1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h) 44 { 45 time_t now = seconds_since_boot(); 46 h->next = NULL; 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 h->last_refresh = now; 51 } 52 53 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 54 struct cache_head *key, int hash) 55 { 56 struct cache_head **head, **hp; 57 struct cache_head *new = NULL, *freeme = NULL; 58 59 head = &detail->hash_table[hash]; 60 61 read_lock(&detail->hash_lock); 62 63 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 64 struct cache_head *tmp = *hp; 65 if (detail->match(tmp, key)) { 66 if (cache_is_expired(detail, tmp)) 67 /* This entry is expired, we will discard it. */ 68 break; 69 cache_get(tmp); 70 read_unlock(&detail->hash_lock); 71 return tmp; 72 } 73 } 74 read_unlock(&detail->hash_lock); 75 /* Didn't find anything, insert an empty entry */ 76 77 new = detail->alloc(); 78 if (!new) 79 return NULL; 80 /* must fully initialise 'new', else 81 * we might get lose if we need to 82 * cache_put it soon. 83 */ 84 cache_init(new); 85 detail->init(new, key); 86 87 write_lock(&detail->hash_lock); 88 89 /* check if entry appeared while we slept */ 90 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 91 struct cache_head *tmp = *hp; 92 if (detail->match(tmp, key)) { 93 if (cache_is_expired(detail, tmp)) { 94 *hp = tmp->next; 95 tmp->next = NULL; 96 detail->entries --; 97 freeme = tmp; 98 break; 99 } 100 cache_get(tmp); 101 write_unlock(&detail->hash_lock); 102 cache_put(new, detail); 103 return tmp; 104 } 105 } 106 new->next = *head; 107 *head = new; 108 detail->entries++; 109 cache_get(new); 110 write_unlock(&detail->hash_lock); 111 112 if (freeme) 113 cache_put(freeme, detail); 114 return new; 115 } 116 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 117 118 119 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 120 121 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 122 { 123 head->expiry_time = expiry; 124 head->last_refresh = seconds_since_boot(); 125 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 126 set_bit(CACHE_VALID, &head->flags); 127 } 128 129 static void cache_fresh_unlocked(struct cache_head *head, 130 struct cache_detail *detail) 131 { 132 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 133 cache_revisit_request(head); 134 cache_dequeue(detail, head); 135 } 136 } 137 138 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 139 struct cache_head *new, struct cache_head *old, int hash) 140 { 141 /* The 'old' entry is to be replaced by 'new'. 142 * If 'old' is not VALID, we update it directly, 143 * otherwise we need to replace it 144 */ 145 struct cache_head **head; 146 struct cache_head *tmp; 147 148 if (!test_bit(CACHE_VALID, &old->flags)) { 149 write_lock(&detail->hash_lock); 150 if (!test_bit(CACHE_VALID, &old->flags)) { 151 if (test_bit(CACHE_NEGATIVE, &new->flags)) 152 set_bit(CACHE_NEGATIVE, &old->flags); 153 else 154 detail->update(old, new); 155 cache_fresh_locked(old, new->expiry_time); 156 write_unlock(&detail->hash_lock); 157 cache_fresh_unlocked(old, detail); 158 return old; 159 } 160 write_unlock(&detail->hash_lock); 161 } 162 /* We need to insert a new entry */ 163 tmp = detail->alloc(); 164 if (!tmp) { 165 cache_put(old, detail); 166 return NULL; 167 } 168 cache_init(tmp); 169 detail->init(tmp, old); 170 head = &detail->hash_table[hash]; 171 172 write_lock(&detail->hash_lock); 173 if (test_bit(CACHE_NEGATIVE, &new->flags)) 174 set_bit(CACHE_NEGATIVE, &tmp->flags); 175 else 176 detail->update(tmp, new); 177 tmp->next = *head; 178 *head = tmp; 179 detail->entries++; 180 cache_get(tmp); 181 cache_fresh_locked(tmp, new->expiry_time); 182 cache_fresh_locked(old, 0); 183 write_unlock(&detail->hash_lock); 184 cache_fresh_unlocked(tmp, detail); 185 cache_fresh_unlocked(old, detail); 186 cache_put(old, detail); 187 return tmp; 188 } 189 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 190 191 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 192 { 193 if (cd->cache_upcall) 194 return cd->cache_upcall(cd, h); 195 return sunrpc_cache_pipe_upcall(cd, h); 196 } 197 198 static inline int cache_is_valid(struct cache_head *h) 199 { 200 if (!test_bit(CACHE_VALID, &h->flags)) 201 return -EAGAIN; 202 else { 203 /* entry is valid */ 204 if (test_bit(CACHE_NEGATIVE, &h->flags)) 205 return -ENOENT; 206 else { 207 /* 208 * In combination with write barrier in 209 * sunrpc_cache_update, ensures that anyone 210 * using the cache entry after this sees the 211 * updated contents: 212 */ 213 smp_rmb(); 214 return 0; 215 } 216 } 217 } 218 219 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 220 { 221 int rv; 222 223 write_lock(&detail->hash_lock); 224 rv = cache_is_valid(h); 225 if (rv == -EAGAIN) { 226 set_bit(CACHE_NEGATIVE, &h->flags); 227 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY); 228 rv = -ENOENT; 229 } 230 write_unlock(&detail->hash_lock); 231 cache_fresh_unlocked(h, detail); 232 return rv; 233 } 234 235 /* 236 * This is the generic cache management routine for all 237 * the authentication caches. 238 * It checks the currency of a cache item and will (later) 239 * initiate an upcall to fill it if needed. 240 * 241 * 242 * Returns 0 if the cache_head can be used, or cache_puts it and returns 243 * -EAGAIN if upcall is pending and request has been queued 244 * -ETIMEDOUT if upcall failed or request could not be queue or 245 * upcall completed but item is still invalid (implying that 246 * the cache item has been replaced with a newer one). 247 * -ENOENT if cache entry was negative 248 */ 249 int cache_check(struct cache_detail *detail, 250 struct cache_head *h, struct cache_req *rqstp) 251 { 252 int rv; 253 long refresh_age, age; 254 255 /* First decide return status as best we can */ 256 rv = cache_is_valid(h); 257 258 /* now see if we want to start an upcall */ 259 refresh_age = (h->expiry_time - h->last_refresh); 260 age = seconds_since_boot() - h->last_refresh; 261 262 if (rqstp == NULL) { 263 if (rv == -EAGAIN) 264 rv = -ENOENT; 265 } else if (rv == -EAGAIN || 266 (h->expiry_time != 0 && age > refresh_age/2)) { 267 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 268 refresh_age, age); 269 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 270 switch (cache_make_upcall(detail, h)) { 271 case -EINVAL: 272 rv = try_to_negate_entry(detail, h); 273 break; 274 case -EAGAIN: 275 cache_fresh_unlocked(h, detail); 276 break; 277 } 278 } 279 } 280 281 if (rv == -EAGAIN) { 282 if (!cache_defer_req(rqstp, h)) { 283 /* 284 * Request was not deferred; handle it as best 285 * we can ourselves: 286 */ 287 rv = cache_is_valid(h); 288 if (rv == -EAGAIN) 289 rv = -ETIMEDOUT; 290 } 291 } 292 if (rv) 293 cache_put(h, detail); 294 return rv; 295 } 296 EXPORT_SYMBOL_GPL(cache_check); 297 298 /* 299 * caches need to be periodically cleaned. 300 * For this we maintain a list of cache_detail and 301 * a current pointer into that list and into the table 302 * for that entry. 303 * 304 * Each time cache_clean is called it finds the next non-empty entry 305 * in the current table and walks the list in that entry 306 * looking for entries that can be removed. 307 * 308 * An entry gets removed if: 309 * - The expiry is before current time 310 * - The last_refresh time is before the flush_time for that cache 311 * 312 * later we might drop old entries with non-NEVER expiry if that table 313 * is getting 'full' for some definition of 'full' 314 * 315 * The question of "how often to scan a table" is an interesting one 316 * and is answered in part by the use of the "nextcheck" field in the 317 * cache_detail. 318 * When a scan of a table begins, the nextcheck field is set to a time 319 * that is well into the future. 320 * While scanning, if an expiry time is found that is earlier than the 321 * current nextcheck time, nextcheck is set to that expiry time. 322 * If the flush_time is ever set to a time earlier than the nextcheck 323 * time, the nextcheck time is then set to that flush_time. 324 * 325 * A table is then only scanned if the current time is at least 326 * the nextcheck time. 327 * 328 */ 329 330 static LIST_HEAD(cache_list); 331 static DEFINE_SPINLOCK(cache_list_lock); 332 static struct cache_detail *current_detail; 333 static int current_index; 334 335 static void do_cache_clean(struct work_struct *work); 336 static struct delayed_work cache_cleaner; 337 338 void sunrpc_init_cache_detail(struct cache_detail *cd) 339 { 340 rwlock_init(&cd->hash_lock); 341 INIT_LIST_HEAD(&cd->queue); 342 spin_lock(&cache_list_lock); 343 cd->nextcheck = 0; 344 cd->entries = 0; 345 atomic_set(&cd->readers, 0); 346 cd->last_close = 0; 347 cd->last_warn = -1; 348 list_add(&cd->others, &cache_list); 349 spin_unlock(&cache_list_lock); 350 351 /* start the cleaning process */ 352 schedule_delayed_work(&cache_cleaner, 0); 353 } 354 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 355 356 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 357 { 358 cache_purge(cd); 359 spin_lock(&cache_list_lock); 360 write_lock(&cd->hash_lock); 361 if (cd->entries || atomic_read(&cd->inuse)) { 362 write_unlock(&cd->hash_lock); 363 spin_unlock(&cache_list_lock); 364 goto out; 365 } 366 if (current_detail == cd) 367 current_detail = NULL; 368 list_del_init(&cd->others); 369 write_unlock(&cd->hash_lock); 370 spin_unlock(&cache_list_lock); 371 if (list_empty(&cache_list)) { 372 /* module must be being unloaded so its safe to kill the worker */ 373 cancel_delayed_work_sync(&cache_cleaner); 374 } 375 return; 376 out: 377 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 378 } 379 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 380 381 /* clean cache tries to find something to clean 382 * and cleans it. 383 * It returns 1 if it cleaned something, 384 * 0 if it didn't find anything this time 385 * -1 if it fell off the end of the list. 386 */ 387 static int cache_clean(void) 388 { 389 int rv = 0; 390 struct list_head *next; 391 392 spin_lock(&cache_list_lock); 393 394 /* find a suitable table if we don't already have one */ 395 while (current_detail == NULL || 396 current_index >= current_detail->hash_size) { 397 if (current_detail) 398 next = current_detail->others.next; 399 else 400 next = cache_list.next; 401 if (next == &cache_list) { 402 current_detail = NULL; 403 spin_unlock(&cache_list_lock); 404 return -1; 405 } 406 current_detail = list_entry(next, struct cache_detail, others); 407 if (current_detail->nextcheck > seconds_since_boot()) 408 current_index = current_detail->hash_size; 409 else { 410 current_index = 0; 411 current_detail->nextcheck = seconds_since_boot()+30*60; 412 } 413 } 414 415 /* find a non-empty bucket in the table */ 416 while (current_detail && 417 current_index < current_detail->hash_size && 418 current_detail->hash_table[current_index] == NULL) 419 current_index++; 420 421 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 422 423 if (current_detail && current_index < current_detail->hash_size) { 424 struct cache_head *ch, **cp; 425 struct cache_detail *d; 426 427 write_lock(¤t_detail->hash_lock); 428 429 /* Ok, now to clean this strand */ 430 431 cp = & current_detail->hash_table[current_index]; 432 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 433 if (current_detail->nextcheck > ch->expiry_time) 434 current_detail->nextcheck = ch->expiry_time+1; 435 if (!cache_is_expired(current_detail, ch)) 436 continue; 437 438 *cp = ch->next; 439 ch->next = NULL; 440 current_detail->entries--; 441 rv = 1; 442 break; 443 } 444 445 write_unlock(¤t_detail->hash_lock); 446 d = current_detail; 447 if (!ch) 448 current_index ++; 449 spin_unlock(&cache_list_lock); 450 if (ch) { 451 set_bit(CACHE_CLEANED, &ch->flags); 452 cache_fresh_unlocked(ch, d); 453 cache_put(ch, d); 454 } 455 } else 456 spin_unlock(&cache_list_lock); 457 458 return rv; 459 } 460 461 /* 462 * We want to regularly clean the cache, so we need to schedule some work ... 463 */ 464 static void do_cache_clean(struct work_struct *work) 465 { 466 int delay = 5; 467 if (cache_clean() == -1) 468 delay = round_jiffies_relative(30*HZ); 469 470 if (list_empty(&cache_list)) 471 delay = 0; 472 473 if (delay) 474 schedule_delayed_work(&cache_cleaner, delay); 475 } 476 477 478 /* 479 * Clean all caches promptly. This just calls cache_clean 480 * repeatedly until we are sure that every cache has had a chance to 481 * be fully cleaned 482 */ 483 void cache_flush(void) 484 { 485 while (cache_clean() != -1) 486 cond_resched(); 487 while (cache_clean() != -1) 488 cond_resched(); 489 } 490 EXPORT_SYMBOL_GPL(cache_flush); 491 492 void cache_purge(struct cache_detail *detail) 493 { 494 detail->flush_time = LONG_MAX; 495 detail->nextcheck = seconds_since_boot(); 496 cache_flush(); 497 detail->flush_time = 1; 498 } 499 EXPORT_SYMBOL_GPL(cache_purge); 500 501 502 /* 503 * Deferral and Revisiting of Requests. 504 * 505 * If a cache lookup finds a pending entry, we 506 * need to defer the request and revisit it later. 507 * All deferred requests are stored in a hash table, 508 * indexed by "struct cache_head *". 509 * As it may be wasteful to store a whole request 510 * structure, we allow the request to provide a 511 * deferred form, which must contain a 512 * 'struct cache_deferred_req' 513 * This cache_deferred_req contains a method to allow 514 * it to be revisited when cache info is available 515 */ 516 517 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 518 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 519 520 #define DFR_MAX 300 /* ??? */ 521 522 static DEFINE_SPINLOCK(cache_defer_lock); 523 static LIST_HEAD(cache_defer_list); 524 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 525 static int cache_defer_cnt; 526 527 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 528 { 529 hlist_del_init(&dreq->hash); 530 if (!list_empty(&dreq->recent)) { 531 list_del_init(&dreq->recent); 532 cache_defer_cnt--; 533 } 534 } 535 536 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 537 { 538 int hash = DFR_HASH(item); 539 540 INIT_LIST_HEAD(&dreq->recent); 541 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 542 } 543 544 static void setup_deferral(struct cache_deferred_req *dreq, 545 struct cache_head *item, 546 int count_me) 547 { 548 549 dreq->item = item; 550 551 spin_lock(&cache_defer_lock); 552 553 __hash_deferred_req(dreq, item); 554 555 if (count_me) { 556 cache_defer_cnt++; 557 list_add(&dreq->recent, &cache_defer_list); 558 } 559 560 spin_unlock(&cache_defer_lock); 561 562 } 563 564 struct thread_deferred_req { 565 struct cache_deferred_req handle; 566 struct completion completion; 567 }; 568 569 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 570 { 571 struct thread_deferred_req *dr = 572 container_of(dreq, struct thread_deferred_req, handle); 573 complete(&dr->completion); 574 } 575 576 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 577 { 578 struct thread_deferred_req sleeper; 579 struct cache_deferred_req *dreq = &sleeper.handle; 580 581 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 582 dreq->revisit = cache_restart_thread; 583 584 setup_deferral(dreq, item, 0); 585 586 if (!test_bit(CACHE_PENDING, &item->flags) || 587 wait_for_completion_interruptible_timeout( 588 &sleeper.completion, req->thread_wait) <= 0) { 589 /* The completion wasn't completed, so we need 590 * to clean up 591 */ 592 spin_lock(&cache_defer_lock); 593 if (!hlist_unhashed(&sleeper.handle.hash)) { 594 __unhash_deferred_req(&sleeper.handle); 595 spin_unlock(&cache_defer_lock); 596 } else { 597 /* cache_revisit_request already removed 598 * this from the hash table, but hasn't 599 * called ->revisit yet. It will very soon 600 * and we need to wait for it. 601 */ 602 spin_unlock(&cache_defer_lock); 603 wait_for_completion(&sleeper.completion); 604 } 605 } 606 } 607 608 static void cache_limit_defers(void) 609 { 610 /* Make sure we haven't exceed the limit of allowed deferred 611 * requests. 612 */ 613 struct cache_deferred_req *discard = NULL; 614 615 if (cache_defer_cnt <= DFR_MAX) 616 return; 617 618 spin_lock(&cache_defer_lock); 619 620 /* Consider removing either the first or the last */ 621 if (cache_defer_cnt > DFR_MAX) { 622 if (prandom_u32() & 1) 623 discard = list_entry(cache_defer_list.next, 624 struct cache_deferred_req, recent); 625 else 626 discard = list_entry(cache_defer_list.prev, 627 struct cache_deferred_req, recent); 628 __unhash_deferred_req(discard); 629 } 630 spin_unlock(&cache_defer_lock); 631 if (discard) 632 discard->revisit(discard, 1); 633 } 634 635 /* Return true if and only if a deferred request is queued. */ 636 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 637 { 638 struct cache_deferred_req *dreq; 639 640 if (req->thread_wait) { 641 cache_wait_req(req, item); 642 if (!test_bit(CACHE_PENDING, &item->flags)) 643 return false; 644 } 645 dreq = req->defer(req); 646 if (dreq == NULL) 647 return false; 648 setup_deferral(dreq, item, 1); 649 if (!test_bit(CACHE_PENDING, &item->flags)) 650 /* Bit could have been cleared before we managed to 651 * set up the deferral, so need to revisit just in case 652 */ 653 cache_revisit_request(item); 654 655 cache_limit_defers(); 656 return true; 657 } 658 659 static void cache_revisit_request(struct cache_head *item) 660 { 661 struct cache_deferred_req *dreq; 662 struct list_head pending; 663 struct hlist_node *tmp; 664 int hash = DFR_HASH(item); 665 666 INIT_LIST_HEAD(&pending); 667 spin_lock(&cache_defer_lock); 668 669 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 670 if (dreq->item == item) { 671 __unhash_deferred_req(dreq); 672 list_add(&dreq->recent, &pending); 673 } 674 675 spin_unlock(&cache_defer_lock); 676 677 while (!list_empty(&pending)) { 678 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 679 list_del_init(&dreq->recent); 680 dreq->revisit(dreq, 0); 681 } 682 } 683 684 void cache_clean_deferred(void *owner) 685 { 686 struct cache_deferred_req *dreq, *tmp; 687 struct list_head pending; 688 689 690 INIT_LIST_HEAD(&pending); 691 spin_lock(&cache_defer_lock); 692 693 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 694 if (dreq->owner == owner) { 695 __unhash_deferred_req(dreq); 696 list_add(&dreq->recent, &pending); 697 } 698 } 699 spin_unlock(&cache_defer_lock); 700 701 while (!list_empty(&pending)) { 702 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 703 list_del_init(&dreq->recent); 704 dreq->revisit(dreq, 1); 705 } 706 } 707 708 /* 709 * communicate with user-space 710 * 711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 712 * On read, you get a full request, or block. 713 * On write, an update request is processed. 714 * Poll works if anything to read, and always allows write. 715 * 716 * Implemented by linked list of requests. Each open file has 717 * a ->private that also exists in this list. New requests are added 718 * to the end and may wakeup and preceding readers. 719 * New readers are added to the head. If, on read, an item is found with 720 * CACHE_UPCALLING clear, we free it from the list. 721 * 722 */ 723 724 static DEFINE_SPINLOCK(queue_lock); 725 static DEFINE_MUTEX(queue_io_mutex); 726 727 struct cache_queue { 728 struct list_head list; 729 int reader; /* if 0, then request */ 730 }; 731 struct cache_request { 732 struct cache_queue q; 733 struct cache_head *item; 734 char * buf; 735 int len; 736 int readers; 737 }; 738 struct cache_reader { 739 struct cache_queue q; 740 int offset; /* if non-0, we have a refcnt on next request */ 741 }; 742 743 static int cache_request(struct cache_detail *detail, 744 struct cache_request *crq) 745 { 746 char *bp = crq->buf; 747 int len = PAGE_SIZE; 748 749 detail->cache_request(detail, crq->item, &bp, &len); 750 if (len < 0) 751 return -EAGAIN; 752 return PAGE_SIZE - len; 753 } 754 755 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 756 loff_t *ppos, struct cache_detail *cd) 757 { 758 struct cache_reader *rp = filp->private_data; 759 struct cache_request *rq; 760 struct inode *inode = file_inode(filp); 761 int err; 762 763 if (count == 0) 764 return 0; 765 766 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 767 * readers on this file */ 768 again: 769 spin_lock(&queue_lock); 770 /* need to find next request */ 771 while (rp->q.list.next != &cd->queue && 772 list_entry(rp->q.list.next, struct cache_queue, list) 773 ->reader) { 774 struct list_head *next = rp->q.list.next; 775 list_move(&rp->q.list, next); 776 } 777 if (rp->q.list.next == &cd->queue) { 778 spin_unlock(&queue_lock); 779 mutex_unlock(&inode->i_mutex); 780 WARN_ON_ONCE(rp->offset); 781 return 0; 782 } 783 rq = container_of(rp->q.list.next, struct cache_request, q.list); 784 WARN_ON_ONCE(rq->q.reader); 785 if (rp->offset == 0) 786 rq->readers++; 787 spin_unlock(&queue_lock); 788 789 if (rq->len == 0) { 790 err = cache_request(cd, rq); 791 if (err < 0) 792 goto out; 793 rq->len = err; 794 } 795 796 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 797 err = -EAGAIN; 798 spin_lock(&queue_lock); 799 list_move(&rp->q.list, &rq->q.list); 800 spin_unlock(&queue_lock); 801 } else { 802 if (rp->offset + count > rq->len) 803 count = rq->len - rp->offset; 804 err = -EFAULT; 805 if (copy_to_user(buf, rq->buf + rp->offset, count)) 806 goto out; 807 rp->offset += count; 808 if (rp->offset >= rq->len) { 809 rp->offset = 0; 810 spin_lock(&queue_lock); 811 list_move(&rp->q.list, &rq->q.list); 812 spin_unlock(&queue_lock); 813 } 814 err = 0; 815 } 816 out: 817 if (rp->offset == 0) { 818 /* need to release rq */ 819 spin_lock(&queue_lock); 820 rq->readers--; 821 if (rq->readers == 0 && 822 !test_bit(CACHE_PENDING, &rq->item->flags)) { 823 list_del(&rq->q.list); 824 spin_unlock(&queue_lock); 825 cache_put(rq->item, cd); 826 kfree(rq->buf); 827 kfree(rq); 828 } else 829 spin_unlock(&queue_lock); 830 } 831 if (err == -EAGAIN) 832 goto again; 833 mutex_unlock(&inode->i_mutex); 834 return err ? err : count; 835 } 836 837 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 838 size_t count, struct cache_detail *cd) 839 { 840 ssize_t ret; 841 842 if (count == 0) 843 return -EINVAL; 844 if (copy_from_user(kaddr, buf, count)) 845 return -EFAULT; 846 kaddr[count] = '\0'; 847 ret = cd->cache_parse(cd, kaddr, count); 848 if (!ret) 849 ret = count; 850 return ret; 851 } 852 853 static ssize_t cache_slow_downcall(const char __user *buf, 854 size_t count, struct cache_detail *cd) 855 { 856 static char write_buf[8192]; /* protected by queue_io_mutex */ 857 ssize_t ret = -EINVAL; 858 859 if (count >= sizeof(write_buf)) 860 goto out; 861 mutex_lock(&queue_io_mutex); 862 ret = cache_do_downcall(write_buf, buf, count, cd); 863 mutex_unlock(&queue_io_mutex); 864 out: 865 return ret; 866 } 867 868 static ssize_t cache_downcall(struct address_space *mapping, 869 const char __user *buf, 870 size_t count, struct cache_detail *cd) 871 { 872 struct page *page; 873 char *kaddr; 874 ssize_t ret = -ENOMEM; 875 876 if (count >= PAGE_CACHE_SIZE) 877 goto out_slow; 878 879 page = find_or_create_page(mapping, 0, GFP_KERNEL); 880 if (!page) 881 goto out_slow; 882 883 kaddr = kmap(page); 884 ret = cache_do_downcall(kaddr, buf, count, cd); 885 kunmap(page); 886 unlock_page(page); 887 page_cache_release(page); 888 return ret; 889 out_slow: 890 return cache_slow_downcall(buf, count, cd); 891 } 892 893 static ssize_t cache_write(struct file *filp, const char __user *buf, 894 size_t count, loff_t *ppos, 895 struct cache_detail *cd) 896 { 897 struct address_space *mapping = filp->f_mapping; 898 struct inode *inode = file_inode(filp); 899 ssize_t ret = -EINVAL; 900 901 if (!cd->cache_parse) 902 goto out; 903 904 mutex_lock(&inode->i_mutex); 905 ret = cache_downcall(mapping, buf, count, cd); 906 mutex_unlock(&inode->i_mutex); 907 out: 908 return ret; 909 } 910 911 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 912 913 static unsigned int cache_poll(struct file *filp, poll_table *wait, 914 struct cache_detail *cd) 915 { 916 unsigned int mask; 917 struct cache_reader *rp = filp->private_data; 918 struct cache_queue *cq; 919 920 poll_wait(filp, &queue_wait, wait); 921 922 /* alway allow write */ 923 mask = POLL_OUT | POLLWRNORM; 924 925 if (!rp) 926 return mask; 927 928 spin_lock(&queue_lock); 929 930 for (cq= &rp->q; &cq->list != &cd->queue; 931 cq = list_entry(cq->list.next, struct cache_queue, list)) 932 if (!cq->reader) { 933 mask |= POLLIN | POLLRDNORM; 934 break; 935 } 936 spin_unlock(&queue_lock); 937 return mask; 938 } 939 940 static int cache_ioctl(struct inode *ino, struct file *filp, 941 unsigned int cmd, unsigned long arg, 942 struct cache_detail *cd) 943 { 944 int len = 0; 945 struct cache_reader *rp = filp->private_data; 946 struct cache_queue *cq; 947 948 if (cmd != FIONREAD || !rp) 949 return -EINVAL; 950 951 spin_lock(&queue_lock); 952 953 /* only find the length remaining in current request, 954 * or the length of the next request 955 */ 956 for (cq= &rp->q; &cq->list != &cd->queue; 957 cq = list_entry(cq->list.next, struct cache_queue, list)) 958 if (!cq->reader) { 959 struct cache_request *cr = 960 container_of(cq, struct cache_request, q); 961 len = cr->len - rp->offset; 962 break; 963 } 964 spin_unlock(&queue_lock); 965 966 return put_user(len, (int __user *)arg); 967 } 968 969 static int cache_open(struct inode *inode, struct file *filp, 970 struct cache_detail *cd) 971 { 972 struct cache_reader *rp = NULL; 973 974 if (!cd || !try_module_get(cd->owner)) 975 return -EACCES; 976 nonseekable_open(inode, filp); 977 if (filp->f_mode & FMODE_READ) { 978 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 979 if (!rp) { 980 module_put(cd->owner); 981 return -ENOMEM; 982 } 983 rp->offset = 0; 984 rp->q.reader = 1; 985 atomic_inc(&cd->readers); 986 spin_lock(&queue_lock); 987 list_add(&rp->q.list, &cd->queue); 988 spin_unlock(&queue_lock); 989 } 990 filp->private_data = rp; 991 return 0; 992 } 993 994 static int cache_release(struct inode *inode, struct file *filp, 995 struct cache_detail *cd) 996 { 997 struct cache_reader *rp = filp->private_data; 998 999 if (rp) { 1000 spin_lock(&queue_lock); 1001 if (rp->offset) { 1002 struct cache_queue *cq; 1003 for (cq= &rp->q; &cq->list != &cd->queue; 1004 cq = list_entry(cq->list.next, struct cache_queue, list)) 1005 if (!cq->reader) { 1006 container_of(cq, struct cache_request, q) 1007 ->readers--; 1008 break; 1009 } 1010 rp->offset = 0; 1011 } 1012 list_del(&rp->q.list); 1013 spin_unlock(&queue_lock); 1014 1015 filp->private_data = NULL; 1016 kfree(rp); 1017 1018 cd->last_close = seconds_since_boot(); 1019 atomic_dec(&cd->readers); 1020 } 1021 module_put(cd->owner); 1022 return 0; 1023 } 1024 1025 1026 1027 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1028 { 1029 struct cache_queue *cq, *tmp; 1030 struct cache_request *cr; 1031 struct list_head dequeued; 1032 1033 INIT_LIST_HEAD(&dequeued); 1034 spin_lock(&queue_lock); 1035 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1036 if (!cq->reader) { 1037 cr = container_of(cq, struct cache_request, q); 1038 if (cr->item != ch) 1039 continue; 1040 if (test_bit(CACHE_PENDING, &ch->flags)) 1041 /* Lost a race and it is pending again */ 1042 break; 1043 if (cr->readers != 0) 1044 continue; 1045 list_move(&cr->q.list, &dequeued); 1046 } 1047 spin_unlock(&queue_lock); 1048 while (!list_empty(&dequeued)) { 1049 cr = list_entry(dequeued.next, struct cache_request, q.list); 1050 list_del(&cr->q.list); 1051 cache_put(cr->item, detail); 1052 kfree(cr->buf); 1053 kfree(cr); 1054 } 1055 } 1056 1057 /* 1058 * Support routines for text-based upcalls. 1059 * Fields are separated by spaces. 1060 * Fields are either mangled to quote space tab newline slosh with slosh 1061 * or a hexified with a leading \x 1062 * Record is terminated with newline. 1063 * 1064 */ 1065 1066 void qword_add(char **bpp, int *lp, char *str) 1067 { 1068 char *bp = *bpp; 1069 int len = *lp; 1070 char c; 1071 1072 if (len < 0) return; 1073 1074 while ((c=*str++) && len) 1075 switch(c) { 1076 case ' ': 1077 case '\t': 1078 case '\n': 1079 case '\\': 1080 if (len >= 4) { 1081 *bp++ = '\\'; 1082 *bp++ = '0' + ((c & 0300)>>6); 1083 *bp++ = '0' + ((c & 0070)>>3); 1084 *bp++ = '0' + ((c & 0007)>>0); 1085 } 1086 len -= 4; 1087 break; 1088 default: 1089 *bp++ = c; 1090 len--; 1091 } 1092 if (c || len <1) len = -1; 1093 else { 1094 *bp++ = ' '; 1095 len--; 1096 } 1097 *bpp = bp; 1098 *lp = len; 1099 } 1100 EXPORT_SYMBOL_GPL(qword_add); 1101 1102 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1103 { 1104 char *bp = *bpp; 1105 int len = *lp; 1106 1107 if (len < 0) return; 1108 1109 if (len > 2) { 1110 *bp++ = '\\'; 1111 *bp++ = 'x'; 1112 len -= 2; 1113 while (blen && len >= 2) { 1114 bp = hex_byte_pack(bp, *buf++); 1115 len -= 2; 1116 blen--; 1117 } 1118 } 1119 if (blen || len<1) len = -1; 1120 else { 1121 *bp++ = ' '; 1122 len--; 1123 } 1124 *bpp = bp; 1125 *lp = len; 1126 } 1127 EXPORT_SYMBOL_GPL(qword_addhex); 1128 1129 static void warn_no_listener(struct cache_detail *detail) 1130 { 1131 if (detail->last_warn != detail->last_close) { 1132 detail->last_warn = detail->last_close; 1133 if (detail->warn_no_listener) 1134 detail->warn_no_listener(detail, detail->last_close != 0); 1135 } 1136 } 1137 1138 static bool cache_listeners_exist(struct cache_detail *detail) 1139 { 1140 if (atomic_read(&detail->readers)) 1141 return true; 1142 if (detail->last_close == 0) 1143 /* This cache was never opened */ 1144 return false; 1145 if (detail->last_close < seconds_since_boot() - 30) 1146 /* 1147 * We allow for the possibility that someone might 1148 * restart a userspace daemon without restarting the 1149 * server; but after 30 seconds, we give up. 1150 */ 1151 return false; 1152 return true; 1153 } 1154 1155 /* 1156 * register an upcall request to user-space and queue it up for read() by the 1157 * upcall daemon. 1158 * 1159 * Each request is at most one page long. 1160 */ 1161 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1162 { 1163 1164 char *buf; 1165 struct cache_request *crq; 1166 int ret = 0; 1167 1168 if (!detail->cache_request) 1169 return -EINVAL; 1170 1171 if (!cache_listeners_exist(detail)) { 1172 warn_no_listener(detail); 1173 return -EINVAL; 1174 } 1175 if (test_bit(CACHE_CLEANED, &h->flags)) 1176 /* Too late to make an upcall */ 1177 return -EAGAIN; 1178 1179 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1180 if (!buf) 1181 return -EAGAIN; 1182 1183 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1184 if (!crq) { 1185 kfree(buf); 1186 return -EAGAIN; 1187 } 1188 1189 crq->q.reader = 0; 1190 crq->item = cache_get(h); 1191 crq->buf = buf; 1192 crq->len = 0; 1193 crq->readers = 0; 1194 spin_lock(&queue_lock); 1195 if (test_bit(CACHE_PENDING, &h->flags)) 1196 list_add_tail(&crq->q.list, &detail->queue); 1197 else 1198 /* Lost a race, no longer PENDING, so don't enqueue */ 1199 ret = -EAGAIN; 1200 spin_unlock(&queue_lock); 1201 wake_up(&queue_wait); 1202 if (ret == -EAGAIN) { 1203 kfree(buf); 1204 kfree(crq); 1205 } 1206 return ret; 1207 } 1208 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1209 1210 /* 1211 * parse a message from user-space and pass it 1212 * to an appropriate cache 1213 * Messages are, like requests, separated into fields by 1214 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1215 * 1216 * Message is 1217 * reply cachename expiry key ... content.... 1218 * 1219 * key and content are both parsed by cache 1220 */ 1221 1222 int qword_get(char **bpp, char *dest, int bufsize) 1223 { 1224 /* return bytes copied, or -1 on error */ 1225 char *bp = *bpp; 1226 int len = 0; 1227 1228 while (*bp == ' ') bp++; 1229 1230 if (bp[0] == '\\' && bp[1] == 'x') { 1231 /* HEX STRING */ 1232 bp += 2; 1233 while (len < bufsize) { 1234 int h, l; 1235 1236 h = hex_to_bin(bp[0]); 1237 if (h < 0) 1238 break; 1239 1240 l = hex_to_bin(bp[1]); 1241 if (l < 0) 1242 break; 1243 1244 *dest++ = (h << 4) | l; 1245 bp += 2; 1246 len++; 1247 } 1248 } else { 1249 /* text with \nnn octal quoting */ 1250 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1251 if (*bp == '\\' && 1252 isodigit(bp[1]) && (bp[1] <= '3') && 1253 isodigit(bp[2]) && 1254 isodigit(bp[3])) { 1255 int byte = (*++bp -'0'); 1256 bp++; 1257 byte = (byte << 3) | (*bp++ - '0'); 1258 byte = (byte << 3) | (*bp++ - '0'); 1259 *dest++ = byte; 1260 len++; 1261 } else { 1262 *dest++ = *bp++; 1263 len++; 1264 } 1265 } 1266 } 1267 1268 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1269 return -1; 1270 while (*bp == ' ') bp++; 1271 *bpp = bp; 1272 *dest = '\0'; 1273 return len; 1274 } 1275 EXPORT_SYMBOL_GPL(qword_get); 1276 1277 1278 /* 1279 * support /proc/sunrpc/cache/$CACHENAME/content 1280 * as a seqfile. 1281 * We call ->cache_show passing NULL for the item to 1282 * get a header, then pass each real item in the cache 1283 */ 1284 1285 struct handle { 1286 struct cache_detail *cd; 1287 }; 1288 1289 static void *c_start(struct seq_file *m, loff_t *pos) 1290 __acquires(cd->hash_lock) 1291 { 1292 loff_t n = *pos; 1293 unsigned int hash, entry; 1294 struct cache_head *ch; 1295 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1296 1297 1298 read_lock(&cd->hash_lock); 1299 if (!n--) 1300 return SEQ_START_TOKEN; 1301 hash = n >> 32; 1302 entry = n & ((1LL<<32) - 1); 1303 1304 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1305 if (!entry--) 1306 return ch; 1307 n &= ~((1LL<<32) - 1); 1308 do { 1309 hash++; 1310 n += 1LL<<32; 1311 } while(hash < cd->hash_size && 1312 cd->hash_table[hash]==NULL); 1313 if (hash >= cd->hash_size) 1314 return NULL; 1315 *pos = n+1; 1316 return cd->hash_table[hash]; 1317 } 1318 1319 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1320 { 1321 struct cache_head *ch = p; 1322 int hash = (*pos >> 32); 1323 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1324 1325 if (p == SEQ_START_TOKEN) 1326 hash = 0; 1327 else if (ch->next == NULL) { 1328 hash++; 1329 *pos += 1LL<<32; 1330 } else { 1331 ++*pos; 1332 return ch->next; 1333 } 1334 *pos &= ~((1LL<<32) - 1); 1335 while (hash < cd->hash_size && 1336 cd->hash_table[hash] == NULL) { 1337 hash++; 1338 *pos += 1LL<<32; 1339 } 1340 if (hash >= cd->hash_size) 1341 return NULL; 1342 ++*pos; 1343 return cd->hash_table[hash]; 1344 } 1345 1346 static void c_stop(struct seq_file *m, void *p) 1347 __releases(cd->hash_lock) 1348 { 1349 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1350 read_unlock(&cd->hash_lock); 1351 } 1352 1353 static int c_show(struct seq_file *m, void *p) 1354 { 1355 struct cache_head *cp = p; 1356 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1357 1358 if (p == SEQ_START_TOKEN) 1359 return cd->cache_show(m, cd, NULL); 1360 1361 ifdebug(CACHE) 1362 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1363 convert_to_wallclock(cp->expiry_time), 1364 atomic_read(&cp->ref.refcount), cp->flags); 1365 cache_get(cp); 1366 if (cache_check(cd, cp, NULL)) 1367 /* cache_check does a cache_put on failure */ 1368 seq_printf(m, "# "); 1369 else { 1370 if (cache_is_expired(cd, cp)) 1371 seq_printf(m, "# "); 1372 cache_put(cp, cd); 1373 } 1374 1375 return cd->cache_show(m, cd, cp); 1376 } 1377 1378 static const struct seq_operations cache_content_op = { 1379 .start = c_start, 1380 .next = c_next, 1381 .stop = c_stop, 1382 .show = c_show, 1383 }; 1384 1385 static int content_open(struct inode *inode, struct file *file, 1386 struct cache_detail *cd) 1387 { 1388 struct handle *han; 1389 1390 if (!cd || !try_module_get(cd->owner)) 1391 return -EACCES; 1392 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1393 if (han == NULL) { 1394 module_put(cd->owner); 1395 return -ENOMEM; 1396 } 1397 1398 han->cd = cd; 1399 return 0; 1400 } 1401 1402 static int content_release(struct inode *inode, struct file *file, 1403 struct cache_detail *cd) 1404 { 1405 int ret = seq_release_private(inode, file); 1406 module_put(cd->owner); 1407 return ret; 1408 } 1409 1410 static int open_flush(struct inode *inode, struct file *file, 1411 struct cache_detail *cd) 1412 { 1413 if (!cd || !try_module_get(cd->owner)) 1414 return -EACCES; 1415 return nonseekable_open(inode, file); 1416 } 1417 1418 static int release_flush(struct inode *inode, struct file *file, 1419 struct cache_detail *cd) 1420 { 1421 module_put(cd->owner); 1422 return 0; 1423 } 1424 1425 static ssize_t read_flush(struct file *file, char __user *buf, 1426 size_t count, loff_t *ppos, 1427 struct cache_detail *cd) 1428 { 1429 char tbuf[22]; 1430 unsigned long p = *ppos; 1431 size_t len; 1432 1433 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time)); 1434 len = strlen(tbuf); 1435 if (p >= len) 1436 return 0; 1437 len -= p; 1438 if (len > count) 1439 len = count; 1440 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1441 return -EFAULT; 1442 *ppos += len; 1443 return len; 1444 } 1445 1446 static ssize_t write_flush(struct file *file, const char __user *buf, 1447 size_t count, loff_t *ppos, 1448 struct cache_detail *cd) 1449 { 1450 char tbuf[20]; 1451 char *bp, *ep; 1452 1453 if (*ppos || count > sizeof(tbuf)-1) 1454 return -EINVAL; 1455 if (copy_from_user(tbuf, buf, count)) 1456 return -EFAULT; 1457 tbuf[count] = 0; 1458 simple_strtoul(tbuf, &ep, 0); 1459 if (*ep && *ep != '\n') 1460 return -EINVAL; 1461 1462 bp = tbuf; 1463 cd->flush_time = get_expiry(&bp); 1464 cd->nextcheck = seconds_since_boot(); 1465 cache_flush(); 1466 1467 *ppos += count; 1468 return count; 1469 } 1470 1471 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1472 size_t count, loff_t *ppos) 1473 { 1474 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1475 1476 return cache_read(filp, buf, count, ppos, cd); 1477 } 1478 1479 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1480 size_t count, loff_t *ppos) 1481 { 1482 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1483 1484 return cache_write(filp, buf, count, ppos, cd); 1485 } 1486 1487 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1488 { 1489 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1490 1491 return cache_poll(filp, wait, cd); 1492 } 1493 1494 static long cache_ioctl_procfs(struct file *filp, 1495 unsigned int cmd, unsigned long arg) 1496 { 1497 struct inode *inode = file_inode(filp); 1498 struct cache_detail *cd = PDE_DATA(inode); 1499 1500 return cache_ioctl(inode, filp, cmd, arg, cd); 1501 } 1502 1503 static int cache_open_procfs(struct inode *inode, struct file *filp) 1504 { 1505 struct cache_detail *cd = PDE_DATA(inode); 1506 1507 return cache_open(inode, filp, cd); 1508 } 1509 1510 static int cache_release_procfs(struct inode *inode, struct file *filp) 1511 { 1512 struct cache_detail *cd = PDE_DATA(inode); 1513 1514 return cache_release(inode, filp, cd); 1515 } 1516 1517 static const struct file_operations cache_file_operations_procfs = { 1518 .owner = THIS_MODULE, 1519 .llseek = no_llseek, 1520 .read = cache_read_procfs, 1521 .write = cache_write_procfs, 1522 .poll = cache_poll_procfs, 1523 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1524 .open = cache_open_procfs, 1525 .release = cache_release_procfs, 1526 }; 1527 1528 static int content_open_procfs(struct inode *inode, struct file *filp) 1529 { 1530 struct cache_detail *cd = PDE_DATA(inode); 1531 1532 return content_open(inode, filp, cd); 1533 } 1534 1535 static int content_release_procfs(struct inode *inode, struct file *filp) 1536 { 1537 struct cache_detail *cd = PDE_DATA(inode); 1538 1539 return content_release(inode, filp, cd); 1540 } 1541 1542 static const struct file_operations content_file_operations_procfs = { 1543 .open = content_open_procfs, 1544 .read = seq_read, 1545 .llseek = seq_lseek, 1546 .release = content_release_procfs, 1547 }; 1548 1549 static int open_flush_procfs(struct inode *inode, struct file *filp) 1550 { 1551 struct cache_detail *cd = PDE_DATA(inode); 1552 1553 return open_flush(inode, filp, cd); 1554 } 1555 1556 static int release_flush_procfs(struct inode *inode, struct file *filp) 1557 { 1558 struct cache_detail *cd = PDE_DATA(inode); 1559 1560 return release_flush(inode, filp, cd); 1561 } 1562 1563 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1564 size_t count, loff_t *ppos) 1565 { 1566 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1567 1568 return read_flush(filp, buf, count, ppos, cd); 1569 } 1570 1571 static ssize_t write_flush_procfs(struct file *filp, 1572 const char __user *buf, 1573 size_t count, loff_t *ppos) 1574 { 1575 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1576 1577 return write_flush(filp, buf, count, ppos, cd); 1578 } 1579 1580 static const struct file_operations cache_flush_operations_procfs = { 1581 .open = open_flush_procfs, 1582 .read = read_flush_procfs, 1583 .write = write_flush_procfs, 1584 .release = release_flush_procfs, 1585 .llseek = no_llseek, 1586 }; 1587 1588 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1589 { 1590 struct sunrpc_net *sn; 1591 1592 if (cd->u.procfs.proc_ent == NULL) 1593 return; 1594 if (cd->u.procfs.flush_ent) 1595 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1596 if (cd->u.procfs.channel_ent) 1597 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1598 if (cd->u.procfs.content_ent) 1599 remove_proc_entry("content", cd->u.procfs.proc_ent); 1600 cd->u.procfs.proc_ent = NULL; 1601 sn = net_generic(net, sunrpc_net_id); 1602 remove_proc_entry(cd->name, sn->proc_net_rpc); 1603 } 1604 1605 #ifdef CONFIG_PROC_FS 1606 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1607 { 1608 struct proc_dir_entry *p; 1609 struct sunrpc_net *sn; 1610 1611 sn = net_generic(net, sunrpc_net_id); 1612 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1613 if (cd->u.procfs.proc_ent == NULL) 1614 goto out_nomem; 1615 cd->u.procfs.channel_ent = NULL; 1616 cd->u.procfs.content_ent = NULL; 1617 1618 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1619 cd->u.procfs.proc_ent, 1620 &cache_flush_operations_procfs, cd); 1621 cd->u.procfs.flush_ent = p; 1622 if (p == NULL) 1623 goto out_nomem; 1624 1625 if (cd->cache_request || cd->cache_parse) { 1626 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1627 cd->u.procfs.proc_ent, 1628 &cache_file_operations_procfs, cd); 1629 cd->u.procfs.channel_ent = p; 1630 if (p == NULL) 1631 goto out_nomem; 1632 } 1633 if (cd->cache_show) { 1634 p = proc_create_data("content", S_IFREG|S_IRUSR, 1635 cd->u.procfs.proc_ent, 1636 &content_file_operations_procfs, cd); 1637 cd->u.procfs.content_ent = p; 1638 if (p == NULL) 1639 goto out_nomem; 1640 } 1641 return 0; 1642 out_nomem: 1643 remove_cache_proc_entries(cd, net); 1644 return -ENOMEM; 1645 } 1646 #else /* CONFIG_PROC_FS */ 1647 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1648 { 1649 return 0; 1650 } 1651 #endif 1652 1653 void __init cache_initialize(void) 1654 { 1655 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1656 } 1657 1658 int cache_register_net(struct cache_detail *cd, struct net *net) 1659 { 1660 int ret; 1661 1662 sunrpc_init_cache_detail(cd); 1663 ret = create_cache_proc_entries(cd, net); 1664 if (ret) 1665 sunrpc_destroy_cache_detail(cd); 1666 return ret; 1667 } 1668 EXPORT_SYMBOL_GPL(cache_register_net); 1669 1670 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1671 { 1672 remove_cache_proc_entries(cd, net); 1673 sunrpc_destroy_cache_detail(cd); 1674 } 1675 EXPORT_SYMBOL_GPL(cache_unregister_net); 1676 1677 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1678 { 1679 struct cache_detail *cd; 1680 1681 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1682 if (cd == NULL) 1683 return ERR_PTR(-ENOMEM); 1684 1685 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *), 1686 GFP_KERNEL); 1687 if (cd->hash_table == NULL) { 1688 kfree(cd); 1689 return ERR_PTR(-ENOMEM); 1690 } 1691 cd->net = net; 1692 return cd; 1693 } 1694 EXPORT_SYMBOL_GPL(cache_create_net); 1695 1696 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1697 { 1698 kfree(cd->hash_table); 1699 kfree(cd); 1700 } 1701 EXPORT_SYMBOL_GPL(cache_destroy_net); 1702 1703 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1704 size_t count, loff_t *ppos) 1705 { 1706 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1707 1708 return cache_read(filp, buf, count, ppos, cd); 1709 } 1710 1711 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1712 size_t count, loff_t *ppos) 1713 { 1714 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1715 1716 return cache_write(filp, buf, count, ppos, cd); 1717 } 1718 1719 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1720 { 1721 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1722 1723 return cache_poll(filp, wait, cd); 1724 } 1725 1726 static long cache_ioctl_pipefs(struct file *filp, 1727 unsigned int cmd, unsigned long arg) 1728 { 1729 struct inode *inode = file_inode(filp); 1730 struct cache_detail *cd = RPC_I(inode)->private; 1731 1732 return cache_ioctl(inode, filp, cmd, arg, cd); 1733 } 1734 1735 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1736 { 1737 struct cache_detail *cd = RPC_I(inode)->private; 1738 1739 return cache_open(inode, filp, cd); 1740 } 1741 1742 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1743 { 1744 struct cache_detail *cd = RPC_I(inode)->private; 1745 1746 return cache_release(inode, filp, cd); 1747 } 1748 1749 const struct file_operations cache_file_operations_pipefs = { 1750 .owner = THIS_MODULE, 1751 .llseek = no_llseek, 1752 .read = cache_read_pipefs, 1753 .write = cache_write_pipefs, 1754 .poll = cache_poll_pipefs, 1755 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1756 .open = cache_open_pipefs, 1757 .release = cache_release_pipefs, 1758 }; 1759 1760 static int content_open_pipefs(struct inode *inode, struct file *filp) 1761 { 1762 struct cache_detail *cd = RPC_I(inode)->private; 1763 1764 return content_open(inode, filp, cd); 1765 } 1766 1767 static int content_release_pipefs(struct inode *inode, struct file *filp) 1768 { 1769 struct cache_detail *cd = RPC_I(inode)->private; 1770 1771 return content_release(inode, filp, cd); 1772 } 1773 1774 const struct file_operations content_file_operations_pipefs = { 1775 .open = content_open_pipefs, 1776 .read = seq_read, 1777 .llseek = seq_lseek, 1778 .release = content_release_pipefs, 1779 }; 1780 1781 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1782 { 1783 struct cache_detail *cd = RPC_I(inode)->private; 1784 1785 return open_flush(inode, filp, cd); 1786 } 1787 1788 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1789 { 1790 struct cache_detail *cd = RPC_I(inode)->private; 1791 1792 return release_flush(inode, filp, cd); 1793 } 1794 1795 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1796 size_t count, loff_t *ppos) 1797 { 1798 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1799 1800 return read_flush(filp, buf, count, ppos, cd); 1801 } 1802 1803 static ssize_t write_flush_pipefs(struct file *filp, 1804 const char __user *buf, 1805 size_t count, loff_t *ppos) 1806 { 1807 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1808 1809 return write_flush(filp, buf, count, ppos, cd); 1810 } 1811 1812 const struct file_operations cache_flush_operations_pipefs = { 1813 .open = open_flush_pipefs, 1814 .read = read_flush_pipefs, 1815 .write = write_flush_pipefs, 1816 .release = release_flush_pipefs, 1817 .llseek = no_llseek, 1818 }; 1819 1820 int sunrpc_cache_register_pipefs(struct dentry *parent, 1821 const char *name, umode_t umode, 1822 struct cache_detail *cd) 1823 { 1824 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1825 if (IS_ERR(dir)) 1826 return PTR_ERR(dir); 1827 cd->u.pipefs.dir = dir; 1828 return 0; 1829 } 1830 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1831 1832 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1833 { 1834 rpc_remove_cache_dir(cd->u.pipefs.dir); 1835 cd->u.pipefs.dir = NULL; 1836 } 1837 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1838 1839