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1868 1869 return read_flush(filp, buf, count, ppos, cd); 1870 } 1871 1872 static ssize_t write_flush_pipefs(struct file *filp, 1873 const char __user *buf, 1874 size_t count, loff_t *ppos) 1875 { 1876 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1877 1878 return write_flush(filp, buf, count, ppos, cd); 1879 } 1880 1881 const struct file_operations cache_flush_operations_pipefs = { 1882 .open = open_flush_pipefs, 1883 .read = read_flush_pipefs, 1884 .write = write_flush_pipefs, 1885 .release = release_flush_pipefs, 1886 .llseek = no_llseek, 1887 }; 1888 1889 int sunrpc_cache_register_pipefs(struct dentry *parent, 1890 const char *name, umode_t umode, 1891 struct cache_detail *cd) 1892 { 1893 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1894 if (IS_ERR(dir)) 1895 return PTR_ERR(dir); 1896 cd->pipefs = dir; 1897 return 0; 1898 } 1899 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1900 1901 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1902 { 1903 if (cd->pipefs) { 1904 rpc_remove_cache_dir(cd->pipefs); 1905 cd->pipefs = NULL; 1906 } 1907 } 1908 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1909 1910 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1911 { 1912 spin_lock(&cd->hash_lock); 1913 if (!hlist_unhashed(&h->cache_list)){ 1914 sunrpc_begin_cache_remove_entry(h, cd); 1915 spin_unlock(&cd->hash_lock); 1916 sunrpc_end_cache_remove_entry(h, cd); 1917 } else 1918 spin_unlock(&cd->hash_lock); 1919 } 1920 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1921