1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include "netns.h" 36 37 #define RPCDBG_FACILITY RPCDBG_CACHE 38 39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 40 static void cache_revisit_request(struct cache_head *item); 41 static bool cache_listeners_exist(struct cache_detail *detail); 42 43 static void cache_init(struct cache_head *h, struct cache_detail *detail) 44 { 45 time64_t now = seconds_since_boot(); 46 INIT_HLIST_NODE(&h->cache_list); 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 if (now <= detail->flush_time) 51 /* ensure it isn't already expired */ 52 now = detail->flush_time + 1; 53 h->last_refresh = now; 54 } 55 56 static void cache_fresh_unlocked(struct cache_head *head, 57 struct cache_detail *detail); 58 59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 60 struct cache_head *key, 61 int hash) 62 { 63 struct hlist_head *head = &detail->hash_table[hash]; 64 struct cache_head *tmp; 65 66 rcu_read_lock(); 67 hlist_for_each_entry_rcu(tmp, head, cache_list) { 68 if (detail->match(tmp, key)) { 69 if (cache_is_expired(detail, tmp)) 70 continue; 71 tmp = cache_get_rcu(tmp); 72 rcu_read_unlock(); 73 return tmp; 74 } 75 } 76 rcu_read_unlock(); 77 return NULL; 78 } 79 80 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 81 struct cache_detail *cd) 82 { 83 /* Must be called under cd->hash_lock */ 84 hlist_del_init_rcu(&ch->cache_list); 85 set_bit(CACHE_CLEANED, &ch->flags); 86 cd->entries --; 87 } 88 89 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 90 struct cache_detail *cd) 91 { 92 cache_fresh_unlocked(ch, cd); 93 cache_put(ch, cd); 94 } 95 96 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 97 struct cache_head *key, 98 int hash) 99 { 100 struct cache_head *new, *tmp, *freeme = NULL; 101 struct hlist_head *head = &detail->hash_table[hash]; 102 103 new = detail->alloc(); 104 if (!new) 105 return NULL; 106 /* must fully initialise 'new', else 107 * we might get lose if we need to 108 * cache_put it soon. 109 */ 110 cache_init(new, detail); 111 detail->init(new, key); 112 113 spin_lock(&detail->hash_lock); 114 115 /* check if entry appeared while we slept */ 116 hlist_for_each_entry_rcu(tmp, head, cache_list) { 117 if (detail->match(tmp, key)) { 118 if (cache_is_expired(detail, tmp)) { 119 sunrpc_begin_cache_remove_entry(tmp, detail); 120 freeme = tmp; 121 break; 122 } 123 cache_get(tmp); 124 spin_unlock(&detail->hash_lock); 125 cache_put(new, detail); 126 return tmp; 127 } 128 } 129 130 hlist_add_head_rcu(&new->cache_list, head); 131 detail->entries++; 132 cache_get(new); 133 spin_unlock(&detail->hash_lock); 134 135 if (freeme) 136 sunrpc_end_cache_remove_entry(freeme, detail); 137 return new; 138 } 139 140 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 141 struct cache_head *key, int hash) 142 { 143 struct cache_head *ret; 144 145 ret = sunrpc_cache_find_rcu(detail, key, hash); 146 if (ret) 147 return ret; 148 /* Didn't find anything, insert an empty entry */ 149 return sunrpc_cache_add_entry(detail, key, hash); 150 } 151 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 152 153 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 154 155 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 156 struct cache_detail *detail) 157 { 158 time64_t now = seconds_since_boot(); 159 if (now <= detail->flush_time) 160 /* ensure it isn't immediately treated as expired */ 161 now = detail->flush_time + 1; 162 head->expiry_time = expiry; 163 head->last_refresh = now; 164 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 165 set_bit(CACHE_VALID, &head->flags); 166 } 167 168 static void cache_fresh_unlocked(struct cache_head *head, 169 struct cache_detail *detail) 170 { 171 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 172 cache_revisit_request(head); 173 cache_dequeue(detail, head); 174 } 175 } 176 177 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 178 struct cache_head *new, struct cache_head *old, int hash) 179 { 180 /* The 'old' entry is to be replaced by 'new'. 181 * If 'old' is not VALID, we update it directly, 182 * otherwise we need to replace it 183 */ 184 struct cache_head *tmp; 185 186 if (!test_bit(CACHE_VALID, &old->flags)) { 187 spin_lock(&detail->hash_lock); 188 if (!test_bit(CACHE_VALID, &old->flags)) { 189 if (test_bit(CACHE_NEGATIVE, &new->flags)) 190 set_bit(CACHE_NEGATIVE, &old->flags); 191 else 192 detail->update(old, new); 193 cache_fresh_locked(old, new->expiry_time, detail); 194 spin_unlock(&detail->hash_lock); 195 cache_fresh_unlocked(old, detail); 196 return old; 197 } 198 spin_unlock(&detail->hash_lock); 199 } 200 /* We need to insert a new entry */ 201 tmp = detail->alloc(); 202 if (!tmp) { 203 cache_put(old, detail); 204 return NULL; 205 } 206 cache_init(tmp, detail); 207 detail->init(tmp, old); 208 209 spin_lock(&detail->hash_lock); 210 if (test_bit(CACHE_NEGATIVE, &new->flags)) 211 set_bit(CACHE_NEGATIVE, &tmp->flags); 212 else 213 detail->update(tmp, new); 214 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 215 detail->entries++; 216 cache_get(tmp); 217 cache_fresh_locked(tmp, new->expiry_time, detail); 218 cache_fresh_locked(old, 0, detail); 219 spin_unlock(&detail->hash_lock); 220 cache_fresh_unlocked(tmp, detail); 221 cache_fresh_unlocked(old, detail); 222 cache_put(old, detail); 223 return tmp; 224 } 225 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 226 227 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 228 { 229 if (cd->cache_upcall) 230 return cd->cache_upcall(cd, h); 231 return sunrpc_cache_pipe_upcall(cd, h); 232 } 233 234 static inline int cache_is_valid(struct cache_head *h) 235 { 236 if (!test_bit(CACHE_VALID, &h->flags)) 237 return -EAGAIN; 238 else { 239 /* entry is valid */ 240 if (test_bit(CACHE_NEGATIVE, &h->flags)) 241 return -ENOENT; 242 else { 243 /* 244 * In combination with write barrier in 245 * sunrpc_cache_update, ensures that anyone 246 * using the cache entry after this sees the 247 * updated contents: 248 */ 249 smp_rmb(); 250 return 0; 251 } 252 } 253 } 254 255 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 256 { 257 int rv; 258 259 spin_lock(&detail->hash_lock); 260 rv = cache_is_valid(h); 261 if (rv == -EAGAIN) { 262 set_bit(CACHE_NEGATIVE, &h->flags); 263 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 264 detail); 265 rv = -ENOENT; 266 } 267 spin_unlock(&detail->hash_lock); 268 cache_fresh_unlocked(h, detail); 269 return rv; 270 } 271 272 /* 273 * This is the generic cache management routine for all 274 * the authentication caches. 275 * It checks the currency of a cache item and will (later) 276 * initiate an upcall to fill it if needed. 277 * 278 * 279 * Returns 0 if the cache_head can be used, or cache_puts it and returns 280 * -EAGAIN if upcall is pending and request has been queued 281 * -ETIMEDOUT if upcall failed or request could not be queue or 282 * upcall completed but item is still invalid (implying that 283 * the cache item has been replaced with a newer one). 284 * -ENOENT if cache entry was negative 285 */ 286 int cache_check(struct cache_detail *detail, 287 struct cache_head *h, struct cache_req *rqstp) 288 { 289 int rv; 290 time64_t refresh_age, age; 291 292 /* First decide return status as best we can */ 293 rv = cache_is_valid(h); 294 295 /* now see if we want to start an upcall */ 296 refresh_age = (h->expiry_time - h->last_refresh); 297 age = seconds_since_boot() - h->last_refresh; 298 299 if (rqstp == NULL) { 300 if (rv == -EAGAIN) 301 rv = -ENOENT; 302 } else if (rv == -EAGAIN || 303 (h->expiry_time != 0 && age > refresh_age/2)) { 304 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 305 refresh_age, age); 306 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 307 switch (cache_make_upcall(detail, h)) { 308 case -EINVAL: 309 rv = try_to_negate_entry(detail, h); 310 break; 311 case -EAGAIN: 312 cache_fresh_unlocked(h, detail); 313 break; 314 } 315 } else if (!cache_listeners_exist(detail)) 316 rv = try_to_negate_entry(detail, h); 317 } 318 319 if (rv == -EAGAIN) { 320 if (!cache_defer_req(rqstp, h)) { 321 /* 322 * Request was not deferred; handle it as best 323 * we can ourselves: 324 */ 325 rv = cache_is_valid(h); 326 if (rv == -EAGAIN) 327 rv = -ETIMEDOUT; 328 } 329 } 330 if (rv) 331 cache_put(h, detail); 332 return rv; 333 } 334 EXPORT_SYMBOL_GPL(cache_check); 335 336 /* 337 * caches need to be periodically cleaned. 338 * For this we maintain a list of cache_detail and 339 * a current pointer into that list and into the table 340 * for that entry. 341 * 342 * Each time cache_clean is called it finds the next non-empty entry 343 * in the current table and walks the list in that entry 344 * looking for entries that can be removed. 345 * 346 * An entry gets removed if: 347 * - The expiry is before current time 348 * - The last_refresh time is before the flush_time for that cache 349 * 350 * later we might drop old entries with non-NEVER expiry if that table 351 * is getting 'full' for some definition of 'full' 352 * 353 * The question of "how often to scan a table" is an interesting one 354 * and is answered in part by the use of the "nextcheck" field in the 355 * cache_detail. 356 * When a scan of a table begins, the nextcheck field is set to a time 357 * that is well into the future. 358 * While scanning, if an expiry time is found that is earlier than the 359 * current nextcheck time, nextcheck is set to that expiry time. 360 * If the flush_time is ever set to a time earlier than the nextcheck 361 * time, the nextcheck time is then set to that flush_time. 362 * 363 * A table is then only scanned if the current time is at least 364 * the nextcheck time. 365 * 366 */ 367 368 static LIST_HEAD(cache_list); 369 static DEFINE_SPINLOCK(cache_list_lock); 370 static struct cache_detail *current_detail; 371 static int current_index; 372 373 static void do_cache_clean(struct work_struct *work); 374 static struct delayed_work cache_cleaner; 375 376 void sunrpc_init_cache_detail(struct cache_detail *cd) 377 { 378 spin_lock_init(&cd->hash_lock); 379 INIT_LIST_HEAD(&cd->queue); 380 spin_lock(&cache_list_lock); 381 cd->nextcheck = 0; 382 cd->entries = 0; 383 atomic_set(&cd->writers, 0); 384 cd->last_close = 0; 385 cd->last_warn = -1; 386 list_add(&cd->others, &cache_list); 387 spin_unlock(&cache_list_lock); 388 389 /* start the cleaning process */ 390 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 391 } 392 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 393 394 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 395 { 396 cache_purge(cd); 397 spin_lock(&cache_list_lock); 398 spin_lock(&cd->hash_lock); 399 if (current_detail == cd) 400 current_detail = NULL; 401 list_del_init(&cd->others); 402 spin_unlock(&cd->hash_lock); 403 spin_unlock(&cache_list_lock); 404 if (list_empty(&cache_list)) { 405 /* module must be being unloaded so its safe to kill the worker */ 406 cancel_delayed_work_sync(&cache_cleaner); 407 } 408 } 409 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 410 411 /* clean cache tries to find something to clean 412 * and cleans it. 413 * It returns 1 if it cleaned something, 414 * 0 if it didn't find anything this time 415 * -1 if it fell off the end of the list. 416 */ 417 static int cache_clean(void) 418 { 419 int rv = 0; 420 struct list_head *next; 421 422 spin_lock(&cache_list_lock); 423 424 /* find a suitable table if we don't already have one */ 425 while (current_detail == NULL || 426 current_index >= current_detail->hash_size) { 427 if (current_detail) 428 next = current_detail->others.next; 429 else 430 next = cache_list.next; 431 if (next == &cache_list) { 432 current_detail = NULL; 433 spin_unlock(&cache_list_lock); 434 return -1; 435 } 436 current_detail = list_entry(next, struct cache_detail, others); 437 if (current_detail->nextcheck > seconds_since_boot()) 438 current_index = current_detail->hash_size; 439 else { 440 current_index = 0; 441 current_detail->nextcheck = seconds_since_boot()+30*60; 442 } 443 } 444 445 /* find a non-empty bucket in the table */ 446 while (current_detail && 447 current_index < current_detail->hash_size && 448 hlist_empty(¤t_detail->hash_table[current_index])) 449 current_index++; 450 451 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 452 453 if (current_detail && current_index < current_detail->hash_size) { 454 struct cache_head *ch = NULL; 455 struct cache_detail *d; 456 struct hlist_head *head; 457 struct hlist_node *tmp; 458 459 spin_lock(¤t_detail->hash_lock); 460 461 /* Ok, now to clean this strand */ 462 463 head = ¤t_detail->hash_table[current_index]; 464 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 465 if (current_detail->nextcheck > ch->expiry_time) 466 current_detail->nextcheck = ch->expiry_time+1; 467 if (!cache_is_expired(current_detail, ch)) 468 continue; 469 470 sunrpc_begin_cache_remove_entry(ch, current_detail); 471 rv = 1; 472 break; 473 } 474 475 spin_unlock(¤t_detail->hash_lock); 476 d = current_detail; 477 if (!ch) 478 current_index ++; 479 spin_unlock(&cache_list_lock); 480 if (ch) 481 sunrpc_end_cache_remove_entry(ch, d); 482 } else 483 spin_unlock(&cache_list_lock); 484 485 return rv; 486 } 487 488 /* 489 * We want to regularly clean the cache, so we need to schedule some work ... 490 */ 491 static void do_cache_clean(struct work_struct *work) 492 { 493 int delay = 5; 494 if (cache_clean() == -1) 495 delay = round_jiffies_relative(30*HZ); 496 497 if (list_empty(&cache_list)) 498 delay = 0; 499 500 if (delay) 501 queue_delayed_work(system_power_efficient_wq, 502 &cache_cleaner, delay); 503 } 504 505 506 /* 507 * Clean all caches promptly. This just calls cache_clean 508 * repeatedly until we are sure that every cache has had a chance to 509 * be fully cleaned 510 */ 511 void cache_flush(void) 512 { 513 while (cache_clean() != -1) 514 cond_resched(); 515 while (cache_clean() != -1) 516 cond_resched(); 517 } 518 EXPORT_SYMBOL_GPL(cache_flush); 519 520 void cache_purge(struct cache_detail *detail) 521 { 522 struct cache_head *ch = NULL; 523 struct hlist_head *head = NULL; 524 struct hlist_node *tmp = NULL; 525 int i = 0; 526 527 spin_lock(&detail->hash_lock); 528 if (!detail->entries) { 529 spin_unlock(&detail->hash_lock); 530 return; 531 } 532 533 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 534 for (i = 0; i < detail->hash_size; i++) { 535 head = &detail->hash_table[i]; 536 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 537 sunrpc_begin_cache_remove_entry(ch, detail); 538 spin_unlock(&detail->hash_lock); 539 sunrpc_end_cache_remove_entry(ch, detail); 540 spin_lock(&detail->hash_lock); 541 } 542 } 543 spin_unlock(&detail->hash_lock); 544 } 545 EXPORT_SYMBOL_GPL(cache_purge); 546 547 548 /* 549 * Deferral and Revisiting of Requests. 550 * 551 * If a cache lookup finds a pending entry, we 552 * need to defer the request and revisit it later. 553 * All deferred requests are stored in a hash table, 554 * indexed by "struct cache_head *". 555 * As it may be wasteful to store a whole request 556 * structure, we allow the request to provide a 557 * deferred form, which must contain a 558 * 'struct cache_deferred_req' 559 * This cache_deferred_req contains a method to allow 560 * it to be revisited when cache info is available 561 */ 562 563 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 564 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 565 566 #define DFR_MAX 300 /* ??? */ 567 568 static DEFINE_SPINLOCK(cache_defer_lock); 569 static LIST_HEAD(cache_defer_list); 570 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 571 static int cache_defer_cnt; 572 573 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 574 { 575 hlist_del_init(&dreq->hash); 576 if (!list_empty(&dreq->recent)) { 577 list_del_init(&dreq->recent); 578 cache_defer_cnt--; 579 } 580 } 581 582 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 583 { 584 int hash = DFR_HASH(item); 585 586 INIT_LIST_HEAD(&dreq->recent); 587 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 588 } 589 590 static void setup_deferral(struct cache_deferred_req *dreq, 591 struct cache_head *item, 592 int count_me) 593 { 594 595 dreq->item = item; 596 597 spin_lock(&cache_defer_lock); 598 599 __hash_deferred_req(dreq, item); 600 601 if (count_me) { 602 cache_defer_cnt++; 603 list_add(&dreq->recent, &cache_defer_list); 604 } 605 606 spin_unlock(&cache_defer_lock); 607 608 } 609 610 struct thread_deferred_req { 611 struct cache_deferred_req handle; 612 struct completion completion; 613 }; 614 615 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 616 { 617 struct thread_deferred_req *dr = 618 container_of(dreq, struct thread_deferred_req, handle); 619 complete(&dr->completion); 620 } 621 622 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 623 { 624 struct thread_deferred_req sleeper; 625 struct cache_deferred_req *dreq = &sleeper.handle; 626 627 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 628 dreq->revisit = cache_restart_thread; 629 630 setup_deferral(dreq, item, 0); 631 632 if (!test_bit(CACHE_PENDING, &item->flags) || 633 wait_for_completion_interruptible_timeout( 634 &sleeper.completion, req->thread_wait) <= 0) { 635 /* The completion wasn't completed, so we need 636 * to clean up 637 */ 638 spin_lock(&cache_defer_lock); 639 if (!hlist_unhashed(&sleeper.handle.hash)) { 640 __unhash_deferred_req(&sleeper.handle); 641 spin_unlock(&cache_defer_lock); 642 } else { 643 /* cache_revisit_request already removed 644 * this from the hash table, but hasn't 645 * called ->revisit yet. It will very soon 646 * and we need to wait for it. 647 */ 648 spin_unlock(&cache_defer_lock); 649 wait_for_completion(&sleeper.completion); 650 } 651 } 652 } 653 654 static void cache_limit_defers(void) 655 { 656 /* Make sure we haven't exceed the limit of allowed deferred 657 * requests. 658 */ 659 struct cache_deferred_req *discard = NULL; 660 661 if (cache_defer_cnt <= DFR_MAX) 662 return; 663 664 spin_lock(&cache_defer_lock); 665 666 /* Consider removing either the first or the last */ 667 if (cache_defer_cnt > DFR_MAX) { 668 if (prandom_u32() & 1) 669 discard = list_entry(cache_defer_list.next, 670 struct cache_deferred_req, recent); 671 else 672 discard = list_entry(cache_defer_list.prev, 673 struct cache_deferred_req, recent); 674 __unhash_deferred_req(discard); 675 } 676 spin_unlock(&cache_defer_lock); 677 if (discard) 678 discard->revisit(discard, 1); 679 } 680 681 /* Return true if and only if a deferred request is queued. */ 682 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 683 { 684 struct cache_deferred_req *dreq; 685 686 if (req->thread_wait) { 687 cache_wait_req(req, item); 688 if (!test_bit(CACHE_PENDING, &item->flags)) 689 return false; 690 } 691 dreq = req->defer(req); 692 if (dreq == NULL) 693 return false; 694 setup_deferral(dreq, item, 1); 695 if (!test_bit(CACHE_PENDING, &item->flags)) 696 /* Bit could have been cleared before we managed to 697 * set up the deferral, so need to revisit just in case 698 */ 699 cache_revisit_request(item); 700 701 cache_limit_defers(); 702 return true; 703 } 704 705 static void cache_revisit_request(struct cache_head *item) 706 { 707 struct cache_deferred_req *dreq; 708 struct list_head pending; 709 struct hlist_node *tmp; 710 int hash = DFR_HASH(item); 711 712 INIT_LIST_HEAD(&pending); 713 spin_lock(&cache_defer_lock); 714 715 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 716 if (dreq->item == item) { 717 __unhash_deferred_req(dreq); 718 list_add(&dreq->recent, &pending); 719 } 720 721 spin_unlock(&cache_defer_lock); 722 723 while (!list_empty(&pending)) { 724 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 725 list_del_init(&dreq->recent); 726 dreq->revisit(dreq, 0); 727 } 728 } 729 730 void cache_clean_deferred(void *owner) 731 { 732 struct cache_deferred_req *dreq, *tmp; 733 struct list_head pending; 734 735 736 INIT_LIST_HEAD(&pending); 737 spin_lock(&cache_defer_lock); 738 739 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 740 if (dreq->owner == owner) { 741 __unhash_deferred_req(dreq); 742 list_add(&dreq->recent, &pending); 743 } 744 } 745 spin_unlock(&cache_defer_lock); 746 747 while (!list_empty(&pending)) { 748 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 749 list_del_init(&dreq->recent); 750 dreq->revisit(dreq, 1); 751 } 752 } 753 754 /* 755 * communicate with user-space 756 * 757 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 758 * On read, you get a full request, or block. 759 * On write, an update request is processed. 760 * Poll works if anything to read, and always allows write. 761 * 762 * Implemented by linked list of requests. Each open file has 763 * a ->private that also exists in this list. New requests are added 764 * to the end and may wakeup and preceding readers. 765 * New readers are added to the head. If, on read, an item is found with 766 * CACHE_UPCALLING clear, we free it from the list. 767 * 768 */ 769 770 static DEFINE_SPINLOCK(queue_lock); 771 static DEFINE_MUTEX(queue_io_mutex); 772 773 struct cache_queue { 774 struct list_head list; 775 int reader; /* if 0, then request */ 776 }; 777 struct cache_request { 778 struct cache_queue q; 779 struct cache_head *item; 780 char * buf; 781 int len; 782 int readers; 783 }; 784 struct cache_reader { 785 struct cache_queue q; 786 int offset; /* if non-0, we have a refcnt on next request */ 787 }; 788 789 static int cache_request(struct cache_detail *detail, 790 struct cache_request *crq) 791 { 792 char *bp = crq->buf; 793 int len = PAGE_SIZE; 794 795 detail->cache_request(detail, crq->item, &bp, &len); 796 if (len < 0) 797 return -EAGAIN; 798 return PAGE_SIZE - len; 799 } 800 801 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 802 loff_t *ppos, struct cache_detail *cd) 803 { 804 struct cache_reader *rp = filp->private_data; 805 struct cache_request *rq; 806 struct inode *inode = file_inode(filp); 807 int err; 808 809 if (count == 0) 810 return 0; 811 812 inode_lock(inode); /* protect against multiple concurrent 813 * readers on this file */ 814 again: 815 spin_lock(&queue_lock); 816 /* need to find next request */ 817 while (rp->q.list.next != &cd->queue && 818 list_entry(rp->q.list.next, struct cache_queue, list) 819 ->reader) { 820 struct list_head *next = rp->q.list.next; 821 list_move(&rp->q.list, next); 822 } 823 if (rp->q.list.next == &cd->queue) { 824 spin_unlock(&queue_lock); 825 inode_unlock(inode); 826 WARN_ON_ONCE(rp->offset); 827 return 0; 828 } 829 rq = container_of(rp->q.list.next, struct cache_request, q.list); 830 WARN_ON_ONCE(rq->q.reader); 831 if (rp->offset == 0) 832 rq->readers++; 833 spin_unlock(&queue_lock); 834 835 if (rq->len == 0) { 836 err = cache_request(cd, rq); 837 if (err < 0) 838 goto out; 839 rq->len = err; 840 } 841 842 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 843 err = -EAGAIN; 844 spin_lock(&queue_lock); 845 list_move(&rp->q.list, &rq->q.list); 846 spin_unlock(&queue_lock); 847 } else { 848 if (rp->offset + count > rq->len) 849 count = rq->len - rp->offset; 850 err = -EFAULT; 851 if (copy_to_user(buf, rq->buf + rp->offset, count)) 852 goto out; 853 rp->offset += count; 854 if (rp->offset >= rq->len) { 855 rp->offset = 0; 856 spin_lock(&queue_lock); 857 list_move(&rp->q.list, &rq->q.list); 858 spin_unlock(&queue_lock); 859 } 860 err = 0; 861 } 862 out: 863 if (rp->offset == 0) { 864 /* need to release rq */ 865 spin_lock(&queue_lock); 866 rq->readers--; 867 if (rq->readers == 0 && 868 !test_bit(CACHE_PENDING, &rq->item->flags)) { 869 list_del(&rq->q.list); 870 spin_unlock(&queue_lock); 871 cache_put(rq->item, cd); 872 kfree(rq->buf); 873 kfree(rq); 874 } else 875 spin_unlock(&queue_lock); 876 } 877 if (err == -EAGAIN) 878 goto again; 879 inode_unlock(inode); 880 return err ? err : count; 881 } 882 883 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 884 size_t count, struct cache_detail *cd) 885 { 886 ssize_t ret; 887 888 if (count == 0) 889 return -EINVAL; 890 if (copy_from_user(kaddr, buf, count)) 891 return -EFAULT; 892 kaddr[count] = '\0'; 893 ret = cd->cache_parse(cd, kaddr, count); 894 if (!ret) 895 ret = count; 896 return ret; 897 } 898 899 static ssize_t cache_slow_downcall(const char __user *buf, 900 size_t count, struct cache_detail *cd) 901 { 902 static char write_buf[8192]; /* protected by queue_io_mutex */ 903 ssize_t ret = -EINVAL; 904 905 if (count >= sizeof(write_buf)) 906 goto out; 907 mutex_lock(&queue_io_mutex); 908 ret = cache_do_downcall(write_buf, buf, count, cd); 909 mutex_unlock(&queue_io_mutex); 910 out: 911 return ret; 912 } 913 914 static ssize_t cache_downcall(struct address_space *mapping, 915 const char __user *buf, 916 size_t count, struct cache_detail *cd) 917 { 918 struct page *page; 919 char *kaddr; 920 ssize_t ret = -ENOMEM; 921 922 if (count >= PAGE_SIZE) 923 goto out_slow; 924 925 page = find_or_create_page(mapping, 0, GFP_KERNEL); 926 if (!page) 927 goto out_slow; 928 929 kaddr = kmap(page); 930 ret = cache_do_downcall(kaddr, buf, count, cd); 931 kunmap(page); 932 unlock_page(page); 933 put_page(page); 934 return ret; 935 out_slow: 936 return cache_slow_downcall(buf, count, cd); 937 } 938 939 static ssize_t cache_write(struct file *filp, const char __user *buf, 940 size_t count, loff_t *ppos, 941 struct cache_detail *cd) 942 { 943 struct address_space *mapping = filp->f_mapping; 944 struct inode *inode = file_inode(filp); 945 ssize_t ret = -EINVAL; 946 947 if (!cd->cache_parse) 948 goto out; 949 950 inode_lock(inode); 951 ret = cache_downcall(mapping, buf, count, cd); 952 inode_unlock(inode); 953 out: 954 return ret; 955 } 956 957 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 958 959 static __poll_t cache_poll(struct file *filp, poll_table *wait, 960 struct cache_detail *cd) 961 { 962 __poll_t mask; 963 struct cache_reader *rp = filp->private_data; 964 struct cache_queue *cq; 965 966 poll_wait(filp, &queue_wait, wait); 967 968 /* alway allow write */ 969 mask = EPOLLOUT | EPOLLWRNORM; 970 971 if (!rp) 972 return mask; 973 974 spin_lock(&queue_lock); 975 976 for (cq= &rp->q; &cq->list != &cd->queue; 977 cq = list_entry(cq->list.next, struct cache_queue, list)) 978 if (!cq->reader) { 979 mask |= EPOLLIN | EPOLLRDNORM; 980 break; 981 } 982 spin_unlock(&queue_lock); 983 return mask; 984 } 985 986 static int cache_ioctl(struct inode *ino, struct file *filp, 987 unsigned int cmd, unsigned long arg, 988 struct cache_detail *cd) 989 { 990 int len = 0; 991 struct cache_reader *rp = filp->private_data; 992 struct cache_queue *cq; 993 994 if (cmd != FIONREAD || !rp) 995 return -EINVAL; 996 997 spin_lock(&queue_lock); 998 999 /* only find the length remaining in current request, 1000 * or the length of the next request 1001 */ 1002 for (cq= &rp->q; &cq->list != &cd->queue; 1003 cq = list_entry(cq->list.next, struct cache_queue, list)) 1004 if (!cq->reader) { 1005 struct cache_request *cr = 1006 container_of(cq, struct cache_request, q); 1007 len = cr->len - rp->offset; 1008 break; 1009 } 1010 spin_unlock(&queue_lock); 1011 1012 return put_user(len, (int __user *)arg); 1013 } 1014 1015 static int cache_open(struct inode *inode, struct file *filp, 1016 struct cache_detail *cd) 1017 { 1018 struct cache_reader *rp = NULL; 1019 1020 if (!cd || !try_module_get(cd->owner)) 1021 return -EACCES; 1022 nonseekable_open(inode, filp); 1023 if (filp->f_mode & FMODE_READ) { 1024 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1025 if (!rp) { 1026 module_put(cd->owner); 1027 return -ENOMEM; 1028 } 1029 rp->offset = 0; 1030 rp->q.reader = 1; 1031 1032 spin_lock(&queue_lock); 1033 list_add(&rp->q.list, &cd->queue); 1034 spin_unlock(&queue_lock); 1035 } 1036 if (filp->f_mode & FMODE_WRITE) 1037 atomic_inc(&cd->writers); 1038 filp->private_data = rp; 1039 return 0; 1040 } 1041 1042 static int cache_release(struct inode *inode, struct file *filp, 1043 struct cache_detail *cd) 1044 { 1045 struct cache_reader *rp = filp->private_data; 1046 1047 if (rp) { 1048 spin_lock(&queue_lock); 1049 if (rp->offset) { 1050 struct cache_queue *cq; 1051 for (cq= &rp->q; &cq->list != &cd->queue; 1052 cq = list_entry(cq->list.next, struct cache_queue, list)) 1053 if (!cq->reader) { 1054 container_of(cq, struct cache_request, q) 1055 ->readers--; 1056 break; 1057 } 1058 rp->offset = 0; 1059 } 1060 list_del(&rp->q.list); 1061 spin_unlock(&queue_lock); 1062 1063 filp->private_data = NULL; 1064 kfree(rp); 1065 1066 } 1067 if (filp->f_mode & FMODE_WRITE) { 1068 atomic_dec(&cd->writers); 1069 cd->last_close = seconds_since_boot(); 1070 } 1071 module_put(cd->owner); 1072 return 0; 1073 } 1074 1075 1076 1077 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1078 { 1079 struct cache_queue *cq, *tmp; 1080 struct cache_request *cr; 1081 struct list_head dequeued; 1082 1083 INIT_LIST_HEAD(&dequeued); 1084 spin_lock(&queue_lock); 1085 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1086 if (!cq->reader) { 1087 cr = container_of(cq, struct cache_request, q); 1088 if (cr->item != ch) 1089 continue; 1090 if (test_bit(CACHE_PENDING, &ch->flags)) 1091 /* Lost a race and it is pending again */ 1092 break; 1093 if (cr->readers != 0) 1094 continue; 1095 list_move(&cr->q.list, &dequeued); 1096 } 1097 spin_unlock(&queue_lock); 1098 while (!list_empty(&dequeued)) { 1099 cr = list_entry(dequeued.next, struct cache_request, q.list); 1100 list_del(&cr->q.list); 1101 cache_put(cr->item, detail); 1102 kfree(cr->buf); 1103 kfree(cr); 1104 } 1105 } 1106 1107 /* 1108 * Support routines for text-based upcalls. 1109 * Fields are separated by spaces. 1110 * Fields are either mangled to quote space tab newline slosh with slosh 1111 * or a hexified with a leading \x 1112 * Record is terminated with newline. 1113 * 1114 */ 1115 1116 void qword_add(char **bpp, int *lp, char *str) 1117 { 1118 char *bp = *bpp; 1119 int len = *lp; 1120 int ret; 1121 1122 if (len < 0) return; 1123 1124 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1125 if (ret >= len) { 1126 bp += len; 1127 len = -1; 1128 } else { 1129 bp += ret; 1130 len -= ret; 1131 *bp++ = ' '; 1132 len--; 1133 } 1134 *bpp = bp; 1135 *lp = len; 1136 } 1137 EXPORT_SYMBOL_GPL(qword_add); 1138 1139 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1140 { 1141 char *bp = *bpp; 1142 int len = *lp; 1143 1144 if (len < 0) return; 1145 1146 if (len > 2) { 1147 *bp++ = '\\'; 1148 *bp++ = 'x'; 1149 len -= 2; 1150 while (blen && len >= 2) { 1151 bp = hex_byte_pack(bp, *buf++); 1152 len -= 2; 1153 blen--; 1154 } 1155 } 1156 if (blen || len<1) len = -1; 1157 else { 1158 *bp++ = ' '; 1159 len--; 1160 } 1161 *bpp = bp; 1162 *lp = len; 1163 } 1164 EXPORT_SYMBOL_GPL(qword_addhex); 1165 1166 static void warn_no_listener(struct cache_detail *detail) 1167 { 1168 if (detail->last_warn != detail->last_close) { 1169 detail->last_warn = detail->last_close; 1170 if (detail->warn_no_listener) 1171 detail->warn_no_listener(detail, detail->last_close != 0); 1172 } 1173 } 1174 1175 static bool cache_listeners_exist(struct cache_detail *detail) 1176 { 1177 if (atomic_read(&detail->writers)) 1178 return true; 1179 if (detail->last_close == 0) 1180 /* This cache was never opened */ 1181 return false; 1182 if (detail->last_close < seconds_since_boot() - 30) 1183 /* 1184 * We allow for the possibility that someone might 1185 * restart a userspace daemon without restarting the 1186 * server; but after 30 seconds, we give up. 1187 */ 1188 return false; 1189 return true; 1190 } 1191 1192 /* 1193 * register an upcall request to user-space and queue it up for read() by the 1194 * upcall daemon. 1195 * 1196 * Each request is at most one page long. 1197 */ 1198 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1199 { 1200 1201 char *buf; 1202 struct cache_request *crq; 1203 int ret = 0; 1204 1205 if (!detail->cache_request) 1206 return -EINVAL; 1207 1208 if (!cache_listeners_exist(detail)) { 1209 warn_no_listener(detail); 1210 return -EINVAL; 1211 } 1212 if (test_bit(CACHE_CLEANED, &h->flags)) 1213 /* Too late to make an upcall */ 1214 return -EAGAIN; 1215 1216 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1217 if (!buf) 1218 return -EAGAIN; 1219 1220 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1221 if (!crq) { 1222 kfree(buf); 1223 return -EAGAIN; 1224 } 1225 1226 crq->q.reader = 0; 1227 crq->buf = buf; 1228 crq->len = 0; 1229 crq->readers = 0; 1230 spin_lock(&queue_lock); 1231 if (test_bit(CACHE_PENDING, &h->flags)) { 1232 crq->item = cache_get(h); 1233 list_add_tail(&crq->q.list, &detail->queue); 1234 } else 1235 /* Lost a race, no longer PENDING, so don't enqueue */ 1236 ret = -EAGAIN; 1237 spin_unlock(&queue_lock); 1238 wake_up(&queue_wait); 1239 if (ret == -EAGAIN) { 1240 kfree(buf); 1241 kfree(crq); 1242 } 1243 return ret; 1244 } 1245 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1246 1247 /* 1248 * parse a message from user-space and pass it 1249 * to an appropriate cache 1250 * Messages are, like requests, separated into fields by 1251 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1252 * 1253 * Message is 1254 * reply cachename expiry key ... content.... 1255 * 1256 * key and content are both parsed by cache 1257 */ 1258 1259 int qword_get(char **bpp, char *dest, int bufsize) 1260 { 1261 /* return bytes copied, or -1 on error */ 1262 char *bp = *bpp; 1263 int len = 0; 1264 1265 while (*bp == ' ') bp++; 1266 1267 if (bp[0] == '\\' && bp[1] == 'x') { 1268 /* HEX STRING */ 1269 bp += 2; 1270 while (len < bufsize - 1) { 1271 int h, l; 1272 1273 h = hex_to_bin(bp[0]); 1274 if (h < 0) 1275 break; 1276 1277 l = hex_to_bin(bp[1]); 1278 if (l < 0) 1279 break; 1280 1281 *dest++ = (h << 4) | l; 1282 bp += 2; 1283 len++; 1284 } 1285 } else { 1286 /* text with \nnn octal quoting */ 1287 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1288 if (*bp == '\\' && 1289 isodigit(bp[1]) && (bp[1] <= '3') && 1290 isodigit(bp[2]) && 1291 isodigit(bp[3])) { 1292 int byte = (*++bp -'0'); 1293 bp++; 1294 byte = (byte << 3) | (*bp++ - '0'); 1295 byte = (byte << 3) | (*bp++ - '0'); 1296 *dest++ = byte; 1297 len++; 1298 } else { 1299 *dest++ = *bp++; 1300 len++; 1301 } 1302 } 1303 } 1304 1305 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1306 return -1; 1307 while (*bp == ' ') bp++; 1308 *bpp = bp; 1309 *dest = '\0'; 1310 return len; 1311 } 1312 EXPORT_SYMBOL_GPL(qword_get); 1313 1314 1315 /* 1316 * support /proc/net/rpc/$CACHENAME/content 1317 * as a seqfile. 1318 * We call ->cache_show passing NULL for the item to 1319 * get a header, then pass each real item in the cache 1320 */ 1321 1322 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1323 { 1324 loff_t n = *pos; 1325 unsigned int hash, entry; 1326 struct cache_head *ch; 1327 struct cache_detail *cd = m->private; 1328 1329 if (!n--) 1330 return SEQ_START_TOKEN; 1331 hash = n >> 32; 1332 entry = n & ((1LL<<32) - 1); 1333 1334 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1335 if (!entry--) 1336 return ch; 1337 n &= ~((1LL<<32) - 1); 1338 do { 1339 hash++; 1340 n += 1LL<<32; 1341 } while(hash < cd->hash_size && 1342 hlist_empty(&cd->hash_table[hash])); 1343 if (hash >= cd->hash_size) 1344 return NULL; 1345 *pos = n+1; 1346 return hlist_entry_safe(rcu_dereference_raw( 1347 hlist_first_rcu(&cd->hash_table[hash])), 1348 struct cache_head, cache_list); 1349 } 1350 1351 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1352 { 1353 struct cache_head *ch = p; 1354 int hash = (*pos >> 32); 1355 struct cache_detail *cd = m->private; 1356 1357 if (p == SEQ_START_TOKEN) 1358 hash = 0; 1359 else if (ch->cache_list.next == NULL) { 1360 hash++; 1361 *pos += 1LL<<32; 1362 } else { 1363 ++*pos; 1364 return hlist_entry_safe(rcu_dereference_raw( 1365 hlist_next_rcu(&ch->cache_list)), 1366 struct cache_head, cache_list); 1367 } 1368 *pos &= ~((1LL<<32) - 1); 1369 while (hash < cd->hash_size && 1370 hlist_empty(&cd->hash_table[hash])) { 1371 hash++; 1372 *pos += 1LL<<32; 1373 } 1374 if (hash >= cd->hash_size) 1375 return NULL; 1376 ++*pos; 1377 return hlist_entry_safe(rcu_dereference_raw( 1378 hlist_first_rcu(&cd->hash_table[hash])), 1379 struct cache_head, cache_list); 1380 } 1381 1382 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1383 __acquires(RCU) 1384 { 1385 rcu_read_lock(); 1386 return __cache_seq_start(m, pos); 1387 } 1388 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1389 1390 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1391 { 1392 return cache_seq_next(file, p, pos); 1393 } 1394 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1395 1396 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1397 __releases(RCU) 1398 { 1399 rcu_read_unlock(); 1400 } 1401 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1402 1403 static int c_show(struct seq_file *m, void *p) 1404 { 1405 struct cache_head *cp = p; 1406 struct cache_detail *cd = m->private; 1407 1408 if (p == SEQ_START_TOKEN) 1409 return cd->cache_show(m, cd, NULL); 1410 1411 ifdebug(CACHE) 1412 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1413 convert_to_wallclock(cp->expiry_time), 1414 kref_read(&cp->ref), cp->flags); 1415 cache_get(cp); 1416 if (cache_check(cd, cp, NULL)) 1417 /* cache_check does a cache_put on failure */ 1418 seq_printf(m, "# "); 1419 else { 1420 if (cache_is_expired(cd, cp)) 1421 seq_printf(m, "# "); 1422 cache_put(cp, cd); 1423 } 1424 1425 return cd->cache_show(m, cd, cp); 1426 } 1427 1428 static const struct seq_operations cache_content_op = { 1429 .start = cache_seq_start_rcu, 1430 .next = cache_seq_next_rcu, 1431 .stop = cache_seq_stop_rcu, 1432 .show = c_show, 1433 }; 1434 1435 static int content_open(struct inode *inode, struct file *file, 1436 struct cache_detail *cd) 1437 { 1438 struct seq_file *seq; 1439 int err; 1440 1441 if (!cd || !try_module_get(cd->owner)) 1442 return -EACCES; 1443 1444 err = seq_open(file, &cache_content_op); 1445 if (err) { 1446 module_put(cd->owner); 1447 return err; 1448 } 1449 1450 seq = file->private_data; 1451 seq->private = cd; 1452 return 0; 1453 } 1454 1455 static int content_release(struct inode *inode, struct file *file, 1456 struct cache_detail *cd) 1457 { 1458 int ret = seq_release(inode, file); 1459 module_put(cd->owner); 1460 return ret; 1461 } 1462 1463 static int open_flush(struct inode *inode, struct file *file, 1464 struct cache_detail *cd) 1465 { 1466 if (!cd || !try_module_get(cd->owner)) 1467 return -EACCES; 1468 return nonseekable_open(inode, file); 1469 } 1470 1471 static int release_flush(struct inode *inode, struct file *file, 1472 struct cache_detail *cd) 1473 { 1474 module_put(cd->owner); 1475 return 0; 1476 } 1477 1478 static ssize_t read_flush(struct file *file, char __user *buf, 1479 size_t count, loff_t *ppos, 1480 struct cache_detail *cd) 1481 { 1482 char tbuf[22]; 1483 size_t len; 1484 1485 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1486 convert_to_wallclock(cd->flush_time)); 1487 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1488 } 1489 1490 static ssize_t write_flush(struct file *file, const char __user *buf, 1491 size_t count, loff_t *ppos, 1492 struct cache_detail *cd) 1493 { 1494 char tbuf[20]; 1495 char *ep; 1496 time64_t now; 1497 1498 if (*ppos || count > sizeof(tbuf)-1) 1499 return -EINVAL; 1500 if (copy_from_user(tbuf, buf, count)) 1501 return -EFAULT; 1502 tbuf[count] = 0; 1503 simple_strtoul(tbuf, &ep, 0); 1504 if (*ep && *ep != '\n') 1505 return -EINVAL; 1506 /* Note that while we check that 'buf' holds a valid number, 1507 * we always ignore the value and just flush everything. 1508 * Making use of the number leads to races. 1509 */ 1510 1511 now = seconds_since_boot(); 1512 /* Always flush everything, so behave like cache_purge() 1513 * Do this by advancing flush_time to the current time, 1514 * or by one second if it has already reached the current time. 1515 * Newly added cache entries will always have ->last_refresh greater 1516 * that ->flush_time, so they don't get flushed prematurely. 1517 */ 1518 1519 if (cd->flush_time >= now) 1520 now = cd->flush_time + 1; 1521 1522 cd->flush_time = now; 1523 cd->nextcheck = now; 1524 cache_flush(); 1525 1526 if (cd->flush) 1527 cd->flush(); 1528 1529 *ppos += count; 1530 return count; 1531 } 1532 1533 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1534 size_t count, loff_t *ppos) 1535 { 1536 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1537 1538 return cache_read(filp, buf, count, ppos, cd); 1539 } 1540 1541 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1542 size_t count, loff_t *ppos) 1543 { 1544 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1545 1546 return cache_write(filp, buf, count, ppos, cd); 1547 } 1548 1549 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1550 { 1551 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1552 1553 return cache_poll(filp, wait, cd); 1554 } 1555 1556 static long cache_ioctl_procfs(struct file *filp, 1557 unsigned int cmd, unsigned long arg) 1558 { 1559 struct inode *inode = file_inode(filp); 1560 struct cache_detail *cd = PDE_DATA(inode); 1561 1562 return cache_ioctl(inode, filp, cmd, arg, cd); 1563 } 1564 1565 static int cache_open_procfs(struct inode *inode, struct file *filp) 1566 { 1567 struct cache_detail *cd = PDE_DATA(inode); 1568 1569 return cache_open(inode, filp, cd); 1570 } 1571 1572 static int cache_release_procfs(struct inode *inode, struct file *filp) 1573 { 1574 struct cache_detail *cd = PDE_DATA(inode); 1575 1576 return cache_release(inode, filp, cd); 1577 } 1578 1579 static const struct proc_ops cache_channel_proc_ops = { 1580 .proc_lseek = no_llseek, 1581 .proc_read = cache_read_procfs, 1582 .proc_write = cache_write_procfs, 1583 .proc_poll = cache_poll_procfs, 1584 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1585 .proc_open = cache_open_procfs, 1586 .proc_release = cache_release_procfs, 1587 }; 1588 1589 static int content_open_procfs(struct inode *inode, struct file *filp) 1590 { 1591 struct cache_detail *cd = PDE_DATA(inode); 1592 1593 return content_open(inode, filp, cd); 1594 } 1595 1596 static int content_release_procfs(struct inode *inode, struct file *filp) 1597 { 1598 struct cache_detail *cd = PDE_DATA(inode); 1599 1600 return content_release(inode, filp, cd); 1601 } 1602 1603 static const struct proc_ops content_proc_ops = { 1604 .proc_open = content_open_procfs, 1605 .proc_read = seq_read, 1606 .proc_lseek = seq_lseek, 1607 .proc_release = content_release_procfs, 1608 }; 1609 1610 static int open_flush_procfs(struct inode *inode, struct file *filp) 1611 { 1612 struct cache_detail *cd = PDE_DATA(inode); 1613 1614 return open_flush(inode, filp, cd); 1615 } 1616 1617 static int release_flush_procfs(struct inode *inode, struct file *filp) 1618 { 1619 struct cache_detail *cd = PDE_DATA(inode); 1620 1621 return release_flush(inode, filp, cd); 1622 } 1623 1624 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1625 size_t count, loff_t *ppos) 1626 { 1627 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1628 1629 return read_flush(filp, buf, count, ppos, cd); 1630 } 1631 1632 static ssize_t write_flush_procfs(struct file *filp, 1633 const char __user *buf, 1634 size_t count, loff_t *ppos) 1635 { 1636 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1637 1638 return write_flush(filp, buf, count, ppos, cd); 1639 } 1640 1641 static const struct proc_ops cache_flush_proc_ops = { 1642 .proc_open = open_flush_procfs, 1643 .proc_read = read_flush_procfs, 1644 .proc_write = write_flush_procfs, 1645 .proc_release = release_flush_procfs, 1646 .proc_lseek = no_llseek, 1647 }; 1648 1649 static void remove_cache_proc_entries(struct cache_detail *cd) 1650 { 1651 if (cd->procfs) { 1652 proc_remove(cd->procfs); 1653 cd->procfs = NULL; 1654 } 1655 } 1656 1657 #ifdef CONFIG_PROC_FS 1658 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1659 { 1660 struct proc_dir_entry *p; 1661 struct sunrpc_net *sn; 1662 1663 sn = net_generic(net, sunrpc_net_id); 1664 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1665 if (cd->procfs == NULL) 1666 goto out_nomem; 1667 1668 p = proc_create_data("flush", S_IFREG | 0600, 1669 cd->procfs, &cache_flush_proc_ops, cd); 1670 if (p == NULL) 1671 goto out_nomem; 1672 1673 if (cd->cache_request || cd->cache_parse) { 1674 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1675 &cache_channel_proc_ops, cd); 1676 if (p == NULL) 1677 goto out_nomem; 1678 } 1679 if (cd->cache_show) { 1680 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1681 &content_proc_ops, cd); 1682 if (p == NULL) 1683 goto out_nomem; 1684 } 1685 return 0; 1686 out_nomem: 1687 remove_cache_proc_entries(cd); 1688 return -ENOMEM; 1689 } 1690 #else /* CONFIG_PROC_FS */ 1691 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1692 { 1693 return 0; 1694 } 1695 #endif 1696 1697 void __init cache_initialize(void) 1698 { 1699 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1700 } 1701 1702 int cache_register_net(struct cache_detail *cd, struct net *net) 1703 { 1704 int ret; 1705 1706 sunrpc_init_cache_detail(cd); 1707 ret = create_cache_proc_entries(cd, net); 1708 if (ret) 1709 sunrpc_destroy_cache_detail(cd); 1710 return ret; 1711 } 1712 EXPORT_SYMBOL_GPL(cache_register_net); 1713 1714 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1715 { 1716 remove_cache_proc_entries(cd); 1717 sunrpc_destroy_cache_detail(cd); 1718 } 1719 EXPORT_SYMBOL_GPL(cache_unregister_net); 1720 1721 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1722 { 1723 struct cache_detail *cd; 1724 int i; 1725 1726 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1727 if (cd == NULL) 1728 return ERR_PTR(-ENOMEM); 1729 1730 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1731 GFP_KERNEL); 1732 if (cd->hash_table == NULL) { 1733 kfree(cd); 1734 return ERR_PTR(-ENOMEM); 1735 } 1736 1737 for (i = 0; i < cd->hash_size; i++) 1738 INIT_HLIST_HEAD(&cd->hash_table[i]); 1739 cd->net = net; 1740 return cd; 1741 } 1742 EXPORT_SYMBOL_GPL(cache_create_net); 1743 1744 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1745 { 1746 kfree(cd->hash_table); 1747 kfree(cd); 1748 } 1749 EXPORT_SYMBOL_GPL(cache_destroy_net); 1750 1751 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1752 size_t count, loff_t *ppos) 1753 { 1754 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1755 1756 return cache_read(filp, buf, count, ppos, cd); 1757 } 1758 1759 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1760 size_t count, loff_t *ppos) 1761 { 1762 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1763 1764 return cache_write(filp, buf, count, ppos, cd); 1765 } 1766 1767 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1768 { 1769 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1770 1771 return cache_poll(filp, wait, cd); 1772 } 1773 1774 static long cache_ioctl_pipefs(struct file *filp, 1775 unsigned int cmd, unsigned long arg) 1776 { 1777 struct inode *inode = file_inode(filp); 1778 struct cache_detail *cd = RPC_I(inode)->private; 1779 1780 return cache_ioctl(inode, filp, cmd, arg, cd); 1781 } 1782 1783 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1784 { 1785 struct cache_detail *cd = RPC_I(inode)->private; 1786 1787 return cache_open(inode, filp, cd); 1788 } 1789 1790 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1791 { 1792 struct cache_detail *cd = RPC_I(inode)->private; 1793 1794 return cache_release(inode, filp, cd); 1795 } 1796 1797 const struct file_operations cache_file_operations_pipefs = { 1798 .owner = THIS_MODULE, 1799 .llseek = no_llseek, 1800 .read = cache_read_pipefs, 1801 .write = cache_write_pipefs, 1802 .poll = cache_poll_pipefs, 1803 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1804 .open = cache_open_pipefs, 1805 .release = cache_release_pipefs, 1806 }; 1807 1808 static int content_open_pipefs(struct inode *inode, struct file *filp) 1809 { 1810 struct cache_detail *cd = RPC_I(inode)->private; 1811 1812 return content_open(inode, filp, cd); 1813 } 1814 1815 static int content_release_pipefs(struct inode *inode, struct file *filp) 1816 { 1817 struct cache_detail *cd = RPC_I(inode)->private; 1818 1819 return content_release(inode, filp, cd); 1820 } 1821 1822 const struct file_operations content_file_operations_pipefs = { 1823 .open = content_open_pipefs, 1824 .read = seq_read, 1825 .llseek = seq_lseek, 1826 .release = content_release_pipefs, 1827 }; 1828 1829 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1830 { 1831 struct cache_detail *cd = RPC_I(inode)->private; 1832 1833 return open_flush(inode, filp, cd); 1834 } 1835 1836 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1837 { 1838 struct cache_detail *cd = RPC_I(inode)->private; 1839 1840 return release_flush(inode, filp, cd); 1841 } 1842 1843 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1844 size_t count, loff_t *ppos) 1845 { 1846 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1847 1848 return read_flush(filp, buf, count, ppos, cd); 1849 } 1850 1851 static ssize_t write_flush_pipefs(struct file *filp, 1852 const char __user *buf, 1853 size_t count, loff_t *ppos) 1854 { 1855 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1856 1857 return write_flush(filp, buf, count, ppos, cd); 1858 } 1859 1860 const struct file_operations cache_flush_operations_pipefs = { 1861 .open = open_flush_pipefs, 1862 .read = read_flush_pipefs, 1863 .write = write_flush_pipefs, 1864 .release = release_flush_pipefs, 1865 .llseek = no_llseek, 1866 }; 1867 1868 int sunrpc_cache_register_pipefs(struct dentry *parent, 1869 const char *name, umode_t umode, 1870 struct cache_detail *cd) 1871 { 1872 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1873 if (IS_ERR(dir)) 1874 return PTR_ERR(dir); 1875 cd->pipefs = dir; 1876 return 0; 1877 } 1878 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1879 1880 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1881 { 1882 if (cd->pipefs) { 1883 rpc_remove_cache_dir(cd->pipefs); 1884 cd->pipefs = NULL; 1885 } 1886 } 1887 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1888 1889 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1890 { 1891 spin_lock(&cd->hash_lock); 1892 if (!hlist_unhashed(&h->cache_list)){ 1893 sunrpc_begin_cache_remove_entry(h, cd); 1894 spin_unlock(&cd->hash_lock); 1895 sunrpc_end_cache_remove_entry(h, cd); 1896 } else 1897 spin_unlock(&cd->hash_lock); 1898 } 1899 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1900