1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 35 #define RPCDBG_FACILITY RPCDBG_CACHE 36 37 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 38 static void cache_revisit_request(struct cache_head *item); 39 40 static void cache_init(struct cache_head *h) 41 { 42 time_t now = get_seconds(); 43 h->next = NULL; 44 h->flags = 0; 45 kref_init(&h->ref); 46 h->expiry_time = now + CACHE_NEW_EXPIRY; 47 h->last_refresh = now; 48 } 49 50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 51 struct cache_head *key, int hash) 52 { 53 struct cache_head **head, **hp; 54 struct cache_head *new = NULL; 55 56 head = &detail->hash_table[hash]; 57 58 read_lock(&detail->hash_lock); 59 60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 61 struct cache_head *tmp = *hp; 62 if (detail->match(tmp, key)) { 63 cache_get(tmp); 64 read_unlock(&detail->hash_lock); 65 return tmp; 66 } 67 } 68 read_unlock(&detail->hash_lock); 69 /* Didn't find anything, insert an empty entry */ 70 71 new = detail->alloc(); 72 if (!new) 73 return NULL; 74 /* must fully initialise 'new', else 75 * we might get lose if we need to 76 * cache_put it soon. 77 */ 78 cache_init(new); 79 detail->init(new, key); 80 81 write_lock(&detail->hash_lock); 82 83 /* check if entry appeared while we slept */ 84 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 85 struct cache_head *tmp = *hp; 86 if (detail->match(tmp, key)) { 87 cache_get(tmp); 88 write_unlock(&detail->hash_lock); 89 cache_put(new, detail); 90 return tmp; 91 } 92 } 93 new->next = *head; 94 *head = new; 95 detail->entries++; 96 cache_get(new); 97 write_unlock(&detail->hash_lock); 98 99 return new; 100 } 101 EXPORT_SYMBOL(sunrpc_cache_lookup); 102 103 104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch); 105 106 static int cache_fresh_locked(struct cache_head *head, time_t expiry) 107 { 108 head->expiry_time = expiry; 109 head->last_refresh = get_seconds(); 110 return !test_and_set_bit(CACHE_VALID, &head->flags); 111 } 112 113 static void cache_fresh_unlocked(struct cache_head *head, 114 struct cache_detail *detail, int new) 115 { 116 if (new) 117 cache_revisit_request(head); 118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 119 cache_revisit_request(head); 120 queue_loose(detail, head); 121 } 122 } 123 124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 125 struct cache_head *new, struct cache_head *old, int hash) 126 { 127 /* The 'old' entry is to be replaced by 'new'. 128 * If 'old' is not VALID, we update it directly, 129 * otherwise we need to replace it 130 */ 131 struct cache_head **head; 132 struct cache_head *tmp; 133 int is_new; 134 135 if (!test_bit(CACHE_VALID, &old->flags)) { 136 write_lock(&detail->hash_lock); 137 if (!test_bit(CACHE_VALID, &old->flags)) { 138 if (test_bit(CACHE_NEGATIVE, &new->flags)) 139 set_bit(CACHE_NEGATIVE, &old->flags); 140 else 141 detail->update(old, new); 142 is_new = cache_fresh_locked(old, new->expiry_time); 143 write_unlock(&detail->hash_lock); 144 cache_fresh_unlocked(old, detail, is_new); 145 return old; 146 } 147 write_unlock(&detail->hash_lock); 148 } 149 /* We need to insert a new entry */ 150 tmp = detail->alloc(); 151 if (!tmp) { 152 cache_put(old, detail); 153 return NULL; 154 } 155 cache_init(tmp); 156 detail->init(tmp, old); 157 head = &detail->hash_table[hash]; 158 159 write_lock(&detail->hash_lock); 160 if (test_bit(CACHE_NEGATIVE, &new->flags)) 161 set_bit(CACHE_NEGATIVE, &tmp->flags); 162 else 163 detail->update(tmp, new); 164 tmp->next = *head; 165 *head = tmp; 166 detail->entries++; 167 cache_get(tmp); 168 is_new = cache_fresh_locked(tmp, new->expiry_time); 169 cache_fresh_locked(old, 0); 170 write_unlock(&detail->hash_lock); 171 cache_fresh_unlocked(tmp, detail, is_new); 172 cache_fresh_unlocked(old, detail, 0); 173 cache_put(old, detail); 174 return tmp; 175 } 176 EXPORT_SYMBOL(sunrpc_cache_update); 177 178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h); 179 /* 180 * This is the generic cache management routine for all 181 * the authentication caches. 182 * It checks the currency of a cache item and will (later) 183 * initiate an upcall to fill it if needed. 184 * 185 * 186 * Returns 0 if the cache_head can be used, or cache_puts it and returns 187 * -EAGAIN if upcall is pending, 188 * -ETIMEDOUT if upcall failed and should be retried, 189 * -ENOENT if cache entry was negative 190 */ 191 int cache_check(struct cache_detail *detail, 192 struct cache_head *h, struct cache_req *rqstp) 193 { 194 int rv; 195 long refresh_age, age; 196 197 /* First decide return status as best we can */ 198 if (!test_bit(CACHE_VALID, &h->flags) || 199 h->expiry_time < get_seconds()) 200 rv = -EAGAIN; 201 else if (detail->flush_time > h->last_refresh) 202 rv = -EAGAIN; 203 else { 204 /* entry is valid */ 205 if (test_bit(CACHE_NEGATIVE, &h->flags)) 206 rv = -ENOENT; 207 else rv = 0; 208 } 209 210 /* now see if we want to start an upcall */ 211 refresh_age = (h->expiry_time - h->last_refresh); 212 age = get_seconds() - h->last_refresh; 213 214 if (rqstp == NULL) { 215 if (rv == -EAGAIN) 216 rv = -ENOENT; 217 } else if (rv == -EAGAIN || age > refresh_age/2) { 218 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 219 refresh_age, age); 220 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 221 switch (cache_make_upcall(detail, h)) { 222 case -EINVAL: 223 clear_bit(CACHE_PENDING, &h->flags); 224 if (rv == -EAGAIN) { 225 set_bit(CACHE_NEGATIVE, &h->flags); 226 cache_fresh_unlocked(h, detail, 227 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY)); 228 rv = -ENOENT; 229 } 230 break; 231 232 case -EAGAIN: 233 clear_bit(CACHE_PENDING, &h->flags); 234 cache_revisit_request(h); 235 break; 236 } 237 } 238 } 239 240 if (rv == -EAGAIN) 241 if (cache_defer_req(rqstp, h) != 0) 242 rv = -ETIMEDOUT; 243 244 if (rv) 245 cache_put(h, detail); 246 return rv; 247 } 248 EXPORT_SYMBOL(cache_check); 249 250 /* 251 * caches need to be periodically cleaned. 252 * For this we maintain a list of cache_detail and 253 * a current pointer into that list and into the table 254 * for that entry. 255 * 256 * Each time clean_cache is called it finds the next non-empty entry 257 * in the current table and walks the list in that entry 258 * looking for entries that can be removed. 259 * 260 * An entry gets removed if: 261 * - The expiry is before current time 262 * - The last_refresh time is before the flush_time for that cache 263 * 264 * later we might drop old entries with non-NEVER expiry if that table 265 * is getting 'full' for some definition of 'full' 266 * 267 * The question of "how often to scan a table" is an interesting one 268 * and is answered in part by the use of the "nextcheck" field in the 269 * cache_detail. 270 * When a scan of a table begins, the nextcheck field is set to a time 271 * that is well into the future. 272 * While scanning, if an expiry time is found that is earlier than the 273 * current nextcheck time, nextcheck is set to that expiry time. 274 * If the flush_time is ever set to a time earlier than the nextcheck 275 * time, the nextcheck time is then set to that flush_time. 276 * 277 * A table is then only scanned if the current time is at least 278 * the nextcheck time. 279 * 280 */ 281 282 static LIST_HEAD(cache_list); 283 static DEFINE_SPINLOCK(cache_list_lock); 284 static struct cache_detail *current_detail; 285 static int current_index; 286 287 static const struct file_operations cache_file_operations; 288 static const struct file_operations content_file_operations; 289 static const struct file_operations cache_flush_operations; 290 291 static void do_cache_clean(struct work_struct *work); 292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 293 294 static void remove_cache_proc_entries(struct cache_detail *cd) 295 { 296 if (cd->proc_ent == NULL) 297 return; 298 if (cd->flush_ent) 299 remove_proc_entry("flush", cd->proc_ent); 300 if (cd->channel_ent) 301 remove_proc_entry("channel", cd->proc_ent); 302 if (cd->content_ent) 303 remove_proc_entry("content", cd->proc_ent); 304 cd->proc_ent = NULL; 305 remove_proc_entry(cd->name, proc_net_rpc); 306 } 307 308 #ifdef CONFIG_PROC_FS 309 static int create_cache_proc_entries(struct cache_detail *cd) 310 { 311 struct proc_dir_entry *p; 312 313 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc); 314 if (cd->proc_ent == NULL) 315 goto out_nomem; 316 cd->proc_ent->owner = cd->owner; 317 cd->channel_ent = cd->content_ent = NULL; 318 319 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 320 cd->proc_ent, &cache_flush_operations, cd); 321 cd->flush_ent = p; 322 if (p == NULL) 323 goto out_nomem; 324 p->owner = cd->owner; 325 326 if (cd->cache_request || cd->cache_parse) { 327 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 328 cd->proc_ent, &cache_file_operations, cd); 329 cd->channel_ent = p; 330 if (p == NULL) 331 goto out_nomem; 332 p->owner = cd->owner; 333 } 334 if (cd->cache_show) { 335 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 336 cd->proc_ent, &content_file_operations, cd); 337 cd->content_ent = p; 338 if (p == NULL) 339 goto out_nomem; 340 p->owner = cd->owner; 341 } 342 return 0; 343 out_nomem: 344 remove_cache_proc_entries(cd); 345 return -ENOMEM; 346 } 347 #else /* CONFIG_PROC_FS */ 348 static int create_cache_proc_entries(struct cache_detail *cd) 349 { 350 return 0; 351 } 352 #endif 353 354 int cache_register(struct cache_detail *cd) 355 { 356 int ret; 357 358 ret = create_cache_proc_entries(cd); 359 if (ret) 360 return ret; 361 rwlock_init(&cd->hash_lock); 362 INIT_LIST_HEAD(&cd->queue); 363 spin_lock(&cache_list_lock); 364 cd->nextcheck = 0; 365 cd->entries = 0; 366 atomic_set(&cd->readers, 0); 367 cd->last_close = 0; 368 cd->last_warn = -1; 369 list_add(&cd->others, &cache_list); 370 spin_unlock(&cache_list_lock); 371 372 /* start the cleaning process */ 373 schedule_delayed_work(&cache_cleaner, 0); 374 return 0; 375 } 376 EXPORT_SYMBOL(cache_register); 377 378 void cache_unregister(struct cache_detail *cd) 379 { 380 cache_purge(cd); 381 spin_lock(&cache_list_lock); 382 write_lock(&cd->hash_lock); 383 if (cd->entries || atomic_read(&cd->inuse)) { 384 write_unlock(&cd->hash_lock); 385 spin_unlock(&cache_list_lock); 386 goto out; 387 } 388 if (current_detail == cd) 389 current_detail = NULL; 390 list_del_init(&cd->others); 391 write_unlock(&cd->hash_lock); 392 spin_unlock(&cache_list_lock); 393 remove_cache_proc_entries(cd); 394 if (list_empty(&cache_list)) { 395 /* module must be being unloaded so its safe to kill the worker */ 396 cancel_delayed_work_sync(&cache_cleaner); 397 } 398 return; 399 out: 400 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 401 } 402 EXPORT_SYMBOL(cache_unregister); 403 404 /* clean cache tries to find something to clean 405 * and cleans it. 406 * It returns 1 if it cleaned something, 407 * 0 if it didn't find anything this time 408 * -1 if it fell off the end of the list. 409 */ 410 static int cache_clean(void) 411 { 412 int rv = 0; 413 struct list_head *next; 414 415 spin_lock(&cache_list_lock); 416 417 /* find a suitable table if we don't already have one */ 418 while (current_detail == NULL || 419 current_index >= current_detail->hash_size) { 420 if (current_detail) 421 next = current_detail->others.next; 422 else 423 next = cache_list.next; 424 if (next == &cache_list) { 425 current_detail = NULL; 426 spin_unlock(&cache_list_lock); 427 return -1; 428 } 429 current_detail = list_entry(next, struct cache_detail, others); 430 if (current_detail->nextcheck > get_seconds()) 431 current_index = current_detail->hash_size; 432 else { 433 current_index = 0; 434 current_detail->nextcheck = get_seconds()+30*60; 435 } 436 } 437 438 /* find a non-empty bucket in the table */ 439 while (current_detail && 440 current_index < current_detail->hash_size && 441 current_detail->hash_table[current_index] == NULL) 442 current_index++; 443 444 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 445 446 if (current_detail && current_index < current_detail->hash_size) { 447 struct cache_head *ch, **cp; 448 struct cache_detail *d; 449 450 write_lock(¤t_detail->hash_lock); 451 452 /* Ok, now to clean this strand */ 453 454 cp = & current_detail->hash_table[current_index]; 455 ch = *cp; 456 for (; ch; cp= & ch->next, ch= *cp) { 457 if (current_detail->nextcheck > ch->expiry_time) 458 current_detail->nextcheck = ch->expiry_time+1; 459 if (ch->expiry_time >= get_seconds() 460 && ch->last_refresh >= current_detail->flush_time 461 ) 462 continue; 463 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 464 queue_loose(current_detail, ch); 465 466 if (atomic_read(&ch->ref.refcount) == 1) 467 break; 468 } 469 if (ch) { 470 *cp = ch->next; 471 ch->next = NULL; 472 current_detail->entries--; 473 rv = 1; 474 } 475 write_unlock(¤t_detail->hash_lock); 476 d = current_detail; 477 if (!ch) 478 current_index ++; 479 spin_unlock(&cache_list_lock); 480 if (ch) 481 cache_put(ch, d); 482 } else 483 spin_unlock(&cache_list_lock); 484 485 return rv; 486 } 487 488 /* 489 * We want to regularly clean the cache, so we need to schedule some work ... 490 */ 491 static void do_cache_clean(struct work_struct *work) 492 { 493 int delay = 5; 494 if (cache_clean() == -1) 495 delay = 30*HZ; 496 497 if (list_empty(&cache_list)) 498 delay = 0; 499 500 if (delay) 501 schedule_delayed_work(&cache_cleaner, delay); 502 } 503 504 505 /* 506 * Clean all caches promptly. This just calls cache_clean 507 * repeatedly until we are sure that every cache has had a chance to 508 * be fully cleaned 509 */ 510 void cache_flush(void) 511 { 512 while (cache_clean() != -1) 513 cond_resched(); 514 while (cache_clean() != -1) 515 cond_resched(); 516 } 517 EXPORT_SYMBOL(cache_flush); 518 519 void cache_purge(struct cache_detail *detail) 520 { 521 detail->flush_time = LONG_MAX; 522 detail->nextcheck = get_seconds(); 523 cache_flush(); 524 detail->flush_time = 1; 525 } 526 EXPORT_SYMBOL(cache_purge); 527 528 529 /* 530 * Deferral and Revisiting of Requests. 531 * 532 * If a cache lookup finds a pending entry, we 533 * need to defer the request and revisit it later. 534 * All deferred requests are stored in a hash table, 535 * indexed by "struct cache_head *". 536 * As it may be wasteful to store a whole request 537 * structure, we allow the request to provide a 538 * deferred form, which must contain a 539 * 'struct cache_deferred_req' 540 * This cache_deferred_req contains a method to allow 541 * it to be revisited when cache info is available 542 */ 543 544 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 545 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 546 547 #define DFR_MAX 300 /* ??? */ 548 549 static DEFINE_SPINLOCK(cache_defer_lock); 550 static LIST_HEAD(cache_defer_list); 551 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 552 static int cache_defer_cnt; 553 554 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 555 { 556 struct cache_deferred_req *dreq; 557 int hash = DFR_HASH(item); 558 559 if (cache_defer_cnt >= DFR_MAX) { 560 /* too much in the cache, randomly drop this one, 561 * or continue and drop the oldest below 562 */ 563 if (net_random()&1) 564 return -ETIMEDOUT; 565 } 566 dreq = req->defer(req); 567 if (dreq == NULL) 568 return -ETIMEDOUT; 569 570 dreq->item = item; 571 572 spin_lock(&cache_defer_lock); 573 574 list_add(&dreq->recent, &cache_defer_list); 575 576 if (cache_defer_hash[hash].next == NULL) 577 INIT_LIST_HEAD(&cache_defer_hash[hash]); 578 list_add(&dreq->hash, &cache_defer_hash[hash]); 579 580 /* it is in, now maybe clean up */ 581 dreq = NULL; 582 if (++cache_defer_cnt > DFR_MAX) { 583 dreq = list_entry(cache_defer_list.prev, 584 struct cache_deferred_req, recent); 585 list_del(&dreq->recent); 586 list_del(&dreq->hash); 587 cache_defer_cnt--; 588 } 589 spin_unlock(&cache_defer_lock); 590 591 if (dreq) { 592 /* there was one too many */ 593 dreq->revisit(dreq, 1); 594 } 595 if (!test_bit(CACHE_PENDING, &item->flags)) { 596 /* must have just been validated... */ 597 cache_revisit_request(item); 598 } 599 return 0; 600 } 601 602 static void cache_revisit_request(struct cache_head *item) 603 { 604 struct cache_deferred_req *dreq; 605 struct list_head pending; 606 607 struct list_head *lp; 608 int hash = DFR_HASH(item); 609 610 INIT_LIST_HEAD(&pending); 611 spin_lock(&cache_defer_lock); 612 613 lp = cache_defer_hash[hash].next; 614 if (lp) { 615 while (lp != &cache_defer_hash[hash]) { 616 dreq = list_entry(lp, struct cache_deferred_req, hash); 617 lp = lp->next; 618 if (dreq->item == item) { 619 list_del(&dreq->hash); 620 list_move(&dreq->recent, &pending); 621 cache_defer_cnt--; 622 } 623 } 624 } 625 spin_unlock(&cache_defer_lock); 626 627 while (!list_empty(&pending)) { 628 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 629 list_del_init(&dreq->recent); 630 dreq->revisit(dreq, 0); 631 } 632 } 633 634 void cache_clean_deferred(void *owner) 635 { 636 struct cache_deferred_req *dreq, *tmp; 637 struct list_head pending; 638 639 640 INIT_LIST_HEAD(&pending); 641 spin_lock(&cache_defer_lock); 642 643 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 644 if (dreq->owner == owner) { 645 list_del(&dreq->hash); 646 list_move(&dreq->recent, &pending); 647 cache_defer_cnt--; 648 } 649 } 650 spin_unlock(&cache_defer_lock); 651 652 while (!list_empty(&pending)) { 653 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 654 list_del_init(&dreq->recent); 655 dreq->revisit(dreq, 1); 656 } 657 } 658 659 /* 660 * communicate with user-space 661 * 662 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 663 * On read, you get a full request, or block. 664 * On write, an update request is processed. 665 * Poll works if anything to read, and always allows write. 666 * 667 * Implemented by linked list of requests. Each open file has 668 * a ->private that also exists in this list. New requests are added 669 * to the end and may wakeup and preceding readers. 670 * New readers are added to the head. If, on read, an item is found with 671 * CACHE_UPCALLING clear, we free it from the list. 672 * 673 */ 674 675 static DEFINE_SPINLOCK(queue_lock); 676 static DEFINE_MUTEX(queue_io_mutex); 677 678 struct cache_queue { 679 struct list_head list; 680 int reader; /* if 0, then request */ 681 }; 682 struct cache_request { 683 struct cache_queue q; 684 struct cache_head *item; 685 char * buf; 686 int len; 687 int readers; 688 }; 689 struct cache_reader { 690 struct cache_queue q; 691 int offset; /* if non-0, we have a refcnt on next request */ 692 }; 693 694 static ssize_t 695 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 696 { 697 struct cache_reader *rp = filp->private_data; 698 struct cache_request *rq; 699 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 700 int err; 701 702 if (count == 0) 703 return 0; 704 705 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent 706 * readers on this file */ 707 again: 708 spin_lock(&queue_lock); 709 /* need to find next request */ 710 while (rp->q.list.next != &cd->queue && 711 list_entry(rp->q.list.next, struct cache_queue, list) 712 ->reader) { 713 struct list_head *next = rp->q.list.next; 714 list_move(&rp->q.list, next); 715 } 716 if (rp->q.list.next == &cd->queue) { 717 spin_unlock(&queue_lock); 718 mutex_unlock(&queue_io_mutex); 719 BUG_ON(rp->offset); 720 return 0; 721 } 722 rq = container_of(rp->q.list.next, struct cache_request, q.list); 723 BUG_ON(rq->q.reader); 724 if (rp->offset == 0) 725 rq->readers++; 726 spin_unlock(&queue_lock); 727 728 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 729 err = -EAGAIN; 730 spin_lock(&queue_lock); 731 list_move(&rp->q.list, &rq->q.list); 732 spin_unlock(&queue_lock); 733 } else { 734 if (rp->offset + count > rq->len) 735 count = rq->len - rp->offset; 736 err = -EFAULT; 737 if (copy_to_user(buf, rq->buf + rp->offset, count)) 738 goto out; 739 rp->offset += count; 740 if (rp->offset >= rq->len) { 741 rp->offset = 0; 742 spin_lock(&queue_lock); 743 list_move(&rp->q.list, &rq->q.list); 744 spin_unlock(&queue_lock); 745 } 746 err = 0; 747 } 748 out: 749 if (rp->offset == 0) { 750 /* need to release rq */ 751 spin_lock(&queue_lock); 752 rq->readers--; 753 if (rq->readers == 0 && 754 !test_bit(CACHE_PENDING, &rq->item->flags)) { 755 list_del(&rq->q.list); 756 spin_unlock(&queue_lock); 757 cache_put(rq->item, cd); 758 kfree(rq->buf); 759 kfree(rq); 760 } else 761 spin_unlock(&queue_lock); 762 } 763 if (err == -EAGAIN) 764 goto again; 765 mutex_unlock(&queue_io_mutex); 766 return err ? err : count; 767 } 768 769 static char write_buf[8192]; /* protected by queue_io_mutex */ 770 771 static ssize_t 772 cache_write(struct file *filp, const char __user *buf, size_t count, 773 loff_t *ppos) 774 { 775 int err; 776 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 777 778 if (count == 0) 779 return 0; 780 if (count >= sizeof(write_buf)) 781 return -EINVAL; 782 783 mutex_lock(&queue_io_mutex); 784 785 if (copy_from_user(write_buf, buf, count)) { 786 mutex_unlock(&queue_io_mutex); 787 return -EFAULT; 788 } 789 write_buf[count] = '\0'; 790 if (cd->cache_parse) 791 err = cd->cache_parse(cd, write_buf, count); 792 else 793 err = -EINVAL; 794 795 mutex_unlock(&queue_io_mutex); 796 return err ? err : count; 797 } 798 799 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 800 801 static unsigned int 802 cache_poll(struct file *filp, poll_table *wait) 803 { 804 unsigned int mask; 805 struct cache_reader *rp = filp->private_data; 806 struct cache_queue *cq; 807 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 808 809 poll_wait(filp, &queue_wait, wait); 810 811 /* alway allow write */ 812 mask = POLL_OUT | POLLWRNORM; 813 814 if (!rp) 815 return mask; 816 817 spin_lock(&queue_lock); 818 819 for (cq= &rp->q; &cq->list != &cd->queue; 820 cq = list_entry(cq->list.next, struct cache_queue, list)) 821 if (!cq->reader) { 822 mask |= POLLIN | POLLRDNORM; 823 break; 824 } 825 spin_unlock(&queue_lock); 826 return mask; 827 } 828 829 static int 830 cache_ioctl(struct inode *ino, struct file *filp, 831 unsigned int cmd, unsigned long arg) 832 { 833 int len = 0; 834 struct cache_reader *rp = filp->private_data; 835 struct cache_queue *cq; 836 struct cache_detail *cd = PDE(ino)->data; 837 838 if (cmd != FIONREAD || !rp) 839 return -EINVAL; 840 841 spin_lock(&queue_lock); 842 843 /* only find the length remaining in current request, 844 * or the length of the next request 845 */ 846 for (cq= &rp->q; &cq->list != &cd->queue; 847 cq = list_entry(cq->list.next, struct cache_queue, list)) 848 if (!cq->reader) { 849 struct cache_request *cr = 850 container_of(cq, struct cache_request, q); 851 len = cr->len - rp->offset; 852 break; 853 } 854 spin_unlock(&queue_lock); 855 856 return put_user(len, (int __user *)arg); 857 } 858 859 static int 860 cache_open(struct inode *inode, struct file *filp) 861 { 862 struct cache_reader *rp = NULL; 863 864 nonseekable_open(inode, filp); 865 if (filp->f_mode & FMODE_READ) { 866 struct cache_detail *cd = PDE(inode)->data; 867 868 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 869 if (!rp) 870 return -ENOMEM; 871 rp->offset = 0; 872 rp->q.reader = 1; 873 atomic_inc(&cd->readers); 874 spin_lock(&queue_lock); 875 list_add(&rp->q.list, &cd->queue); 876 spin_unlock(&queue_lock); 877 } 878 filp->private_data = rp; 879 return 0; 880 } 881 882 static int 883 cache_release(struct inode *inode, struct file *filp) 884 { 885 struct cache_reader *rp = filp->private_data; 886 struct cache_detail *cd = PDE(inode)->data; 887 888 if (rp) { 889 spin_lock(&queue_lock); 890 if (rp->offset) { 891 struct cache_queue *cq; 892 for (cq= &rp->q; &cq->list != &cd->queue; 893 cq = list_entry(cq->list.next, struct cache_queue, list)) 894 if (!cq->reader) { 895 container_of(cq, struct cache_request, q) 896 ->readers--; 897 break; 898 } 899 rp->offset = 0; 900 } 901 list_del(&rp->q.list); 902 spin_unlock(&queue_lock); 903 904 filp->private_data = NULL; 905 kfree(rp); 906 907 cd->last_close = get_seconds(); 908 atomic_dec(&cd->readers); 909 } 910 return 0; 911 } 912 913 914 915 static const struct file_operations cache_file_operations = { 916 .owner = THIS_MODULE, 917 .llseek = no_llseek, 918 .read = cache_read, 919 .write = cache_write, 920 .poll = cache_poll, 921 .ioctl = cache_ioctl, /* for FIONREAD */ 922 .open = cache_open, 923 .release = cache_release, 924 }; 925 926 927 static void queue_loose(struct cache_detail *detail, struct cache_head *ch) 928 { 929 struct cache_queue *cq; 930 spin_lock(&queue_lock); 931 list_for_each_entry(cq, &detail->queue, list) 932 if (!cq->reader) { 933 struct cache_request *cr = container_of(cq, struct cache_request, q); 934 if (cr->item != ch) 935 continue; 936 if (cr->readers != 0) 937 continue; 938 list_del(&cr->q.list); 939 spin_unlock(&queue_lock); 940 cache_put(cr->item, detail); 941 kfree(cr->buf); 942 kfree(cr); 943 return; 944 } 945 spin_unlock(&queue_lock); 946 } 947 948 /* 949 * Support routines for text-based upcalls. 950 * Fields are separated by spaces. 951 * Fields are either mangled to quote space tab newline slosh with slosh 952 * or a hexified with a leading \x 953 * Record is terminated with newline. 954 * 955 */ 956 957 void qword_add(char **bpp, int *lp, char *str) 958 { 959 char *bp = *bpp; 960 int len = *lp; 961 char c; 962 963 if (len < 0) return; 964 965 while ((c=*str++) && len) 966 switch(c) { 967 case ' ': 968 case '\t': 969 case '\n': 970 case '\\': 971 if (len >= 4) { 972 *bp++ = '\\'; 973 *bp++ = '0' + ((c & 0300)>>6); 974 *bp++ = '0' + ((c & 0070)>>3); 975 *bp++ = '0' + ((c & 0007)>>0); 976 } 977 len -= 4; 978 break; 979 default: 980 *bp++ = c; 981 len--; 982 } 983 if (c || len <1) len = -1; 984 else { 985 *bp++ = ' '; 986 len--; 987 } 988 *bpp = bp; 989 *lp = len; 990 } 991 EXPORT_SYMBOL(qword_add); 992 993 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 994 { 995 char *bp = *bpp; 996 int len = *lp; 997 998 if (len < 0) return; 999 1000 if (len > 2) { 1001 *bp++ = '\\'; 1002 *bp++ = 'x'; 1003 len -= 2; 1004 while (blen && len >= 2) { 1005 unsigned char c = *buf++; 1006 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1007 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1008 len -= 2; 1009 blen--; 1010 } 1011 } 1012 if (blen || len<1) len = -1; 1013 else { 1014 *bp++ = ' '; 1015 len--; 1016 } 1017 *bpp = bp; 1018 *lp = len; 1019 } 1020 EXPORT_SYMBOL(qword_addhex); 1021 1022 static void warn_no_listener(struct cache_detail *detail) 1023 { 1024 if (detail->last_warn != detail->last_close) { 1025 detail->last_warn = detail->last_close; 1026 if (detail->warn_no_listener) 1027 detail->warn_no_listener(detail); 1028 } 1029 } 1030 1031 /* 1032 * register an upcall request to user-space. 1033 * Each request is at most one page long. 1034 */ 1035 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h) 1036 { 1037 1038 char *buf; 1039 struct cache_request *crq; 1040 char *bp; 1041 int len; 1042 1043 if (detail->cache_request == NULL) 1044 return -EINVAL; 1045 1046 if (atomic_read(&detail->readers) == 0 && 1047 detail->last_close < get_seconds() - 30) { 1048 warn_no_listener(detail); 1049 return -EINVAL; 1050 } 1051 1052 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1053 if (!buf) 1054 return -EAGAIN; 1055 1056 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1057 if (!crq) { 1058 kfree(buf); 1059 return -EAGAIN; 1060 } 1061 1062 bp = buf; len = PAGE_SIZE; 1063 1064 detail->cache_request(detail, h, &bp, &len); 1065 1066 if (len < 0) { 1067 kfree(buf); 1068 kfree(crq); 1069 return -EAGAIN; 1070 } 1071 crq->q.reader = 0; 1072 crq->item = cache_get(h); 1073 crq->buf = buf; 1074 crq->len = PAGE_SIZE - len; 1075 crq->readers = 0; 1076 spin_lock(&queue_lock); 1077 list_add_tail(&crq->q.list, &detail->queue); 1078 spin_unlock(&queue_lock); 1079 wake_up(&queue_wait); 1080 return 0; 1081 } 1082 1083 /* 1084 * parse a message from user-space and pass it 1085 * to an appropriate cache 1086 * Messages are, like requests, separated into fields by 1087 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1088 * 1089 * Message is 1090 * reply cachename expiry key ... content.... 1091 * 1092 * key and content are both parsed by cache 1093 */ 1094 1095 #define isodigit(c) (isdigit(c) && c <= '7') 1096 int qword_get(char **bpp, char *dest, int bufsize) 1097 { 1098 /* return bytes copied, or -1 on error */ 1099 char *bp = *bpp; 1100 int len = 0; 1101 1102 while (*bp == ' ') bp++; 1103 1104 if (bp[0] == '\\' && bp[1] == 'x') { 1105 /* HEX STRING */ 1106 bp += 2; 1107 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1108 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1109 bp++; 1110 byte <<= 4; 1111 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1112 *dest++ = byte; 1113 bp++; 1114 len++; 1115 } 1116 } else { 1117 /* text with \nnn octal quoting */ 1118 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1119 if (*bp == '\\' && 1120 isodigit(bp[1]) && (bp[1] <= '3') && 1121 isodigit(bp[2]) && 1122 isodigit(bp[3])) { 1123 int byte = (*++bp -'0'); 1124 bp++; 1125 byte = (byte << 3) | (*bp++ - '0'); 1126 byte = (byte << 3) | (*bp++ - '0'); 1127 *dest++ = byte; 1128 len++; 1129 } else { 1130 *dest++ = *bp++; 1131 len++; 1132 } 1133 } 1134 } 1135 1136 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1137 return -1; 1138 while (*bp == ' ') bp++; 1139 *bpp = bp; 1140 *dest = '\0'; 1141 return len; 1142 } 1143 EXPORT_SYMBOL(qword_get); 1144 1145 1146 /* 1147 * support /proc/sunrpc/cache/$CACHENAME/content 1148 * as a seqfile. 1149 * We call ->cache_show passing NULL for the item to 1150 * get a header, then pass each real item in the cache 1151 */ 1152 1153 struct handle { 1154 struct cache_detail *cd; 1155 }; 1156 1157 static void *c_start(struct seq_file *m, loff_t *pos) 1158 __acquires(cd->hash_lock) 1159 { 1160 loff_t n = *pos; 1161 unsigned hash, entry; 1162 struct cache_head *ch; 1163 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1164 1165 1166 read_lock(&cd->hash_lock); 1167 if (!n--) 1168 return SEQ_START_TOKEN; 1169 hash = n >> 32; 1170 entry = n & ((1LL<<32) - 1); 1171 1172 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1173 if (!entry--) 1174 return ch; 1175 n &= ~((1LL<<32) - 1); 1176 do { 1177 hash++; 1178 n += 1LL<<32; 1179 } while(hash < cd->hash_size && 1180 cd->hash_table[hash]==NULL); 1181 if (hash >= cd->hash_size) 1182 return NULL; 1183 *pos = n+1; 1184 return cd->hash_table[hash]; 1185 } 1186 1187 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1188 { 1189 struct cache_head *ch = p; 1190 int hash = (*pos >> 32); 1191 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1192 1193 if (p == SEQ_START_TOKEN) 1194 hash = 0; 1195 else if (ch->next == NULL) { 1196 hash++; 1197 *pos += 1LL<<32; 1198 } else { 1199 ++*pos; 1200 return ch->next; 1201 } 1202 *pos &= ~((1LL<<32) - 1); 1203 while (hash < cd->hash_size && 1204 cd->hash_table[hash] == NULL) { 1205 hash++; 1206 *pos += 1LL<<32; 1207 } 1208 if (hash >= cd->hash_size) 1209 return NULL; 1210 ++*pos; 1211 return cd->hash_table[hash]; 1212 } 1213 1214 static void c_stop(struct seq_file *m, void *p) 1215 __releases(cd->hash_lock) 1216 { 1217 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1218 read_unlock(&cd->hash_lock); 1219 } 1220 1221 static int c_show(struct seq_file *m, void *p) 1222 { 1223 struct cache_head *cp = p; 1224 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1225 1226 if (p == SEQ_START_TOKEN) 1227 return cd->cache_show(m, cd, NULL); 1228 1229 ifdebug(CACHE) 1230 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1231 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1232 cache_get(cp); 1233 if (cache_check(cd, cp, NULL)) 1234 /* cache_check does a cache_put on failure */ 1235 seq_printf(m, "# "); 1236 else 1237 cache_put(cp, cd); 1238 1239 return cd->cache_show(m, cd, cp); 1240 } 1241 1242 static const struct seq_operations cache_content_op = { 1243 .start = c_start, 1244 .next = c_next, 1245 .stop = c_stop, 1246 .show = c_show, 1247 }; 1248 1249 static int content_open(struct inode *inode, struct file *file) 1250 { 1251 struct handle *han; 1252 struct cache_detail *cd = PDE(inode)->data; 1253 1254 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1255 if (han == NULL) 1256 return -ENOMEM; 1257 1258 han->cd = cd; 1259 return 0; 1260 } 1261 1262 static const struct file_operations content_file_operations = { 1263 .open = content_open, 1264 .read = seq_read, 1265 .llseek = seq_lseek, 1266 .release = seq_release_private, 1267 }; 1268 1269 static ssize_t read_flush(struct file *file, char __user *buf, 1270 size_t count, loff_t *ppos) 1271 { 1272 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1273 char tbuf[20]; 1274 unsigned long p = *ppos; 1275 size_t len; 1276 1277 sprintf(tbuf, "%lu\n", cd->flush_time); 1278 len = strlen(tbuf); 1279 if (p >= len) 1280 return 0; 1281 len -= p; 1282 if (len > count) 1283 len = count; 1284 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1285 return -EFAULT; 1286 *ppos += len; 1287 return len; 1288 } 1289 1290 static ssize_t write_flush(struct file * file, const char __user * buf, 1291 size_t count, loff_t *ppos) 1292 { 1293 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1294 char tbuf[20]; 1295 char *ep; 1296 long flushtime; 1297 if (*ppos || count > sizeof(tbuf)-1) 1298 return -EINVAL; 1299 if (copy_from_user(tbuf, buf, count)) 1300 return -EFAULT; 1301 tbuf[count] = 0; 1302 flushtime = simple_strtoul(tbuf, &ep, 0); 1303 if (*ep && *ep != '\n') 1304 return -EINVAL; 1305 1306 cd->flush_time = flushtime; 1307 cd->nextcheck = get_seconds(); 1308 cache_flush(); 1309 1310 *ppos += count; 1311 return count; 1312 } 1313 1314 static const struct file_operations cache_flush_operations = { 1315 .open = nonseekable_open, 1316 .read = read_flush, 1317 .write = write_flush, 1318 }; 1319