xref: /openbmc/linux/net/sunrpc/cache.c (revision 545e4006)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	/* must fully initialise 'new', else
75 	 * we might get lose if we need to
76 	 * cache_put it soon.
77 	 */
78 	cache_init(new);
79 	detail->init(new, key);
80 
81 	write_lock(&detail->hash_lock);
82 
83 	/* check if entry appeared while we slept */
84 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 		struct cache_head *tmp = *hp;
86 		if (detail->match(tmp, key)) {
87 			cache_get(tmp);
88 			write_unlock(&detail->hash_lock);
89 			cache_put(new, detail);
90 			return tmp;
91 		}
92 	}
93 	new->next = *head;
94 	*head = new;
95 	detail->entries++;
96 	cache_get(new);
97 	write_unlock(&detail->hash_lock);
98 
99 	return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102 
103 
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105 
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108 	head->expiry_time = expiry;
109 	head->last_refresh = get_seconds();
110 	return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112 
113 static void cache_fresh_unlocked(struct cache_head *head,
114 			struct cache_detail *detail, int new)
115 {
116 	if (new)
117 		cache_revisit_request(head);
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		queue_loose(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 	int is_new;
134 
135 	if (!test_bit(CACHE_VALID, &old->flags)) {
136 		write_lock(&detail->hash_lock);
137 		if (!test_bit(CACHE_VALID, &old->flags)) {
138 			if (test_bit(CACHE_NEGATIVE, &new->flags))
139 				set_bit(CACHE_NEGATIVE, &old->flags);
140 			else
141 				detail->update(old, new);
142 			is_new = cache_fresh_locked(old, new->expiry_time);
143 			write_unlock(&detail->hash_lock);
144 			cache_fresh_unlocked(old, detail, is_new);
145 			return old;
146 		}
147 		write_unlock(&detail->hash_lock);
148 	}
149 	/* We need to insert a new entry */
150 	tmp = detail->alloc();
151 	if (!tmp) {
152 		cache_put(old, detail);
153 		return NULL;
154 	}
155 	cache_init(tmp);
156 	detail->init(tmp, old);
157 	head = &detail->hash_table[hash];
158 
159 	write_lock(&detail->hash_lock);
160 	if (test_bit(CACHE_NEGATIVE, &new->flags))
161 		set_bit(CACHE_NEGATIVE, &tmp->flags);
162 	else
163 		detail->update(tmp, new);
164 	tmp->next = *head;
165 	*head = tmp;
166 	detail->entries++;
167 	cache_get(tmp);
168 	is_new = cache_fresh_locked(tmp, new->expiry_time);
169 	cache_fresh_locked(old, 0);
170 	write_unlock(&detail->hash_lock);
171 	cache_fresh_unlocked(tmp, detail, is_new);
172 	cache_fresh_unlocked(old, detail, 0);
173 	cache_put(old, detail);
174 	return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177 
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192 		    struct cache_head *h, struct cache_req *rqstp)
193 {
194 	int rv;
195 	long refresh_age, age;
196 
197 	/* First decide return status as best we can */
198 	if (!test_bit(CACHE_VALID, &h->flags) ||
199 	    h->expiry_time < get_seconds())
200 		rv = -EAGAIN;
201 	else if (detail->flush_time > h->last_refresh)
202 		rv = -EAGAIN;
203 	else {
204 		/* entry is valid */
205 		if (test_bit(CACHE_NEGATIVE, &h->flags))
206 			rv = -ENOENT;
207 		else rv = 0;
208 	}
209 
210 	/* now see if we want to start an upcall */
211 	refresh_age = (h->expiry_time - h->last_refresh);
212 	age = get_seconds() - h->last_refresh;
213 
214 	if (rqstp == NULL) {
215 		if (rv == -EAGAIN)
216 			rv = -ENOENT;
217 	} else if (rv == -EAGAIN || age > refresh_age/2) {
218 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219 				refresh_age, age);
220 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221 			switch (cache_make_upcall(detail, h)) {
222 			case -EINVAL:
223 				clear_bit(CACHE_PENDING, &h->flags);
224 				if (rv == -EAGAIN) {
225 					set_bit(CACHE_NEGATIVE, &h->flags);
226 					cache_fresh_unlocked(h, detail,
227 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228 					rv = -ENOENT;
229 				}
230 				break;
231 
232 			case -EAGAIN:
233 				clear_bit(CACHE_PENDING, &h->flags);
234 				cache_revisit_request(h);
235 				break;
236 			}
237 		}
238 	}
239 
240 	if (rv == -EAGAIN)
241 		if (cache_defer_req(rqstp, h) != 0)
242 			rv = -ETIMEDOUT;
243 
244 	if (rv)
245 		cache_put(h, detail);
246 	return rv;
247 }
248 EXPORT_SYMBOL(cache_check);
249 
250 /*
251  * caches need to be periodically cleaned.
252  * For this we maintain a list of cache_detail and
253  * a current pointer into that list and into the table
254  * for that entry.
255  *
256  * Each time clean_cache is called it finds the next non-empty entry
257  * in the current table and walks the list in that entry
258  * looking for entries that can be removed.
259  *
260  * An entry gets removed if:
261  * - The expiry is before current time
262  * - The last_refresh time is before the flush_time for that cache
263  *
264  * later we might drop old entries with non-NEVER expiry if that table
265  * is getting 'full' for some definition of 'full'
266  *
267  * The question of "how often to scan a table" is an interesting one
268  * and is answered in part by the use of the "nextcheck" field in the
269  * cache_detail.
270  * When a scan of a table begins, the nextcheck field is set to a time
271  * that is well into the future.
272  * While scanning, if an expiry time is found that is earlier than the
273  * current nextcheck time, nextcheck is set to that expiry time.
274  * If the flush_time is ever set to a time earlier than the nextcheck
275  * time, the nextcheck time is then set to that flush_time.
276  *
277  * A table is then only scanned if the current time is at least
278  * the nextcheck time.
279  *
280  */
281 
282 static LIST_HEAD(cache_list);
283 static DEFINE_SPINLOCK(cache_list_lock);
284 static struct cache_detail *current_detail;
285 static int current_index;
286 
287 static const struct file_operations cache_file_operations;
288 static const struct file_operations content_file_operations;
289 static const struct file_operations cache_flush_operations;
290 
291 static void do_cache_clean(struct work_struct *work);
292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293 
294 static void remove_cache_proc_entries(struct cache_detail *cd)
295 {
296 	if (cd->proc_ent == NULL)
297 		return;
298 	if (cd->flush_ent)
299 		remove_proc_entry("flush", cd->proc_ent);
300 	if (cd->channel_ent)
301 		remove_proc_entry("channel", cd->proc_ent);
302 	if (cd->content_ent)
303 		remove_proc_entry("content", cd->proc_ent);
304 	cd->proc_ent = NULL;
305 	remove_proc_entry(cd->name, proc_net_rpc);
306 }
307 
308 #ifdef CONFIG_PROC_FS
309 static int create_cache_proc_entries(struct cache_detail *cd)
310 {
311 	struct proc_dir_entry *p;
312 
313 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314 	if (cd->proc_ent == NULL)
315 		goto out_nomem;
316 	cd->proc_ent->owner = cd->owner;
317 	cd->channel_ent = cd->content_ent = NULL;
318 
319 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
320 			     cd->proc_ent, &cache_flush_operations, cd);
321 	cd->flush_ent = p;
322 	if (p == NULL)
323 		goto out_nomem;
324 	p->owner = cd->owner;
325 
326 	if (cd->cache_request || cd->cache_parse) {
327 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
328 				     cd->proc_ent, &cache_file_operations, cd);
329 		cd->channel_ent = p;
330 		if (p == NULL)
331 			goto out_nomem;
332 		p->owner = cd->owner;
333 	}
334 	if (cd->cache_show) {
335 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
336 				cd->proc_ent, &content_file_operations, cd);
337 		cd->content_ent = p;
338 		if (p == NULL)
339 			goto out_nomem;
340 		p->owner = cd->owner;
341 	}
342 	return 0;
343 out_nomem:
344 	remove_cache_proc_entries(cd);
345 	return -ENOMEM;
346 }
347 #else /* CONFIG_PROC_FS */
348 static int create_cache_proc_entries(struct cache_detail *cd)
349 {
350 	return 0;
351 }
352 #endif
353 
354 int cache_register(struct cache_detail *cd)
355 {
356 	int ret;
357 
358 	ret = create_cache_proc_entries(cd);
359 	if (ret)
360 		return ret;
361 	rwlock_init(&cd->hash_lock);
362 	INIT_LIST_HEAD(&cd->queue);
363 	spin_lock(&cache_list_lock);
364 	cd->nextcheck = 0;
365 	cd->entries = 0;
366 	atomic_set(&cd->readers, 0);
367 	cd->last_close = 0;
368 	cd->last_warn = -1;
369 	list_add(&cd->others, &cache_list);
370 	spin_unlock(&cache_list_lock);
371 
372 	/* start the cleaning process */
373 	schedule_delayed_work(&cache_cleaner, 0);
374 	return 0;
375 }
376 EXPORT_SYMBOL(cache_register);
377 
378 void cache_unregister(struct cache_detail *cd)
379 {
380 	cache_purge(cd);
381 	spin_lock(&cache_list_lock);
382 	write_lock(&cd->hash_lock);
383 	if (cd->entries || atomic_read(&cd->inuse)) {
384 		write_unlock(&cd->hash_lock);
385 		spin_unlock(&cache_list_lock);
386 		goto out;
387 	}
388 	if (current_detail == cd)
389 		current_detail = NULL;
390 	list_del_init(&cd->others);
391 	write_unlock(&cd->hash_lock);
392 	spin_unlock(&cache_list_lock);
393 	remove_cache_proc_entries(cd);
394 	if (list_empty(&cache_list)) {
395 		/* module must be being unloaded so its safe to kill the worker */
396 		cancel_delayed_work_sync(&cache_cleaner);
397 	}
398 	return;
399 out:
400 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
401 }
402 EXPORT_SYMBOL(cache_unregister);
403 
404 /* clean cache tries to find something to clean
405  * and cleans it.
406  * It returns 1 if it cleaned something,
407  *            0 if it didn't find anything this time
408  *           -1 if it fell off the end of the list.
409  */
410 static int cache_clean(void)
411 {
412 	int rv = 0;
413 	struct list_head *next;
414 
415 	spin_lock(&cache_list_lock);
416 
417 	/* find a suitable table if we don't already have one */
418 	while (current_detail == NULL ||
419 	    current_index >= current_detail->hash_size) {
420 		if (current_detail)
421 			next = current_detail->others.next;
422 		else
423 			next = cache_list.next;
424 		if (next == &cache_list) {
425 			current_detail = NULL;
426 			spin_unlock(&cache_list_lock);
427 			return -1;
428 		}
429 		current_detail = list_entry(next, struct cache_detail, others);
430 		if (current_detail->nextcheck > get_seconds())
431 			current_index = current_detail->hash_size;
432 		else {
433 			current_index = 0;
434 			current_detail->nextcheck = get_seconds()+30*60;
435 		}
436 	}
437 
438 	/* find a non-empty bucket in the table */
439 	while (current_detail &&
440 	       current_index < current_detail->hash_size &&
441 	       current_detail->hash_table[current_index] == NULL)
442 		current_index++;
443 
444 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
445 
446 	if (current_detail && current_index < current_detail->hash_size) {
447 		struct cache_head *ch, **cp;
448 		struct cache_detail *d;
449 
450 		write_lock(&current_detail->hash_lock);
451 
452 		/* Ok, now to clean this strand */
453 
454 		cp = & current_detail->hash_table[current_index];
455 		ch = *cp;
456 		for (; ch; cp= & ch->next, ch= *cp) {
457 			if (current_detail->nextcheck > ch->expiry_time)
458 				current_detail->nextcheck = ch->expiry_time+1;
459 			if (ch->expiry_time >= get_seconds()
460 			    && ch->last_refresh >= current_detail->flush_time
461 				)
462 				continue;
463 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
464 				queue_loose(current_detail, ch);
465 
466 			if (atomic_read(&ch->ref.refcount) == 1)
467 				break;
468 		}
469 		if (ch) {
470 			*cp = ch->next;
471 			ch->next = NULL;
472 			current_detail->entries--;
473 			rv = 1;
474 		}
475 		write_unlock(&current_detail->hash_lock);
476 		d = current_detail;
477 		if (!ch)
478 			current_index ++;
479 		spin_unlock(&cache_list_lock);
480 		if (ch)
481 			cache_put(ch, d);
482 	} else
483 		spin_unlock(&cache_list_lock);
484 
485 	return rv;
486 }
487 
488 /*
489  * We want to regularly clean the cache, so we need to schedule some work ...
490  */
491 static void do_cache_clean(struct work_struct *work)
492 {
493 	int delay = 5;
494 	if (cache_clean() == -1)
495 		delay = 30*HZ;
496 
497 	if (list_empty(&cache_list))
498 		delay = 0;
499 
500 	if (delay)
501 		schedule_delayed_work(&cache_cleaner, delay);
502 }
503 
504 
505 /*
506  * Clean all caches promptly.  This just calls cache_clean
507  * repeatedly until we are sure that every cache has had a chance to
508  * be fully cleaned
509  */
510 void cache_flush(void)
511 {
512 	while (cache_clean() != -1)
513 		cond_resched();
514 	while (cache_clean() != -1)
515 		cond_resched();
516 }
517 EXPORT_SYMBOL(cache_flush);
518 
519 void cache_purge(struct cache_detail *detail)
520 {
521 	detail->flush_time = LONG_MAX;
522 	detail->nextcheck = get_seconds();
523 	cache_flush();
524 	detail->flush_time = 1;
525 }
526 EXPORT_SYMBOL(cache_purge);
527 
528 
529 /*
530  * Deferral and Revisiting of Requests.
531  *
532  * If a cache lookup finds a pending entry, we
533  * need to defer the request and revisit it later.
534  * All deferred requests are stored in a hash table,
535  * indexed by "struct cache_head *".
536  * As it may be wasteful to store a whole request
537  * structure, we allow the request to provide a
538  * deferred form, which must contain a
539  * 'struct cache_deferred_req'
540  * This cache_deferred_req contains a method to allow
541  * it to be revisited when cache info is available
542  */
543 
544 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
545 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
546 
547 #define	DFR_MAX	300	/* ??? */
548 
549 static DEFINE_SPINLOCK(cache_defer_lock);
550 static LIST_HEAD(cache_defer_list);
551 static struct list_head cache_defer_hash[DFR_HASHSIZE];
552 static int cache_defer_cnt;
553 
554 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
555 {
556 	struct cache_deferred_req *dreq;
557 	int hash = DFR_HASH(item);
558 
559 	if (cache_defer_cnt >= DFR_MAX) {
560 		/* too much in the cache, randomly drop this one,
561 		 * or continue and drop the oldest below
562 		 */
563 		if (net_random()&1)
564 			return -ETIMEDOUT;
565 	}
566 	dreq = req->defer(req);
567 	if (dreq == NULL)
568 		return -ETIMEDOUT;
569 
570 	dreq->item = item;
571 
572 	spin_lock(&cache_defer_lock);
573 
574 	list_add(&dreq->recent, &cache_defer_list);
575 
576 	if (cache_defer_hash[hash].next == NULL)
577 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
578 	list_add(&dreq->hash, &cache_defer_hash[hash]);
579 
580 	/* it is in, now maybe clean up */
581 	dreq = NULL;
582 	if (++cache_defer_cnt > DFR_MAX) {
583 		dreq = list_entry(cache_defer_list.prev,
584 				  struct cache_deferred_req, recent);
585 		list_del(&dreq->recent);
586 		list_del(&dreq->hash);
587 		cache_defer_cnt--;
588 	}
589 	spin_unlock(&cache_defer_lock);
590 
591 	if (dreq) {
592 		/* there was one too many */
593 		dreq->revisit(dreq, 1);
594 	}
595 	if (!test_bit(CACHE_PENDING, &item->flags)) {
596 		/* must have just been validated... */
597 		cache_revisit_request(item);
598 	}
599 	return 0;
600 }
601 
602 static void cache_revisit_request(struct cache_head *item)
603 {
604 	struct cache_deferred_req *dreq;
605 	struct list_head pending;
606 
607 	struct list_head *lp;
608 	int hash = DFR_HASH(item);
609 
610 	INIT_LIST_HEAD(&pending);
611 	spin_lock(&cache_defer_lock);
612 
613 	lp = cache_defer_hash[hash].next;
614 	if (lp) {
615 		while (lp != &cache_defer_hash[hash]) {
616 			dreq = list_entry(lp, struct cache_deferred_req, hash);
617 			lp = lp->next;
618 			if (dreq->item == item) {
619 				list_del(&dreq->hash);
620 				list_move(&dreq->recent, &pending);
621 				cache_defer_cnt--;
622 			}
623 		}
624 	}
625 	spin_unlock(&cache_defer_lock);
626 
627 	while (!list_empty(&pending)) {
628 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
629 		list_del_init(&dreq->recent);
630 		dreq->revisit(dreq, 0);
631 	}
632 }
633 
634 void cache_clean_deferred(void *owner)
635 {
636 	struct cache_deferred_req *dreq, *tmp;
637 	struct list_head pending;
638 
639 
640 	INIT_LIST_HEAD(&pending);
641 	spin_lock(&cache_defer_lock);
642 
643 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
644 		if (dreq->owner == owner) {
645 			list_del(&dreq->hash);
646 			list_move(&dreq->recent, &pending);
647 			cache_defer_cnt--;
648 		}
649 	}
650 	spin_unlock(&cache_defer_lock);
651 
652 	while (!list_empty(&pending)) {
653 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
654 		list_del_init(&dreq->recent);
655 		dreq->revisit(dreq, 1);
656 	}
657 }
658 
659 /*
660  * communicate with user-space
661  *
662  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
663  * On read, you get a full request, or block.
664  * On write, an update request is processed.
665  * Poll works if anything to read, and always allows write.
666  *
667  * Implemented by linked list of requests.  Each open file has
668  * a ->private that also exists in this list.  New requests are added
669  * to the end and may wakeup and preceding readers.
670  * New readers are added to the head.  If, on read, an item is found with
671  * CACHE_UPCALLING clear, we free it from the list.
672  *
673  */
674 
675 static DEFINE_SPINLOCK(queue_lock);
676 static DEFINE_MUTEX(queue_io_mutex);
677 
678 struct cache_queue {
679 	struct list_head	list;
680 	int			reader;	/* if 0, then request */
681 };
682 struct cache_request {
683 	struct cache_queue	q;
684 	struct cache_head	*item;
685 	char			* buf;
686 	int			len;
687 	int			readers;
688 };
689 struct cache_reader {
690 	struct cache_queue	q;
691 	int			offset;	/* if non-0, we have a refcnt on next request */
692 };
693 
694 static ssize_t
695 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
696 {
697 	struct cache_reader *rp = filp->private_data;
698 	struct cache_request *rq;
699 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
700 	int err;
701 
702 	if (count == 0)
703 		return 0;
704 
705 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
706 			      * readers on this file */
707  again:
708 	spin_lock(&queue_lock);
709 	/* need to find next request */
710 	while (rp->q.list.next != &cd->queue &&
711 	       list_entry(rp->q.list.next, struct cache_queue, list)
712 	       ->reader) {
713 		struct list_head *next = rp->q.list.next;
714 		list_move(&rp->q.list, next);
715 	}
716 	if (rp->q.list.next == &cd->queue) {
717 		spin_unlock(&queue_lock);
718 		mutex_unlock(&queue_io_mutex);
719 		BUG_ON(rp->offset);
720 		return 0;
721 	}
722 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
723 	BUG_ON(rq->q.reader);
724 	if (rp->offset == 0)
725 		rq->readers++;
726 	spin_unlock(&queue_lock);
727 
728 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
729 		err = -EAGAIN;
730 		spin_lock(&queue_lock);
731 		list_move(&rp->q.list, &rq->q.list);
732 		spin_unlock(&queue_lock);
733 	} else {
734 		if (rp->offset + count > rq->len)
735 			count = rq->len - rp->offset;
736 		err = -EFAULT;
737 		if (copy_to_user(buf, rq->buf + rp->offset, count))
738 			goto out;
739 		rp->offset += count;
740 		if (rp->offset >= rq->len) {
741 			rp->offset = 0;
742 			spin_lock(&queue_lock);
743 			list_move(&rp->q.list, &rq->q.list);
744 			spin_unlock(&queue_lock);
745 		}
746 		err = 0;
747 	}
748  out:
749 	if (rp->offset == 0) {
750 		/* need to release rq */
751 		spin_lock(&queue_lock);
752 		rq->readers--;
753 		if (rq->readers == 0 &&
754 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
755 			list_del(&rq->q.list);
756 			spin_unlock(&queue_lock);
757 			cache_put(rq->item, cd);
758 			kfree(rq->buf);
759 			kfree(rq);
760 		} else
761 			spin_unlock(&queue_lock);
762 	}
763 	if (err == -EAGAIN)
764 		goto again;
765 	mutex_unlock(&queue_io_mutex);
766 	return err ? err :  count;
767 }
768 
769 static char write_buf[8192]; /* protected by queue_io_mutex */
770 
771 static ssize_t
772 cache_write(struct file *filp, const char __user *buf, size_t count,
773 	    loff_t *ppos)
774 {
775 	int err;
776 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
777 
778 	if (count == 0)
779 		return 0;
780 	if (count >= sizeof(write_buf))
781 		return -EINVAL;
782 
783 	mutex_lock(&queue_io_mutex);
784 
785 	if (copy_from_user(write_buf, buf, count)) {
786 		mutex_unlock(&queue_io_mutex);
787 		return -EFAULT;
788 	}
789 	write_buf[count] = '\0';
790 	if (cd->cache_parse)
791 		err = cd->cache_parse(cd, write_buf, count);
792 	else
793 		err = -EINVAL;
794 
795 	mutex_unlock(&queue_io_mutex);
796 	return err ? err : count;
797 }
798 
799 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
800 
801 static unsigned int
802 cache_poll(struct file *filp, poll_table *wait)
803 {
804 	unsigned int mask;
805 	struct cache_reader *rp = filp->private_data;
806 	struct cache_queue *cq;
807 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
808 
809 	poll_wait(filp, &queue_wait, wait);
810 
811 	/* alway allow write */
812 	mask = POLL_OUT | POLLWRNORM;
813 
814 	if (!rp)
815 		return mask;
816 
817 	spin_lock(&queue_lock);
818 
819 	for (cq= &rp->q; &cq->list != &cd->queue;
820 	     cq = list_entry(cq->list.next, struct cache_queue, list))
821 		if (!cq->reader) {
822 			mask |= POLLIN | POLLRDNORM;
823 			break;
824 		}
825 	spin_unlock(&queue_lock);
826 	return mask;
827 }
828 
829 static int
830 cache_ioctl(struct inode *ino, struct file *filp,
831 	    unsigned int cmd, unsigned long arg)
832 {
833 	int len = 0;
834 	struct cache_reader *rp = filp->private_data;
835 	struct cache_queue *cq;
836 	struct cache_detail *cd = PDE(ino)->data;
837 
838 	if (cmd != FIONREAD || !rp)
839 		return -EINVAL;
840 
841 	spin_lock(&queue_lock);
842 
843 	/* only find the length remaining in current request,
844 	 * or the length of the next request
845 	 */
846 	for (cq= &rp->q; &cq->list != &cd->queue;
847 	     cq = list_entry(cq->list.next, struct cache_queue, list))
848 		if (!cq->reader) {
849 			struct cache_request *cr =
850 				container_of(cq, struct cache_request, q);
851 			len = cr->len - rp->offset;
852 			break;
853 		}
854 	spin_unlock(&queue_lock);
855 
856 	return put_user(len, (int __user *)arg);
857 }
858 
859 static int
860 cache_open(struct inode *inode, struct file *filp)
861 {
862 	struct cache_reader *rp = NULL;
863 
864 	nonseekable_open(inode, filp);
865 	if (filp->f_mode & FMODE_READ) {
866 		struct cache_detail *cd = PDE(inode)->data;
867 
868 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
869 		if (!rp)
870 			return -ENOMEM;
871 		rp->offset = 0;
872 		rp->q.reader = 1;
873 		atomic_inc(&cd->readers);
874 		spin_lock(&queue_lock);
875 		list_add(&rp->q.list, &cd->queue);
876 		spin_unlock(&queue_lock);
877 	}
878 	filp->private_data = rp;
879 	return 0;
880 }
881 
882 static int
883 cache_release(struct inode *inode, struct file *filp)
884 {
885 	struct cache_reader *rp = filp->private_data;
886 	struct cache_detail *cd = PDE(inode)->data;
887 
888 	if (rp) {
889 		spin_lock(&queue_lock);
890 		if (rp->offset) {
891 			struct cache_queue *cq;
892 			for (cq= &rp->q; &cq->list != &cd->queue;
893 			     cq = list_entry(cq->list.next, struct cache_queue, list))
894 				if (!cq->reader) {
895 					container_of(cq, struct cache_request, q)
896 						->readers--;
897 					break;
898 				}
899 			rp->offset = 0;
900 		}
901 		list_del(&rp->q.list);
902 		spin_unlock(&queue_lock);
903 
904 		filp->private_data = NULL;
905 		kfree(rp);
906 
907 		cd->last_close = get_seconds();
908 		atomic_dec(&cd->readers);
909 	}
910 	return 0;
911 }
912 
913 
914 
915 static const struct file_operations cache_file_operations = {
916 	.owner		= THIS_MODULE,
917 	.llseek		= no_llseek,
918 	.read		= cache_read,
919 	.write		= cache_write,
920 	.poll		= cache_poll,
921 	.ioctl		= cache_ioctl, /* for FIONREAD */
922 	.open		= cache_open,
923 	.release	= cache_release,
924 };
925 
926 
927 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
928 {
929 	struct cache_queue *cq;
930 	spin_lock(&queue_lock);
931 	list_for_each_entry(cq, &detail->queue, list)
932 		if (!cq->reader) {
933 			struct cache_request *cr = container_of(cq, struct cache_request, q);
934 			if (cr->item != ch)
935 				continue;
936 			if (cr->readers != 0)
937 				continue;
938 			list_del(&cr->q.list);
939 			spin_unlock(&queue_lock);
940 			cache_put(cr->item, detail);
941 			kfree(cr->buf);
942 			kfree(cr);
943 			return;
944 		}
945 	spin_unlock(&queue_lock);
946 }
947 
948 /*
949  * Support routines for text-based upcalls.
950  * Fields are separated by spaces.
951  * Fields are either mangled to quote space tab newline slosh with slosh
952  * or a hexified with a leading \x
953  * Record is terminated with newline.
954  *
955  */
956 
957 void qword_add(char **bpp, int *lp, char *str)
958 {
959 	char *bp = *bpp;
960 	int len = *lp;
961 	char c;
962 
963 	if (len < 0) return;
964 
965 	while ((c=*str++) && len)
966 		switch(c) {
967 		case ' ':
968 		case '\t':
969 		case '\n':
970 		case '\\':
971 			if (len >= 4) {
972 				*bp++ = '\\';
973 				*bp++ = '0' + ((c & 0300)>>6);
974 				*bp++ = '0' + ((c & 0070)>>3);
975 				*bp++ = '0' + ((c & 0007)>>0);
976 			}
977 			len -= 4;
978 			break;
979 		default:
980 			*bp++ = c;
981 			len--;
982 		}
983 	if (c || len <1) len = -1;
984 	else {
985 		*bp++ = ' ';
986 		len--;
987 	}
988 	*bpp = bp;
989 	*lp = len;
990 }
991 EXPORT_SYMBOL(qword_add);
992 
993 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
994 {
995 	char *bp = *bpp;
996 	int len = *lp;
997 
998 	if (len < 0) return;
999 
1000 	if (len > 2) {
1001 		*bp++ = '\\';
1002 		*bp++ = 'x';
1003 		len -= 2;
1004 		while (blen && len >= 2) {
1005 			unsigned char c = *buf++;
1006 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1007 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1008 			len -= 2;
1009 			blen--;
1010 		}
1011 	}
1012 	if (blen || len<1) len = -1;
1013 	else {
1014 		*bp++ = ' ';
1015 		len--;
1016 	}
1017 	*bpp = bp;
1018 	*lp = len;
1019 }
1020 EXPORT_SYMBOL(qword_addhex);
1021 
1022 static void warn_no_listener(struct cache_detail *detail)
1023 {
1024 	if (detail->last_warn != detail->last_close) {
1025 		detail->last_warn = detail->last_close;
1026 		if (detail->warn_no_listener)
1027 			detail->warn_no_listener(detail);
1028 	}
1029 }
1030 
1031 /*
1032  * register an upcall request to user-space.
1033  * Each request is at most one page long.
1034  */
1035 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1036 {
1037 
1038 	char *buf;
1039 	struct cache_request *crq;
1040 	char *bp;
1041 	int len;
1042 
1043 	if (detail->cache_request == NULL)
1044 		return -EINVAL;
1045 
1046 	if (atomic_read(&detail->readers) == 0 &&
1047 	    detail->last_close < get_seconds() - 30) {
1048 			warn_no_listener(detail);
1049 			return -EINVAL;
1050 	}
1051 
1052 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1053 	if (!buf)
1054 		return -EAGAIN;
1055 
1056 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1057 	if (!crq) {
1058 		kfree(buf);
1059 		return -EAGAIN;
1060 	}
1061 
1062 	bp = buf; len = PAGE_SIZE;
1063 
1064 	detail->cache_request(detail, h, &bp, &len);
1065 
1066 	if (len < 0) {
1067 		kfree(buf);
1068 		kfree(crq);
1069 		return -EAGAIN;
1070 	}
1071 	crq->q.reader = 0;
1072 	crq->item = cache_get(h);
1073 	crq->buf = buf;
1074 	crq->len = PAGE_SIZE - len;
1075 	crq->readers = 0;
1076 	spin_lock(&queue_lock);
1077 	list_add_tail(&crq->q.list, &detail->queue);
1078 	spin_unlock(&queue_lock);
1079 	wake_up(&queue_wait);
1080 	return 0;
1081 }
1082 
1083 /*
1084  * parse a message from user-space and pass it
1085  * to an appropriate cache
1086  * Messages are, like requests, separated into fields by
1087  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1088  *
1089  * Message is
1090  *   reply cachename expiry key ... content....
1091  *
1092  * key and content are both parsed by cache
1093  */
1094 
1095 #define isodigit(c) (isdigit(c) && c <= '7')
1096 int qword_get(char **bpp, char *dest, int bufsize)
1097 {
1098 	/* return bytes copied, or -1 on error */
1099 	char *bp = *bpp;
1100 	int len = 0;
1101 
1102 	while (*bp == ' ') bp++;
1103 
1104 	if (bp[0] == '\\' && bp[1] == 'x') {
1105 		/* HEX STRING */
1106 		bp += 2;
1107 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1108 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1109 			bp++;
1110 			byte <<= 4;
1111 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1112 			*dest++ = byte;
1113 			bp++;
1114 			len++;
1115 		}
1116 	} else {
1117 		/* text with \nnn octal quoting */
1118 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1119 			if (*bp == '\\' &&
1120 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1121 			    isodigit(bp[2]) &&
1122 			    isodigit(bp[3])) {
1123 				int byte = (*++bp -'0');
1124 				bp++;
1125 				byte = (byte << 3) | (*bp++ - '0');
1126 				byte = (byte << 3) | (*bp++ - '0');
1127 				*dest++ = byte;
1128 				len++;
1129 			} else {
1130 				*dest++ = *bp++;
1131 				len++;
1132 			}
1133 		}
1134 	}
1135 
1136 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1137 		return -1;
1138 	while (*bp == ' ') bp++;
1139 	*bpp = bp;
1140 	*dest = '\0';
1141 	return len;
1142 }
1143 EXPORT_SYMBOL(qword_get);
1144 
1145 
1146 /*
1147  * support /proc/sunrpc/cache/$CACHENAME/content
1148  * as a seqfile.
1149  * We call ->cache_show passing NULL for the item to
1150  * get a header, then pass each real item in the cache
1151  */
1152 
1153 struct handle {
1154 	struct cache_detail *cd;
1155 };
1156 
1157 static void *c_start(struct seq_file *m, loff_t *pos)
1158 	__acquires(cd->hash_lock)
1159 {
1160 	loff_t n = *pos;
1161 	unsigned hash, entry;
1162 	struct cache_head *ch;
1163 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1164 
1165 
1166 	read_lock(&cd->hash_lock);
1167 	if (!n--)
1168 		return SEQ_START_TOKEN;
1169 	hash = n >> 32;
1170 	entry = n & ((1LL<<32) - 1);
1171 
1172 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1173 		if (!entry--)
1174 			return ch;
1175 	n &= ~((1LL<<32) - 1);
1176 	do {
1177 		hash++;
1178 		n += 1LL<<32;
1179 	} while(hash < cd->hash_size &&
1180 		cd->hash_table[hash]==NULL);
1181 	if (hash >= cd->hash_size)
1182 		return NULL;
1183 	*pos = n+1;
1184 	return cd->hash_table[hash];
1185 }
1186 
1187 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1188 {
1189 	struct cache_head *ch = p;
1190 	int hash = (*pos >> 32);
1191 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1192 
1193 	if (p == SEQ_START_TOKEN)
1194 		hash = 0;
1195 	else if (ch->next == NULL) {
1196 		hash++;
1197 		*pos += 1LL<<32;
1198 	} else {
1199 		++*pos;
1200 		return ch->next;
1201 	}
1202 	*pos &= ~((1LL<<32) - 1);
1203 	while (hash < cd->hash_size &&
1204 	       cd->hash_table[hash] == NULL) {
1205 		hash++;
1206 		*pos += 1LL<<32;
1207 	}
1208 	if (hash >= cd->hash_size)
1209 		return NULL;
1210 	++*pos;
1211 	return cd->hash_table[hash];
1212 }
1213 
1214 static void c_stop(struct seq_file *m, void *p)
1215 	__releases(cd->hash_lock)
1216 {
1217 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1218 	read_unlock(&cd->hash_lock);
1219 }
1220 
1221 static int c_show(struct seq_file *m, void *p)
1222 {
1223 	struct cache_head *cp = p;
1224 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1225 
1226 	if (p == SEQ_START_TOKEN)
1227 		return cd->cache_show(m, cd, NULL);
1228 
1229 	ifdebug(CACHE)
1230 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1231 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1232 	cache_get(cp);
1233 	if (cache_check(cd, cp, NULL))
1234 		/* cache_check does a cache_put on failure */
1235 		seq_printf(m, "# ");
1236 	else
1237 		cache_put(cp, cd);
1238 
1239 	return cd->cache_show(m, cd, cp);
1240 }
1241 
1242 static const struct seq_operations cache_content_op = {
1243 	.start	= c_start,
1244 	.next	= c_next,
1245 	.stop	= c_stop,
1246 	.show	= c_show,
1247 };
1248 
1249 static int content_open(struct inode *inode, struct file *file)
1250 {
1251 	struct handle *han;
1252 	struct cache_detail *cd = PDE(inode)->data;
1253 
1254 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1255 	if (han == NULL)
1256 		return -ENOMEM;
1257 
1258 	han->cd = cd;
1259 	return 0;
1260 }
1261 
1262 static const struct file_operations content_file_operations = {
1263 	.open		= content_open,
1264 	.read		= seq_read,
1265 	.llseek		= seq_lseek,
1266 	.release	= seq_release_private,
1267 };
1268 
1269 static ssize_t read_flush(struct file *file, char __user *buf,
1270 			    size_t count, loff_t *ppos)
1271 {
1272 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1273 	char tbuf[20];
1274 	unsigned long p = *ppos;
1275 	size_t len;
1276 
1277 	sprintf(tbuf, "%lu\n", cd->flush_time);
1278 	len = strlen(tbuf);
1279 	if (p >= len)
1280 		return 0;
1281 	len -= p;
1282 	if (len > count)
1283 		len = count;
1284 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1285 		return -EFAULT;
1286 	*ppos += len;
1287 	return len;
1288 }
1289 
1290 static ssize_t write_flush(struct file * file, const char __user * buf,
1291 			     size_t count, loff_t *ppos)
1292 {
1293 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1294 	char tbuf[20];
1295 	char *ep;
1296 	long flushtime;
1297 	if (*ppos || count > sizeof(tbuf)-1)
1298 		return -EINVAL;
1299 	if (copy_from_user(tbuf, buf, count))
1300 		return -EFAULT;
1301 	tbuf[count] = 0;
1302 	flushtime = simple_strtoul(tbuf, &ep, 0);
1303 	if (*ep && *ep != '\n')
1304 		return -EINVAL;
1305 
1306 	cd->flush_time = flushtime;
1307 	cd->nextcheck = get_seconds();
1308 	cache_flush();
1309 
1310 	*ppos += count;
1311 	return count;
1312 }
1313 
1314 static const struct file_operations cache_flush_operations = {
1315 	.open		= nonseekable_open,
1316 	.read		= read_flush,
1317 	.write		= write_flush,
1318 };
1319