xref: /openbmc/linux/net/sunrpc/cache.c (revision 64c70b1c)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	/* must fully initialise 'new', else
75 	 * we might get lose if we need to
76 	 * cache_put it soon.
77 	 */
78 	cache_init(new);
79 	detail->init(new, key);
80 
81 	write_lock(&detail->hash_lock);
82 
83 	/* check if entry appeared while we slept */
84 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 		struct cache_head *tmp = *hp;
86 		if (detail->match(tmp, key)) {
87 			cache_get(tmp);
88 			write_unlock(&detail->hash_lock);
89 			cache_put(new, detail);
90 			return tmp;
91 		}
92 	}
93 	new->next = *head;
94 	*head = new;
95 	detail->entries++;
96 	cache_get(new);
97 	write_unlock(&detail->hash_lock);
98 
99 	return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102 
103 
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105 
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108 	head->expiry_time = expiry;
109 	head->last_refresh = get_seconds();
110 	return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112 
113 static void cache_fresh_unlocked(struct cache_head *head,
114 			struct cache_detail *detail, int new)
115 {
116 	if (new)
117 		cache_revisit_request(head);
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		queue_loose(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 	int is_new;
134 
135 	if (!test_bit(CACHE_VALID, &old->flags)) {
136 		write_lock(&detail->hash_lock);
137 		if (!test_bit(CACHE_VALID, &old->flags)) {
138 			if (test_bit(CACHE_NEGATIVE, &new->flags))
139 				set_bit(CACHE_NEGATIVE, &old->flags);
140 			else
141 				detail->update(old, new);
142 			is_new = cache_fresh_locked(old, new->expiry_time);
143 			write_unlock(&detail->hash_lock);
144 			cache_fresh_unlocked(old, detail, is_new);
145 			return old;
146 		}
147 		write_unlock(&detail->hash_lock);
148 	}
149 	/* We need to insert a new entry */
150 	tmp = detail->alloc();
151 	if (!tmp) {
152 		cache_put(old, detail);
153 		return NULL;
154 	}
155 	cache_init(tmp);
156 	detail->init(tmp, old);
157 	head = &detail->hash_table[hash];
158 
159 	write_lock(&detail->hash_lock);
160 	if (test_bit(CACHE_NEGATIVE, &new->flags))
161 		set_bit(CACHE_NEGATIVE, &tmp->flags);
162 	else
163 		detail->update(tmp, new);
164 	tmp->next = *head;
165 	*head = tmp;
166 	detail->entries++;
167 	cache_get(tmp);
168 	is_new = cache_fresh_locked(tmp, new->expiry_time);
169 	cache_fresh_locked(old, 0);
170 	write_unlock(&detail->hash_lock);
171 	cache_fresh_unlocked(tmp, detail, is_new);
172 	cache_fresh_unlocked(old, detail, 0);
173 	cache_put(old, detail);
174 	return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177 
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192 		    struct cache_head *h, struct cache_req *rqstp)
193 {
194 	int rv;
195 	long refresh_age, age;
196 
197 	/* First decide return status as best we can */
198 	if (!test_bit(CACHE_VALID, &h->flags) ||
199 	    h->expiry_time < get_seconds())
200 		rv = -EAGAIN;
201 	else if (detail->flush_time > h->last_refresh)
202 		rv = -EAGAIN;
203 	else {
204 		/* entry is valid */
205 		if (test_bit(CACHE_NEGATIVE, &h->flags))
206 			rv = -ENOENT;
207 		else rv = 0;
208 	}
209 
210 	/* now see if we want to start an upcall */
211 	refresh_age = (h->expiry_time - h->last_refresh);
212 	age = get_seconds() - h->last_refresh;
213 
214 	if (rqstp == NULL) {
215 		if (rv == -EAGAIN)
216 			rv = -ENOENT;
217 	} else if (rv == -EAGAIN || age > refresh_age/2) {
218 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219 				refresh_age, age);
220 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221 			switch (cache_make_upcall(detail, h)) {
222 			case -EINVAL:
223 				clear_bit(CACHE_PENDING, &h->flags);
224 				if (rv == -EAGAIN) {
225 					set_bit(CACHE_NEGATIVE, &h->flags);
226 					cache_fresh_unlocked(h, detail,
227 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228 					rv = -ENOENT;
229 				}
230 				break;
231 
232 			case -EAGAIN:
233 				clear_bit(CACHE_PENDING, &h->flags);
234 				cache_revisit_request(h);
235 				break;
236 			}
237 		}
238 	}
239 
240 	if (rv == -EAGAIN)
241 		if (cache_defer_req(rqstp, h) != 0)
242 			rv = -ETIMEDOUT;
243 
244 	if (rv)
245 		cache_put(h, detail);
246 	return rv;
247 }
248 
249 /*
250  * caches need to be periodically cleaned.
251  * For this we maintain a list of cache_detail and
252  * a current pointer into that list and into the table
253  * for that entry.
254  *
255  * Each time clean_cache is called it finds the next non-empty entry
256  * in the current table and walks the list in that entry
257  * looking for entries that can be removed.
258  *
259  * An entry gets removed if:
260  * - The expiry is before current time
261  * - The last_refresh time is before the flush_time for that cache
262  *
263  * later we might drop old entries with non-NEVER expiry if that table
264  * is getting 'full' for some definition of 'full'
265  *
266  * The question of "how often to scan a table" is an interesting one
267  * and is answered in part by the use of the "nextcheck" field in the
268  * cache_detail.
269  * When a scan of a table begins, the nextcheck field is set to a time
270  * that is well into the future.
271  * While scanning, if an expiry time is found that is earlier than the
272  * current nextcheck time, nextcheck is set to that expiry time.
273  * If the flush_time is ever set to a time earlier than the nextcheck
274  * time, the nextcheck time is then set to that flush_time.
275  *
276  * A table is then only scanned if the current time is at least
277  * the nextcheck time.
278  *
279  */
280 
281 static LIST_HEAD(cache_list);
282 static DEFINE_SPINLOCK(cache_list_lock);
283 static struct cache_detail *current_detail;
284 static int current_index;
285 
286 static const struct file_operations cache_file_operations;
287 static const struct file_operations content_file_operations;
288 static const struct file_operations cache_flush_operations;
289 
290 static void do_cache_clean(struct work_struct *work);
291 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
292 
293 void cache_register(struct cache_detail *cd)
294 {
295 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
296 	if (cd->proc_ent) {
297 		struct proc_dir_entry *p;
298 		cd->proc_ent->owner = cd->owner;
299 		cd->channel_ent = cd->content_ent = NULL;
300 
301 		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
302 				      cd->proc_ent);
303 		cd->flush_ent =  p;
304 		if (p) {
305 			p->proc_fops = &cache_flush_operations;
306 			p->owner = cd->owner;
307 			p->data = cd;
308 		}
309 
310 		if (cd->cache_request || cd->cache_parse) {
311 			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
312 					      cd->proc_ent);
313 			cd->channel_ent = p;
314 			if (p) {
315 				p->proc_fops = &cache_file_operations;
316 				p->owner = cd->owner;
317 				p->data = cd;
318 			}
319 		}
320 		if (cd->cache_show) {
321 			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
322 					      cd->proc_ent);
323 			cd->content_ent = p;
324 			if (p) {
325 				p->proc_fops = &content_file_operations;
326 				p->owner = cd->owner;
327 				p->data = cd;
328 			}
329 		}
330 	}
331 	rwlock_init(&cd->hash_lock);
332 	INIT_LIST_HEAD(&cd->queue);
333 	spin_lock(&cache_list_lock);
334 	cd->nextcheck = 0;
335 	cd->entries = 0;
336 	atomic_set(&cd->readers, 0);
337 	cd->last_close = 0;
338 	cd->last_warn = -1;
339 	list_add(&cd->others, &cache_list);
340 	spin_unlock(&cache_list_lock);
341 
342 	/* start the cleaning process */
343 	schedule_delayed_work(&cache_cleaner, 0);
344 }
345 
346 int cache_unregister(struct cache_detail *cd)
347 {
348 	cache_purge(cd);
349 	spin_lock(&cache_list_lock);
350 	write_lock(&cd->hash_lock);
351 	if (cd->entries || atomic_read(&cd->inuse)) {
352 		write_unlock(&cd->hash_lock);
353 		spin_unlock(&cache_list_lock);
354 		return -EBUSY;
355 	}
356 	if (current_detail == cd)
357 		current_detail = NULL;
358 	list_del_init(&cd->others);
359 	write_unlock(&cd->hash_lock);
360 	spin_unlock(&cache_list_lock);
361 	if (cd->proc_ent) {
362 		if (cd->flush_ent)
363 			remove_proc_entry("flush", cd->proc_ent);
364 		if (cd->channel_ent)
365 			remove_proc_entry("channel", cd->proc_ent);
366 		if (cd->content_ent)
367 			remove_proc_entry("content", cd->proc_ent);
368 
369 		cd->proc_ent = NULL;
370 		remove_proc_entry(cd->name, proc_net_rpc);
371 	}
372 	if (list_empty(&cache_list)) {
373 		/* module must be being unloaded so its safe to kill the worker */
374 		cancel_delayed_work(&cache_cleaner);
375 		flush_scheduled_work();
376 	}
377 	return 0;
378 }
379 
380 /* clean cache tries to find something to clean
381  * and cleans it.
382  * It returns 1 if it cleaned something,
383  *            0 if it didn't find anything this time
384  *           -1 if it fell off the end of the list.
385  */
386 static int cache_clean(void)
387 {
388 	int rv = 0;
389 	struct list_head *next;
390 
391 	spin_lock(&cache_list_lock);
392 
393 	/* find a suitable table if we don't already have one */
394 	while (current_detail == NULL ||
395 	    current_index >= current_detail->hash_size) {
396 		if (current_detail)
397 			next = current_detail->others.next;
398 		else
399 			next = cache_list.next;
400 		if (next == &cache_list) {
401 			current_detail = NULL;
402 			spin_unlock(&cache_list_lock);
403 			return -1;
404 		}
405 		current_detail = list_entry(next, struct cache_detail, others);
406 		if (current_detail->nextcheck > get_seconds())
407 			current_index = current_detail->hash_size;
408 		else {
409 			current_index = 0;
410 			current_detail->nextcheck = get_seconds()+30*60;
411 		}
412 	}
413 
414 	/* find a non-empty bucket in the table */
415 	while (current_detail &&
416 	       current_index < current_detail->hash_size &&
417 	       current_detail->hash_table[current_index] == NULL)
418 		current_index++;
419 
420 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
421 
422 	if (current_detail && current_index < current_detail->hash_size) {
423 		struct cache_head *ch, **cp;
424 		struct cache_detail *d;
425 
426 		write_lock(&current_detail->hash_lock);
427 
428 		/* Ok, now to clean this strand */
429 
430 		cp = & current_detail->hash_table[current_index];
431 		ch = *cp;
432 		for (; ch; cp= & ch->next, ch= *cp) {
433 			if (current_detail->nextcheck > ch->expiry_time)
434 				current_detail->nextcheck = ch->expiry_time+1;
435 			if (ch->expiry_time >= get_seconds()
436 			    && ch->last_refresh >= current_detail->flush_time
437 				)
438 				continue;
439 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
440 				queue_loose(current_detail, ch);
441 
442 			if (atomic_read(&ch->ref.refcount) == 1)
443 				break;
444 		}
445 		if (ch) {
446 			*cp = ch->next;
447 			ch->next = NULL;
448 			current_detail->entries--;
449 			rv = 1;
450 		}
451 		write_unlock(&current_detail->hash_lock);
452 		d = current_detail;
453 		if (!ch)
454 			current_index ++;
455 		spin_unlock(&cache_list_lock);
456 		if (ch)
457 			cache_put(ch, d);
458 	} else
459 		spin_unlock(&cache_list_lock);
460 
461 	return rv;
462 }
463 
464 /*
465  * We want to regularly clean the cache, so we need to schedule some work ...
466  */
467 static void do_cache_clean(struct work_struct *work)
468 {
469 	int delay = 5;
470 	if (cache_clean() == -1)
471 		delay = 30*HZ;
472 
473 	if (list_empty(&cache_list))
474 		delay = 0;
475 
476 	if (delay)
477 		schedule_delayed_work(&cache_cleaner, delay);
478 }
479 
480 
481 /*
482  * Clean all caches promptly.  This just calls cache_clean
483  * repeatedly until we are sure that every cache has had a chance to
484  * be fully cleaned
485  */
486 void cache_flush(void)
487 {
488 	while (cache_clean() != -1)
489 		cond_resched();
490 	while (cache_clean() != -1)
491 		cond_resched();
492 }
493 
494 void cache_purge(struct cache_detail *detail)
495 {
496 	detail->flush_time = LONG_MAX;
497 	detail->nextcheck = get_seconds();
498 	cache_flush();
499 	detail->flush_time = 1;
500 }
501 
502 
503 
504 /*
505  * Deferral and Revisiting of Requests.
506  *
507  * If a cache lookup finds a pending entry, we
508  * need to defer the request and revisit it later.
509  * All deferred requests are stored in a hash table,
510  * indexed by "struct cache_head *".
511  * As it may be wasteful to store a whole request
512  * structure, we allow the request to provide a
513  * deferred form, which must contain a
514  * 'struct cache_deferred_req'
515  * This cache_deferred_req contains a method to allow
516  * it to be revisited when cache info is available
517  */
518 
519 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
520 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
521 
522 #define	DFR_MAX	300	/* ??? */
523 
524 static DEFINE_SPINLOCK(cache_defer_lock);
525 static LIST_HEAD(cache_defer_list);
526 static struct list_head cache_defer_hash[DFR_HASHSIZE];
527 static int cache_defer_cnt;
528 
529 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
530 {
531 	struct cache_deferred_req *dreq;
532 	int hash = DFR_HASH(item);
533 
534 	if (cache_defer_cnt >= DFR_MAX) {
535 		/* too much in the cache, randomly drop this one,
536 		 * or continue and drop the oldest below
537 		 */
538 		if (net_random()&1)
539 			return -ETIMEDOUT;
540 	}
541 	dreq = req->defer(req);
542 	if (dreq == NULL)
543 		return -ETIMEDOUT;
544 
545 	dreq->item = item;
546 	dreq->recv_time = get_seconds();
547 
548 	spin_lock(&cache_defer_lock);
549 
550 	list_add(&dreq->recent, &cache_defer_list);
551 
552 	if (cache_defer_hash[hash].next == NULL)
553 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
554 	list_add(&dreq->hash, &cache_defer_hash[hash]);
555 
556 	/* it is in, now maybe clean up */
557 	dreq = NULL;
558 	if (++cache_defer_cnt > DFR_MAX) {
559 		dreq = list_entry(cache_defer_list.prev,
560 				  struct cache_deferred_req, recent);
561 		list_del(&dreq->recent);
562 		list_del(&dreq->hash);
563 		cache_defer_cnt--;
564 	}
565 	spin_unlock(&cache_defer_lock);
566 
567 	if (dreq) {
568 		/* there was one too many */
569 		dreq->revisit(dreq, 1);
570 	}
571 	if (!test_bit(CACHE_PENDING, &item->flags)) {
572 		/* must have just been validated... */
573 		cache_revisit_request(item);
574 	}
575 	return 0;
576 }
577 
578 static void cache_revisit_request(struct cache_head *item)
579 {
580 	struct cache_deferred_req *dreq;
581 	struct list_head pending;
582 
583 	struct list_head *lp;
584 	int hash = DFR_HASH(item);
585 
586 	INIT_LIST_HEAD(&pending);
587 	spin_lock(&cache_defer_lock);
588 
589 	lp = cache_defer_hash[hash].next;
590 	if (lp) {
591 		while (lp != &cache_defer_hash[hash]) {
592 			dreq = list_entry(lp, struct cache_deferred_req, hash);
593 			lp = lp->next;
594 			if (dreq->item == item) {
595 				list_del(&dreq->hash);
596 				list_move(&dreq->recent, &pending);
597 				cache_defer_cnt--;
598 			}
599 		}
600 	}
601 	spin_unlock(&cache_defer_lock);
602 
603 	while (!list_empty(&pending)) {
604 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
605 		list_del_init(&dreq->recent);
606 		dreq->revisit(dreq, 0);
607 	}
608 }
609 
610 void cache_clean_deferred(void *owner)
611 {
612 	struct cache_deferred_req *dreq, *tmp;
613 	struct list_head pending;
614 
615 
616 	INIT_LIST_HEAD(&pending);
617 	spin_lock(&cache_defer_lock);
618 
619 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
620 		if (dreq->owner == owner) {
621 			list_del(&dreq->hash);
622 			list_move(&dreq->recent, &pending);
623 			cache_defer_cnt--;
624 		}
625 	}
626 	spin_unlock(&cache_defer_lock);
627 
628 	while (!list_empty(&pending)) {
629 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
630 		list_del_init(&dreq->recent);
631 		dreq->revisit(dreq, 1);
632 	}
633 }
634 
635 /*
636  * communicate with user-space
637  *
638  * We have a magic /proc file - /proc/sunrpc/cache
639  * On read, you get a full request, or block
640  * On write, an update request is processed
641  * Poll works if anything to read, and always allows write
642  *
643  * Implemented by linked list of requests.  Each open file has
644  * a ->private that also exists in this list.  New request are added
645  * to the end and may wakeup and preceding readers.
646  * New readers are added to the head.  If, on read, an item is found with
647  * CACHE_UPCALLING clear, we free it from the list.
648  *
649  */
650 
651 static DEFINE_SPINLOCK(queue_lock);
652 static DEFINE_MUTEX(queue_io_mutex);
653 
654 struct cache_queue {
655 	struct list_head	list;
656 	int			reader;	/* if 0, then request */
657 };
658 struct cache_request {
659 	struct cache_queue	q;
660 	struct cache_head	*item;
661 	char			* buf;
662 	int			len;
663 	int			readers;
664 };
665 struct cache_reader {
666 	struct cache_queue	q;
667 	int			offset;	/* if non-0, we have a refcnt on next request */
668 };
669 
670 static ssize_t
671 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
672 {
673 	struct cache_reader *rp = filp->private_data;
674 	struct cache_request *rq;
675 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
676 	int err;
677 
678 	if (count == 0)
679 		return 0;
680 
681 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
682 			      * readers on this file */
683  again:
684 	spin_lock(&queue_lock);
685 	/* need to find next request */
686 	while (rp->q.list.next != &cd->queue &&
687 	       list_entry(rp->q.list.next, struct cache_queue, list)
688 	       ->reader) {
689 		struct list_head *next = rp->q.list.next;
690 		list_move(&rp->q.list, next);
691 	}
692 	if (rp->q.list.next == &cd->queue) {
693 		spin_unlock(&queue_lock);
694 		mutex_unlock(&queue_io_mutex);
695 		BUG_ON(rp->offset);
696 		return 0;
697 	}
698 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
699 	BUG_ON(rq->q.reader);
700 	if (rp->offset == 0)
701 		rq->readers++;
702 	spin_unlock(&queue_lock);
703 
704 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
705 		err = -EAGAIN;
706 		spin_lock(&queue_lock);
707 		list_move(&rp->q.list, &rq->q.list);
708 		spin_unlock(&queue_lock);
709 	} else {
710 		if (rp->offset + count > rq->len)
711 			count = rq->len - rp->offset;
712 		err = -EFAULT;
713 		if (copy_to_user(buf, rq->buf + rp->offset, count))
714 			goto out;
715 		rp->offset += count;
716 		if (rp->offset >= rq->len) {
717 			rp->offset = 0;
718 			spin_lock(&queue_lock);
719 			list_move(&rp->q.list, &rq->q.list);
720 			spin_unlock(&queue_lock);
721 		}
722 		err = 0;
723 	}
724  out:
725 	if (rp->offset == 0) {
726 		/* need to release rq */
727 		spin_lock(&queue_lock);
728 		rq->readers--;
729 		if (rq->readers == 0 &&
730 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
731 			list_del(&rq->q.list);
732 			spin_unlock(&queue_lock);
733 			cache_put(rq->item, cd);
734 			kfree(rq->buf);
735 			kfree(rq);
736 		} else
737 			spin_unlock(&queue_lock);
738 	}
739 	if (err == -EAGAIN)
740 		goto again;
741 	mutex_unlock(&queue_io_mutex);
742 	return err ? err :  count;
743 }
744 
745 static char write_buf[8192]; /* protected by queue_io_mutex */
746 
747 static ssize_t
748 cache_write(struct file *filp, const char __user *buf, size_t count,
749 	    loff_t *ppos)
750 {
751 	int err;
752 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
753 
754 	if (count == 0)
755 		return 0;
756 	if (count >= sizeof(write_buf))
757 		return -EINVAL;
758 
759 	mutex_lock(&queue_io_mutex);
760 
761 	if (copy_from_user(write_buf, buf, count)) {
762 		mutex_unlock(&queue_io_mutex);
763 		return -EFAULT;
764 	}
765 	write_buf[count] = '\0';
766 	if (cd->cache_parse)
767 		err = cd->cache_parse(cd, write_buf, count);
768 	else
769 		err = -EINVAL;
770 
771 	mutex_unlock(&queue_io_mutex);
772 	return err ? err : count;
773 }
774 
775 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
776 
777 static unsigned int
778 cache_poll(struct file *filp, poll_table *wait)
779 {
780 	unsigned int mask;
781 	struct cache_reader *rp = filp->private_data;
782 	struct cache_queue *cq;
783 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
784 
785 	poll_wait(filp, &queue_wait, wait);
786 
787 	/* alway allow write */
788 	mask = POLL_OUT | POLLWRNORM;
789 
790 	if (!rp)
791 		return mask;
792 
793 	spin_lock(&queue_lock);
794 
795 	for (cq= &rp->q; &cq->list != &cd->queue;
796 	     cq = list_entry(cq->list.next, struct cache_queue, list))
797 		if (!cq->reader) {
798 			mask |= POLLIN | POLLRDNORM;
799 			break;
800 		}
801 	spin_unlock(&queue_lock);
802 	return mask;
803 }
804 
805 static int
806 cache_ioctl(struct inode *ino, struct file *filp,
807 	    unsigned int cmd, unsigned long arg)
808 {
809 	int len = 0;
810 	struct cache_reader *rp = filp->private_data;
811 	struct cache_queue *cq;
812 	struct cache_detail *cd = PDE(ino)->data;
813 
814 	if (cmd != FIONREAD || !rp)
815 		return -EINVAL;
816 
817 	spin_lock(&queue_lock);
818 
819 	/* only find the length remaining in current request,
820 	 * or the length of the next request
821 	 */
822 	for (cq= &rp->q; &cq->list != &cd->queue;
823 	     cq = list_entry(cq->list.next, struct cache_queue, list))
824 		if (!cq->reader) {
825 			struct cache_request *cr =
826 				container_of(cq, struct cache_request, q);
827 			len = cr->len - rp->offset;
828 			break;
829 		}
830 	spin_unlock(&queue_lock);
831 
832 	return put_user(len, (int __user *)arg);
833 }
834 
835 static int
836 cache_open(struct inode *inode, struct file *filp)
837 {
838 	struct cache_reader *rp = NULL;
839 
840 	nonseekable_open(inode, filp);
841 	if (filp->f_mode & FMODE_READ) {
842 		struct cache_detail *cd = PDE(inode)->data;
843 
844 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
845 		if (!rp)
846 			return -ENOMEM;
847 		rp->offset = 0;
848 		rp->q.reader = 1;
849 		atomic_inc(&cd->readers);
850 		spin_lock(&queue_lock);
851 		list_add(&rp->q.list, &cd->queue);
852 		spin_unlock(&queue_lock);
853 	}
854 	filp->private_data = rp;
855 	return 0;
856 }
857 
858 static int
859 cache_release(struct inode *inode, struct file *filp)
860 {
861 	struct cache_reader *rp = filp->private_data;
862 	struct cache_detail *cd = PDE(inode)->data;
863 
864 	if (rp) {
865 		spin_lock(&queue_lock);
866 		if (rp->offset) {
867 			struct cache_queue *cq;
868 			for (cq= &rp->q; &cq->list != &cd->queue;
869 			     cq = list_entry(cq->list.next, struct cache_queue, list))
870 				if (!cq->reader) {
871 					container_of(cq, struct cache_request, q)
872 						->readers--;
873 					break;
874 				}
875 			rp->offset = 0;
876 		}
877 		list_del(&rp->q.list);
878 		spin_unlock(&queue_lock);
879 
880 		filp->private_data = NULL;
881 		kfree(rp);
882 
883 		cd->last_close = get_seconds();
884 		atomic_dec(&cd->readers);
885 	}
886 	return 0;
887 }
888 
889 
890 
891 static const struct file_operations cache_file_operations = {
892 	.owner		= THIS_MODULE,
893 	.llseek		= no_llseek,
894 	.read		= cache_read,
895 	.write		= cache_write,
896 	.poll		= cache_poll,
897 	.ioctl		= cache_ioctl, /* for FIONREAD */
898 	.open		= cache_open,
899 	.release	= cache_release,
900 };
901 
902 
903 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
904 {
905 	struct cache_queue *cq;
906 	spin_lock(&queue_lock);
907 	list_for_each_entry(cq, &detail->queue, list)
908 		if (!cq->reader) {
909 			struct cache_request *cr = container_of(cq, struct cache_request, q);
910 			if (cr->item != ch)
911 				continue;
912 			if (cr->readers != 0)
913 				continue;
914 			list_del(&cr->q.list);
915 			spin_unlock(&queue_lock);
916 			cache_put(cr->item, detail);
917 			kfree(cr->buf);
918 			kfree(cr);
919 			return;
920 		}
921 	spin_unlock(&queue_lock);
922 }
923 
924 /*
925  * Support routines for text-based upcalls.
926  * Fields are separated by spaces.
927  * Fields are either mangled to quote space tab newline slosh with slosh
928  * or a hexified with a leading \x
929  * Record is terminated with newline.
930  *
931  */
932 
933 void qword_add(char **bpp, int *lp, char *str)
934 {
935 	char *bp = *bpp;
936 	int len = *lp;
937 	char c;
938 
939 	if (len < 0) return;
940 
941 	while ((c=*str++) && len)
942 		switch(c) {
943 		case ' ':
944 		case '\t':
945 		case '\n':
946 		case '\\':
947 			if (len >= 4) {
948 				*bp++ = '\\';
949 				*bp++ = '0' + ((c & 0300)>>6);
950 				*bp++ = '0' + ((c & 0070)>>3);
951 				*bp++ = '0' + ((c & 0007)>>0);
952 			}
953 			len -= 4;
954 			break;
955 		default:
956 			*bp++ = c;
957 			len--;
958 		}
959 	if (c || len <1) len = -1;
960 	else {
961 		*bp++ = ' ';
962 		len--;
963 	}
964 	*bpp = bp;
965 	*lp = len;
966 }
967 
968 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
969 {
970 	char *bp = *bpp;
971 	int len = *lp;
972 
973 	if (len < 0) return;
974 
975 	if (len > 2) {
976 		*bp++ = '\\';
977 		*bp++ = 'x';
978 		len -= 2;
979 		while (blen && len >= 2) {
980 			unsigned char c = *buf++;
981 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
982 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
983 			len -= 2;
984 			blen--;
985 		}
986 	}
987 	if (blen || len<1) len = -1;
988 	else {
989 		*bp++ = ' ';
990 		len--;
991 	}
992 	*bpp = bp;
993 	*lp = len;
994 }
995 
996 static void warn_no_listener(struct cache_detail *detail)
997 {
998 	if (detail->last_warn != detail->last_close) {
999 		detail->last_warn = detail->last_close;
1000 		if (detail->warn_no_listener)
1001 			detail->warn_no_listener(detail);
1002 	}
1003 }
1004 
1005 /*
1006  * register an upcall request to user-space.
1007  * Each request is at most one page long.
1008  */
1009 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1010 {
1011 
1012 	char *buf;
1013 	struct cache_request *crq;
1014 	char *bp;
1015 	int len;
1016 
1017 	if (detail->cache_request == NULL)
1018 		return -EINVAL;
1019 
1020 	if (atomic_read(&detail->readers) == 0 &&
1021 	    detail->last_close < get_seconds() - 30) {
1022 			warn_no_listener(detail);
1023 			return -EINVAL;
1024 	}
1025 
1026 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1027 	if (!buf)
1028 		return -EAGAIN;
1029 
1030 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1031 	if (!crq) {
1032 		kfree(buf);
1033 		return -EAGAIN;
1034 	}
1035 
1036 	bp = buf; len = PAGE_SIZE;
1037 
1038 	detail->cache_request(detail, h, &bp, &len);
1039 
1040 	if (len < 0) {
1041 		kfree(buf);
1042 		kfree(crq);
1043 		return -EAGAIN;
1044 	}
1045 	crq->q.reader = 0;
1046 	crq->item = cache_get(h);
1047 	crq->buf = buf;
1048 	crq->len = PAGE_SIZE - len;
1049 	crq->readers = 0;
1050 	spin_lock(&queue_lock);
1051 	list_add_tail(&crq->q.list, &detail->queue);
1052 	spin_unlock(&queue_lock);
1053 	wake_up(&queue_wait);
1054 	return 0;
1055 }
1056 
1057 /*
1058  * parse a message from user-space and pass it
1059  * to an appropriate cache
1060  * Messages are, like requests, separated into fields by
1061  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1062  *
1063  * Message is
1064  *   reply cachename expiry key ... content....
1065  *
1066  * key and content are both parsed by cache
1067  */
1068 
1069 #define isodigit(c) (isdigit(c) && c <= '7')
1070 int qword_get(char **bpp, char *dest, int bufsize)
1071 {
1072 	/* return bytes copied, or -1 on error */
1073 	char *bp = *bpp;
1074 	int len = 0;
1075 
1076 	while (*bp == ' ') bp++;
1077 
1078 	if (bp[0] == '\\' && bp[1] == 'x') {
1079 		/* HEX STRING */
1080 		bp += 2;
1081 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1082 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1083 			bp++;
1084 			byte <<= 4;
1085 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1086 			*dest++ = byte;
1087 			bp++;
1088 			len++;
1089 		}
1090 	} else {
1091 		/* text with \nnn octal quoting */
1092 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1093 			if (*bp == '\\' &&
1094 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1095 			    isodigit(bp[2]) &&
1096 			    isodigit(bp[3])) {
1097 				int byte = (*++bp -'0');
1098 				bp++;
1099 				byte = (byte << 3) | (*bp++ - '0');
1100 				byte = (byte << 3) | (*bp++ - '0');
1101 				*dest++ = byte;
1102 				len++;
1103 			} else {
1104 				*dest++ = *bp++;
1105 				len++;
1106 			}
1107 		}
1108 	}
1109 
1110 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1111 		return -1;
1112 	while (*bp == ' ') bp++;
1113 	*bpp = bp;
1114 	*dest = '\0';
1115 	return len;
1116 }
1117 
1118 
1119 /*
1120  * support /proc/sunrpc/cache/$CACHENAME/content
1121  * as a seqfile.
1122  * We call ->cache_show passing NULL for the item to
1123  * get a header, then pass each real item in the cache
1124  */
1125 
1126 struct handle {
1127 	struct cache_detail *cd;
1128 };
1129 
1130 static void *c_start(struct seq_file *m, loff_t *pos)
1131 {
1132 	loff_t n = *pos;
1133 	unsigned hash, entry;
1134 	struct cache_head *ch;
1135 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1136 
1137 
1138 	read_lock(&cd->hash_lock);
1139 	if (!n--)
1140 		return SEQ_START_TOKEN;
1141 	hash = n >> 32;
1142 	entry = n & ((1LL<<32) - 1);
1143 
1144 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1145 		if (!entry--)
1146 			return ch;
1147 	n &= ~((1LL<<32) - 1);
1148 	do {
1149 		hash++;
1150 		n += 1LL<<32;
1151 	} while(hash < cd->hash_size &&
1152 		cd->hash_table[hash]==NULL);
1153 	if (hash >= cd->hash_size)
1154 		return NULL;
1155 	*pos = n+1;
1156 	return cd->hash_table[hash];
1157 }
1158 
1159 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1160 {
1161 	struct cache_head *ch = p;
1162 	int hash = (*pos >> 32);
1163 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1164 
1165 	if (p == SEQ_START_TOKEN)
1166 		hash = 0;
1167 	else if (ch->next == NULL) {
1168 		hash++;
1169 		*pos += 1LL<<32;
1170 	} else {
1171 		++*pos;
1172 		return ch->next;
1173 	}
1174 	*pos &= ~((1LL<<32) - 1);
1175 	while (hash < cd->hash_size &&
1176 	       cd->hash_table[hash] == NULL) {
1177 		hash++;
1178 		*pos += 1LL<<32;
1179 	}
1180 	if (hash >= cd->hash_size)
1181 		return NULL;
1182 	++*pos;
1183 	return cd->hash_table[hash];
1184 }
1185 
1186 static void c_stop(struct seq_file *m, void *p)
1187 {
1188 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1189 	read_unlock(&cd->hash_lock);
1190 }
1191 
1192 static int c_show(struct seq_file *m, void *p)
1193 {
1194 	struct cache_head *cp = p;
1195 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1196 
1197 	if (p == SEQ_START_TOKEN)
1198 		return cd->cache_show(m, cd, NULL);
1199 
1200 	ifdebug(CACHE)
1201 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1202 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1203 	cache_get(cp);
1204 	if (cache_check(cd, cp, NULL))
1205 		/* cache_check does a cache_put on failure */
1206 		seq_printf(m, "# ");
1207 	else
1208 		cache_put(cp, cd);
1209 
1210 	return cd->cache_show(m, cd, cp);
1211 }
1212 
1213 static struct seq_operations cache_content_op = {
1214 	.start	= c_start,
1215 	.next	= c_next,
1216 	.stop	= c_stop,
1217 	.show	= c_show,
1218 };
1219 
1220 static int content_open(struct inode *inode, struct file *file)
1221 {
1222 	int res;
1223 	struct handle *han;
1224 	struct cache_detail *cd = PDE(inode)->data;
1225 
1226 	han = kmalloc(sizeof(*han), GFP_KERNEL);
1227 	if (han == NULL)
1228 		return -ENOMEM;
1229 
1230 	han->cd = cd;
1231 
1232 	res = seq_open(file, &cache_content_op);
1233 	if (res)
1234 		kfree(han);
1235 	else
1236 		((struct seq_file *)file->private_data)->private = han;
1237 
1238 	return res;
1239 }
1240 
1241 static const struct file_operations content_file_operations = {
1242 	.open		= content_open,
1243 	.read		= seq_read,
1244 	.llseek		= seq_lseek,
1245 	.release	= seq_release_private,
1246 };
1247 
1248 static ssize_t read_flush(struct file *file, char __user *buf,
1249 			    size_t count, loff_t *ppos)
1250 {
1251 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1252 	char tbuf[20];
1253 	unsigned long p = *ppos;
1254 	int len;
1255 
1256 	sprintf(tbuf, "%lu\n", cd->flush_time);
1257 	len = strlen(tbuf);
1258 	if (p >= len)
1259 		return 0;
1260 	len -= p;
1261 	if (len > count) len = count;
1262 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1263 		len = -EFAULT;
1264 	else
1265 		*ppos += len;
1266 	return len;
1267 }
1268 
1269 static ssize_t write_flush(struct file * file, const char __user * buf,
1270 			     size_t count, loff_t *ppos)
1271 {
1272 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1273 	char tbuf[20];
1274 	char *ep;
1275 	long flushtime;
1276 	if (*ppos || count > sizeof(tbuf)-1)
1277 		return -EINVAL;
1278 	if (copy_from_user(tbuf, buf, count))
1279 		return -EFAULT;
1280 	tbuf[count] = 0;
1281 	flushtime = simple_strtoul(tbuf, &ep, 0);
1282 	if (*ep && *ep != '\n')
1283 		return -EINVAL;
1284 
1285 	cd->flush_time = flushtime;
1286 	cd->nextcheck = get_seconds();
1287 	cache_flush();
1288 
1289 	*ppos += count;
1290 	return count;
1291 }
1292 
1293 static const struct file_operations cache_flush_operations = {
1294 	.open		= nonseekable_open,
1295 	.read		= read_flush,
1296 	.write		= write_flush,
1297 };
1298