1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/string_helpers.h> 24 #include <linux/uaccess.h> 25 #include <linux/poll.h> 26 #include <linux/seq_file.h> 27 #include <linux/proc_fs.h> 28 #include <linux/net.h> 29 #include <linux/workqueue.h> 30 #include <linux/mutex.h> 31 #include <linux/pagemap.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include "netns.h" 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h, struct cache_detail *detail) 45 { 46 time_t now = seconds_since_boot(); 47 INIT_HLIST_NODE(&h->cache_list); 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 if (now <= detail->flush_time) 52 /* ensure it isn't already expired */ 53 now = detail->flush_time + 1; 54 h->last_refresh = now; 55 } 56 57 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 58 struct cache_head *key, int hash) 59 { 60 struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL; 61 struct hlist_head *head; 62 63 head = &detail->hash_table[hash]; 64 65 read_lock(&detail->hash_lock); 66 67 hlist_for_each_entry(tmp, head, cache_list) { 68 if (detail->match(tmp, key)) { 69 if (cache_is_expired(detail, tmp)) 70 /* This entry is expired, we will discard it. */ 71 break; 72 cache_get(tmp); 73 read_unlock(&detail->hash_lock); 74 return tmp; 75 } 76 } 77 read_unlock(&detail->hash_lock); 78 /* Didn't find anything, insert an empty entry */ 79 80 new = detail->alloc(); 81 if (!new) 82 return NULL; 83 /* must fully initialise 'new', else 84 * we might get lose if we need to 85 * cache_put it soon. 86 */ 87 cache_init(new, detail); 88 detail->init(new, key); 89 90 write_lock(&detail->hash_lock); 91 92 /* check if entry appeared while we slept */ 93 hlist_for_each_entry(tmp, head, cache_list) { 94 if (detail->match(tmp, key)) { 95 if (cache_is_expired(detail, tmp)) { 96 hlist_del_init(&tmp->cache_list); 97 detail->entries --; 98 freeme = tmp; 99 break; 100 } 101 cache_get(tmp); 102 write_unlock(&detail->hash_lock); 103 cache_put(new, detail); 104 return tmp; 105 } 106 } 107 108 hlist_add_head(&new->cache_list, head); 109 detail->entries++; 110 cache_get(new); 111 write_unlock(&detail->hash_lock); 112 113 if (freeme) 114 cache_put(freeme, detail); 115 return new; 116 } 117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 118 119 120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 121 122 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 123 struct cache_detail *detail) 124 { 125 time_t now = seconds_since_boot(); 126 if (now <= detail->flush_time) 127 /* ensure it isn't immediately treated as expired */ 128 now = detail->flush_time + 1; 129 head->expiry_time = expiry; 130 head->last_refresh = now; 131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 132 set_bit(CACHE_VALID, &head->flags); 133 } 134 135 static void cache_fresh_unlocked(struct cache_head *head, 136 struct cache_detail *detail) 137 { 138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 139 cache_revisit_request(head); 140 cache_dequeue(detail, head); 141 } 142 } 143 144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 145 struct cache_head *new, struct cache_head *old, int hash) 146 { 147 /* The 'old' entry is to be replaced by 'new'. 148 * If 'old' is not VALID, we update it directly, 149 * otherwise we need to replace it 150 */ 151 struct cache_head *tmp; 152 153 if (!test_bit(CACHE_VALID, &old->flags)) { 154 write_lock(&detail->hash_lock); 155 if (!test_bit(CACHE_VALID, &old->flags)) { 156 if (test_bit(CACHE_NEGATIVE, &new->flags)) 157 set_bit(CACHE_NEGATIVE, &old->flags); 158 else 159 detail->update(old, new); 160 cache_fresh_locked(old, new->expiry_time, detail); 161 write_unlock(&detail->hash_lock); 162 cache_fresh_unlocked(old, detail); 163 return old; 164 } 165 write_unlock(&detail->hash_lock); 166 } 167 /* We need to insert a new entry */ 168 tmp = detail->alloc(); 169 if (!tmp) { 170 cache_put(old, detail); 171 return NULL; 172 } 173 cache_init(tmp, detail); 174 detail->init(tmp, old); 175 176 write_lock(&detail->hash_lock); 177 if (test_bit(CACHE_NEGATIVE, &new->flags)) 178 set_bit(CACHE_NEGATIVE, &tmp->flags); 179 else 180 detail->update(tmp, new); 181 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 182 detail->entries++; 183 cache_get(tmp); 184 cache_fresh_locked(tmp, new->expiry_time, detail); 185 cache_fresh_locked(old, 0, detail); 186 write_unlock(&detail->hash_lock); 187 cache_fresh_unlocked(tmp, detail); 188 cache_fresh_unlocked(old, detail); 189 cache_put(old, detail); 190 return tmp; 191 } 192 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 193 194 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 195 { 196 if (cd->cache_upcall) 197 return cd->cache_upcall(cd, h); 198 return sunrpc_cache_pipe_upcall(cd, h); 199 } 200 201 static inline int cache_is_valid(struct cache_head *h) 202 { 203 if (!test_bit(CACHE_VALID, &h->flags)) 204 return -EAGAIN; 205 else { 206 /* entry is valid */ 207 if (test_bit(CACHE_NEGATIVE, &h->flags)) 208 return -ENOENT; 209 else { 210 /* 211 * In combination with write barrier in 212 * sunrpc_cache_update, ensures that anyone 213 * using the cache entry after this sees the 214 * updated contents: 215 */ 216 smp_rmb(); 217 return 0; 218 } 219 } 220 } 221 222 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 223 { 224 int rv; 225 226 write_lock(&detail->hash_lock); 227 rv = cache_is_valid(h); 228 if (rv == -EAGAIN) { 229 set_bit(CACHE_NEGATIVE, &h->flags); 230 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 231 detail); 232 rv = -ENOENT; 233 } 234 write_unlock(&detail->hash_lock); 235 cache_fresh_unlocked(h, detail); 236 return rv; 237 } 238 239 /* 240 * This is the generic cache management routine for all 241 * the authentication caches. 242 * It checks the currency of a cache item and will (later) 243 * initiate an upcall to fill it if needed. 244 * 245 * 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns 247 * -EAGAIN if upcall is pending and request has been queued 248 * -ETIMEDOUT if upcall failed or request could not be queue or 249 * upcall completed but item is still invalid (implying that 250 * the cache item has been replaced with a newer one). 251 * -ENOENT if cache entry was negative 252 */ 253 int cache_check(struct cache_detail *detail, 254 struct cache_head *h, struct cache_req *rqstp) 255 { 256 int rv; 257 long refresh_age, age; 258 259 /* First decide return status as best we can */ 260 rv = cache_is_valid(h); 261 262 /* now see if we want to start an upcall */ 263 refresh_age = (h->expiry_time - h->last_refresh); 264 age = seconds_since_boot() - h->last_refresh; 265 266 if (rqstp == NULL) { 267 if (rv == -EAGAIN) 268 rv = -ENOENT; 269 } else if (rv == -EAGAIN || 270 (h->expiry_time != 0 && age > refresh_age/2)) { 271 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 272 refresh_age, age); 273 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 274 switch (cache_make_upcall(detail, h)) { 275 case -EINVAL: 276 rv = try_to_negate_entry(detail, h); 277 break; 278 case -EAGAIN: 279 cache_fresh_unlocked(h, detail); 280 break; 281 } 282 } 283 } 284 285 if (rv == -EAGAIN) { 286 if (!cache_defer_req(rqstp, h)) { 287 /* 288 * Request was not deferred; handle it as best 289 * we can ourselves: 290 */ 291 rv = cache_is_valid(h); 292 if (rv == -EAGAIN) 293 rv = -ETIMEDOUT; 294 } 295 } 296 if (rv) 297 cache_put(h, detail); 298 return rv; 299 } 300 EXPORT_SYMBOL_GPL(cache_check); 301 302 /* 303 * caches need to be periodically cleaned. 304 * For this we maintain a list of cache_detail and 305 * a current pointer into that list and into the table 306 * for that entry. 307 * 308 * Each time cache_clean is called it finds the next non-empty entry 309 * in the current table and walks the list in that entry 310 * looking for entries that can be removed. 311 * 312 * An entry gets removed if: 313 * - The expiry is before current time 314 * - The last_refresh time is before the flush_time for that cache 315 * 316 * later we might drop old entries with non-NEVER expiry if that table 317 * is getting 'full' for some definition of 'full' 318 * 319 * The question of "how often to scan a table" is an interesting one 320 * and is answered in part by the use of the "nextcheck" field in the 321 * cache_detail. 322 * When a scan of a table begins, the nextcheck field is set to a time 323 * that is well into the future. 324 * While scanning, if an expiry time is found that is earlier than the 325 * current nextcheck time, nextcheck is set to that expiry time. 326 * If the flush_time is ever set to a time earlier than the nextcheck 327 * time, the nextcheck time is then set to that flush_time. 328 * 329 * A table is then only scanned if the current time is at least 330 * the nextcheck time. 331 * 332 */ 333 334 static LIST_HEAD(cache_list); 335 static DEFINE_SPINLOCK(cache_list_lock); 336 static struct cache_detail *current_detail; 337 static int current_index; 338 339 static void do_cache_clean(struct work_struct *work); 340 static struct delayed_work cache_cleaner; 341 342 void sunrpc_init_cache_detail(struct cache_detail *cd) 343 { 344 rwlock_init(&cd->hash_lock); 345 INIT_LIST_HEAD(&cd->queue); 346 spin_lock(&cache_list_lock); 347 cd->nextcheck = 0; 348 cd->entries = 0; 349 atomic_set(&cd->readers, 0); 350 cd->last_close = 0; 351 cd->last_warn = -1; 352 list_add(&cd->others, &cache_list); 353 spin_unlock(&cache_list_lock); 354 355 /* start the cleaning process */ 356 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 357 } 358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 359 360 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 361 { 362 cache_purge(cd); 363 spin_lock(&cache_list_lock); 364 write_lock(&cd->hash_lock); 365 if (cd->entries) { 366 write_unlock(&cd->hash_lock); 367 spin_unlock(&cache_list_lock); 368 goto out; 369 } 370 if (current_detail == cd) 371 current_detail = NULL; 372 list_del_init(&cd->others); 373 write_unlock(&cd->hash_lock); 374 spin_unlock(&cache_list_lock); 375 if (list_empty(&cache_list)) { 376 /* module must be being unloaded so its safe to kill the worker */ 377 cancel_delayed_work_sync(&cache_cleaner); 378 } 379 return; 380 out: 381 printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name); 382 } 383 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 384 385 /* clean cache tries to find something to clean 386 * and cleans it. 387 * It returns 1 if it cleaned something, 388 * 0 if it didn't find anything this time 389 * -1 if it fell off the end of the list. 390 */ 391 static int cache_clean(void) 392 { 393 int rv = 0; 394 struct list_head *next; 395 396 spin_lock(&cache_list_lock); 397 398 /* find a suitable table if we don't already have one */ 399 while (current_detail == NULL || 400 current_index >= current_detail->hash_size) { 401 if (current_detail) 402 next = current_detail->others.next; 403 else 404 next = cache_list.next; 405 if (next == &cache_list) { 406 current_detail = NULL; 407 spin_unlock(&cache_list_lock); 408 return -1; 409 } 410 current_detail = list_entry(next, struct cache_detail, others); 411 if (current_detail->nextcheck > seconds_since_boot()) 412 current_index = current_detail->hash_size; 413 else { 414 current_index = 0; 415 current_detail->nextcheck = seconds_since_boot()+30*60; 416 } 417 } 418 419 /* find a non-empty bucket in the table */ 420 while (current_detail && 421 current_index < current_detail->hash_size && 422 hlist_empty(¤t_detail->hash_table[current_index])) 423 current_index++; 424 425 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 426 427 if (current_detail && current_index < current_detail->hash_size) { 428 struct cache_head *ch = NULL; 429 struct cache_detail *d; 430 struct hlist_head *head; 431 struct hlist_node *tmp; 432 433 write_lock(¤t_detail->hash_lock); 434 435 /* Ok, now to clean this strand */ 436 437 head = ¤t_detail->hash_table[current_index]; 438 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 439 if (current_detail->nextcheck > ch->expiry_time) 440 current_detail->nextcheck = ch->expiry_time+1; 441 if (!cache_is_expired(current_detail, ch)) 442 continue; 443 444 hlist_del_init(&ch->cache_list); 445 current_detail->entries--; 446 rv = 1; 447 break; 448 } 449 450 write_unlock(¤t_detail->hash_lock); 451 d = current_detail; 452 if (!ch) 453 current_index ++; 454 spin_unlock(&cache_list_lock); 455 if (ch) { 456 set_bit(CACHE_CLEANED, &ch->flags); 457 cache_fresh_unlocked(ch, d); 458 cache_put(ch, d); 459 } 460 } else 461 spin_unlock(&cache_list_lock); 462 463 return rv; 464 } 465 466 /* 467 * We want to regularly clean the cache, so we need to schedule some work ... 468 */ 469 static void do_cache_clean(struct work_struct *work) 470 { 471 int delay = 5; 472 if (cache_clean() == -1) 473 delay = round_jiffies_relative(30*HZ); 474 475 if (list_empty(&cache_list)) 476 delay = 0; 477 478 if (delay) 479 queue_delayed_work(system_power_efficient_wq, 480 &cache_cleaner, delay); 481 } 482 483 484 /* 485 * Clean all caches promptly. This just calls cache_clean 486 * repeatedly until we are sure that every cache has had a chance to 487 * be fully cleaned 488 */ 489 void cache_flush(void) 490 { 491 while (cache_clean() != -1) 492 cond_resched(); 493 while (cache_clean() != -1) 494 cond_resched(); 495 } 496 EXPORT_SYMBOL_GPL(cache_flush); 497 498 void cache_purge(struct cache_detail *detail) 499 { 500 time_t now = seconds_since_boot(); 501 if (detail->flush_time >= now) 502 now = detail->flush_time + 1; 503 /* 'now' is the maximum value any 'last_refresh' can have */ 504 detail->flush_time = now; 505 detail->nextcheck = seconds_since_boot(); 506 cache_flush(); 507 } 508 EXPORT_SYMBOL_GPL(cache_purge); 509 510 511 /* 512 * Deferral and Revisiting of Requests. 513 * 514 * If a cache lookup finds a pending entry, we 515 * need to defer the request and revisit it later. 516 * All deferred requests are stored in a hash table, 517 * indexed by "struct cache_head *". 518 * As it may be wasteful to store a whole request 519 * structure, we allow the request to provide a 520 * deferred form, which must contain a 521 * 'struct cache_deferred_req' 522 * This cache_deferred_req contains a method to allow 523 * it to be revisited when cache info is available 524 */ 525 526 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 527 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 528 529 #define DFR_MAX 300 /* ??? */ 530 531 static DEFINE_SPINLOCK(cache_defer_lock); 532 static LIST_HEAD(cache_defer_list); 533 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 534 static int cache_defer_cnt; 535 536 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 537 { 538 hlist_del_init(&dreq->hash); 539 if (!list_empty(&dreq->recent)) { 540 list_del_init(&dreq->recent); 541 cache_defer_cnt--; 542 } 543 } 544 545 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 546 { 547 int hash = DFR_HASH(item); 548 549 INIT_LIST_HEAD(&dreq->recent); 550 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 551 } 552 553 static void setup_deferral(struct cache_deferred_req *dreq, 554 struct cache_head *item, 555 int count_me) 556 { 557 558 dreq->item = item; 559 560 spin_lock(&cache_defer_lock); 561 562 __hash_deferred_req(dreq, item); 563 564 if (count_me) { 565 cache_defer_cnt++; 566 list_add(&dreq->recent, &cache_defer_list); 567 } 568 569 spin_unlock(&cache_defer_lock); 570 571 } 572 573 struct thread_deferred_req { 574 struct cache_deferred_req handle; 575 struct completion completion; 576 }; 577 578 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 579 { 580 struct thread_deferred_req *dr = 581 container_of(dreq, struct thread_deferred_req, handle); 582 complete(&dr->completion); 583 } 584 585 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 586 { 587 struct thread_deferred_req sleeper; 588 struct cache_deferred_req *dreq = &sleeper.handle; 589 590 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 591 dreq->revisit = cache_restart_thread; 592 593 setup_deferral(dreq, item, 0); 594 595 if (!test_bit(CACHE_PENDING, &item->flags) || 596 wait_for_completion_interruptible_timeout( 597 &sleeper.completion, req->thread_wait) <= 0) { 598 /* The completion wasn't completed, so we need 599 * to clean up 600 */ 601 spin_lock(&cache_defer_lock); 602 if (!hlist_unhashed(&sleeper.handle.hash)) { 603 __unhash_deferred_req(&sleeper.handle); 604 spin_unlock(&cache_defer_lock); 605 } else { 606 /* cache_revisit_request already removed 607 * this from the hash table, but hasn't 608 * called ->revisit yet. It will very soon 609 * and we need to wait for it. 610 */ 611 spin_unlock(&cache_defer_lock); 612 wait_for_completion(&sleeper.completion); 613 } 614 } 615 } 616 617 static void cache_limit_defers(void) 618 { 619 /* Make sure we haven't exceed the limit of allowed deferred 620 * requests. 621 */ 622 struct cache_deferred_req *discard = NULL; 623 624 if (cache_defer_cnt <= DFR_MAX) 625 return; 626 627 spin_lock(&cache_defer_lock); 628 629 /* Consider removing either the first or the last */ 630 if (cache_defer_cnt > DFR_MAX) { 631 if (prandom_u32() & 1) 632 discard = list_entry(cache_defer_list.next, 633 struct cache_deferred_req, recent); 634 else 635 discard = list_entry(cache_defer_list.prev, 636 struct cache_deferred_req, recent); 637 __unhash_deferred_req(discard); 638 } 639 spin_unlock(&cache_defer_lock); 640 if (discard) 641 discard->revisit(discard, 1); 642 } 643 644 /* Return true if and only if a deferred request is queued. */ 645 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 646 { 647 struct cache_deferred_req *dreq; 648 649 if (req->thread_wait) { 650 cache_wait_req(req, item); 651 if (!test_bit(CACHE_PENDING, &item->flags)) 652 return false; 653 } 654 dreq = req->defer(req); 655 if (dreq == NULL) 656 return false; 657 setup_deferral(dreq, item, 1); 658 if (!test_bit(CACHE_PENDING, &item->flags)) 659 /* Bit could have been cleared before we managed to 660 * set up the deferral, so need to revisit just in case 661 */ 662 cache_revisit_request(item); 663 664 cache_limit_defers(); 665 return true; 666 } 667 668 static void cache_revisit_request(struct cache_head *item) 669 { 670 struct cache_deferred_req *dreq; 671 struct list_head pending; 672 struct hlist_node *tmp; 673 int hash = DFR_HASH(item); 674 675 INIT_LIST_HEAD(&pending); 676 spin_lock(&cache_defer_lock); 677 678 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 679 if (dreq->item == item) { 680 __unhash_deferred_req(dreq); 681 list_add(&dreq->recent, &pending); 682 } 683 684 spin_unlock(&cache_defer_lock); 685 686 while (!list_empty(&pending)) { 687 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 688 list_del_init(&dreq->recent); 689 dreq->revisit(dreq, 0); 690 } 691 } 692 693 void cache_clean_deferred(void *owner) 694 { 695 struct cache_deferred_req *dreq, *tmp; 696 struct list_head pending; 697 698 699 INIT_LIST_HEAD(&pending); 700 spin_lock(&cache_defer_lock); 701 702 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 703 if (dreq->owner == owner) { 704 __unhash_deferred_req(dreq); 705 list_add(&dreq->recent, &pending); 706 } 707 } 708 spin_unlock(&cache_defer_lock); 709 710 while (!list_empty(&pending)) { 711 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 712 list_del_init(&dreq->recent); 713 dreq->revisit(dreq, 1); 714 } 715 } 716 717 /* 718 * communicate with user-space 719 * 720 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 721 * On read, you get a full request, or block. 722 * On write, an update request is processed. 723 * Poll works if anything to read, and always allows write. 724 * 725 * Implemented by linked list of requests. Each open file has 726 * a ->private that also exists in this list. New requests are added 727 * to the end and may wakeup and preceding readers. 728 * New readers are added to the head. If, on read, an item is found with 729 * CACHE_UPCALLING clear, we free it from the list. 730 * 731 */ 732 733 static DEFINE_SPINLOCK(queue_lock); 734 static DEFINE_MUTEX(queue_io_mutex); 735 736 struct cache_queue { 737 struct list_head list; 738 int reader; /* if 0, then request */ 739 }; 740 struct cache_request { 741 struct cache_queue q; 742 struct cache_head *item; 743 char * buf; 744 int len; 745 int readers; 746 }; 747 struct cache_reader { 748 struct cache_queue q; 749 int offset; /* if non-0, we have a refcnt on next request */ 750 }; 751 752 static int cache_request(struct cache_detail *detail, 753 struct cache_request *crq) 754 { 755 char *bp = crq->buf; 756 int len = PAGE_SIZE; 757 758 detail->cache_request(detail, crq->item, &bp, &len); 759 if (len < 0) 760 return -EAGAIN; 761 return PAGE_SIZE - len; 762 } 763 764 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 765 loff_t *ppos, struct cache_detail *cd) 766 { 767 struct cache_reader *rp = filp->private_data; 768 struct cache_request *rq; 769 struct inode *inode = file_inode(filp); 770 int err; 771 772 if (count == 0) 773 return 0; 774 775 inode_lock(inode); /* protect against multiple concurrent 776 * readers on this file */ 777 again: 778 spin_lock(&queue_lock); 779 /* need to find next request */ 780 while (rp->q.list.next != &cd->queue && 781 list_entry(rp->q.list.next, struct cache_queue, list) 782 ->reader) { 783 struct list_head *next = rp->q.list.next; 784 list_move(&rp->q.list, next); 785 } 786 if (rp->q.list.next == &cd->queue) { 787 spin_unlock(&queue_lock); 788 inode_unlock(inode); 789 WARN_ON_ONCE(rp->offset); 790 return 0; 791 } 792 rq = container_of(rp->q.list.next, struct cache_request, q.list); 793 WARN_ON_ONCE(rq->q.reader); 794 if (rp->offset == 0) 795 rq->readers++; 796 spin_unlock(&queue_lock); 797 798 if (rq->len == 0) { 799 err = cache_request(cd, rq); 800 if (err < 0) 801 goto out; 802 rq->len = err; 803 } 804 805 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 806 err = -EAGAIN; 807 spin_lock(&queue_lock); 808 list_move(&rp->q.list, &rq->q.list); 809 spin_unlock(&queue_lock); 810 } else { 811 if (rp->offset + count > rq->len) 812 count = rq->len - rp->offset; 813 err = -EFAULT; 814 if (copy_to_user(buf, rq->buf + rp->offset, count)) 815 goto out; 816 rp->offset += count; 817 if (rp->offset >= rq->len) { 818 rp->offset = 0; 819 spin_lock(&queue_lock); 820 list_move(&rp->q.list, &rq->q.list); 821 spin_unlock(&queue_lock); 822 } 823 err = 0; 824 } 825 out: 826 if (rp->offset == 0) { 827 /* need to release rq */ 828 spin_lock(&queue_lock); 829 rq->readers--; 830 if (rq->readers == 0 && 831 !test_bit(CACHE_PENDING, &rq->item->flags)) { 832 list_del(&rq->q.list); 833 spin_unlock(&queue_lock); 834 cache_put(rq->item, cd); 835 kfree(rq->buf); 836 kfree(rq); 837 } else 838 spin_unlock(&queue_lock); 839 } 840 if (err == -EAGAIN) 841 goto again; 842 inode_unlock(inode); 843 return err ? err : count; 844 } 845 846 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 847 size_t count, struct cache_detail *cd) 848 { 849 ssize_t ret; 850 851 if (count == 0) 852 return -EINVAL; 853 if (copy_from_user(kaddr, buf, count)) 854 return -EFAULT; 855 kaddr[count] = '\0'; 856 ret = cd->cache_parse(cd, kaddr, count); 857 if (!ret) 858 ret = count; 859 return ret; 860 } 861 862 static ssize_t cache_slow_downcall(const char __user *buf, 863 size_t count, struct cache_detail *cd) 864 { 865 static char write_buf[8192]; /* protected by queue_io_mutex */ 866 ssize_t ret = -EINVAL; 867 868 if (count >= sizeof(write_buf)) 869 goto out; 870 mutex_lock(&queue_io_mutex); 871 ret = cache_do_downcall(write_buf, buf, count, cd); 872 mutex_unlock(&queue_io_mutex); 873 out: 874 return ret; 875 } 876 877 static ssize_t cache_downcall(struct address_space *mapping, 878 const char __user *buf, 879 size_t count, struct cache_detail *cd) 880 { 881 struct page *page; 882 char *kaddr; 883 ssize_t ret = -ENOMEM; 884 885 if (count >= PAGE_SIZE) 886 goto out_slow; 887 888 page = find_or_create_page(mapping, 0, GFP_KERNEL); 889 if (!page) 890 goto out_slow; 891 892 kaddr = kmap(page); 893 ret = cache_do_downcall(kaddr, buf, count, cd); 894 kunmap(page); 895 unlock_page(page); 896 put_page(page); 897 return ret; 898 out_slow: 899 return cache_slow_downcall(buf, count, cd); 900 } 901 902 static ssize_t cache_write(struct file *filp, const char __user *buf, 903 size_t count, loff_t *ppos, 904 struct cache_detail *cd) 905 { 906 struct address_space *mapping = filp->f_mapping; 907 struct inode *inode = file_inode(filp); 908 ssize_t ret = -EINVAL; 909 910 if (!cd->cache_parse) 911 goto out; 912 913 inode_lock(inode); 914 ret = cache_downcall(mapping, buf, count, cd); 915 inode_unlock(inode); 916 out: 917 return ret; 918 } 919 920 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 921 922 static unsigned int cache_poll(struct file *filp, poll_table *wait, 923 struct cache_detail *cd) 924 { 925 unsigned int mask; 926 struct cache_reader *rp = filp->private_data; 927 struct cache_queue *cq; 928 929 poll_wait(filp, &queue_wait, wait); 930 931 /* alway allow write */ 932 mask = POLLOUT | POLLWRNORM; 933 934 if (!rp) 935 return mask; 936 937 spin_lock(&queue_lock); 938 939 for (cq= &rp->q; &cq->list != &cd->queue; 940 cq = list_entry(cq->list.next, struct cache_queue, list)) 941 if (!cq->reader) { 942 mask |= POLLIN | POLLRDNORM; 943 break; 944 } 945 spin_unlock(&queue_lock); 946 return mask; 947 } 948 949 static int cache_ioctl(struct inode *ino, struct file *filp, 950 unsigned int cmd, unsigned long arg, 951 struct cache_detail *cd) 952 { 953 int len = 0; 954 struct cache_reader *rp = filp->private_data; 955 struct cache_queue *cq; 956 957 if (cmd != FIONREAD || !rp) 958 return -EINVAL; 959 960 spin_lock(&queue_lock); 961 962 /* only find the length remaining in current request, 963 * or the length of the next request 964 */ 965 for (cq= &rp->q; &cq->list != &cd->queue; 966 cq = list_entry(cq->list.next, struct cache_queue, list)) 967 if (!cq->reader) { 968 struct cache_request *cr = 969 container_of(cq, struct cache_request, q); 970 len = cr->len - rp->offset; 971 break; 972 } 973 spin_unlock(&queue_lock); 974 975 return put_user(len, (int __user *)arg); 976 } 977 978 static int cache_open(struct inode *inode, struct file *filp, 979 struct cache_detail *cd) 980 { 981 struct cache_reader *rp = NULL; 982 983 if (!cd || !try_module_get(cd->owner)) 984 return -EACCES; 985 nonseekable_open(inode, filp); 986 if (filp->f_mode & FMODE_READ) { 987 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 988 if (!rp) { 989 module_put(cd->owner); 990 return -ENOMEM; 991 } 992 rp->offset = 0; 993 rp->q.reader = 1; 994 atomic_inc(&cd->readers); 995 spin_lock(&queue_lock); 996 list_add(&rp->q.list, &cd->queue); 997 spin_unlock(&queue_lock); 998 } 999 filp->private_data = rp; 1000 return 0; 1001 } 1002 1003 static int cache_release(struct inode *inode, struct file *filp, 1004 struct cache_detail *cd) 1005 { 1006 struct cache_reader *rp = filp->private_data; 1007 1008 if (rp) { 1009 spin_lock(&queue_lock); 1010 if (rp->offset) { 1011 struct cache_queue *cq; 1012 for (cq= &rp->q; &cq->list != &cd->queue; 1013 cq = list_entry(cq->list.next, struct cache_queue, list)) 1014 if (!cq->reader) { 1015 container_of(cq, struct cache_request, q) 1016 ->readers--; 1017 break; 1018 } 1019 rp->offset = 0; 1020 } 1021 list_del(&rp->q.list); 1022 spin_unlock(&queue_lock); 1023 1024 filp->private_data = NULL; 1025 kfree(rp); 1026 1027 cd->last_close = seconds_since_boot(); 1028 atomic_dec(&cd->readers); 1029 } 1030 module_put(cd->owner); 1031 return 0; 1032 } 1033 1034 1035 1036 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1037 { 1038 struct cache_queue *cq, *tmp; 1039 struct cache_request *cr; 1040 struct list_head dequeued; 1041 1042 INIT_LIST_HEAD(&dequeued); 1043 spin_lock(&queue_lock); 1044 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1045 if (!cq->reader) { 1046 cr = container_of(cq, struct cache_request, q); 1047 if (cr->item != ch) 1048 continue; 1049 if (test_bit(CACHE_PENDING, &ch->flags)) 1050 /* Lost a race and it is pending again */ 1051 break; 1052 if (cr->readers != 0) 1053 continue; 1054 list_move(&cr->q.list, &dequeued); 1055 } 1056 spin_unlock(&queue_lock); 1057 while (!list_empty(&dequeued)) { 1058 cr = list_entry(dequeued.next, struct cache_request, q.list); 1059 list_del(&cr->q.list); 1060 cache_put(cr->item, detail); 1061 kfree(cr->buf); 1062 kfree(cr); 1063 } 1064 } 1065 1066 /* 1067 * Support routines for text-based upcalls. 1068 * Fields are separated by spaces. 1069 * Fields are either mangled to quote space tab newline slosh with slosh 1070 * or a hexified with a leading \x 1071 * Record is terminated with newline. 1072 * 1073 */ 1074 1075 void qword_add(char **bpp, int *lp, char *str) 1076 { 1077 char *bp = *bpp; 1078 int len = *lp; 1079 int ret; 1080 1081 if (len < 0) return; 1082 1083 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1084 if (ret >= len) { 1085 bp += len; 1086 len = -1; 1087 } else { 1088 bp += ret; 1089 len -= ret; 1090 *bp++ = ' '; 1091 len--; 1092 } 1093 *bpp = bp; 1094 *lp = len; 1095 } 1096 EXPORT_SYMBOL_GPL(qword_add); 1097 1098 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1099 { 1100 char *bp = *bpp; 1101 int len = *lp; 1102 1103 if (len < 0) return; 1104 1105 if (len > 2) { 1106 *bp++ = '\\'; 1107 *bp++ = 'x'; 1108 len -= 2; 1109 while (blen && len >= 2) { 1110 bp = hex_byte_pack(bp, *buf++); 1111 len -= 2; 1112 blen--; 1113 } 1114 } 1115 if (blen || len<1) len = -1; 1116 else { 1117 *bp++ = ' '; 1118 len--; 1119 } 1120 *bpp = bp; 1121 *lp = len; 1122 } 1123 EXPORT_SYMBOL_GPL(qword_addhex); 1124 1125 static void warn_no_listener(struct cache_detail *detail) 1126 { 1127 if (detail->last_warn != detail->last_close) { 1128 detail->last_warn = detail->last_close; 1129 if (detail->warn_no_listener) 1130 detail->warn_no_listener(detail, detail->last_close != 0); 1131 } 1132 } 1133 1134 static bool cache_listeners_exist(struct cache_detail *detail) 1135 { 1136 if (atomic_read(&detail->readers)) 1137 return true; 1138 if (detail->last_close == 0) 1139 /* This cache was never opened */ 1140 return false; 1141 if (detail->last_close < seconds_since_boot() - 30) 1142 /* 1143 * We allow for the possibility that someone might 1144 * restart a userspace daemon without restarting the 1145 * server; but after 30 seconds, we give up. 1146 */ 1147 return false; 1148 return true; 1149 } 1150 1151 /* 1152 * register an upcall request to user-space and queue it up for read() by the 1153 * upcall daemon. 1154 * 1155 * Each request is at most one page long. 1156 */ 1157 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1158 { 1159 1160 char *buf; 1161 struct cache_request *crq; 1162 int ret = 0; 1163 1164 if (!detail->cache_request) 1165 return -EINVAL; 1166 1167 if (!cache_listeners_exist(detail)) { 1168 warn_no_listener(detail); 1169 return -EINVAL; 1170 } 1171 if (test_bit(CACHE_CLEANED, &h->flags)) 1172 /* Too late to make an upcall */ 1173 return -EAGAIN; 1174 1175 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1176 if (!buf) 1177 return -EAGAIN; 1178 1179 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1180 if (!crq) { 1181 kfree(buf); 1182 return -EAGAIN; 1183 } 1184 1185 crq->q.reader = 0; 1186 crq->buf = buf; 1187 crq->len = 0; 1188 crq->readers = 0; 1189 spin_lock(&queue_lock); 1190 if (test_bit(CACHE_PENDING, &h->flags)) { 1191 crq->item = cache_get(h); 1192 list_add_tail(&crq->q.list, &detail->queue); 1193 } else 1194 /* Lost a race, no longer PENDING, so don't enqueue */ 1195 ret = -EAGAIN; 1196 spin_unlock(&queue_lock); 1197 wake_up(&queue_wait); 1198 if (ret == -EAGAIN) { 1199 kfree(buf); 1200 kfree(crq); 1201 } 1202 return ret; 1203 } 1204 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1205 1206 /* 1207 * parse a message from user-space and pass it 1208 * to an appropriate cache 1209 * Messages are, like requests, separated into fields by 1210 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1211 * 1212 * Message is 1213 * reply cachename expiry key ... content.... 1214 * 1215 * key and content are both parsed by cache 1216 */ 1217 1218 int qword_get(char **bpp, char *dest, int bufsize) 1219 { 1220 /* return bytes copied, or -1 on error */ 1221 char *bp = *bpp; 1222 int len = 0; 1223 1224 while (*bp == ' ') bp++; 1225 1226 if (bp[0] == '\\' && bp[1] == 'x') { 1227 /* HEX STRING */ 1228 bp += 2; 1229 while (len < bufsize - 1) { 1230 int h, l; 1231 1232 h = hex_to_bin(bp[0]); 1233 if (h < 0) 1234 break; 1235 1236 l = hex_to_bin(bp[1]); 1237 if (l < 0) 1238 break; 1239 1240 *dest++ = (h << 4) | l; 1241 bp += 2; 1242 len++; 1243 } 1244 } else { 1245 /* text with \nnn octal quoting */ 1246 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1247 if (*bp == '\\' && 1248 isodigit(bp[1]) && (bp[1] <= '3') && 1249 isodigit(bp[2]) && 1250 isodigit(bp[3])) { 1251 int byte = (*++bp -'0'); 1252 bp++; 1253 byte = (byte << 3) | (*bp++ - '0'); 1254 byte = (byte << 3) | (*bp++ - '0'); 1255 *dest++ = byte; 1256 len++; 1257 } else { 1258 *dest++ = *bp++; 1259 len++; 1260 } 1261 } 1262 } 1263 1264 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1265 return -1; 1266 while (*bp == ' ') bp++; 1267 *bpp = bp; 1268 *dest = '\0'; 1269 return len; 1270 } 1271 EXPORT_SYMBOL_GPL(qword_get); 1272 1273 1274 /* 1275 * support /proc/sunrpc/cache/$CACHENAME/content 1276 * as a seqfile. 1277 * We call ->cache_show passing NULL for the item to 1278 * get a header, then pass each real item in the cache 1279 */ 1280 1281 void *cache_seq_start(struct seq_file *m, loff_t *pos) 1282 __acquires(cd->hash_lock) 1283 { 1284 loff_t n = *pos; 1285 unsigned int hash, entry; 1286 struct cache_head *ch; 1287 struct cache_detail *cd = m->private; 1288 1289 read_lock(&cd->hash_lock); 1290 if (!n--) 1291 return SEQ_START_TOKEN; 1292 hash = n >> 32; 1293 entry = n & ((1LL<<32) - 1); 1294 1295 hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list) 1296 if (!entry--) 1297 return ch; 1298 n &= ~((1LL<<32) - 1); 1299 do { 1300 hash++; 1301 n += 1LL<<32; 1302 } while(hash < cd->hash_size && 1303 hlist_empty(&cd->hash_table[hash])); 1304 if (hash >= cd->hash_size) 1305 return NULL; 1306 *pos = n+1; 1307 return hlist_entry_safe(cd->hash_table[hash].first, 1308 struct cache_head, cache_list); 1309 } 1310 EXPORT_SYMBOL_GPL(cache_seq_start); 1311 1312 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1313 { 1314 struct cache_head *ch = p; 1315 int hash = (*pos >> 32); 1316 struct cache_detail *cd = m->private; 1317 1318 if (p == SEQ_START_TOKEN) 1319 hash = 0; 1320 else if (ch->cache_list.next == NULL) { 1321 hash++; 1322 *pos += 1LL<<32; 1323 } else { 1324 ++*pos; 1325 return hlist_entry_safe(ch->cache_list.next, 1326 struct cache_head, cache_list); 1327 } 1328 *pos &= ~((1LL<<32) - 1); 1329 while (hash < cd->hash_size && 1330 hlist_empty(&cd->hash_table[hash])) { 1331 hash++; 1332 *pos += 1LL<<32; 1333 } 1334 if (hash >= cd->hash_size) 1335 return NULL; 1336 ++*pos; 1337 return hlist_entry_safe(cd->hash_table[hash].first, 1338 struct cache_head, cache_list); 1339 } 1340 EXPORT_SYMBOL_GPL(cache_seq_next); 1341 1342 void cache_seq_stop(struct seq_file *m, void *p) 1343 __releases(cd->hash_lock) 1344 { 1345 struct cache_detail *cd = m->private; 1346 read_unlock(&cd->hash_lock); 1347 } 1348 EXPORT_SYMBOL_GPL(cache_seq_stop); 1349 1350 static int c_show(struct seq_file *m, void *p) 1351 { 1352 struct cache_head *cp = p; 1353 struct cache_detail *cd = m->private; 1354 1355 if (p == SEQ_START_TOKEN) 1356 return cd->cache_show(m, cd, NULL); 1357 1358 ifdebug(CACHE) 1359 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1360 convert_to_wallclock(cp->expiry_time), 1361 atomic_read(&cp->ref.refcount), cp->flags); 1362 cache_get(cp); 1363 if (cache_check(cd, cp, NULL)) 1364 /* cache_check does a cache_put on failure */ 1365 seq_printf(m, "# "); 1366 else { 1367 if (cache_is_expired(cd, cp)) 1368 seq_printf(m, "# "); 1369 cache_put(cp, cd); 1370 } 1371 1372 return cd->cache_show(m, cd, cp); 1373 } 1374 1375 static const struct seq_operations cache_content_op = { 1376 .start = cache_seq_start, 1377 .next = cache_seq_next, 1378 .stop = cache_seq_stop, 1379 .show = c_show, 1380 }; 1381 1382 static int content_open(struct inode *inode, struct file *file, 1383 struct cache_detail *cd) 1384 { 1385 struct seq_file *seq; 1386 int err; 1387 1388 if (!cd || !try_module_get(cd->owner)) 1389 return -EACCES; 1390 1391 err = seq_open(file, &cache_content_op); 1392 if (err) { 1393 module_put(cd->owner); 1394 return err; 1395 } 1396 1397 seq = file->private_data; 1398 seq->private = cd; 1399 return 0; 1400 } 1401 1402 static int content_release(struct inode *inode, struct file *file, 1403 struct cache_detail *cd) 1404 { 1405 int ret = seq_release(inode, file); 1406 module_put(cd->owner); 1407 return ret; 1408 } 1409 1410 static int open_flush(struct inode *inode, struct file *file, 1411 struct cache_detail *cd) 1412 { 1413 if (!cd || !try_module_get(cd->owner)) 1414 return -EACCES; 1415 return nonseekable_open(inode, file); 1416 } 1417 1418 static int release_flush(struct inode *inode, struct file *file, 1419 struct cache_detail *cd) 1420 { 1421 module_put(cd->owner); 1422 return 0; 1423 } 1424 1425 static ssize_t read_flush(struct file *file, char __user *buf, 1426 size_t count, loff_t *ppos, 1427 struct cache_detail *cd) 1428 { 1429 char tbuf[22]; 1430 unsigned long p = *ppos; 1431 size_t len; 1432 1433 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time)); 1434 len = strlen(tbuf); 1435 if (p >= len) 1436 return 0; 1437 len -= p; 1438 if (len > count) 1439 len = count; 1440 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1441 return -EFAULT; 1442 *ppos += len; 1443 return len; 1444 } 1445 1446 static ssize_t write_flush(struct file *file, const char __user *buf, 1447 size_t count, loff_t *ppos, 1448 struct cache_detail *cd) 1449 { 1450 char tbuf[20]; 1451 char *bp, *ep; 1452 time_t then, now; 1453 1454 if (*ppos || count > sizeof(tbuf)-1) 1455 return -EINVAL; 1456 if (copy_from_user(tbuf, buf, count)) 1457 return -EFAULT; 1458 tbuf[count] = 0; 1459 simple_strtoul(tbuf, &ep, 0); 1460 if (*ep && *ep != '\n') 1461 return -EINVAL; 1462 1463 bp = tbuf; 1464 then = get_expiry(&bp); 1465 now = seconds_since_boot(); 1466 cd->nextcheck = now; 1467 /* Can only set flush_time to 1 second beyond "now", or 1468 * possibly 1 second beyond flushtime. This is because 1469 * flush_time never goes backwards so it mustn't get too far 1470 * ahead of time. 1471 */ 1472 if (then >= now) { 1473 /* Want to flush everything, so behave like cache_purge() */ 1474 if (cd->flush_time >= now) 1475 now = cd->flush_time + 1; 1476 then = now; 1477 } 1478 1479 cd->flush_time = then; 1480 cache_flush(); 1481 1482 *ppos += count; 1483 return count; 1484 } 1485 1486 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1487 size_t count, loff_t *ppos) 1488 { 1489 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1490 1491 return cache_read(filp, buf, count, ppos, cd); 1492 } 1493 1494 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1495 size_t count, loff_t *ppos) 1496 { 1497 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1498 1499 return cache_write(filp, buf, count, ppos, cd); 1500 } 1501 1502 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1503 { 1504 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1505 1506 return cache_poll(filp, wait, cd); 1507 } 1508 1509 static long cache_ioctl_procfs(struct file *filp, 1510 unsigned int cmd, unsigned long arg) 1511 { 1512 struct inode *inode = file_inode(filp); 1513 struct cache_detail *cd = PDE_DATA(inode); 1514 1515 return cache_ioctl(inode, filp, cmd, arg, cd); 1516 } 1517 1518 static int cache_open_procfs(struct inode *inode, struct file *filp) 1519 { 1520 struct cache_detail *cd = PDE_DATA(inode); 1521 1522 return cache_open(inode, filp, cd); 1523 } 1524 1525 static int cache_release_procfs(struct inode *inode, struct file *filp) 1526 { 1527 struct cache_detail *cd = PDE_DATA(inode); 1528 1529 return cache_release(inode, filp, cd); 1530 } 1531 1532 static const struct file_operations cache_file_operations_procfs = { 1533 .owner = THIS_MODULE, 1534 .llseek = no_llseek, 1535 .read = cache_read_procfs, 1536 .write = cache_write_procfs, 1537 .poll = cache_poll_procfs, 1538 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1539 .open = cache_open_procfs, 1540 .release = cache_release_procfs, 1541 }; 1542 1543 static int content_open_procfs(struct inode *inode, struct file *filp) 1544 { 1545 struct cache_detail *cd = PDE_DATA(inode); 1546 1547 return content_open(inode, filp, cd); 1548 } 1549 1550 static int content_release_procfs(struct inode *inode, struct file *filp) 1551 { 1552 struct cache_detail *cd = PDE_DATA(inode); 1553 1554 return content_release(inode, filp, cd); 1555 } 1556 1557 static const struct file_operations content_file_operations_procfs = { 1558 .open = content_open_procfs, 1559 .read = seq_read, 1560 .llseek = seq_lseek, 1561 .release = content_release_procfs, 1562 }; 1563 1564 static int open_flush_procfs(struct inode *inode, struct file *filp) 1565 { 1566 struct cache_detail *cd = PDE_DATA(inode); 1567 1568 return open_flush(inode, filp, cd); 1569 } 1570 1571 static int release_flush_procfs(struct inode *inode, struct file *filp) 1572 { 1573 struct cache_detail *cd = PDE_DATA(inode); 1574 1575 return release_flush(inode, filp, cd); 1576 } 1577 1578 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1579 size_t count, loff_t *ppos) 1580 { 1581 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1582 1583 return read_flush(filp, buf, count, ppos, cd); 1584 } 1585 1586 static ssize_t write_flush_procfs(struct file *filp, 1587 const char __user *buf, 1588 size_t count, loff_t *ppos) 1589 { 1590 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1591 1592 return write_flush(filp, buf, count, ppos, cd); 1593 } 1594 1595 static const struct file_operations cache_flush_operations_procfs = { 1596 .open = open_flush_procfs, 1597 .read = read_flush_procfs, 1598 .write = write_flush_procfs, 1599 .release = release_flush_procfs, 1600 .llseek = no_llseek, 1601 }; 1602 1603 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1604 { 1605 struct sunrpc_net *sn; 1606 1607 if (cd->u.procfs.proc_ent == NULL) 1608 return; 1609 if (cd->u.procfs.flush_ent) 1610 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1611 if (cd->u.procfs.channel_ent) 1612 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1613 if (cd->u.procfs.content_ent) 1614 remove_proc_entry("content", cd->u.procfs.proc_ent); 1615 cd->u.procfs.proc_ent = NULL; 1616 sn = net_generic(net, sunrpc_net_id); 1617 remove_proc_entry(cd->name, sn->proc_net_rpc); 1618 } 1619 1620 #ifdef CONFIG_PROC_FS 1621 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1622 { 1623 struct proc_dir_entry *p; 1624 struct sunrpc_net *sn; 1625 1626 sn = net_generic(net, sunrpc_net_id); 1627 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1628 if (cd->u.procfs.proc_ent == NULL) 1629 goto out_nomem; 1630 cd->u.procfs.channel_ent = NULL; 1631 cd->u.procfs.content_ent = NULL; 1632 1633 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1634 cd->u.procfs.proc_ent, 1635 &cache_flush_operations_procfs, cd); 1636 cd->u.procfs.flush_ent = p; 1637 if (p == NULL) 1638 goto out_nomem; 1639 1640 if (cd->cache_request || cd->cache_parse) { 1641 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1642 cd->u.procfs.proc_ent, 1643 &cache_file_operations_procfs, cd); 1644 cd->u.procfs.channel_ent = p; 1645 if (p == NULL) 1646 goto out_nomem; 1647 } 1648 if (cd->cache_show) { 1649 p = proc_create_data("content", S_IFREG|S_IRUSR, 1650 cd->u.procfs.proc_ent, 1651 &content_file_operations_procfs, cd); 1652 cd->u.procfs.content_ent = p; 1653 if (p == NULL) 1654 goto out_nomem; 1655 } 1656 return 0; 1657 out_nomem: 1658 remove_cache_proc_entries(cd, net); 1659 return -ENOMEM; 1660 } 1661 #else /* CONFIG_PROC_FS */ 1662 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1663 { 1664 return 0; 1665 } 1666 #endif 1667 1668 void __init cache_initialize(void) 1669 { 1670 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1671 } 1672 1673 int cache_register_net(struct cache_detail *cd, struct net *net) 1674 { 1675 int ret; 1676 1677 sunrpc_init_cache_detail(cd); 1678 ret = create_cache_proc_entries(cd, net); 1679 if (ret) 1680 sunrpc_destroy_cache_detail(cd); 1681 return ret; 1682 } 1683 EXPORT_SYMBOL_GPL(cache_register_net); 1684 1685 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1686 { 1687 remove_cache_proc_entries(cd, net); 1688 sunrpc_destroy_cache_detail(cd); 1689 } 1690 EXPORT_SYMBOL_GPL(cache_unregister_net); 1691 1692 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1693 { 1694 struct cache_detail *cd; 1695 int i; 1696 1697 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1698 if (cd == NULL) 1699 return ERR_PTR(-ENOMEM); 1700 1701 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head), 1702 GFP_KERNEL); 1703 if (cd->hash_table == NULL) { 1704 kfree(cd); 1705 return ERR_PTR(-ENOMEM); 1706 } 1707 1708 for (i = 0; i < cd->hash_size; i++) 1709 INIT_HLIST_HEAD(&cd->hash_table[i]); 1710 cd->net = net; 1711 return cd; 1712 } 1713 EXPORT_SYMBOL_GPL(cache_create_net); 1714 1715 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1716 { 1717 kfree(cd->hash_table); 1718 kfree(cd); 1719 } 1720 EXPORT_SYMBOL_GPL(cache_destroy_net); 1721 1722 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1723 size_t count, loff_t *ppos) 1724 { 1725 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1726 1727 return cache_read(filp, buf, count, ppos, cd); 1728 } 1729 1730 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1731 size_t count, loff_t *ppos) 1732 { 1733 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1734 1735 return cache_write(filp, buf, count, ppos, cd); 1736 } 1737 1738 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1739 { 1740 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1741 1742 return cache_poll(filp, wait, cd); 1743 } 1744 1745 static long cache_ioctl_pipefs(struct file *filp, 1746 unsigned int cmd, unsigned long arg) 1747 { 1748 struct inode *inode = file_inode(filp); 1749 struct cache_detail *cd = RPC_I(inode)->private; 1750 1751 return cache_ioctl(inode, filp, cmd, arg, cd); 1752 } 1753 1754 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1755 { 1756 struct cache_detail *cd = RPC_I(inode)->private; 1757 1758 return cache_open(inode, filp, cd); 1759 } 1760 1761 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1762 { 1763 struct cache_detail *cd = RPC_I(inode)->private; 1764 1765 return cache_release(inode, filp, cd); 1766 } 1767 1768 const struct file_operations cache_file_operations_pipefs = { 1769 .owner = THIS_MODULE, 1770 .llseek = no_llseek, 1771 .read = cache_read_pipefs, 1772 .write = cache_write_pipefs, 1773 .poll = cache_poll_pipefs, 1774 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1775 .open = cache_open_pipefs, 1776 .release = cache_release_pipefs, 1777 }; 1778 1779 static int content_open_pipefs(struct inode *inode, struct file *filp) 1780 { 1781 struct cache_detail *cd = RPC_I(inode)->private; 1782 1783 return content_open(inode, filp, cd); 1784 } 1785 1786 static int content_release_pipefs(struct inode *inode, struct file *filp) 1787 { 1788 struct cache_detail *cd = RPC_I(inode)->private; 1789 1790 return content_release(inode, filp, cd); 1791 } 1792 1793 const struct file_operations content_file_operations_pipefs = { 1794 .open = content_open_pipefs, 1795 .read = seq_read, 1796 .llseek = seq_lseek, 1797 .release = content_release_pipefs, 1798 }; 1799 1800 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1801 { 1802 struct cache_detail *cd = RPC_I(inode)->private; 1803 1804 return open_flush(inode, filp, cd); 1805 } 1806 1807 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1808 { 1809 struct cache_detail *cd = RPC_I(inode)->private; 1810 1811 return release_flush(inode, filp, cd); 1812 } 1813 1814 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1815 size_t count, loff_t *ppos) 1816 { 1817 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1818 1819 return read_flush(filp, buf, count, ppos, cd); 1820 } 1821 1822 static ssize_t write_flush_pipefs(struct file *filp, 1823 const char __user *buf, 1824 size_t count, loff_t *ppos) 1825 { 1826 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1827 1828 return write_flush(filp, buf, count, ppos, cd); 1829 } 1830 1831 const struct file_operations cache_flush_operations_pipefs = { 1832 .open = open_flush_pipefs, 1833 .read = read_flush_pipefs, 1834 .write = write_flush_pipefs, 1835 .release = release_flush_pipefs, 1836 .llseek = no_llseek, 1837 }; 1838 1839 int sunrpc_cache_register_pipefs(struct dentry *parent, 1840 const char *name, umode_t umode, 1841 struct cache_detail *cd) 1842 { 1843 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1844 if (IS_ERR(dir)) 1845 return PTR_ERR(dir); 1846 cd->u.pipefs.dir = dir; 1847 return 0; 1848 } 1849 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1850 1851 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1852 { 1853 rpc_remove_cache_dir(cd->u.pipefs.dir); 1854 cd->u.pipefs.dir = NULL; 1855 } 1856 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1857 1858