xref: /openbmc/linux/net/sunrpc/cache.c (revision 6f1188b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time64_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static void cache_fresh_unlocked(struct cache_head *head,
57 				struct cache_detail *detail);
58 
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 						struct cache_head *key,
61 						int hash)
62 {
63 	struct hlist_head *head = &detail->hash_table[hash];
64 	struct cache_head *tmp;
65 
66 	rcu_read_lock();
67 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 		if (!detail->match(tmp, key))
69 			continue;
70 		if (test_bit(CACHE_VALID, &tmp->flags) &&
71 		    cache_is_expired(detail, tmp))
72 			continue;
73 		tmp = cache_get_rcu(tmp);
74 		rcu_read_unlock();
75 		return tmp;
76 	}
77 	rcu_read_unlock();
78 	return NULL;
79 }
80 
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82 					    struct cache_detail *cd)
83 {
84 	/* Must be called under cd->hash_lock */
85 	hlist_del_init_rcu(&ch->cache_list);
86 	set_bit(CACHE_CLEANED, &ch->flags);
87 	cd->entries --;
88 }
89 
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91 					  struct cache_detail *cd)
92 {
93 	cache_fresh_unlocked(ch, cd);
94 	cache_put(ch, cd);
95 }
96 
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98 						 struct cache_head *key,
99 						 int hash)
100 {
101 	struct cache_head *new, *tmp, *freeme = NULL;
102 	struct hlist_head *head = &detail->hash_table[hash];
103 
104 	new = detail->alloc();
105 	if (!new)
106 		return NULL;
107 	/* must fully initialise 'new', else
108 	 * we might get lose if we need to
109 	 * cache_put it soon.
110 	 */
111 	cache_init(new, detail);
112 	detail->init(new, key);
113 
114 	spin_lock(&detail->hash_lock);
115 
116 	/* check if entry appeared while we slept */
117 	hlist_for_each_entry_rcu(tmp, head, cache_list,
118 				 lockdep_is_held(&detail->hash_lock)) {
119 		if (!detail->match(tmp, key))
120 			continue;
121 		if (test_bit(CACHE_VALID, &tmp->flags) &&
122 		    cache_is_expired(detail, tmp)) {
123 			sunrpc_begin_cache_remove_entry(tmp, detail);
124 			trace_cache_entry_expired(detail, tmp);
125 			freeme = tmp;
126 			break;
127 		}
128 		cache_get(tmp);
129 		spin_unlock(&detail->hash_lock);
130 		cache_put(new, detail);
131 		return tmp;
132 	}
133 
134 	hlist_add_head_rcu(&new->cache_list, head);
135 	detail->entries++;
136 	cache_get(new);
137 	spin_unlock(&detail->hash_lock);
138 
139 	if (freeme)
140 		sunrpc_end_cache_remove_entry(freeme, detail);
141 	return new;
142 }
143 
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145 					   struct cache_head *key, int hash)
146 {
147 	struct cache_head *ret;
148 
149 	ret = sunrpc_cache_find_rcu(detail, key, hash);
150 	if (ret)
151 		return ret;
152 	/* Didn't find anything, insert an empty entry */
153 	return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156 
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158 
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160 			       struct cache_detail *detail)
161 {
162 	time64_t now = seconds_since_boot();
163 	if (now <= detail->flush_time)
164 		/* ensure it isn't immediately treated as expired */
165 		now = detail->flush_time + 1;
166 	head->expiry_time = expiry;
167 	head->last_refresh = now;
168 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169 	set_bit(CACHE_VALID, &head->flags);
170 }
171 
172 static void cache_fresh_unlocked(struct cache_head *head,
173 				 struct cache_detail *detail)
174 {
175 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176 		cache_revisit_request(head);
177 		cache_dequeue(detail, head);
178 	}
179 }
180 
181 static void cache_make_negative(struct cache_detail *detail,
182 				struct cache_head *h)
183 {
184 	set_bit(CACHE_NEGATIVE, &h->flags);
185 	trace_cache_entry_make_negative(detail, h);
186 }
187 
188 static void cache_entry_update(struct cache_detail *detail,
189 			       struct cache_head *h,
190 			       struct cache_head *new)
191 {
192 	if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193 		detail->update(h, new);
194 		trace_cache_entry_update(detail, h);
195 	} else {
196 		cache_make_negative(detail, h);
197 	}
198 }
199 
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201 				       struct cache_head *new, struct cache_head *old, int hash)
202 {
203 	/* The 'old' entry is to be replaced by 'new'.
204 	 * If 'old' is not VALID, we update it directly,
205 	 * otherwise we need to replace it
206 	 */
207 	struct cache_head *tmp;
208 
209 	if (!test_bit(CACHE_VALID, &old->flags)) {
210 		spin_lock(&detail->hash_lock);
211 		if (!test_bit(CACHE_VALID, &old->flags)) {
212 			cache_entry_update(detail, old, new);
213 			cache_fresh_locked(old, new->expiry_time, detail);
214 			spin_unlock(&detail->hash_lock);
215 			cache_fresh_unlocked(old, detail);
216 			return old;
217 		}
218 		spin_unlock(&detail->hash_lock);
219 	}
220 	/* We need to insert a new entry */
221 	tmp = detail->alloc();
222 	if (!tmp) {
223 		cache_put(old, detail);
224 		return NULL;
225 	}
226 	cache_init(tmp, detail);
227 	detail->init(tmp, old);
228 
229 	spin_lock(&detail->hash_lock);
230 	cache_entry_update(detail, tmp, new);
231 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232 	detail->entries++;
233 	cache_get(tmp);
234 	cache_fresh_locked(tmp, new->expiry_time, detail);
235 	cache_fresh_locked(old, 0, detail);
236 	spin_unlock(&detail->hash_lock);
237 	cache_fresh_unlocked(tmp, detail);
238 	cache_fresh_unlocked(old, detail);
239 	cache_put(old, detail);
240 	return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243 
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246 	if (!test_bit(CACHE_VALID, &h->flags))
247 		return -EAGAIN;
248 	else {
249 		/* entry is valid */
250 		if (test_bit(CACHE_NEGATIVE, &h->flags))
251 			return -ENOENT;
252 		else {
253 			/*
254 			 * In combination with write barrier in
255 			 * sunrpc_cache_update, ensures that anyone
256 			 * using the cache entry after this sees the
257 			 * updated contents:
258 			 */
259 			smp_rmb();
260 			return 0;
261 		}
262 	}
263 }
264 
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267 	int rv;
268 
269 	spin_lock(&detail->hash_lock);
270 	rv = cache_is_valid(h);
271 	if (rv == -EAGAIN) {
272 		cache_make_negative(detail, h);
273 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274 				   detail);
275 		rv = -ENOENT;
276 	}
277 	spin_unlock(&detail->hash_lock);
278 	cache_fresh_unlocked(h, detail);
279 	return rv;
280 }
281 
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297 		    struct cache_head *h, struct cache_req *rqstp)
298 {
299 	int rv;
300 	time64_t refresh_age, age;
301 
302 	/* First decide return status as best we can */
303 	rv = cache_is_valid(h);
304 
305 	/* now see if we want to start an upcall */
306 	refresh_age = (h->expiry_time - h->last_refresh);
307 	age = seconds_since_boot() - h->last_refresh;
308 
309 	if (rqstp == NULL) {
310 		if (rv == -EAGAIN)
311 			rv = -ENOENT;
312 	} else if (rv == -EAGAIN ||
313 		   (h->expiry_time != 0 && age > refresh_age/2)) {
314 		dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315 				refresh_age, age);
316 		switch (detail->cache_upcall(detail, h)) {
317 		case -EINVAL:
318 			rv = try_to_negate_entry(detail, h);
319 			break;
320 		case -EAGAIN:
321 			cache_fresh_unlocked(h, detail);
322 			break;
323 		}
324 	}
325 
326 	if (rv == -EAGAIN) {
327 		if (!cache_defer_req(rqstp, h)) {
328 			/*
329 			 * Request was not deferred; handle it as best
330 			 * we can ourselves:
331 			 */
332 			rv = cache_is_valid(h);
333 			if (rv == -EAGAIN)
334 				rv = -ETIMEDOUT;
335 		}
336 	}
337 	if (rv)
338 		cache_put(h, detail);
339 	return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342 
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374 
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379 
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382 
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385 	spin_lock_init(&cd->hash_lock);
386 	INIT_LIST_HEAD(&cd->queue);
387 	spin_lock(&cache_list_lock);
388 	cd->nextcheck = 0;
389 	cd->entries = 0;
390 	atomic_set(&cd->writers, 0);
391 	cd->last_close = 0;
392 	cd->last_warn = -1;
393 	list_add(&cd->others, &cache_list);
394 	spin_unlock(&cache_list_lock);
395 
396 	/* start the cleaning process */
397 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400 
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403 	cache_purge(cd);
404 	spin_lock(&cache_list_lock);
405 	spin_lock(&cd->hash_lock);
406 	if (current_detail == cd)
407 		current_detail = NULL;
408 	list_del_init(&cd->others);
409 	spin_unlock(&cd->hash_lock);
410 	spin_unlock(&cache_list_lock);
411 	if (list_empty(&cache_list)) {
412 		/* module must be being unloaded so its safe to kill the worker */
413 		cancel_delayed_work_sync(&cache_cleaner);
414 	}
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417 
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426 	int rv = 0;
427 	struct list_head *next;
428 
429 	spin_lock(&cache_list_lock);
430 
431 	/* find a suitable table if we don't already have one */
432 	while (current_detail == NULL ||
433 	    current_index >= current_detail->hash_size) {
434 		if (current_detail)
435 			next = current_detail->others.next;
436 		else
437 			next = cache_list.next;
438 		if (next == &cache_list) {
439 			current_detail = NULL;
440 			spin_unlock(&cache_list_lock);
441 			return -1;
442 		}
443 		current_detail = list_entry(next, struct cache_detail, others);
444 		if (current_detail->nextcheck > seconds_since_boot())
445 			current_index = current_detail->hash_size;
446 		else {
447 			current_index = 0;
448 			current_detail->nextcheck = seconds_since_boot()+30*60;
449 		}
450 	}
451 
452 	/* find a non-empty bucket in the table */
453 	while (current_detail &&
454 	       current_index < current_detail->hash_size &&
455 	       hlist_empty(&current_detail->hash_table[current_index]))
456 		current_index++;
457 
458 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
459 
460 	if (current_detail && current_index < current_detail->hash_size) {
461 		struct cache_head *ch = NULL;
462 		struct cache_detail *d;
463 		struct hlist_head *head;
464 		struct hlist_node *tmp;
465 
466 		spin_lock(&current_detail->hash_lock);
467 
468 		/* Ok, now to clean this strand */
469 
470 		head = &current_detail->hash_table[current_index];
471 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472 			if (current_detail->nextcheck > ch->expiry_time)
473 				current_detail->nextcheck = ch->expiry_time+1;
474 			if (!cache_is_expired(current_detail, ch))
475 				continue;
476 
477 			sunrpc_begin_cache_remove_entry(ch, current_detail);
478 			trace_cache_entry_expired(current_detail, ch);
479 			rv = 1;
480 			break;
481 		}
482 
483 		spin_unlock(&current_detail->hash_lock);
484 		d = current_detail;
485 		if (!ch)
486 			current_index ++;
487 		spin_unlock(&cache_list_lock);
488 		if (ch)
489 			sunrpc_end_cache_remove_entry(ch, d);
490 	} else
491 		spin_unlock(&cache_list_lock);
492 
493 	return rv;
494 }
495 
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501 	int delay = 5;
502 	if (cache_clean() == -1)
503 		delay = round_jiffies_relative(30*HZ);
504 
505 	if (list_empty(&cache_list))
506 		delay = 0;
507 
508 	if (delay)
509 		queue_delayed_work(system_power_efficient_wq,
510 				   &cache_cleaner, delay);
511 }
512 
513 
514 /*
515  * Clean all caches promptly.  This just calls cache_clean
516  * repeatedly until we are sure that every cache has had a chance to
517  * be fully cleaned
518  */
519 void cache_flush(void)
520 {
521 	while (cache_clean() != -1)
522 		cond_resched();
523 	while (cache_clean() != -1)
524 		cond_resched();
525 }
526 EXPORT_SYMBOL_GPL(cache_flush);
527 
528 void cache_purge(struct cache_detail *detail)
529 {
530 	struct cache_head *ch = NULL;
531 	struct hlist_head *head = NULL;
532 	int i = 0;
533 
534 	spin_lock(&detail->hash_lock);
535 	if (!detail->entries) {
536 		spin_unlock(&detail->hash_lock);
537 		return;
538 	}
539 
540 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
541 	for (i = 0; i < detail->hash_size; i++) {
542 		head = &detail->hash_table[i];
543 		while (!hlist_empty(head)) {
544 			ch = hlist_entry(head->first, struct cache_head,
545 					 cache_list);
546 			sunrpc_begin_cache_remove_entry(ch, detail);
547 			spin_unlock(&detail->hash_lock);
548 			sunrpc_end_cache_remove_entry(ch, detail);
549 			spin_lock(&detail->hash_lock);
550 		}
551 	}
552 	spin_unlock(&detail->hash_lock);
553 }
554 EXPORT_SYMBOL_GPL(cache_purge);
555 
556 
557 /*
558  * Deferral and Revisiting of Requests.
559  *
560  * If a cache lookup finds a pending entry, we
561  * need to defer the request and revisit it later.
562  * All deferred requests are stored in a hash table,
563  * indexed by "struct cache_head *".
564  * As it may be wasteful to store a whole request
565  * structure, we allow the request to provide a
566  * deferred form, which must contain a
567  * 'struct cache_deferred_req'
568  * This cache_deferred_req contains a method to allow
569  * it to be revisited when cache info is available
570  */
571 
572 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
573 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
574 
575 #define	DFR_MAX	300	/* ??? */
576 
577 static DEFINE_SPINLOCK(cache_defer_lock);
578 static LIST_HEAD(cache_defer_list);
579 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
580 static int cache_defer_cnt;
581 
582 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
583 {
584 	hlist_del_init(&dreq->hash);
585 	if (!list_empty(&dreq->recent)) {
586 		list_del_init(&dreq->recent);
587 		cache_defer_cnt--;
588 	}
589 }
590 
591 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
592 {
593 	int hash = DFR_HASH(item);
594 
595 	INIT_LIST_HEAD(&dreq->recent);
596 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
597 }
598 
599 static void setup_deferral(struct cache_deferred_req *dreq,
600 			   struct cache_head *item,
601 			   int count_me)
602 {
603 
604 	dreq->item = item;
605 
606 	spin_lock(&cache_defer_lock);
607 
608 	__hash_deferred_req(dreq, item);
609 
610 	if (count_me) {
611 		cache_defer_cnt++;
612 		list_add(&dreq->recent, &cache_defer_list);
613 	}
614 
615 	spin_unlock(&cache_defer_lock);
616 
617 }
618 
619 struct thread_deferred_req {
620 	struct cache_deferred_req handle;
621 	struct completion completion;
622 };
623 
624 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
625 {
626 	struct thread_deferred_req *dr =
627 		container_of(dreq, struct thread_deferred_req, handle);
628 	complete(&dr->completion);
629 }
630 
631 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
632 {
633 	struct thread_deferred_req sleeper;
634 	struct cache_deferred_req *dreq = &sleeper.handle;
635 
636 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
637 	dreq->revisit = cache_restart_thread;
638 
639 	setup_deferral(dreq, item, 0);
640 
641 	if (!test_bit(CACHE_PENDING, &item->flags) ||
642 	    wait_for_completion_interruptible_timeout(
643 		    &sleeper.completion, req->thread_wait) <= 0) {
644 		/* The completion wasn't completed, so we need
645 		 * to clean up
646 		 */
647 		spin_lock(&cache_defer_lock);
648 		if (!hlist_unhashed(&sleeper.handle.hash)) {
649 			__unhash_deferred_req(&sleeper.handle);
650 			spin_unlock(&cache_defer_lock);
651 		} else {
652 			/* cache_revisit_request already removed
653 			 * this from the hash table, but hasn't
654 			 * called ->revisit yet.  It will very soon
655 			 * and we need to wait for it.
656 			 */
657 			spin_unlock(&cache_defer_lock);
658 			wait_for_completion(&sleeper.completion);
659 		}
660 	}
661 }
662 
663 static void cache_limit_defers(void)
664 {
665 	/* Make sure we haven't exceed the limit of allowed deferred
666 	 * requests.
667 	 */
668 	struct cache_deferred_req *discard = NULL;
669 
670 	if (cache_defer_cnt <= DFR_MAX)
671 		return;
672 
673 	spin_lock(&cache_defer_lock);
674 
675 	/* Consider removing either the first or the last */
676 	if (cache_defer_cnt > DFR_MAX) {
677 		if (prandom_u32() & 1)
678 			discard = list_entry(cache_defer_list.next,
679 					     struct cache_deferred_req, recent);
680 		else
681 			discard = list_entry(cache_defer_list.prev,
682 					     struct cache_deferred_req, recent);
683 		__unhash_deferred_req(discard);
684 	}
685 	spin_unlock(&cache_defer_lock);
686 	if (discard)
687 		discard->revisit(discard, 1);
688 }
689 
690 /* Return true if and only if a deferred request is queued. */
691 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
692 {
693 	struct cache_deferred_req *dreq;
694 
695 	if (req->thread_wait) {
696 		cache_wait_req(req, item);
697 		if (!test_bit(CACHE_PENDING, &item->flags))
698 			return false;
699 	}
700 	dreq = req->defer(req);
701 	if (dreq == NULL)
702 		return false;
703 	setup_deferral(dreq, item, 1);
704 	if (!test_bit(CACHE_PENDING, &item->flags))
705 		/* Bit could have been cleared before we managed to
706 		 * set up the deferral, so need to revisit just in case
707 		 */
708 		cache_revisit_request(item);
709 
710 	cache_limit_defers();
711 	return true;
712 }
713 
714 static void cache_revisit_request(struct cache_head *item)
715 {
716 	struct cache_deferred_req *dreq;
717 	struct list_head pending;
718 	struct hlist_node *tmp;
719 	int hash = DFR_HASH(item);
720 
721 	INIT_LIST_HEAD(&pending);
722 	spin_lock(&cache_defer_lock);
723 
724 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
725 		if (dreq->item == item) {
726 			__unhash_deferred_req(dreq);
727 			list_add(&dreq->recent, &pending);
728 		}
729 
730 	spin_unlock(&cache_defer_lock);
731 
732 	while (!list_empty(&pending)) {
733 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
734 		list_del_init(&dreq->recent);
735 		dreq->revisit(dreq, 0);
736 	}
737 }
738 
739 void cache_clean_deferred(void *owner)
740 {
741 	struct cache_deferred_req *dreq, *tmp;
742 	struct list_head pending;
743 
744 
745 	INIT_LIST_HEAD(&pending);
746 	spin_lock(&cache_defer_lock);
747 
748 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
749 		if (dreq->owner == owner) {
750 			__unhash_deferred_req(dreq);
751 			list_add(&dreq->recent, &pending);
752 		}
753 	}
754 	spin_unlock(&cache_defer_lock);
755 
756 	while (!list_empty(&pending)) {
757 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
758 		list_del_init(&dreq->recent);
759 		dreq->revisit(dreq, 1);
760 	}
761 }
762 
763 /*
764  * communicate with user-space
765  *
766  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
767  * On read, you get a full request, or block.
768  * On write, an update request is processed.
769  * Poll works if anything to read, and always allows write.
770  *
771  * Implemented by linked list of requests.  Each open file has
772  * a ->private that also exists in this list.  New requests are added
773  * to the end and may wakeup and preceding readers.
774  * New readers are added to the head.  If, on read, an item is found with
775  * CACHE_UPCALLING clear, we free it from the list.
776  *
777  */
778 
779 static DEFINE_SPINLOCK(queue_lock);
780 static DEFINE_MUTEX(queue_io_mutex);
781 
782 struct cache_queue {
783 	struct list_head	list;
784 	int			reader;	/* if 0, then request */
785 };
786 struct cache_request {
787 	struct cache_queue	q;
788 	struct cache_head	*item;
789 	char			* buf;
790 	int			len;
791 	int			readers;
792 };
793 struct cache_reader {
794 	struct cache_queue	q;
795 	int			offset;	/* if non-0, we have a refcnt on next request */
796 };
797 
798 static int cache_request(struct cache_detail *detail,
799 			       struct cache_request *crq)
800 {
801 	char *bp = crq->buf;
802 	int len = PAGE_SIZE;
803 
804 	detail->cache_request(detail, crq->item, &bp, &len);
805 	if (len < 0)
806 		return -EAGAIN;
807 	return PAGE_SIZE - len;
808 }
809 
810 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
811 			  loff_t *ppos, struct cache_detail *cd)
812 {
813 	struct cache_reader *rp = filp->private_data;
814 	struct cache_request *rq;
815 	struct inode *inode = file_inode(filp);
816 	int err;
817 
818 	if (count == 0)
819 		return 0;
820 
821 	inode_lock(inode); /* protect against multiple concurrent
822 			      * readers on this file */
823  again:
824 	spin_lock(&queue_lock);
825 	/* need to find next request */
826 	while (rp->q.list.next != &cd->queue &&
827 	       list_entry(rp->q.list.next, struct cache_queue, list)
828 	       ->reader) {
829 		struct list_head *next = rp->q.list.next;
830 		list_move(&rp->q.list, next);
831 	}
832 	if (rp->q.list.next == &cd->queue) {
833 		spin_unlock(&queue_lock);
834 		inode_unlock(inode);
835 		WARN_ON_ONCE(rp->offset);
836 		return 0;
837 	}
838 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
839 	WARN_ON_ONCE(rq->q.reader);
840 	if (rp->offset == 0)
841 		rq->readers++;
842 	spin_unlock(&queue_lock);
843 
844 	if (rq->len == 0) {
845 		err = cache_request(cd, rq);
846 		if (err < 0)
847 			goto out;
848 		rq->len = err;
849 	}
850 
851 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
852 		err = -EAGAIN;
853 		spin_lock(&queue_lock);
854 		list_move(&rp->q.list, &rq->q.list);
855 		spin_unlock(&queue_lock);
856 	} else {
857 		if (rp->offset + count > rq->len)
858 			count = rq->len - rp->offset;
859 		err = -EFAULT;
860 		if (copy_to_user(buf, rq->buf + rp->offset, count))
861 			goto out;
862 		rp->offset += count;
863 		if (rp->offset >= rq->len) {
864 			rp->offset = 0;
865 			spin_lock(&queue_lock);
866 			list_move(&rp->q.list, &rq->q.list);
867 			spin_unlock(&queue_lock);
868 		}
869 		err = 0;
870 	}
871  out:
872 	if (rp->offset == 0) {
873 		/* need to release rq */
874 		spin_lock(&queue_lock);
875 		rq->readers--;
876 		if (rq->readers == 0 &&
877 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
878 			list_del(&rq->q.list);
879 			spin_unlock(&queue_lock);
880 			cache_put(rq->item, cd);
881 			kfree(rq->buf);
882 			kfree(rq);
883 		} else
884 			spin_unlock(&queue_lock);
885 	}
886 	if (err == -EAGAIN)
887 		goto again;
888 	inode_unlock(inode);
889 	return err ? err :  count;
890 }
891 
892 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
893 				 size_t count, struct cache_detail *cd)
894 {
895 	ssize_t ret;
896 
897 	if (count == 0)
898 		return -EINVAL;
899 	if (copy_from_user(kaddr, buf, count))
900 		return -EFAULT;
901 	kaddr[count] = '\0';
902 	ret = cd->cache_parse(cd, kaddr, count);
903 	if (!ret)
904 		ret = count;
905 	return ret;
906 }
907 
908 static ssize_t cache_slow_downcall(const char __user *buf,
909 				   size_t count, struct cache_detail *cd)
910 {
911 	static char write_buf[8192]; /* protected by queue_io_mutex */
912 	ssize_t ret = -EINVAL;
913 
914 	if (count >= sizeof(write_buf))
915 		goto out;
916 	mutex_lock(&queue_io_mutex);
917 	ret = cache_do_downcall(write_buf, buf, count, cd);
918 	mutex_unlock(&queue_io_mutex);
919 out:
920 	return ret;
921 }
922 
923 static ssize_t cache_downcall(struct address_space *mapping,
924 			      const char __user *buf,
925 			      size_t count, struct cache_detail *cd)
926 {
927 	struct page *page;
928 	char *kaddr;
929 	ssize_t ret = -ENOMEM;
930 
931 	if (count >= PAGE_SIZE)
932 		goto out_slow;
933 
934 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
935 	if (!page)
936 		goto out_slow;
937 
938 	kaddr = kmap(page);
939 	ret = cache_do_downcall(kaddr, buf, count, cd);
940 	kunmap(page);
941 	unlock_page(page);
942 	put_page(page);
943 	return ret;
944 out_slow:
945 	return cache_slow_downcall(buf, count, cd);
946 }
947 
948 static ssize_t cache_write(struct file *filp, const char __user *buf,
949 			   size_t count, loff_t *ppos,
950 			   struct cache_detail *cd)
951 {
952 	struct address_space *mapping = filp->f_mapping;
953 	struct inode *inode = file_inode(filp);
954 	ssize_t ret = -EINVAL;
955 
956 	if (!cd->cache_parse)
957 		goto out;
958 
959 	inode_lock(inode);
960 	ret = cache_downcall(mapping, buf, count, cd);
961 	inode_unlock(inode);
962 out:
963 	return ret;
964 }
965 
966 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
967 
968 static __poll_t cache_poll(struct file *filp, poll_table *wait,
969 			       struct cache_detail *cd)
970 {
971 	__poll_t mask;
972 	struct cache_reader *rp = filp->private_data;
973 	struct cache_queue *cq;
974 
975 	poll_wait(filp, &queue_wait, wait);
976 
977 	/* alway allow write */
978 	mask = EPOLLOUT | EPOLLWRNORM;
979 
980 	if (!rp)
981 		return mask;
982 
983 	spin_lock(&queue_lock);
984 
985 	for (cq= &rp->q; &cq->list != &cd->queue;
986 	     cq = list_entry(cq->list.next, struct cache_queue, list))
987 		if (!cq->reader) {
988 			mask |= EPOLLIN | EPOLLRDNORM;
989 			break;
990 		}
991 	spin_unlock(&queue_lock);
992 	return mask;
993 }
994 
995 static int cache_ioctl(struct inode *ino, struct file *filp,
996 		       unsigned int cmd, unsigned long arg,
997 		       struct cache_detail *cd)
998 {
999 	int len = 0;
1000 	struct cache_reader *rp = filp->private_data;
1001 	struct cache_queue *cq;
1002 
1003 	if (cmd != FIONREAD || !rp)
1004 		return -EINVAL;
1005 
1006 	spin_lock(&queue_lock);
1007 
1008 	/* only find the length remaining in current request,
1009 	 * or the length of the next request
1010 	 */
1011 	for (cq= &rp->q; &cq->list != &cd->queue;
1012 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1013 		if (!cq->reader) {
1014 			struct cache_request *cr =
1015 				container_of(cq, struct cache_request, q);
1016 			len = cr->len - rp->offset;
1017 			break;
1018 		}
1019 	spin_unlock(&queue_lock);
1020 
1021 	return put_user(len, (int __user *)arg);
1022 }
1023 
1024 static int cache_open(struct inode *inode, struct file *filp,
1025 		      struct cache_detail *cd)
1026 {
1027 	struct cache_reader *rp = NULL;
1028 
1029 	if (!cd || !try_module_get(cd->owner))
1030 		return -EACCES;
1031 	nonseekable_open(inode, filp);
1032 	if (filp->f_mode & FMODE_READ) {
1033 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1034 		if (!rp) {
1035 			module_put(cd->owner);
1036 			return -ENOMEM;
1037 		}
1038 		rp->offset = 0;
1039 		rp->q.reader = 1;
1040 
1041 		spin_lock(&queue_lock);
1042 		list_add(&rp->q.list, &cd->queue);
1043 		spin_unlock(&queue_lock);
1044 	}
1045 	if (filp->f_mode & FMODE_WRITE)
1046 		atomic_inc(&cd->writers);
1047 	filp->private_data = rp;
1048 	return 0;
1049 }
1050 
1051 static int cache_release(struct inode *inode, struct file *filp,
1052 			 struct cache_detail *cd)
1053 {
1054 	struct cache_reader *rp = filp->private_data;
1055 
1056 	if (rp) {
1057 		spin_lock(&queue_lock);
1058 		if (rp->offset) {
1059 			struct cache_queue *cq;
1060 			for (cq= &rp->q; &cq->list != &cd->queue;
1061 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1062 				if (!cq->reader) {
1063 					container_of(cq, struct cache_request, q)
1064 						->readers--;
1065 					break;
1066 				}
1067 			rp->offset = 0;
1068 		}
1069 		list_del(&rp->q.list);
1070 		spin_unlock(&queue_lock);
1071 
1072 		filp->private_data = NULL;
1073 		kfree(rp);
1074 
1075 	}
1076 	if (filp->f_mode & FMODE_WRITE) {
1077 		atomic_dec(&cd->writers);
1078 		cd->last_close = seconds_since_boot();
1079 	}
1080 	module_put(cd->owner);
1081 	return 0;
1082 }
1083 
1084 
1085 
1086 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1087 {
1088 	struct cache_queue *cq, *tmp;
1089 	struct cache_request *cr;
1090 	struct list_head dequeued;
1091 
1092 	INIT_LIST_HEAD(&dequeued);
1093 	spin_lock(&queue_lock);
1094 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1095 		if (!cq->reader) {
1096 			cr = container_of(cq, struct cache_request, q);
1097 			if (cr->item != ch)
1098 				continue;
1099 			if (test_bit(CACHE_PENDING, &ch->flags))
1100 				/* Lost a race and it is pending again */
1101 				break;
1102 			if (cr->readers != 0)
1103 				continue;
1104 			list_move(&cr->q.list, &dequeued);
1105 		}
1106 	spin_unlock(&queue_lock);
1107 	while (!list_empty(&dequeued)) {
1108 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1109 		list_del(&cr->q.list);
1110 		cache_put(cr->item, detail);
1111 		kfree(cr->buf);
1112 		kfree(cr);
1113 	}
1114 }
1115 
1116 /*
1117  * Support routines for text-based upcalls.
1118  * Fields are separated by spaces.
1119  * Fields are either mangled to quote space tab newline slosh with slosh
1120  * or a hexified with a leading \x
1121  * Record is terminated with newline.
1122  *
1123  */
1124 
1125 void qword_add(char **bpp, int *lp, char *str)
1126 {
1127 	char *bp = *bpp;
1128 	int len = *lp;
1129 	int ret;
1130 
1131 	if (len < 0) return;
1132 
1133 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1134 	if (ret >= len) {
1135 		bp += len;
1136 		len = -1;
1137 	} else {
1138 		bp += ret;
1139 		len -= ret;
1140 		*bp++ = ' ';
1141 		len--;
1142 	}
1143 	*bpp = bp;
1144 	*lp = len;
1145 }
1146 EXPORT_SYMBOL_GPL(qword_add);
1147 
1148 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1149 {
1150 	char *bp = *bpp;
1151 	int len = *lp;
1152 
1153 	if (len < 0) return;
1154 
1155 	if (len > 2) {
1156 		*bp++ = '\\';
1157 		*bp++ = 'x';
1158 		len -= 2;
1159 		while (blen && len >= 2) {
1160 			bp = hex_byte_pack(bp, *buf++);
1161 			len -= 2;
1162 			blen--;
1163 		}
1164 	}
1165 	if (blen || len<1) len = -1;
1166 	else {
1167 		*bp++ = ' ';
1168 		len--;
1169 	}
1170 	*bpp = bp;
1171 	*lp = len;
1172 }
1173 EXPORT_SYMBOL_GPL(qword_addhex);
1174 
1175 static void warn_no_listener(struct cache_detail *detail)
1176 {
1177 	if (detail->last_warn != detail->last_close) {
1178 		detail->last_warn = detail->last_close;
1179 		if (detail->warn_no_listener)
1180 			detail->warn_no_listener(detail, detail->last_close != 0);
1181 	}
1182 }
1183 
1184 static bool cache_listeners_exist(struct cache_detail *detail)
1185 {
1186 	if (atomic_read(&detail->writers))
1187 		return true;
1188 	if (detail->last_close == 0)
1189 		/* This cache was never opened */
1190 		return false;
1191 	if (detail->last_close < seconds_since_boot() - 30)
1192 		/*
1193 		 * We allow for the possibility that someone might
1194 		 * restart a userspace daemon without restarting the
1195 		 * server; but after 30 seconds, we give up.
1196 		 */
1197 		 return false;
1198 	return true;
1199 }
1200 
1201 /*
1202  * register an upcall request to user-space and queue it up for read() by the
1203  * upcall daemon.
1204  *
1205  * Each request is at most one page long.
1206  */
1207 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1208 {
1209 	char *buf;
1210 	struct cache_request *crq;
1211 	int ret = 0;
1212 
1213 	if (test_bit(CACHE_CLEANED, &h->flags))
1214 		/* Too late to make an upcall */
1215 		return -EAGAIN;
1216 
1217 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1218 	if (!buf)
1219 		return -EAGAIN;
1220 
1221 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1222 	if (!crq) {
1223 		kfree(buf);
1224 		return -EAGAIN;
1225 	}
1226 
1227 	crq->q.reader = 0;
1228 	crq->buf = buf;
1229 	crq->len = 0;
1230 	crq->readers = 0;
1231 	spin_lock(&queue_lock);
1232 	if (test_bit(CACHE_PENDING, &h->flags)) {
1233 		crq->item = cache_get(h);
1234 		list_add_tail(&crq->q.list, &detail->queue);
1235 		trace_cache_entry_upcall(detail, h);
1236 	} else
1237 		/* Lost a race, no longer PENDING, so don't enqueue */
1238 		ret = -EAGAIN;
1239 	spin_unlock(&queue_lock);
1240 	wake_up(&queue_wait);
1241 	if (ret == -EAGAIN) {
1242 		kfree(buf);
1243 		kfree(crq);
1244 	}
1245 	return ret;
1246 }
1247 
1248 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1249 {
1250 	if (test_and_set_bit(CACHE_PENDING, &h->flags))
1251 		return 0;
1252 	return cache_pipe_upcall(detail, h);
1253 }
1254 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1255 
1256 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1257 				     struct cache_head *h)
1258 {
1259 	if (!cache_listeners_exist(detail)) {
1260 		warn_no_listener(detail);
1261 		trace_cache_entry_no_listener(detail, h);
1262 		return -EINVAL;
1263 	}
1264 	return sunrpc_cache_pipe_upcall(detail, h);
1265 }
1266 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1267 
1268 /*
1269  * parse a message from user-space and pass it
1270  * to an appropriate cache
1271  * Messages are, like requests, separated into fields by
1272  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1273  *
1274  * Message is
1275  *   reply cachename expiry key ... content....
1276  *
1277  * key and content are both parsed by cache
1278  */
1279 
1280 int qword_get(char **bpp, char *dest, int bufsize)
1281 {
1282 	/* return bytes copied, or -1 on error */
1283 	char *bp = *bpp;
1284 	int len = 0;
1285 
1286 	while (*bp == ' ') bp++;
1287 
1288 	if (bp[0] == '\\' && bp[1] == 'x') {
1289 		/* HEX STRING */
1290 		bp += 2;
1291 		while (len < bufsize - 1) {
1292 			int h, l;
1293 
1294 			h = hex_to_bin(bp[0]);
1295 			if (h < 0)
1296 				break;
1297 
1298 			l = hex_to_bin(bp[1]);
1299 			if (l < 0)
1300 				break;
1301 
1302 			*dest++ = (h << 4) | l;
1303 			bp += 2;
1304 			len++;
1305 		}
1306 	} else {
1307 		/* text with \nnn octal quoting */
1308 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1309 			if (*bp == '\\' &&
1310 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1311 			    isodigit(bp[2]) &&
1312 			    isodigit(bp[3])) {
1313 				int byte = (*++bp -'0');
1314 				bp++;
1315 				byte = (byte << 3) | (*bp++ - '0');
1316 				byte = (byte << 3) | (*bp++ - '0');
1317 				*dest++ = byte;
1318 				len++;
1319 			} else {
1320 				*dest++ = *bp++;
1321 				len++;
1322 			}
1323 		}
1324 	}
1325 
1326 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1327 		return -1;
1328 	while (*bp == ' ') bp++;
1329 	*bpp = bp;
1330 	*dest = '\0';
1331 	return len;
1332 }
1333 EXPORT_SYMBOL_GPL(qword_get);
1334 
1335 
1336 /*
1337  * support /proc/net/rpc/$CACHENAME/content
1338  * as a seqfile.
1339  * We call ->cache_show passing NULL for the item to
1340  * get a header, then pass each real item in the cache
1341  */
1342 
1343 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1344 {
1345 	loff_t n = *pos;
1346 	unsigned int hash, entry;
1347 	struct cache_head *ch;
1348 	struct cache_detail *cd = m->private;
1349 
1350 	if (!n--)
1351 		return SEQ_START_TOKEN;
1352 	hash = n >> 32;
1353 	entry = n & ((1LL<<32) - 1);
1354 
1355 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1356 		if (!entry--)
1357 			return ch;
1358 	n &= ~((1LL<<32) - 1);
1359 	do {
1360 		hash++;
1361 		n += 1LL<<32;
1362 	} while(hash < cd->hash_size &&
1363 		hlist_empty(&cd->hash_table[hash]));
1364 	if (hash >= cd->hash_size)
1365 		return NULL;
1366 	*pos = n+1;
1367 	return hlist_entry_safe(rcu_dereference_raw(
1368 				hlist_first_rcu(&cd->hash_table[hash])),
1369 				struct cache_head, cache_list);
1370 }
1371 
1372 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1373 {
1374 	struct cache_head *ch = p;
1375 	int hash = (*pos >> 32);
1376 	struct cache_detail *cd = m->private;
1377 
1378 	if (p == SEQ_START_TOKEN)
1379 		hash = 0;
1380 	else if (ch->cache_list.next == NULL) {
1381 		hash++;
1382 		*pos += 1LL<<32;
1383 	} else {
1384 		++*pos;
1385 		return hlist_entry_safe(rcu_dereference_raw(
1386 					hlist_next_rcu(&ch->cache_list)),
1387 					struct cache_head, cache_list);
1388 	}
1389 	*pos &= ~((1LL<<32) - 1);
1390 	while (hash < cd->hash_size &&
1391 	       hlist_empty(&cd->hash_table[hash])) {
1392 		hash++;
1393 		*pos += 1LL<<32;
1394 	}
1395 	if (hash >= cd->hash_size)
1396 		return NULL;
1397 	++*pos;
1398 	return hlist_entry_safe(rcu_dereference_raw(
1399 				hlist_first_rcu(&cd->hash_table[hash])),
1400 				struct cache_head, cache_list);
1401 }
1402 
1403 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1404 	__acquires(RCU)
1405 {
1406 	rcu_read_lock();
1407 	return __cache_seq_start(m, pos);
1408 }
1409 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1410 
1411 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1412 {
1413 	return cache_seq_next(file, p, pos);
1414 }
1415 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1416 
1417 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1418 	__releases(RCU)
1419 {
1420 	rcu_read_unlock();
1421 }
1422 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1423 
1424 static int c_show(struct seq_file *m, void *p)
1425 {
1426 	struct cache_head *cp = p;
1427 	struct cache_detail *cd = m->private;
1428 
1429 	if (p == SEQ_START_TOKEN)
1430 		return cd->cache_show(m, cd, NULL);
1431 
1432 	ifdebug(CACHE)
1433 		seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1434 			   convert_to_wallclock(cp->expiry_time),
1435 			   kref_read(&cp->ref), cp->flags);
1436 	cache_get(cp);
1437 	if (cache_check(cd, cp, NULL))
1438 		/* cache_check does a cache_put on failure */
1439 		seq_printf(m, "# ");
1440 	else {
1441 		if (cache_is_expired(cd, cp))
1442 			seq_printf(m, "# ");
1443 		cache_put(cp, cd);
1444 	}
1445 
1446 	return cd->cache_show(m, cd, cp);
1447 }
1448 
1449 static const struct seq_operations cache_content_op = {
1450 	.start	= cache_seq_start_rcu,
1451 	.next	= cache_seq_next_rcu,
1452 	.stop	= cache_seq_stop_rcu,
1453 	.show	= c_show,
1454 };
1455 
1456 static int content_open(struct inode *inode, struct file *file,
1457 			struct cache_detail *cd)
1458 {
1459 	struct seq_file *seq;
1460 	int err;
1461 
1462 	if (!cd || !try_module_get(cd->owner))
1463 		return -EACCES;
1464 
1465 	err = seq_open(file, &cache_content_op);
1466 	if (err) {
1467 		module_put(cd->owner);
1468 		return err;
1469 	}
1470 
1471 	seq = file->private_data;
1472 	seq->private = cd;
1473 	return 0;
1474 }
1475 
1476 static int content_release(struct inode *inode, struct file *file,
1477 		struct cache_detail *cd)
1478 {
1479 	int ret = seq_release(inode, file);
1480 	module_put(cd->owner);
1481 	return ret;
1482 }
1483 
1484 static int open_flush(struct inode *inode, struct file *file,
1485 			struct cache_detail *cd)
1486 {
1487 	if (!cd || !try_module_get(cd->owner))
1488 		return -EACCES;
1489 	return nonseekable_open(inode, file);
1490 }
1491 
1492 static int release_flush(struct inode *inode, struct file *file,
1493 			struct cache_detail *cd)
1494 {
1495 	module_put(cd->owner);
1496 	return 0;
1497 }
1498 
1499 static ssize_t read_flush(struct file *file, char __user *buf,
1500 			  size_t count, loff_t *ppos,
1501 			  struct cache_detail *cd)
1502 {
1503 	char tbuf[22];
1504 	size_t len;
1505 
1506 	len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1507 			convert_to_wallclock(cd->flush_time));
1508 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1509 }
1510 
1511 static ssize_t write_flush(struct file *file, const char __user *buf,
1512 			   size_t count, loff_t *ppos,
1513 			   struct cache_detail *cd)
1514 {
1515 	char tbuf[20];
1516 	char *ep;
1517 	time64_t now;
1518 
1519 	if (*ppos || count > sizeof(tbuf)-1)
1520 		return -EINVAL;
1521 	if (copy_from_user(tbuf, buf, count))
1522 		return -EFAULT;
1523 	tbuf[count] = 0;
1524 	simple_strtoul(tbuf, &ep, 0);
1525 	if (*ep && *ep != '\n')
1526 		return -EINVAL;
1527 	/* Note that while we check that 'buf' holds a valid number,
1528 	 * we always ignore the value and just flush everything.
1529 	 * Making use of the number leads to races.
1530 	 */
1531 
1532 	now = seconds_since_boot();
1533 	/* Always flush everything, so behave like cache_purge()
1534 	 * Do this by advancing flush_time to the current time,
1535 	 * or by one second if it has already reached the current time.
1536 	 * Newly added cache entries will always have ->last_refresh greater
1537 	 * that ->flush_time, so they don't get flushed prematurely.
1538 	 */
1539 
1540 	if (cd->flush_time >= now)
1541 		now = cd->flush_time + 1;
1542 
1543 	cd->flush_time = now;
1544 	cd->nextcheck = now;
1545 	cache_flush();
1546 
1547 	if (cd->flush)
1548 		cd->flush();
1549 
1550 	*ppos += count;
1551 	return count;
1552 }
1553 
1554 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1555 				 size_t count, loff_t *ppos)
1556 {
1557 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1558 
1559 	return cache_read(filp, buf, count, ppos, cd);
1560 }
1561 
1562 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1563 				  size_t count, loff_t *ppos)
1564 {
1565 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1566 
1567 	return cache_write(filp, buf, count, ppos, cd);
1568 }
1569 
1570 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1571 {
1572 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1573 
1574 	return cache_poll(filp, wait, cd);
1575 }
1576 
1577 static long cache_ioctl_procfs(struct file *filp,
1578 			       unsigned int cmd, unsigned long arg)
1579 {
1580 	struct inode *inode = file_inode(filp);
1581 	struct cache_detail *cd = PDE_DATA(inode);
1582 
1583 	return cache_ioctl(inode, filp, cmd, arg, cd);
1584 }
1585 
1586 static int cache_open_procfs(struct inode *inode, struct file *filp)
1587 {
1588 	struct cache_detail *cd = PDE_DATA(inode);
1589 
1590 	return cache_open(inode, filp, cd);
1591 }
1592 
1593 static int cache_release_procfs(struct inode *inode, struct file *filp)
1594 {
1595 	struct cache_detail *cd = PDE_DATA(inode);
1596 
1597 	return cache_release(inode, filp, cd);
1598 }
1599 
1600 static const struct proc_ops cache_channel_proc_ops = {
1601 	.proc_lseek	= no_llseek,
1602 	.proc_read	= cache_read_procfs,
1603 	.proc_write	= cache_write_procfs,
1604 	.proc_poll	= cache_poll_procfs,
1605 	.proc_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1606 	.proc_open	= cache_open_procfs,
1607 	.proc_release	= cache_release_procfs,
1608 };
1609 
1610 static int content_open_procfs(struct inode *inode, struct file *filp)
1611 {
1612 	struct cache_detail *cd = PDE_DATA(inode);
1613 
1614 	return content_open(inode, filp, cd);
1615 }
1616 
1617 static int content_release_procfs(struct inode *inode, struct file *filp)
1618 {
1619 	struct cache_detail *cd = PDE_DATA(inode);
1620 
1621 	return content_release(inode, filp, cd);
1622 }
1623 
1624 static const struct proc_ops content_proc_ops = {
1625 	.proc_open	= content_open_procfs,
1626 	.proc_read	= seq_read,
1627 	.proc_lseek	= seq_lseek,
1628 	.proc_release	= content_release_procfs,
1629 };
1630 
1631 static int open_flush_procfs(struct inode *inode, struct file *filp)
1632 {
1633 	struct cache_detail *cd = PDE_DATA(inode);
1634 
1635 	return open_flush(inode, filp, cd);
1636 }
1637 
1638 static int release_flush_procfs(struct inode *inode, struct file *filp)
1639 {
1640 	struct cache_detail *cd = PDE_DATA(inode);
1641 
1642 	return release_flush(inode, filp, cd);
1643 }
1644 
1645 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1646 			    size_t count, loff_t *ppos)
1647 {
1648 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1649 
1650 	return read_flush(filp, buf, count, ppos, cd);
1651 }
1652 
1653 static ssize_t write_flush_procfs(struct file *filp,
1654 				  const char __user *buf,
1655 				  size_t count, loff_t *ppos)
1656 {
1657 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1658 
1659 	return write_flush(filp, buf, count, ppos, cd);
1660 }
1661 
1662 static const struct proc_ops cache_flush_proc_ops = {
1663 	.proc_open	= open_flush_procfs,
1664 	.proc_read	= read_flush_procfs,
1665 	.proc_write	= write_flush_procfs,
1666 	.proc_release	= release_flush_procfs,
1667 	.proc_lseek	= no_llseek,
1668 };
1669 
1670 static void remove_cache_proc_entries(struct cache_detail *cd)
1671 {
1672 	if (cd->procfs) {
1673 		proc_remove(cd->procfs);
1674 		cd->procfs = NULL;
1675 	}
1676 }
1677 
1678 #ifdef CONFIG_PROC_FS
1679 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1680 {
1681 	struct proc_dir_entry *p;
1682 	struct sunrpc_net *sn;
1683 
1684 	sn = net_generic(net, sunrpc_net_id);
1685 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1686 	if (cd->procfs == NULL)
1687 		goto out_nomem;
1688 
1689 	p = proc_create_data("flush", S_IFREG | 0600,
1690 			     cd->procfs, &cache_flush_proc_ops, cd);
1691 	if (p == NULL)
1692 		goto out_nomem;
1693 
1694 	if (cd->cache_request || cd->cache_parse) {
1695 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1696 				     &cache_channel_proc_ops, cd);
1697 		if (p == NULL)
1698 			goto out_nomem;
1699 	}
1700 	if (cd->cache_show) {
1701 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1702 				     &content_proc_ops, cd);
1703 		if (p == NULL)
1704 			goto out_nomem;
1705 	}
1706 	return 0;
1707 out_nomem:
1708 	remove_cache_proc_entries(cd);
1709 	return -ENOMEM;
1710 }
1711 #else /* CONFIG_PROC_FS */
1712 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1713 {
1714 	return 0;
1715 }
1716 #endif
1717 
1718 void __init cache_initialize(void)
1719 {
1720 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1721 }
1722 
1723 int cache_register_net(struct cache_detail *cd, struct net *net)
1724 {
1725 	int ret;
1726 
1727 	sunrpc_init_cache_detail(cd);
1728 	ret = create_cache_proc_entries(cd, net);
1729 	if (ret)
1730 		sunrpc_destroy_cache_detail(cd);
1731 	return ret;
1732 }
1733 EXPORT_SYMBOL_GPL(cache_register_net);
1734 
1735 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1736 {
1737 	remove_cache_proc_entries(cd);
1738 	sunrpc_destroy_cache_detail(cd);
1739 }
1740 EXPORT_SYMBOL_GPL(cache_unregister_net);
1741 
1742 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1743 {
1744 	struct cache_detail *cd;
1745 	int i;
1746 
1747 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1748 	if (cd == NULL)
1749 		return ERR_PTR(-ENOMEM);
1750 
1751 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1752 				 GFP_KERNEL);
1753 	if (cd->hash_table == NULL) {
1754 		kfree(cd);
1755 		return ERR_PTR(-ENOMEM);
1756 	}
1757 
1758 	for (i = 0; i < cd->hash_size; i++)
1759 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1760 	cd->net = net;
1761 	return cd;
1762 }
1763 EXPORT_SYMBOL_GPL(cache_create_net);
1764 
1765 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1766 {
1767 	kfree(cd->hash_table);
1768 	kfree(cd);
1769 }
1770 EXPORT_SYMBOL_GPL(cache_destroy_net);
1771 
1772 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1773 				 size_t count, loff_t *ppos)
1774 {
1775 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1776 
1777 	return cache_read(filp, buf, count, ppos, cd);
1778 }
1779 
1780 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1781 				  size_t count, loff_t *ppos)
1782 {
1783 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1784 
1785 	return cache_write(filp, buf, count, ppos, cd);
1786 }
1787 
1788 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1789 {
1790 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1791 
1792 	return cache_poll(filp, wait, cd);
1793 }
1794 
1795 static long cache_ioctl_pipefs(struct file *filp,
1796 			      unsigned int cmd, unsigned long arg)
1797 {
1798 	struct inode *inode = file_inode(filp);
1799 	struct cache_detail *cd = RPC_I(inode)->private;
1800 
1801 	return cache_ioctl(inode, filp, cmd, arg, cd);
1802 }
1803 
1804 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1805 {
1806 	struct cache_detail *cd = RPC_I(inode)->private;
1807 
1808 	return cache_open(inode, filp, cd);
1809 }
1810 
1811 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1812 {
1813 	struct cache_detail *cd = RPC_I(inode)->private;
1814 
1815 	return cache_release(inode, filp, cd);
1816 }
1817 
1818 const struct file_operations cache_file_operations_pipefs = {
1819 	.owner		= THIS_MODULE,
1820 	.llseek		= no_llseek,
1821 	.read		= cache_read_pipefs,
1822 	.write		= cache_write_pipefs,
1823 	.poll		= cache_poll_pipefs,
1824 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1825 	.open		= cache_open_pipefs,
1826 	.release	= cache_release_pipefs,
1827 };
1828 
1829 static int content_open_pipefs(struct inode *inode, struct file *filp)
1830 {
1831 	struct cache_detail *cd = RPC_I(inode)->private;
1832 
1833 	return content_open(inode, filp, cd);
1834 }
1835 
1836 static int content_release_pipefs(struct inode *inode, struct file *filp)
1837 {
1838 	struct cache_detail *cd = RPC_I(inode)->private;
1839 
1840 	return content_release(inode, filp, cd);
1841 }
1842 
1843 const struct file_operations content_file_operations_pipefs = {
1844 	.open		= content_open_pipefs,
1845 	.read		= seq_read,
1846 	.llseek		= seq_lseek,
1847 	.release	= content_release_pipefs,
1848 };
1849 
1850 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1851 {
1852 	struct cache_detail *cd = RPC_I(inode)->private;
1853 
1854 	return open_flush(inode, filp, cd);
1855 }
1856 
1857 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1858 {
1859 	struct cache_detail *cd = RPC_I(inode)->private;
1860 
1861 	return release_flush(inode, filp, cd);
1862 }
1863 
1864 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1865 			    size_t count, loff_t *ppos)
1866 {
1867 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1868 
1869 	return read_flush(filp, buf, count, ppos, cd);
1870 }
1871 
1872 static ssize_t write_flush_pipefs(struct file *filp,
1873 				  const char __user *buf,
1874 				  size_t count, loff_t *ppos)
1875 {
1876 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1877 
1878 	return write_flush(filp, buf, count, ppos, cd);
1879 }
1880 
1881 const struct file_operations cache_flush_operations_pipefs = {
1882 	.open		= open_flush_pipefs,
1883 	.read		= read_flush_pipefs,
1884 	.write		= write_flush_pipefs,
1885 	.release	= release_flush_pipefs,
1886 	.llseek		= no_llseek,
1887 };
1888 
1889 int sunrpc_cache_register_pipefs(struct dentry *parent,
1890 				 const char *name, umode_t umode,
1891 				 struct cache_detail *cd)
1892 {
1893 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1894 	if (IS_ERR(dir))
1895 		return PTR_ERR(dir);
1896 	cd->pipefs = dir;
1897 	return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1900 
1901 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1902 {
1903 	if (cd->pipefs) {
1904 		rpc_remove_cache_dir(cd->pipefs);
1905 		cd->pipefs = NULL;
1906 	}
1907 }
1908 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1909 
1910 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1911 {
1912 	spin_lock(&cd->hash_lock);
1913 	if (!hlist_unhashed(&h->cache_list)){
1914 		sunrpc_begin_cache_remove_entry(h, cd);
1915 		spin_unlock(&cd->hash_lock);
1916 		sunrpc_end_cache_remove_entry(h, cd);
1917 	} else
1918 		spin_unlock(&cd->hash_lock);
1919 }
1920 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1921