xref: /openbmc/linux/net/sunrpc/cache.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include "netns.h"
36 
37 #define	 RPCDBG_FACILITY RPCDBG_CACHE
38 
39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 static bool cache_listeners_exist(struct cache_detail *detail);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time64_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static void cache_fresh_unlocked(struct cache_head *head,
57 				struct cache_detail *detail);
58 
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 						struct cache_head *key,
61 						int hash)
62 {
63 	struct hlist_head *head = &detail->hash_table[hash];
64 	struct cache_head *tmp;
65 
66 	rcu_read_lock();
67 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 		if (detail->match(tmp, key)) {
69 			if (cache_is_expired(detail, tmp))
70 				continue;
71 			tmp = cache_get_rcu(tmp);
72 			rcu_read_unlock();
73 			return tmp;
74 		}
75 	}
76 	rcu_read_unlock();
77 	return NULL;
78 }
79 
80 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
81 					    struct cache_detail *cd)
82 {
83 	/* Must be called under cd->hash_lock */
84 	hlist_del_init_rcu(&ch->cache_list);
85 	set_bit(CACHE_CLEANED, &ch->flags);
86 	cd->entries --;
87 }
88 
89 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
90 					  struct cache_detail *cd)
91 {
92 	cache_fresh_unlocked(ch, cd);
93 	cache_put(ch, cd);
94 }
95 
96 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
97 						 struct cache_head *key,
98 						 int hash)
99 {
100 	struct cache_head *new, *tmp, *freeme = NULL;
101 	struct hlist_head *head = &detail->hash_table[hash];
102 
103 	new = detail->alloc();
104 	if (!new)
105 		return NULL;
106 	/* must fully initialise 'new', else
107 	 * we might get lose if we need to
108 	 * cache_put it soon.
109 	 */
110 	cache_init(new, detail);
111 	detail->init(new, key);
112 
113 	spin_lock(&detail->hash_lock);
114 
115 	/* check if entry appeared while we slept */
116 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
117 		if (detail->match(tmp, key)) {
118 			if (cache_is_expired(detail, tmp)) {
119 				sunrpc_begin_cache_remove_entry(tmp, detail);
120 				freeme = tmp;
121 				break;
122 			}
123 			cache_get(tmp);
124 			spin_unlock(&detail->hash_lock);
125 			cache_put(new, detail);
126 			return tmp;
127 		}
128 	}
129 
130 	hlist_add_head_rcu(&new->cache_list, head);
131 	detail->entries++;
132 	cache_get(new);
133 	spin_unlock(&detail->hash_lock);
134 
135 	if (freeme)
136 		sunrpc_end_cache_remove_entry(freeme, detail);
137 	return new;
138 }
139 
140 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
141 					   struct cache_head *key, int hash)
142 {
143 	struct cache_head *ret;
144 
145 	ret = sunrpc_cache_find_rcu(detail, key, hash);
146 	if (ret)
147 		return ret;
148 	/* Didn't find anything, insert an empty entry */
149 	return sunrpc_cache_add_entry(detail, key, hash);
150 }
151 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
152 
153 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
154 
155 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
156 			       struct cache_detail *detail)
157 {
158 	time64_t now = seconds_since_boot();
159 	if (now <= detail->flush_time)
160 		/* ensure it isn't immediately treated as expired */
161 		now = detail->flush_time + 1;
162 	head->expiry_time = expiry;
163 	head->last_refresh = now;
164 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
165 	set_bit(CACHE_VALID, &head->flags);
166 }
167 
168 static void cache_fresh_unlocked(struct cache_head *head,
169 				 struct cache_detail *detail)
170 {
171 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
172 		cache_revisit_request(head);
173 		cache_dequeue(detail, head);
174 	}
175 }
176 
177 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
178 				       struct cache_head *new, struct cache_head *old, int hash)
179 {
180 	/* The 'old' entry is to be replaced by 'new'.
181 	 * If 'old' is not VALID, we update it directly,
182 	 * otherwise we need to replace it
183 	 */
184 	struct cache_head *tmp;
185 
186 	if (!test_bit(CACHE_VALID, &old->flags)) {
187 		spin_lock(&detail->hash_lock);
188 		if (!test_bit(CACHE_VALID, &old->flags)) {
189 			if (test_bit(CACHE_NEGATIVE, &new->flags))
190 				set_bit(CACHE_NEGATIVE, &old->flags);
191 			else
192 				detail->update(old, new);
193 			cache_fresh_locked(old, new->expiry_time, detail);
194 			spin_unlock(&detail->hash_lock);
195 			cache_fresh_unlocked(old, detail);
196 			return old;
197 		}
198 		spin_unlock(&detail->hash_lock);
199 	}
200 	/* We need to insert a new entry */
201 	tmp = detail->alloc();
202 	if (!tmp) {
203 		cache_put(old, detail);
204 		return NULL;
205 	}
206 	cache_init(tmp, detail);
207 	detail->init(tmp, old);
208 
209 	spin_lock(&detail->hash_lock);
210 	if (test_bit(CACHE_NEGATIVE, &new->flags))
211 		set_bit(CACHE_NEGATIVE, &tmp->flags);
212 	else
213 		detail->update(tmp, new);
214 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
215 	detail->entries++;
216 	cache_get(tmp);
217 	cache_fresh_locked(tmp, new->expiry_time, detail);
218 	cache_fresh_locked(old, 0, detail);
219 	spin_unlock(&detail->hash_lock);
220 	cache_fresh_unlocked(tmp, detail);
221 	cache_fresh_unlocked(old, detail);
222 	cache_put(old, detail);
223 	return tmp;
224 }
225 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
226 
227 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
228 {
229 	if (cd->cache_upcall)
230 		return cd->cache_upcall(cd, h);
231 	return sunrpc_cache_pipe_upcall(cd, h);
232 }
233 
234 static inline int cache_is_valid(struct cache_head *h)
235 {
236 	if (!test_bit(CACHE_VALID, &h->flags))
237 		return -EAGAIN;
238 	else {
239 		/* entry is valid */
240 		if (test_bit(CACHE_NEGATIVE, &h->flags))
241 			return -ENOENT;
242 		else {
243 			/*
244 			 * In combination with write barrier in
245 			 * sunrpc_cache_update, ensures that anyone
246 			 * using the cache entry after this sees the
247 			 * updated contents:
248 			 */
249 			smp_rmb();
250 			return 0;
251 		}
252 	}
253 }
254 
255 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
256 {
257 	int rv;
258 
259 	spin_lock(&detail->hash_lock);
260 	rv = cache_is_valid(h);
261 	if (rv == -EAGAIN) {
262 		set_bit(CACHE_NEGATIVE, &h->flags);
263 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
264 				   detail);
265 		rv = -ENOENT;
266 	}
267 	spin_unlock(&detail->hash_lock);
268 	cache_fresh_unlocked(h, detail);
269 	return rv;
270 }
271 
272 /*
273  * This is the generic cache management routine for all
274  * the authentication caches.
275  * It checks the currency of a cache item and will (later)
276  * initiate an upcall to fill it if needed.
277  *
278  *
279  * Returns 0 if the cache_head can be used, or cache_puts it and returns
280  * -EAGAIN if upcall is pending and request has been queued
281  * -ETIMEDOUT if upcall failed or request could not be queue or
282  *           upcall completed but item is still invalid (implying that
283  *           the cache item has been replaced with a newer one).
284  * -ENOENT if cache entry was negative
285  */
286 int cache_check(struct cache_detail *detail,
287 		    struct cache_head *h, struct cache_req *rqstp)
288 {
289 	int rv;
290 	time64_t refresh_age, age;
291 
292 	/* First decide return status as best we can */
293 	rv = cache_is_valid(h);
294 
295 	/* now see if we want to start an upcall */
296 	refresh_age = (h->expiry_time - h->last_refresh);
297 	age = seconds_since_boot() - h->last_refresh;
298 
299 	if (rqstp == NULL) {
300 		if (rv == -EAGAIN)
301 			rv = -ENOENT;
302 	} else if (rv == -EAGAIN ||
303 		   (h->expiry_time != 0 && age > refresh_age/2)) {
304 		dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
305 				refresh_age, age);
306 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
307 			switch (cache_make_upcall(detail, h)) {
308 			case -EINVAL:
309 				rv = try_to_negate_entry(detail, h);
310 				break;
311 			case -EAGAIN:
312 				cache_fresh_unlocked(h, detail);
313 				break;
314 			}
315 		} else if (!cache_listeners_exist(detail))
316 			rv = try_to_negate_entry(detail, h);
317 	}
318 
319 	if (rv == -EAGAIN) {
320 		if (!cache_defer_req(rqstp, h)) {
321 			/*
322 			 * Request was not deferred; handle it as best
323 			 * we can ourselves:
324 			 */
325 			rv = cache_is_valid(h);
326 			if (rv == -EAGAIN)
327 				rv = -ETIMEDOUT;
328 		}
329 	}
330 	if (rv)
331 		cache_put(h, detail);
332 	return rv;
333 }
334 EXPORT_SYMBOL_GPL(cache_check);
335 
336 /*
337  * caches need to be periodically cleaned.
338  * For this we maintain a list of cache_detail and
339  * a current pointer into that list and into the table
340  * for that entry.
341  *
342  * Each time cache_clean is called it finds the next non-empty entry
343  * in the current table and walks the list in that entry
344  * looking for entries that can be removed.
345  *
346  * An entry gets removed if:
347  * - The expiry is before current time
348  * - The last_refresh time is before the flush_time for that cache
349  *
350  * later we might drop old entries with non-NEVER expiry if that table
351  * is getting 'full' for some definition of 'full'
352  *
353  * The question of "how often to scan a table" is an interesting one
354  * and is answered in part by the use of the "nextcheck" field in the
355  * cache_detail.
356  * When a scan of a table begins, the nextcheck field is set to a time
357  * that is well into the future.
358  * While scanning, if an expiry time is found that is earlier than the
359  * current nextcheck time, nextcheck is set to that expiry time.
360  * If the flush_time is ever set to a time earlier than the nextcheck
361  * time, the nextcheck time is then set to that flush_time.
362  *
363  * A table is then only scanned if the current time is at least
364  * the nextcheck time.
365  *
366  */
367 
368 static LIST_HEAD(cache_list);
369 static DEFINE_SPINLOCK(cache_list_lock);
370 static struct cache_detail *current_detail;
371 static int current_index;
372 
373 static void do_cache_clean(struct work_struct *work);
374 static struct delayed_work cache_cleaner;
375 
376 void sunrpc_init_cache_detail(struct cache_detail *cd)
377 {
378 	spin_lock_init(&cd->hash_lock);
379 	INIT_LIST_HEAD(&cd->queue);
380 	spin_lock(&cache_list_lock);
381 	cd->nextcheck = 0;
382 	cd->entries = 0;
383 	atomic_set(&cd->writers, 0);
384 	cd->last_close = 0;
385 	cd->last_warn = -1;
386 	list_add(&cd->others, &cache_list);
387 	spin_unlock(&cache_list_lock);
388 
389 	/* start the cleaning process */
390 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
391 }
392 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
393 
394 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
395 {
396 	cache_purge(cd);
397 	spin_lock(&cache_list_lock);
398 	spin_lock(&cd->hash_lock);
399 	if (current_detail == cd)
400 		current_detail = NULL;
401 	list_del_init(&cd->others);
402 	spin_unlock(&cd->hash_lock);
403 	spin_unlock(&cache_list_lock);
404 	if (list_empty(&cache_list)) {
405 		/* module must be being unloaded so its safe to kill the worker */
406 		cancel_delayed_work_sync(&cache_cleaner);
407 	}
408 }
409 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
410 
411 /* clean cache tries to find something to clean
412  * and cleans it.
413  * It returns 1 if it cleaned something,
414  *            0 if it didn't find anything this time
415  *           -1 if it fell off the end of the list.
416  */
417 static int cache_clean(void)
418 {
419 	int rv = 0;
420 	struct list_head *next;
421 
422 	spin_lock(&cache_list_lock);
423 
424 	/* find a suitable table if we don't already have one */
425 	while (current_detail == NULL ||
426 	    current_index >= current_detail->hash_size) {
427 		if (current_detail)
428 			next = current_detail->others.next;
429 		else
430 			next = cache_list.next;
431 		if (next == &cache_list) {
432 			current_detail = NULL;
433 			spin_unlock(&cache_list_lock);
434 			return -1;
435 		}
436 		current_detail = list_entry(next, struct cache_detail, others);
437 		if (current_detail->nextcheck > seconds_since_boot())
438 			current_index = current_detail->hash_size;
439 		else {
440 			current_index = 0;
441 			current_detail->nextcheck = seconds_since_boot()+30*60;
442 		}
443 	}
444 
445 	/* find a non-empty bucket in the table */
446 	while (current_detail &&
447 	       current_index < current_detail->hash_size &&
448 	       hlist_empty(&current_detail->hash_table[current_index]))
449 		current_index++;
450 
451 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
452 
453 	if (current_detail && current_index < current_detail->hash_size) {
454 		struct cache_head *ch = NULL;
455 		struct cache_detail *d;
456 		struct hlist_head *head;
457 		struct hlist_node *tmp;
458 
459 		spin_lock(&current_detail->hash_lock);
460 
461 		/* Ok, now to clean this strand */
462 
463 		head = &current_detail->hash_table[current_index];
464 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
465 			if (current_detail->nextcheck > ch->expiry_time)
466 				current_detail->nextcheck = ch->expiry_time+1;
467 			if (!cache_is_expired(current_detail, ch))
468 				continue;
469 
470 			sunrpc_begin_cache_remove_entry(ch, current_detail);
471 			rv = 1;
472 			break;
473 		}
474 
475 		spin_unlock(&current_detail->hash_lock);
476 		d = current_detail;
477 		if (!ch)
478 			current_index ++;
479 		spin_unlock(&cache_list_lock);
480 		if (ch)
481 			sunrpc_end_cache_remove_entry(ch, d);
482 	} else
483 		spin_unlock(&cache_list_lock);
484 
485 	return rv;
486 }
487 
488 /*
489  * We want to regularly clean the cache, so we need to schedule some work ...
490  */
491 static void do_cache_clean(struct work_struct *work)
492 {
493 	int delay = 5;
494 	if (cache_clean() == -1)
495 		delay = round_jiffies_relative(30*HZ);
496 
497 	if (list_empty(&cache_list))
498 		delay = 0;
499 
500 	if (delay)
501 		queue_delayed_work(system_power_efficient_wq,
502 				   &cache_cleaner, delay);
503 }
504 
505 
506 /*
507  * Clean all caches promptly.  This just calls cache_clean
508  * repeatedly until we are sure that every cache has had a chance to
509  * be fully cleaned
510  */
511 void cache_flush(void)
512 {
513 	while (cache_clean() != -1)
514 		cond_resched();
515 	while (cache_clean() != -1)
516 		cond_resched();
517 }
518 EXPORT_SYMBOL_GPL(cache_flush);
519 
520 void cache_purge(struct cache_detail *detail)
521 {
522 	struct cache_head *ch = NULL;
523 	struct hlist_head *head = NULL;
524 	struct hlist_node *tmp = NULL;
525 	int i = 0;
526 
527 	spin_lock(&detail->hash_lock);
528 	if (!detail->entries) {
529 		spin_unlock(&detail->hash_lock);
530 		return;
531 	}
532 
533 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
534 	for (i = 0; i < detail->hash_size; i++) {
535 		head = &detail->hash_table[i];
536 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
537 			sunrpc_begin_cache_remove_entry(ch, detail);
538 			spin_unlock(&detail->hash_lock);
539 			sunrpc_end_cache_remove_entry(ch, detail);
540 			spin_lock(&detail->hash_lock);
541 		}
542 	}
543 	spin_unlock(&detail->hash_lock);
544 }
545 EXPORT_SYMBOL_GPL(cache_purge);
546 
547 
548 /*
549  * Deferral and Revisiting of Requests.
550  *
551  * If a cache lookup finds a pending entry, we
552  * need to defer the request and revisit it later.
553  * All deferred requests are stored in a hash table,
554  * indexed by "struct cache_head *".
555  * As it may be wasteful to store a whole request
556  * structure, we allow the request to provide a
557  * deferred form, which must contain a
558  * 'struct cache_deferred_req'
559  * This cache_deferred_req contains a method to allow
560  * it to be revisited when cache info is available
561  */
562 
563 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
564 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
565 
566 #define	DFR_MAX	300	/* ??? */
567 
568 static DEFINE_SPINLOCK(cache_defer_lock);
569 static LIST_HEAD(cache_defer_list);
570 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
571 static int cache_defer_cnt;
572 
573 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
574 {
575 	hlist_del_init(&dreq->hash);
576 	if (!list_empty(&dreq->recent)) {
577 		list_del_init(&dreq->recent);
578 		cache_defer_cnt--;
579 	}
580 }
581 
582 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
583 {
584 	int hash = DFR_HASH(item);
585 
586 	INIT_LIST_HEAD(&dreq->recent);
587 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
588 }
589 
590 static void setup_deferral(struct cache_deferred_req *dreq,
591 			   struct cache_head *item,
592 			   int count_me)
593 {
594 
595 	dreq->item = item;
596 
597 	spin_lock(&cache_defer_lock);
598 
599 	__hash_deferred_req(dreq, item);
600 
601 	if (count_me) {
602 		cache_defer_cnt++;
603 		list_add(&dreq->recent, &cache_defer_list);
604 	}
605 
606 	spin_unlock(&cache_defer_lock);
607 
608 }
609 
610 struct thread_deferred_req {
611 	struct cache_deferred_req handle;
612 	struct completion completion;
613 };
614 
615 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
616 {
617 	struct thread_deferred_req *dr =
618 		container_of(dreq, struct thread_deferred_req, handle);
619 	complete(&dr->completion);
620 }
621 
622 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
623 {
624 	struct thread_deferred_req sleeper;
625 	struct cache_deferred_req *dreq = &sleeper.handle;
626 
627 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
628 	dreq->revisit = cache_restart_thread;
629 
630 	setup_deferral(dreq, item, 0);
631 
632 	if (!test_bit(CACHE_PENDING, &item->flags) ||
633 	    wait_for_completion_interruptible_timeout(
634 		    &sleeper.completion, req->thread_wait) <= 0) {
635 		/* The completion wasn't completed, so we need
636 		 * to clean up
637 		 */
638 		spin_lock(&cache_defer_lock);
639 		if (!hlist_unhashed(&sleeper.handle.hash)) {
640 			__unhash_deferred_req(&sleeper.handle);
641 			spin_unlock(&cache_defer_lock);
642 		} else {
643 			/* cache_revisit_request already removed
644 			 * this from the hash table, but hasn't
645 			 * called ->revisit yet.  It will very soon
646 			 * and we need to wait for it.
647 			 */
648 			spin_unlock(&cache_defer_lock);
649 			wait_for_completion(&sleeper.completion);
650 		}
651 	}
652 }
653 
654 static void cache_limit_defers(void)
655 {
656 	/* Make sure we haven't exceed the limit of allowed deferred
657 	 * requests.
658 	 */
659 	struct cache_deferred_req *discard = NULL;
660 
661 	if (cache_defer_cnt <= DFR_MAX)
662 		return;
663 
664 	spin_lock(&cache_defer_lock);
665 
666 	/* Consider removing either the first or the last */
667 	if (cache_defer_cnt > DFR_MAX) {
668 		if (prandom_u32() & 1)
669 			discard = list_entry(cache_defer_list.next,
670 					     struct cache_deferred_req, recent);
671 		else
672 			discard = list_entry(cache_defer_list.prev,
673 					     struct cache_deferred_req, recent);
674 		__unhash_deferred_req(discard);
675 	}
676 	spin_unlock(&cache_defer_lock);
677 	if (discard)
678 		discard->revisit(discard, 1);
679 }
680 
681 /* Return true if and only if a deferred request is queued. */
682 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
683 {
684 	struct cache_deferred_req *dreq;
685 
686 	if (req->thread_wait) {
687 		cache_wait_req(req, item);
688 		if (!test_bit(CACHE_PENDING, &item->flags))
689 			return false;
690 	}
691 	dreq = req->defer(req);
692 	if (dreq == NULL)
693 		return false;
694 	setup_deferral(dreq, item, 1);
695 	if (!test_bit(CACHE_PENDING, &item->flags))
696 		/* Bit could have been cleared before we managed to
697 		 * set up the deferral, so need to revisit just in case
698 		 */
699 		cache_revisit_request(item);
700 
701 	cache_limit_defers();
702 	return true;
703 }
704 
705 static void cache_revisit_request(struct cache_head *item)
706 {
707 	struct cache_deferred_req *dreq;
708 	struct list_head pending;
709 	struct hlist_node *tmp;
710 	int hash = DFR_HASH(item);
711 
712 	INIT_LIST_HEAD(&pending);
713 	spin_lock(&cache_defer_lock);
714 
715 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
716 		if (dreq->item == item) {
717 			__unhash_deferred_req(dreq);
718 			list_add(&dreq->recent, &pending);
719 		}
720 
721 	spin_unlock(&cache_defer_lock);
722 
723 	while (!list_empty(&pending)) {
724 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
725 		list_del_init(&dreq->recent);
726 		dreq->revisit(dreq, 0);
727 	}
728 }
729 
730 void cache_clean_deferred(void *owner)
731 {
732 	struct cache_deferred_req *dreq, *tmp;
733 	struct list_head pending;
734 
735 
736 	INIT_LIST_HEAD(&pending);
737 	spin_lock(&cache_defer_lock);
738 
739 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
740 		if (dreq->owner == owner) {
741 			__unhash_deferred_req(dreq);
742 			list_add(&dreq->recent, &pending);
743 		}
744 	}
745 	spin_unlock(&cache_defer_lock);
746 
747 	while (!list_empty(&pending)) {
748 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
749 		list_del_init(&dreq->recent);
750 		dreq->revisit(dreq, 1);
751 	}
752 }
753 
754 /*
755  * communicate with user-space
756  *
757  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
758  * On read, you get a full request, or block.
759  * On write, an update request is processed.
760  * Poll works if anything to read, and always allows write.
761  *
762  * Implemented by linked list of requests.  Each open file has
763  * a ->private that also exists in this list.  New requests are added
764  * to the end and may wakeup and preceding readers.
765  * New readers are added to the head.  If, on read, an item is found with
766  * CACHE_UPCALLING clear, we free it from the list.
767  *
768  */
769 
770 static DEFINE_SPINLOCK(queue_lock);
771 static DEFINE_MUTEX(queue_io_mutex);
772 
773 struct cache_queue {
774 	struct list_head	list;
775 	int			reader;	/* if 0, then request */
776 };
777 struct cache_request {
778 	struct cache_queue	q;
779 	struct cache_head	*item;
780 	char			* buf;
781 	int			len;
782 	int			readers;
783 };
784 struct cache_reader {
785 	struct cache_queue	q;
786 	int			offset;	/* if non-0, we have a refcnt on next request */
787 };
788 
789 static int cache_request(struct cache_detail *detail,
790 			       struct cache_request *crq)
791 {
792 	char *bp = crq->buf;
793 	int len = PAGE_SIZE;
794 
795 	detail->cache_request(detail, crq->item, &bp, &len);
796 	if (len < 0)
797 		return -EAGAIN;
798 	return PAGE_SIZE - len;
799 }
800 
801 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
802 			  loff_t *ppos, struct cache_detail *cd)
803 {
804 	struct cache_reader *rp = filp->private_data;
805 	struct cache_request *rq;
806 	struct inode *inode = file_inode(filp);
807 	int err;
808 
809 	if (count == 0)
810 		return 0;
811 
812 	inode_lock(inode); /* protect against multiple concurrent
813 			      * readers on this file */
814  again:
815 	spin_lock(&queue_lock);
816 	/* need to find next request */
817 	while (rp->q.list.next != &cd->queue &&
818 	       list_entry(rp->q.list.next, struct cache_queue, list)
819 	       ->reader) {
820 		struct list_head *next = rp->q.list.next;
821 		list_move(&rp->q.list, next);
822 	}
823 	if (rp->q.list.next == &cd->queue) {
824 		spin_unlock(&queue_lock);
825 		inode_unlock(inode);
826 		WARN_ON_ONCE(rp->offset);
827 		return 0;
828 	}
829 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
830 	WARN_ON_ONCE(rq->q.reader);
831 	if (rp->offset == 0)
832 		rq->readers++;
833 	spin_unlock(&queue_lock);
834 
835 	if (rq->len == 0) {
836 		err = cache_request(cd, rq);
837 		if (err < 0)
838 			goto out;
839 		rq->len = err;
840 	}
841 
842 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
843 		err = -EAGAIN;
844 		spin_lock(&queue_lock);
845 		list_move(&rp->q.list, &rq->q.list);
846 		spin_unlock(&queue_lock);
847 	} else {
848 		if (rp->offset + count > rq->len)
849 			count = rq->len - rp->offset;
850 		err = -EFAULT;
851 		if (copy_to_user(buf, rq->buf + rp->offset, count))
852 			goto out;
853 		rp->offset += count;
854 		if (rp->offset >= rq->len) {
855 			rp->offset = 0;
856 			spin_lock(&queue_lock);
857 			list_move(&rp->q.list, &rq->q.list);
858 			spin_unlock(&queue_lock);
859 		}
860 		err = 0;
861 	}
862  out:
863 	if (rp->offset == 0) {
864 		/* need to release rq */
865 		spin_lock(&queue_lock);
866 		rq->readers--;
867 		if (rq->readers == 0 &&
868 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
869 			list_del(&rq->q.list);
870 			spin_unlock(&queue_lock);
871 			cache_put(rq->item, cd);
872 			kfree(rq->buf);
873 			kfree(rq);
874 		} else
875 			spin_unlock(&queue_lock);
876 	}
877 	if (err == -EAGAIN)
878 		goto again;
879 	inode_unlock(inode);
880 	return err ? err :  count;
881 }
882 
883 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
884 				 size_t count, struct cache_detail *cd)
885 {
886 	ssize_t ret;
887 
888 	if (count == 0)
889 		return -EINVAL;
890 	if (copy_from_user(kaddr, buf, count))
891 		return -EFAULT;
892 	kaddr[count] = '\0';
893 	ret = cd->cache_parse(cd, kaddr, count);
894 	if (!ret)
895 		ret = count;
896 	return ret;
897 }
898 
899 static ssize_t cache_slow_downcall(const char __user *buf,
900 				   size_t count, struct cache_detail *cd)
901 {
902 	static char write_buf[8192]; /* protected by queue_io_mutex */
903 	ssize_t ret = -EINVAL;
904 
905 	if (count >= sizeof(write_buf))
906 		goto out;
907 	mutex_lock(&queue_io_mutex);
908 	ret = cache_do_downcall(write_buf, buf, count, cd);
909 	mutex_unlock(&queue_io_mutex);
910 out:
911 	return ret;
912 }
913 
914 static ssize_t cache_downcall(struct address_space *mapping,
915 			      const char __user *buf,
916 			      size_t count, struct cache_detail *cd)
917 {
918 	struct page *page;
919 	char *kaddr;
920 	ssize_t ret = -ENOMEM;
921 
922 	if (count >= PAGE_SIZE)
923 		goto out_slow;
924 
925 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
926 	if (!page)
927 		goto out_slow;
928 
929 	kaddr = kmap(page);
930 	ret = cache_do_downcall(kaddr, buf, count, cd);
931 	kunmap(page);
932 	unlock_page(page);
933 	put_page(page);
934 	return ret;
935 out_slow:
936 	return cache_slow_downcall(buf, count, cd);
937 }
938 
939 static ssize_t cache_write(struct file *filp, const char __user *buf,
940 			   size_t count, loff_t *ppos,
941 			   struct cache_detail *cd)
942 {
943 	struct address_space *mapping = filp->f_mapping;
944 	struct inode *inode = file_inode(filp);
945 	ssize_t ret = -EINVAL;
946 
947 	if (!cd->cache_parse)
948 		goto out;
949 
950 	inode_lock(inode);
951 	ret = cache_downcall(mapping, buf, count, cd);
952 	inode_unlock(inode);
953 out:
954 	return ret;
955 }
956 
957 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
958 
959 static __poll_t cache_poll(struct file *filp, poll_table *wait,
960 			       struct cache_detail *cd)
961 {
962 	__poll_t mask;
963 	struct cache_reader *rp = filp->private_data;
964 	struct cache_queue *cq;
965 
966 	poll_wait(filp, &queue_wait, wait);
967 
968 	/* alway allow write */
969 	mask = EPOLLOUT | EPOLLWRNORM;
970 
971 	if (!rp)
972 		return mask;
973 
974 	spin_lock(&queue_lock);
975 
976 	for (cq= &rp->q; &cq->list != &cd->queue;
977 	     cq = list_entry(cq->list.next, struct cache_queue, list))
978 		if (!cq->reader) {
979 			mask |= EPOLLIN | EPOLLRDNORM;
980 			break;
981 		}
982 	spin_unlock(&queue_lock);
983 	return mask;
984 }
985 
986 static int cache_ioctl(struct inode *ino, struct file *filp,
987 		       unsigned int cmd, unsigned long arg,
988 		       struct cache_detail *cd)
989 {
990 	int len = 0;
991 	struct cache_reader *rp = filp->private_data;
992 	struct cache_queue *cq;
993 
994 	if (cmd != FIONREAD || !rp)
995 		return -EINVAL;
996 
997 	spin_lock(&queue_lock);
998 
999 	/* only find the length remaining in current request,
1000 	 * or the length of the next request
1001 	 */
1002 	for (cq= &rp->q; &cq->list != &cd->queue;
1003 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1004 		if (!cq->reader) {
1005 			struct cache_request *cr =
1006 				container_of(cq, struct cache_request, q);
1007 			len = cr->len - rp->offset;
1008 			break;
1009 		}
1010 	spin_unlock(&queue_lock);
1011 
1012 	return put_user(len, (int __user *)arg);
1013 }
1014 
1015 static int cache_open(struct inode *inode, struct file *filp,
1016 		      struct cache_detail *cd)
1017 {
1018 	struct cache_reader *rp = NULL;
1019 
1020 	if (!cd || !try_module_get(cd->owner))
1021 		return -EACCES;
1022 	nonseekable_open(inode, filp);
1023 	if (filp->f_mode & FMODE_READ) {
1024 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1025 		if (!rp) {
1026 			module_put(cd->owner);
1027 			return -ENOMEM;
1028 		}
1029 		rp->offset = 0;
1030 		rp->q.reader = 1;
1031 
1032 		spin_lock(&queue_lock);
1033 		list_add(&rp->q.list, &cd->queue);
1034 		spin_unlock(&queue_lock);
1035 	}
1036 	if (filp->f_mode & FMODE_WRITE)
1037 		atomic_inc(&cd->writers);
1038 	filp->private_data = rp;
1039 	return 0;
1040 }
1041 
1042 static int cache_release(struct inode *inode, struct file *filp,
1043 			 struct cache_detail *cd)
1044 {
1045 	struct cache_reader *rp = filp->private_data;
1046 
1047 	if (rp) {
1048 		spin_lock(&queue_lock);
1049 		if (rp->offset) {
1050 			struct cache_queue *cq;
1051 			for (cq= &rp->q; &cq->list != &cd->queue;
1052 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1053 				if (!cq->reader) {
1054 					container_of(cq, struct cache_request, q)
1055 						->readers--;
1056 					break;
1057 				}
1058 			rp->offset = 0;
1059 		}
1060 		list_del(&rp->q.list);
1061 		spin_unlock(&queue_lock);
1062 
1063 		filp->private_data = NULL;
1064 		kfree(rp);
1065 
1066 	}
1067 	if (filp->f_mode & FMODE_WRITE) {
1068 		atomic_dec(&cd->writers);
1069 		cd->last_close = seconds_since_boot();
1070 	}
1071 	module_put(cd->owner);
1072 	return 0;
1073 }
1074 
1075 
1076 
1077 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1078 {
1079 	struct cache_queue *cq, *tmp;
1080 	struct cache_request *cr;
1081 	struct list_head dequeued;
1082 
1083 	INIT_LIST_HEAD(&dequeued);
1084 	spin_lock(&queue_lock);
1085 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1086 		if (!cq->reader) {
1087 			cr = container_of(cq, struct cache_request, q);
1088 			if (cr->item != ch)
1089 				continue;
1090 			if (test_bit(CACHE_PENDING, &ch->flags))
1091 				/* Lost a race and it is pending again */
1092 				break;
1093 			if (cr->readers != 0)
1094 				continue;
1095 			list_move(&cr->q.list, &dequeued);
1096 		}
1097 	spin_unlock(&queue_lock);
1098 	while (!list_empty(&dequeued)) {
1099 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1100 		list_del(&cr->q.list);
1101 		cache_put(cr->item, detail);
1102 		kfree(cr->buf);
1103 		kfree(cr);
1104 	}
1105 }
1106 
1107 /*
1108  * Support routines for text-based upcalls.
1109  * Fields are separated by spaces.
1110  * Fields are either mangled to quote space tab newline slosh with slosh
1111  * or a hexified with a leading \x
1112  * Record is terminated with newline.
1113  *
1114  */
1115 
1116 void qword_add(char **bpp, int *lp, char *str)
1117 {
1118 	char *bp = *bpp;
1119 	int len = *lp;
1120 	int ret;
1121 
1122 	if (len < 0) return;
1123 
1124 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1125 	if (ret >= len) {
1126 		bp += len;
1127 		len = -1;
1128 	} else {
1129 		bp += ret;
1130 		len -= ret;
1131 		*bp++ = ' ';
1132 		len--;
1133 	}
1134 	*bpp = bp;
1135 	*lp = len;
1136 }
1137 EXPORT_SYMBOL_GPL(qword_add);
1138 
1139 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1140 {
1141 	char *bp = *bpp;
1142 	int len = *lp;
1143 
1144 	if (len < 0) return;
1145 
1146 	if (len > 2) {
1147 		*bp++ = '\\';
1148 		*bp++ = 'x';
1149 		len -= 2;
1150 		while (blen && len >= 2) {
1151 			bp = hex_byte_pack(bp, *buf++);
1152 			len -= 2;
1153 			blen--;
1154 		}
1155 	}
1156 	if (blen || len<1) len = -1;
1157 	else {
1158 		*bp++ = ' ';
1159 		len--;
1160 	}
1161 	*bpp = bp;
1162 	*lp = len;
1163 }
1164 EXPORT_SYMBOL_GPL(qword_addhex);
1165 
1166 static void warn_no_listener(struct cache_detail *detail)
1167 {
1168 	if (detail->last_warn != detail->last_close) {
1169 		detail->last_warn = detail->last_close;
1170 		if (detail->warn_no_listener)
1171 			detail->warn_no_listener(detail, detail->last_close != 0);
1172 	}
1173 }
1174 
1175 static bool cache_listeners_exist(struct cache_detail *detail)
1176 {
1177 	if (atomic_read(&detail->writers))
1178 		return true;
1179 	if (detail->last_close == 0)
1180 		/* This cache was never opened */
1181 		return false;
1182 	if (detail->last_close < seconds_since_boot() - 30)
1183 		/*
1184 		 * We allow for the possibility that someone might
1185 		 * restart a userspace daemon without restarting the
1186 		 * server; but after 30 seconds, we give up.
1187 		 */
1188 		 return false;
1189 	return true;
1190 }
1191 
1192 /*
1193  * register an upcall request to user-space and queue it up for read() by the
1194  * upcall daemon.
1195  *
1196  * Each request is at most one page long.
1197  */
1198 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1199 {
1200 
1201 	char *buf;
1202 	struct cache_request *crq;
1203 	int ret = 0;
1204 
1205 	if (!detail->cache_request)
1206 		return -EINVAL;
1207 
1208 	if (!cache_listeners_exist(detail)) {
1209 		warn_no_listener(detail);
1210 		return -EINVAL;
1211 	}
1212 	if (test_bit(CACHE_CLEANED, &h->flags))
1213 		/* Too late to make an upcall */
1214 		return -EAGAIN;
1215 
1216 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1217 	if (!buf)
1218 		return -EAGAIN;
1219 
1220 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1221 	if (!crq) {
1222 		kfree(buf);
1223 		return -EAGAIN;
1224 	}
1225 
1226 	crq->q.reader = 0;
1227 	crq->buf = buf;
1228 	crq->len = 0;
1229 	crq->readers = 0;
1230 	spin_lock(&queue_lock);
1231 	if (test_bit(CACHE_PENDING, &h->flags)) {
1232 		crq->item = cache_get(h);
1233 		list_add_tail(&crq->q.list, &detail->queue);
1234 	} else
1235 		/* Lost a race, no longer PENDING, so don't enqueue */
1236 		ret = -EAGAIN;
1237 	spin_unlock(&queue_lock);
1238 	wake_up(&queue_wait);
1239 	if (ret == -EAGAIN) {
1240 		kfree(buf);
1241 		kfree(crq);
1242 	}
1243 	return ret;
1244 }
1245 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1246 
1247 /*
1248  * parse a message from user-space and pass it
1249  * to an appropriate cache
1250  * Messages are, like requests, separated into fields by
1251  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1252  *
1253  * Message is
1254  *   reply cachename expiry key ... content....
1255  *
1256  * key and content are both parsed by cache
1257  */
1258 
1259 int qword_get(char **bpp, char *dest, int bufsize)
1260 {
1261 	/* return bytes copied, or -1 on error */
1262 	char *bp = *bpp;
1263 	int len = 0;
1264 
1265 	while (*bp == ' ') bp++;
1266 
1267 	if (bp[0] == '\\' && bp[1] == 'x') {
1268 		/* HEX STRING */
1269 		bp += 2;
1270 		while (len < bufsize - 1) {
1271 			int h, l;
1272 
1273 			h = hex_to_bin(bp[0]);
1274 			if (h < 0)
1275 				break;
1276 
1277 			l = hex_to_bin(bp[1]);
1278 			if (l < 0)
1279 				break;
1280 
1281 			*dest++ = (h << 4) | l;
1282 			bp += 2;
1283 			len++;
1284 		}
1285 	} else {
1286 		/* text with \nnn octal quoting */
1287 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1288 			if (*bp == '\\' &&
1289 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1290 			    isodigit(bp[2]) &&
1291 			    isodigit(bp[3])) {
1292 				int byte = (*++bp -'0');
1293 				bp++;
1294 				byte = (byte << 3) | (*bp++ - '0');
1295 				byte = (byte << 3) | (*bp++ - '0');
1296 				*dest++ = byte;
1297 				len++;
1298 			} else {
1299 				*dest++ = *bp++;
1300 				len++;
1301 			}
1302 		}
1303 	}
1304 
1305 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1306 		return -1;
1307 	while (*bp == ' ') bp++;
1308 	*bpp = bp;
1309 	*dest = '\0';
1310 	return len;
1311 }
1312 EXPORT_SYMBOL_GPL(qword_get);
1313 
1314 
1315 /*
1316  * support /proc/net/rpc/$CACHENAME/content
1317  * as a seqfile.
1318  * We call ->cache_show passing NULL for the item to
1319  * get a header, then pass each real item in the cache
1320  */
1321 
1322 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1323 {
1324 	loff_t n = *pos;
1325 	unsigned int hash, entry;
1326 	struct cache_head *ch;
1327 	struct cache_detail *cd = m->private;
1328 
1329 	if (!n--)
1330 		return SEQ_START_TOKEN;
1331 	hash = n >> 32;
1332 	entry = n & ((1LL<<32) - 1);
1333 
1334 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1335 		if (!entry--)
1336 			return ch;
1337 	n &= ~((1LL<<32) - 1);
1338 	do {
1339 		hash++;
1340 		n += 1LL<<32;
1341 	} while(hash < cd->hash_size &&
1342 		hlist_empty(&cd->hash_table[hash]));
1343 	if (hash >= cd->hash_size)
1344 		return NULL;
1345 	*pos = n+1;
1346 	return hlist_entry_safe(rcu_dereference_raw(
1347 				hlist_first_rcu(&cd->hash_table[hash])),
1348 				struct cache_head, cache_list);
1349 }
1350 
1351 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1352 {
1353 	struct cache_head *ch = p;
1354 	int hash = (*pos >> 32);
1355 	struct cache_detail *cd = m->private;
1356 
1357 	if (p == SEQ_START_TOKEN)
1358 		hash = 0;
1359 	else if (ch->cache_list.next == NULL) {
1360 		hash++;
1361 		*pos += 1LL<<32;
1362 	} else {
1363 		++*pos;
1364 		return hlist_entry_safe(rcu_dereference_raw(
1365 					hlist_next_rcu(&ch->cache_list)),
1366 					struct cache_head, cache_list);
1367 	}
1368 	*pos &= ~((1LL<<32) - 1);
1369 	while (hash < cd->hash_size &&
1370 	       hlist_empty(&cd->hash_table[hash])) {
1371 		hash++;
1372 		*pos += 1LL<<32;
1373 	}
1374 	if (hash >= cd->hash_size)
1375 		return NULL;
1376 	++*pos;
1377 	return hlist_entry_safe(rcu_dereference_raw(
1378 				hlist_first_rcu(&cd->hash_table[hash])),
1379 				struct cache_head, cache_list);
1380 }
1381 
1382 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1383 	__acquires(RCU)
1384 {
1385 	rcu_read_lock();
1386 	return __cache_seq_start(m, pos);
1387 }
1388 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1389 
1390 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1391 {
1392 	return cache_seq_next(file, p, pos);
1393 }
1394 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1395 
1396 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1397 	__releases(RCU)
1398 {
1399 	rcu_read_unlock();
1400 }
1401 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1402 
1403 static int c_show(struct seq_file *m, void *p)
1404 {
1405 	struct cache_head *cp = p;
1406 	struct cache_detail *cd = m->private;
1407 
1408 	if (p == SEQ_START_TOKEN)
1409 		return cd->cache_show(m, cd, NULL);
1410 
1411 	ifdebug(CACHE)
1412 		seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1413 			   convert_to_wallclock(cp->expiry_time),
1414 			   kref_read(&cp->ref), cp->flags);
1415 	cache_get(cp);
1416 	if (cache_check(cd, cp, NULL))
1417 		/* cache_check does a cache_put on failure */
1418 		seq_printf(m, "# ");
1419 	else {
1420 		if (cache_is_expired(cd, cp))
1421 			seq_printf(m, "# ");
1422 		cache_put(cp, cd);
1423 	}
1424 
1425 	return cd->cache_show(m, cd, cp);
1426 }
1427 
1428 static const struct seq_operations cache_content_op = {
1429 	.start	= cache_seq_start_rcu,
1430 	.next	= cache_seq_next_rcu,
1431 	.stop	= cache_seq_stop_rcu,
1432 	.show	= c_show,
1433 };
1434 
1435 static int content_open(struct inode *inode, struct file *file,
1436 			struct cache_detail *cd)
1437 {
1438 	struct seq_file *seq;
1439 	int err;
1440 
1441 	if (!cd || !try_module_get(cd->owner))
1442 		return -EACCES;
1443 
1444 	err = seq_open(file, &cache_content_op);
1445 	if (err) {
1446 		module_put(cd->owner);
1447 		return err;
1448 	}
1449 
1450 	seq = file->private_data;
1451 	seq->private = cd;
1452 	return 0;
1453 }
1454 
1455 static int content_release(struct inode *inode, struct file *file,
1456 		struct cache_detail *cd)
1457 {
1458 	int ret = seq_release(inode, file);
1459 	module_put(cd->owner);
1460 	return ret;
1461 }
1462 
1463 static int open_flush(struct inode *inode, struct file *file,
1464 			struct cache_detail *cd)
1465 {
1466 	if (!cd || !try_module_get(cd->owner))
1467 		return -EACCES;
1468 	return nonseekable_open(inode, file);
1469 }
1470 
1471 static int release_flush(struct inode *inode, struct file *file,
1472 			struct cache_detail *cd)
1473 {
1474 	module_put(cd->owner);
1475 	return 0;
1476 }
1477 
1478 static ssize_t read_flush(struct file *file, char __user *buf,
1479 			  size_t count, loff_t *ppos,
1480 			  struct cache_detail *cd)
1481 {
1482 	char tbuf[22];
1483 	size_t len;
1484 
1485 	len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1486 			convert_to_wallclock(cd->flush_time));
1487 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1488 }
1489 
1490 static ssize_t write_flush(struct file *file, const char __user *buf,
1491 			   size_t count, loff_t *ppos,
1492 			   struct cache_detail *cd)
1493 {
1494 	char tbuf[20];
1495 	char *ep;
1496 	time64_t now;
1497 
1498 	if (*ppos || count > sizeof(tbuf)-1)
1499 		return -EINVAL;
1500 	if (copy_from_user(tbuf, buf, count))
1501 		return -EFAULT;
1502 	tbuf[count] = 0;
1503 	simple_strtoul(tbuf, &ep, 0);
1504 	if (*ep && *ep != '\n')
1505 		return -EINVAL;
1506 	/* Note that while we check that 'buf' holds a valid number,
1507 	 * we always ignore the value and just flush everything.
1508 	 * Making use of the number leads to races.
1509 	 */
1510 
1511 	now = seconds_since_boot();
1512 	/* Always flush everything, so behave like cache_purge()
1513 	 * Do this by advancing flush_time to the current time,
1514 	 * or by one second if it has already reached the current time.
1515 	 * Newly added cache entries will always have ->last_refresh greater
1516 	 * that ->flush_time, so they don't get flushed prematurely.
1517 	 */
1518 
1519 	if (cd->flush_time >= now)
1520 		now = cd->flush_time + 1;
1521 
1522 	cd->flush_time = now;
1523 	cd->nextcheck = now;
1524 	cache_flush();
1525 
1526 	if (cd->flush)
1527 		cd->flush();
1528 
1529 	*ppos += count;
1530 	return count;
1531 }
1532 
1533 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1534 				 size_t count, loff_t *ppos)
1535 {
1536 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1537 
1538 	return cache_read(filp, buf, count, ppos, cd);
1539 }
1540 
1541 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1542 				  size_t count, loff_t *ppos)
1543 {
1544 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1545 
1546 	return cache_write(filp, buf, count, ppos, cd);
1547 }
1548 
1549 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1550 {
1551 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1552 
1553 	return cache_poll(filp, wait, cd);
1554 }
1555 
1556 static long cache_ioctl_procfs(struct file *filp,
1557 			       unsigned int cmd, unsigned long arg)
1558 {
1559 	struct inode *inode = file_inode(filp);
1560 	struct cache_detail *cd = PDE_DATA(inode);
1561 
1562 	return cache_ioctl(inode, filp, cmd, arg, cd);
1563 }
1564 
1565 static int cache_open_procfs(struct inode *inode, struct file *filp)
1566 {
1567 	struct cache_detail *cd = PDE_DATA(inode);
1568 
1569 	return cache_open(inode, filp, cd);
1570 }
1571 
1572 static int cache_release_procfs(struct inode *inode, struct file *filp)
1573 {
1574 	struct cache_detail *cd = PDE_DATA(inode);
1575 
1576 	return cache_release(inode, filp, cd);
1577 }
1578 
1579 static const struct proc_ops cache_channel_proc_ops = {
1580 	.proc_lseek	= no_llseek,
1581 	.proc_read	= cache_read_procfs,
1582 	.proc_write	= cache_write_procfs,
1583 	.proc_poll	= cache_poll_procfs,
1584 	.proc_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1585 	.proc_open	= cache_open_procfs,
1586 	.proc_release	= cache_release_procfs,
1587 };
1588 
1589 static int content_open_procfs(struct inode *inode, struct file *filp)
1590 {
1591 	struct cache_detail *cd = PDE_DATA(inode);
1592 
1593 	return content_open(inode, filp, cd);
1594 }
1595 
1596 static int content_release_procfs(struct inode *inode, struct file *filp)
1597 {
1598 	struct cache_detail *cd = PDE_DATA(inode);
1599 
1600 	return content_release(inode, filp, cd);
1601 }
1602 
1603 static const struct proc_ops content_proc_ops = {
1604 	.proc_open	= content_open_procfs,
1605 	.proc_read	= seq_read,
1606 	.proc_lseek	= seq_lseek,
1607 	.proc_release	= content_release_procfs,
1608 };
1609 
1610 static int open_flush_procfs(struct inode *inode, struct file *filp)
1611 {
1612 	struct cache_detail *cd = PDE_DATA(inode);
1613 
1614 	return open_flush(inode, filp, cd);
1615 }
1616 
1617 static int release_flush_procfs(struct inode *inode, struct file *filp)
1618 {
1619 	struct cache_detail *cd = PDE_DATA(inode);
1620 
1621 	return release_flush(inode, filp, cd);
1622 }
1623 
1624 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1625 			    size_t count, loff_t *ppos)
1626 {
1627 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1628 
1629 	return read_flush(filp, buf, count, ppos, cd);
1630 }
1631 
1632 static ssize_t write_flush_procfs(struct file *filp,
1633 				  const char __user *buf,
1634 				  size_t count, loff_t *ppos)
1635 {
1636 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1637 
1638 	return write_flush(filp, buf, count, ppos, cd);
1639 }
1640 
1641 static const struct proc_ops cache_flush_proc_ops = {
1642 	.proc_open	= open_flush_procfs,
1643 	.proc_read	= read_flush_procfs,
1644 	.proc_write	= write_flush_procfs,
1645 	.proc_release	= release_flush_procfs,
1646 	.proc_lseek	= no_llseek,
1647 };
1648 
1649 static void remove_cache_proc_entries(struct cache_detail *cd)
1650 {
1651 	if (cd->procfs) {
1652 		proc_remove(cd->procfs);
1653 		cd->procfs = NULL;
1654 	}
1655 }
1656 
1657 #ifdef CONFIG_PROC_FS
1658 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1659 {
1660 	struct proc_dir_entry *p;
1661 	struct sunrpc_net *sn;
1662 
1663 	sn = net_generic(net, sunrpc_net_id);
1664 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1665 	if (cd->procfs == NULL)
1666 		goto out_nomem;
1667 
1668 	p = proc_create_data("flush", S_IFREG | 0600,
1669 			     cd->procfs, &cache_flush_proc_ops, cd);
1670 	if (p == NULL)
1671 		goto out_nomem;
1672 
1673 	if (cd->cache_request || cd->cache_parse) {
1674 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1675 				     &cache_channel_proc_ops, cd);
1676 		if (p == NULL)
1677 			goto out_nomem;
1678 	}
1679 	if (cd->cache_show) {
1680 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1681 				     &content_proc_ops, cd);
1682 		if (p == NULL)
1683 			goto out_nomem;
1684 	}
1685 	return 0;
1686 out_nomem:
1687 	remove_cache_proc_entries(cd);
1688 	return -ENOMEM;
1689 }
1690 #else /* CONFIG_PROC_FS */
1691 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1692 {
1693 	return 0;
1694 }
1695 #endif
1696 
1697 void __init cache_initialize(void)
1698 {
1699 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1700 }
1701 
1702 int cache_register_net(struct cache_detail *cd, struct net *net)
1703 {
1704 	int ret;
1705 
1706 	sunrpc_init_cache_detail(cd);
1707 	ret = create_cache_proc_entries(cd, net);
1708 	if (ret)
1709 		sunrpc_destroy_cache_detail(cd);
1710 	return ret;
1711 }
1712 EXPORT_SYMBOL_GPL(cache_register_net);
1713 
1714 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1715 {
1716 	remove_cache_proc_entries(cd);
1717 	sunrpc_destroy_cache_detail(cd);
1718 }
1719 EXPORT_SYMBOL_GPL(cache_unregister_net);
1720 
1721 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1722 {
1723 	struct cache_detail *cd;
1724 	int i;
1725 
1726 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1727 	if (cd == NULL)
1728 		return ERR_PTR(-ENOMEM);
1729 
1730 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1731 				 GFP_KERNEL);
1732 	if (cd->hash_table == NULL) {
1733 		kfree(cd);
1734 		return ERR_PTR(-ENOMEM);
1735 	}
1736 
1737 	for (i = 0; i < cd->hash_size; i++)
1738 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1739 	cd->net = net;
1740 	return cd;
1741 }
1742 EXPORT_SYMBOL_GPL(cache_create_net);
1743 
1744 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1745 {
1746 	kfree(cd->hash_table);
1747 	kfree(cd);
1748 }
1749 EXPORT_SYMBOL_GPL(cache_destroy_net);
1750 
1751 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1752 				 size_t count, loff_t *ppos)
1753 {
1754 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1755 
1756 	return cache_read(filp, buf, count, ppos, cd);
1757 }
1758 
1759 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1760 				  size_t count, loff_t *ppos)
1761 {
1762 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1763 
1764 	return cache_write(filp, buf, count, ppos, cd);
1765 }
1766 
1767 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1768 {
1769 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1770 
1771 	return cache_poll(filp, wait, cd);
1772 }
1773 
1774 static long cache_ioctl_pipefs(struct file *filp,
1775 			      unsigned int cmd, unsigned long arg)
1776 {
1777 	struct inode *inode = file_inode(filp);
1778 	struct cache_detail *cd = RPC_I(inode)->private;
1779 
1780 	return cache_ioctl(inode, filp, cmd, arg, cd);
1781 }
1782 
1783 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1784 {
1785 	struct cache_detail *cd = RPC_I(inode)->private;
1786 
1787 	return cache_open(inode, filp, cd);
1788 }
1789 
1790 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1791 {
1792 	struct cache_detail *cd = RPC_I(inode)->private;
1793 
1794 	return cache_release(inode, filp, cd);
1795 }
1796 
1797 const struct file_operations cache_file_operations_pipefs = {
1798 	.owner		= THIS_MODULE,
1799 	.llseek		= no_llseek,
1800 	.read		= cache_read_pipefs,
1801 	.write		= cache_write_pipefs,
1802 	.poll		= cache_poll_pipefs,
1803 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1804 	.open		= cache_open_pipefs,
1805 	.release	= cache_release_pipefs,
1806 };
1807 
1808 static int content_open_pipefs(struct inode *inode, struct file *filp)
1809 {
1810 	struct cache_detail *cd = RPC_I(inode)->private;
1811 
1812 	return content_open(inode, filp, cd);
1813 }
1814 
1815 static int content_release_pipefs(struct inode *inode, struct file *filp)
1816 {
1817 	struct cache_detail *cd = RPC_I(inode)->private;
1818 
1819 	return content_release(inode, filp, cd);
1820 }
1821 
1822 const struct file_operations content_file_operations_pipefs = {
1823 	.open		= content_open_pipefs,
1824 	.read		= seq_read,
1825 	.llseek		= seq_lseek,
1826 	.release	= content_release_pipefs,
1827 };
1828 
1829 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1830 {
1831 	struct cache_detail *cd = RPC_I(inode)->private;
1832 
1833 	return open_flush(inode, filp, cd);
1834 }
1835 
1836 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1837 {
1838 	struct cache_detail *cd = RPC_I(inode)->private;
1839 
1840 	return release_flush(inode, filp, cd);
1841 }
1842 
1843 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1844 			    size_t count, loff_t *ppos)
1845 {
1846 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1847 
1848 	return read_flush(filp, buf, count, ppos, cd);
1849 }
1850 
1851 static ssize_t write_flush_pipefs(struct file *filp,
1852 				  const char __user *buf,
1853 				  size_t count, loff_t *ppos)
1854 {
1855 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1856 
1857 	return write_flush(filp, buf, count, ppos, cd);
1858 }
1859 
1860 const struct file_operations cache_flush_operations_pipefs = {
1861 	.open		= open_flush_pipefs,
1862 	.read		= read_flush_pipefs,
1863 	.write		= write_flush_pipefs,
1864 	.release	= release_flush_pipefs,
1865 	.llseek		= no_llseek,
1866 };
1867 
1868 int sunrpc_cache_register_pipefs(struct dentry *parent,
1869 				 const char *name, umode_t umode,
1870 				 struct cache_detail *cd)
1871 {
1872 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1873 	if (IS_ERR(dir))
1874 		return PTR_ERR(dir);
1875 	cd->pipefs = dir;
1876 	return 0;
1877 }
1878 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1879 
1880 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1881 {
1882 	if (cd->pipefs) {
1883 		rpc_remove_cache_dir(cd->pipefs);
1884 		cd->pipefs = NULL;
1885 	}
1886 }
1887 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1888 
1889 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1890 {
1891 	spin_lock(&cd->hash_lock);
1892 	if (!hlist_unhashed(&h->cache_list)){
1893 		sunrpc_begin_cache_remove_entry(h, cd);
1894 		spin_unlock(&cd->hash_lock);
1895 		sunrpc_end_cache_remove_entry(h, cd);
1896 	} else
1897 		spin_unlock(&cd->hash_lock);
1898 }
1899 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1900