xref: /openbmc/linux/net/sunrpc/cache.c (revision 4cff79e9)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	if (now <= detail->flush_time)
52 		/* ensure it isn't already expired */
53 		now = detail->flush_time + 1;
54 	h->last_refresh = now;
55 }
56 
57 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
58 				       struct cache_head *key, int hash)
59 {
60 	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
61 	struct hlist_head *head;
62 
63 	head = &detail->hash_table[hash];
64 
65 	read_lock(&detail->hash_lock);
66 
67 	hlist_for_each_entry(tmp, head, cache_list) {
68 		if (detail->match(tmp, key)) {
69 			if (cache_is_expired(detail, tmp))
70 				/* This entry is expired, we will discard it. */
71 				break;
72 			cache_get(tmp);
73 			read_unlock(&detail->hash_lock);
74 			return tmp;
75 		}
76 	}
77 	read_unlock(&detail->hash_lock);
78 	/* Didn't find anything, insert an empty entry */
79 
80 	new = detail->alloc();
81 	if (!new)
82 		return NULL;
83 	/* must fully initialise 'new', else
84 	 * we might get lose if we need to
85 	 * cache_put it soon.
86 	 */
87 	cache_init(new, detail);
88 	detail->init(new, key);
89 
90 	write_lock(&detail->hash_lock);
91 
92 	/* check if entry appeared while we slept */
93 	hlist_for_each_entry(tmp, head, cache_list) {
94 		if (detail->match(tmp, key)) {
95 			if (cache_is_expired(detail, tmp)) {
96 				hlist_del_init(&tmp->cache_list);
97 				detail->entries --;
98 				freeme = tmp;
99 				break;
100 			}
101 			cache_get(tmp);
102 			write_unlock(&detail->hash_lock);
103 			cache_put(new, detail);
104 			return tmp;
105 		}
106 	}
107 
108 	hlist_add_head(&new->cache_list, head);
109 	detail->entries++;
110 	cache_get(new);
111 	write_unlock(&detail->hash_lock);
112 
113 	if (freeme)
114 		cache_put(freeme, detail);
115 	return new;
116 }
117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
118 
119 
120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
121 
122 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
123 			       struct cache_detail *detail)
124 {
125 	time_t now = seconds_since_boot();
126 	if (now <= detail->flush_time)
127 		/* ensure it isn't immediately treated as expired */
128 		now = detail->flush_time + 1;
129 	head->expiry_time = expiry;
130 	head->last_refresh = now;
131 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 	set_bit(CACHE_VALID, &head->flags);
133 }
134 
135 static void cache_fresh_unlocked(struct cache_head *head,
136 				 struct cache_detail *detail)
137 {
138 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 		cache_revisit_request(head);
140 		cache_dequeue(detail, head);
141 	}
142 }
143 
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 				       struct cache_head *new, struct cache_head *old, int hash)
146 {
147 	/* The 'old' entry is to be replaced by 'new'.
148 	 * If 'old' is not VALID, we update it directly,
149 	 * otherwise we need to replace it
150 	 */
151 	struct cache_head *tmp;
152 
153 	if (!test_bit(CACHE_VALID, &old->flags)) {
154 		write_lock(&detail->hash_lock);
155 		if (!test_bit(CACHE_VALID, &old->flags)) {
156 			if (test_bit(CACHE_NEGATIVE, &new->flags))
157 				set_bit(CACHE_NEGATIVE, &old->flags);
158 			else
159 				detail->update(old, new);
160 			cache_fresh_locked(old, new->expiry_time, detail);
161 			write_unlock(&detail->hash_lock);
162 			cache_fresh_unlocked(old, detail);
163 			return old;
164 		}
165 		write_unlock(&detail->hash_lock);
166 	}
167 	/* We need to insert a new entry */
168 	tmp = detail->alloc();
169 	if (!tmp) {
170 		cache_put(old, detail);
171 		return NULL;
172 	}
173 	cache_init(tmp, detail);
174 	detail->init(tmp, old);
175 
176 	write_lock(&detail->hash_lock);
177 	if (test_bit(CACHE_NEGATIVE, &new->flags))
178 		set_bit(CACHE_NEGATIVE, &tmp->flags);
179 	else
180 		detail->update(tmp, new);
181 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
182 	detail->entries++;
183 	cache_get(tmp);
184 	cache_fresh_locked(tmp, new->expiry_time, detail);
185 	cache_fresh_locked(old, 0, detail);
186 	write_unlock(&detail->hash_lock);
187 	cache_fresh_unlocked(tmp, detail);
188 	cache_fresh_unlocked(old, detail);
189 	cache_put(old, detail);
190 	return tmp;
191 }
192 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
193 
194 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
195 {
196 	if (cd->cache_upcall)
197 		return cd->cache_upcall(cd, h);
198 	return sunrpc_cache_pipe_upcall(cd, h);
199 }
200 
201 static inline int cache_is_valid(struct cache_head *h)
202 {
203 	if (!test_bit(CACHE_VALID, &h->flags))
204 		return -EAGAIN;
205 	else {
206 		/* entry is valid */
207 		if (test_bit(CACHE_NEGATIVE, &h->flags))
208 			return -ENOENT;
209 		else {
210 			/*
211 			 * In combination with write barrier in
212 			 * sunrpc_cache_update, ensures that anyone
213 			 * using the cache entry after this sees the
214 			 * updated contents:
215 			 */
216 			smp_rmb();
217 			return 0;
218 		}
219 	}
220 }
221 
222 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
223 {
224 	int rv;
225 
226 	write_lock(&detail->hash_lock);
227 	rv = cache_is_valid(h);
228 	if (rv == -EAGAIN) {
229 		set_bit(CACHE_NEGATIVE, &h->flags);
230 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
231 				   detail);
232 		rv = -ENOENT;
233 	}
234 	write_unlock(&detail->hash_lock);
235 	cache_fresh_unlocked(h, detail);
236 	return rv;
237 }
238 
239 /*
240  * This is the generic cache management routine for all
241  * the authentication caches.
242  * It checks the currency of a cache item and will (later)
243  * initiate an upcall to fill it if needed.
244  *
245  *
246  * Returns 0 if the cache_head can be used, or cache_puts it and returns
247  * -EAGAIN if upcall is pending and request has been queued
248  * -ETIMEDOUT if upcall failed or request could not be queue or
249  *           upcall completed but item is still invalid (implying that
250  *           the cache item has been replaced with a newer one).
251  * -ENOENT if cache entry was negative
252  */
253 int cache_check(struct cache_detail *detail,
254 		    struct cache_head *h, struct cache_req *rqstp)
255 {
256 	int rv;
257 	long refresh_age, age;
258 
259 	/* First decide return status as best we can */
260 	rv = cache_is_valid(h);
261 
262 	/* now see if we want to start an upcall */
263 	refresh_age = (h->expiry_time - h->last_refresh);
264 	age = seconds_since_boot() - h->last_refresh;
265 
266 	if (rqstp == NULL) {
267 		if (rv == -EAGAIN)
268 			rv = -ENOENT;
269 	} else if (rv == -EAGAIN ||
270 		   (h->expiry_time != 0 && age > refresh_age/2)) {
271 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
272 				refresh_age, age);
273 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
274 			switch (cache_make_upcall(detail, h)) {
275 			case -EINVAL:
276 				rv = try_to_negate_entry(detail, h);
277 				break;
278 			case -EAGAIN:
279 				cache_fresh_unlocked(h, detail);
280 				break;
281 			}
282 		}
283 	}
284 
285 	if (rv == -EAGAIN) {
286 		if (!cache_defer_req(rqstp, h)) {
287 			/*
288 			 * Request was not deferred; handle it as best
289 			 * we can ourselves:
290 			 */
291 			rv = cache_is_valid(h);
292 			if (rv == -EAGAIN)
293 				rv = -ETIMEDOUT;
294 		}
295 	}
296 	if (rv)
297 		cache_put(h, detail);
298 	return rv;
299 }
300 EXPORT_SYMBOL_GPL(cache_check);
301 
302 /*
303  * caches need to be periodically cleaned.
304  * For this we maintain a list of cache_detail and
305  * a current pointer into that list and into the table
306  * for that entry.
307  *
308  * Each time cache_clean is called it finds the next non-empty entry
309  * in the current table and walks the list in that entry
310  * looking for entries that can be removed.
311  *
312  * An entry gets removed if:
313  * - The expiry is before current time
314  * - The last_refresh time is before the flush_time for that cache
315  *
316  * later we might drop old entries with non-NEVER expiry if that table
317  * is getting 'full' for some definition of 'full'
318  *
319  * The question of "how often to scan a table" is an interesting one
320  * and is answered in part by the use of the "nextcheck" field in the
321  * cache_detail.
322  * When a scan of a table begins, the nextcheck field is set to a time
323  * that is well into the future.
324  * While scanning, if an expiry time is found that is earlier than the
325  * current nextcheck time, nextcheck is set to that expiry time.
326  * If the flush_time is ever set to a time earlier than the nextcheck
327  * time, the nextcheck time is then set to that flush_time.
328  *
329  * A table is then only scanned if the current time is at least
330  * the nextcheck time.
331  *
332  */
333 
334 static LIST_HEAD(cache_list);
335 static DEFINE_SPINLOCK(cache_list_lock);
336 static struct cache_detail *current_detail;
337 static int current_index;
338 
339 static void do_cache_clean(struct work_struct *work);
340 static struct delayed_work cache_cleaner;
341 
342 void sunrpc_init_cache_detail(struct cache_detail *cd)
343 {
344 	rwlock_init(&cd->hash_lock);
345 	INIT_LIST_HEAD(&cd->queue);
346 	spin_lock(&cache_list_lock);
347 	cd->nextcheck = 0;
348 	cd->entries = 0;
349 	atomic_set(&cd->readers, 0);
350 	cd->last_close = 0;
351 	cd->last_warn = -1;
352 	list_add(&cd->others, &cache_list);
353 	spin_unlock(&cache_list_lock);
354 
355 	/* start the cleaning process */
356 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
357 }
358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
359 
360 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
361 {
362 	cache_purge(cd);
363 	spin_lock(&cache_list_lock);
364 	write_lock(&cd->hash_lock);
365 	if (current_detail == cd)
366 		current_detail = NULL;
367 	list_del_init(&cd->others);
368 	write_unlock(&cd->hash_lock);
369 	spin_unlock(&cache_list_lock);
370 	if (list_empty(&cache_list)) {
371 		/* module must be being unloaded so its safe to kill the worker */
372 		cancel_delayed_work_sync(&cache_cleaner);
373 	}
374 }
375 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
376 
377 /* clean cache tries to find something to clean
378  * and cleans it.
379  * It returns 1 if it cleaned something,
380  *            0 if it didn't find anything this time
381  *           -1 if it fell off the end of the list.
382  */
383 static int cache_clean(void)
384 {
385 	int rv = 0;
386 	struct list_head *next;
387 
388 	spin_lock(&cache_list_lock);
389 
390 	/* find a suitable table if we don't already have one */
391 	while (current_detail == NULL ||
392 	    current_index >= current_detail->hash_size) {
393 		if (current_detail)
394 			next = current_detail->others.next;
395 		else
396 			next = cache_list.next;
397 		if (next == &cache_list) {
398 			current_detail = NULL;
399 			spin_unlock(&cache_list_lock);
400 			return -1;
401 		}
402 		current_detail = list_entry(next, struct cache_detail, others);
403 		if (current_detail->nextcheck > seconds_since_boot())
404 			current_index = current_detail->hash_size;
405 		else {
406 			current_index = 0;
407 			current_detail->nextcheck = seconds_since_boot()+30*60;
408 		}
409 	}
410 
411 	/* find a non-empty bucket in the table */
412 	while (current_detail &&
413 	       current_index < current_detail->hash_size &&
414 	       hlist_empty(&current_detail->hash_table[current_index]))
415 		current_index++;
416 
417 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
418 
419 	if (current_detail && current_index < current_detail->hash_size) {
420 		struct cache_head *ch = NULL;
421 		struct cache_detail *d;
422 		struct hlist_head *head;
423 		struct hlist_node *tmp;
424 
425 		write_lock(&current_detail->hash_lock);
426 
427 		/* Ok, now to clean this strand */
428 
429 		head = &current_detail->hash_table[current_index];
430 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
431 			if (current_detail->nextcheck > ch->expiry_time)
432 				current_detail->nextcheck = ch->expiry_time+1;
433 			if (!cache_is_expired(current_detail, ch))
434 				continue;
435 
436 			hlist_del_init(&ch->cache_list);
437 			current_detail->entries--;
438 			rv = 1;
439 			break;
440 		}
441 
442 		write_unlock(&current_detail->hash_lock);
443 		d = current_detail;
444 		if (!ch)
445 			current_index ++;
446 		spin_unlock(&cache_list_lock);
447 		if (ch) {
448 			set_bit(CACHE_CLEANED, &ch->flags);
449 			cache_fresh_unlocked(ch, d);
450 			cache_put(ch, d);
451 		}
452 	} else
453 		spin_unlock(&cache_list_lock);
454 
455 	return rv;
456 }
457 
458 /*
459  * We want to regularly clean the cache, so we need to schedule some work ...
460  */
461 static void do_cache_clean(struct work_struct *work)
462 {
463 	int delay = 5;
464 	if (cache_clean() == -1)
465 		delay = round_jiffies_relative(30*HZ);
466 
467 	if (list_empty(&cache_list))
468 		delay = 0;
469 
470 	if (delay)
471 		queue_delayed_work(system_power_efficient_wq,
472 				   &cache_cleaner, delay);
473 }
474 
475 
476 /*
477  * Clean all caches promptly.  This just calls cache_clean
478  * repeatedly until we are sure that every cache has had a chance to
479  * be fully cleaned
480  */
481 void cache_flush(void)
482 {
483 	while (cache_clean() != -1)
484 		cond_resched();
485 	while (cache_clean() != -1)
486 		cond_resched();
487 }
488 EXPORT_SYMBOL_GPL(cache_flush);
489 
490 void cache_purge(struct cache_detail *detail)
491 {
492 	struct cache_head *ch = NULL;
493 	struct hlist_head *head = NULL;
494 	struct hlist_node *tmp = NULL;
495 	int i = 0;
496 
497 	write_lock(&detail->hash_lock);
498 	if (!detail->entries) {
499 		write_unlock(&detail->hash_lock);
500 		return;
501 	}
502 
503 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
504 	for (i = 0; i < detail->hash_size; i++) {
505 		head = &detail->hash_table[i];
506 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
507 			hlist_del_init(&ch->cache_list);
508 			detail->entries--;
509 
510 			set_bit(CACHE_CLEANED, &ch->flags);
511 			write_unlock(&detail->hash_lock);
512 			cache_fresh_unlocked(ch, detail);
513 			cache_put(ch, detail);
514 			write_lock(&detail->hash_lock);
515 		}
516 	}
517 	write_unlock(&detail->hash_lock);
518 }
519 EXPORT_SYMBOL_GPL(cache_purge);
520 
521 
522 /*
523  * Deferral and Revisiting of Requests.
524  *
525  * If a cache lookup finds a pending entry, we
526  * need to defer the request and revisit it later.
527  * All deferred requests are stored in a hash table,
528  * indexed by "struct cache_head *".
529  * As it may be wasteful to store a whole request
530  * structure, we allow the request to provide a
531  * deferred form, which must contain a
532  * 'struct cache_deferred_req'
533  * This cache_deferred_req contains a method to allow
534  * it to be revisited when cache info is available
535  */
536 
537 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
538 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
539 
540 #define	DFR_MAX	300	/* ??? */
541 
542 static DEFINE_SPINLOCK(cache_defer_lock);
543 static LIST_HEAD(cache_defer_list);
544 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
545 static int cache_defer_cnt;
546 
547 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
548 {
549 	hlist_del_init(&dreq->hash);
550 	if (!list_empty(&dreq->recent)) {
551 		list_del_init(&dreq->recent);
552 		cache_defer_cnt--;
553 	}
554 }
555 
556 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
557 {
558 	int hash = DFR_HASH(item);
559 
560 	INIT_LIST_HEAD(&dreq->recent);
561 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
562 }
563 
564 static void setup_deferral(struct cache_deferred_req *dreq,
565 			   struct cache_head *item,
566 			   int count_me)
567 {
568 
569 	dreq->item = item;
570 
571 	spin_lock(&cache_defer_lock);
572 
573 	__hash_deferred_req(dreq, item);
574 
575 	if (count_me) {
576 		cache_defer_cnt++;
577 		list_add(&dreq->recent, &cache_defer_list);
578 	}
579 
580 	spin_unlock(&cache_defer_lock);
581 
582 }
583 
584 struct thread_deferred_req {
585 	struct cache_deferred_req handle;
586 	struct completion completion;
587 };
588 
589 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
590 {
591 	struct thread_deferred_req *dr =
592 		container_of(dreq, struct thread_deferred_req, handle);
593 	complete(&dr->completion);
594 }
595 
596 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
597 {
598 	struct thread_deferred_req sleeper;
599 	struct cache_deferred_req *dreq = &sleeper.handle;
600 
601 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
602 	dreq->revisit = cache_restart_thread;
603 
604 	setup_deferral(dreq, item, 0);
605 
606 	if (!test_bit(CACHE_PENDING, &item->flags) ||
607 	    wait_for_completion_interruptible_timeout(
608 		    &sleeper.completion, req->thread_wait) <= 0) {
609 		/* The completion wasn't completed, so we need
610 		 * to clean up
611 		 */
612 		spin_lock(&cache_defer_lock);
613 		if (!hlist_unhashed(&sleeper.handle.hash)) {
614 			__unhash_deferred_req(&sleeper.handle);
615 			spin_unlock(&cache_defer_lock);
616 		} else {
617 			/* cache_revisit_request already removed
618 			 * this from the hash table, but hasn't
619 			 * called ->revisit yet.  It will very soon
620 			 * and we need to wait for it.
621 			 */
622 			spin_unlock(&cache_defer_lock);
623 			wait_for_completion(&sleeper.completion);
624 		}
625 	}
626 }
627 
628 static void cache_limit_defers(void)
629 {
630 	/* Make sure we haven't exceed the limit of allowed deferred
631 	 * requests.
632 	 */
633 	struct cache_deferred_req *discard = NULL;
634 
635 	if (cache_defer_cnt <= DFR_MAX)
636 		return;
637 
638 	spin_lock(&cache_defer_lock);
639 
640 	/* Consider removing either the first or the last */
641 	if (cache_defer_cnt > DFR_MAX) {
642 		if (prandom_u32() & 1)
643 			discard = list_entry(cache_defer_list.next,
644 					     struct cache_deferred_req, recent);
645 		else
646 			discard = list_entry(cache_defer_list.prev,
647 					     struct cache_deferred_req, recent);
648 		__unhash_deferred_req(discard);
649 	}
650 	spin_unlock(&cache_defer_lock);
651 	if (discard)
652 		discard->revisit(discard, 1);
653 }
654 
655 /* Return true if and only if a deferred request is queued. */
656 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
657 {
658 	struct cache_deferred_req *dreq;
659 
660 	if (req->thread_wait) {
661 		cache_wait_req(req, item);
662 		if (!test_bit(CACHE_PENDING, &item->flags))
663 			return false;
664 	}
665 	dreq = req->defer(req);
666 	if (dreq == NULL)
667 		return false;
668 	setup_deferral(dreq, item, 1);
669 	if (!test_bit(CACHE_PENDING, &item->flags))
670 		/* Bit could have been cleared before we managed to
671 		 * set up the deferral, so need to revisit just in case
672 		 */
673 		cache_revisit_request(item);
674 
675 	cache_limit_defers();
676 	return true;
677 }
678 
679 static void cache_revisit_request(struct cache_head *item)
680 {
681 	struct cache_deferred_req *dreq;
682 	struct list_head pending;
683 	struct hlist_node *tmp;
684 	int hash = DFR_HASH(item);
685 
686 	INIT_LIST_HEAD(&pending);
687 	spin_lock(&cache_defer_lock);
688 
689 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
690 		if (dreq->item == item) {
691 			__unhash_deferred_req(dreq);
692 			list_add(&dreq->recent, &pending);
693 		}
694 
695 	spin_unlock(&cache_defer_lock);
696 
697 	while (!list_empty(&pending)) {
698 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
699 		list_del_init(&dreq->recent);
700 		dreq->revisit(dreq, 0);
701 	}
702 }
703 
704 void cache_clean_deferred(void *owner)
705 {
706 	struct cache_deferred_req *dreq, *tmp;
707 	struct list_head pending;
708 
709 
710 	INIT_LIST_HEAD(&pending);
711 	spin_lock(&cache_defer_lock);
712 
713 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
714 		if (dreq->owner == owner) {
715 			__unhash_deferred_req(dreq);
716 			list_add(&dreq->recent, &pending);
717 		}
718 	}
719 	spin_unlock(&cache_defer_lock);
720 
721 	while (!list_empty(&pending)) {
722 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
723 		list_del_init(&dreq->recent);
724 		dreq->revisit(dreq, 1);
725 	}
726 }
727 
728 /*
729  * communicate with user-space
730  *
731  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
732  * On read, you get a full request, or block.
733  * On write, an update request is processed.
734  * Poll works if anything to read, and always allows write.
735  *
736  * Implemented by linked list of requests.  Each open file has
737  * a ->private that also exists in this list.  New requests are added
738  * to the end and may wakeup and preceding readers.
739  * New readers are added to the head.  If, on read, an item is found with
740  * CACHE_UPCALLING clear, we free it from the list.
741  *
742  */
743 
744 static DEFINE_SPINLOCK(queue_lock);
745 static DEFINE_MUTEX(queue_io_mutex);
746 
747 struct cache_queue {
748 	struct list_head	list;
749 	int			reader;	/* if 0, then request */
750 };
751 struct cache_request {
752 	struct cache_queue	q;
753 	struct cache_head	*item;
754 	char			* buf;
755 	int			len;
756 	int			readers;
757 };
758 struct cache_reader {
759 	struct cache_queue	q;
760 	int			offset;	/* if non-0, we have a refcnt on next request */
761 };
762 
763 static int cache_request(struct cache_detail *detail,
764 			       struct cache_request *crq)
765 {
766 	char *bp = crq->buf;
767 	int len = PAGE_SIZE;
768 
769 	detail->cache_request(detail, crq->item, &bp, &len);
770 	if (len < 0)
771 		return -EAGAIN;
772 	return PAGE_SIZE - len;
773 }
774 
775 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
776 			  loff_t *ppos, struct cache_detail *cd)
777 {
778 	struct cache_reader *rp = filp->private_data;
779 	struct cache_request *rq;
780 	struct inode *inode = file_inode(filp);
781 	int err;
782 
783 	if (count == 0)
784 		return 0;
785 
786 	inode_lock(inode); /* protect against multiple concurrent
787 			      * readers on this file */
788  again:
789 	spin_lock(&queue_lock);
790 	/* need to find next request */
791 	while (rp->q.list.next != &cd->queue &&
792 	       list_entry(rp->q.list.next, struct cache_queue, list)
793 	       ->reader) {
794 		struct list_head *next = rp->q.list.next;
795 		list_move(&rp->q.list, next);
796 	}
797 	if (rp->q.list.next == &cd->queue) {
798 		spin_unlock(&queue_lock);
799 		inode_unlock(inode);
800 		WARN_ON_ONCE(rp->offset);
801 		return 0;
802 	}
803 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
804 	WARN_ON_ONCE(rq->q.reader);
805 	if (rp->offset == 0)
806 		rq->readers++;
807 	spin_unlock(&queue_lock);
808 
809 	if (rq->len == 0) {
810 		err = cache_request(cd, rq);
811 		if (err < 0)
812 			goto out;
813 		rq->len = err;
814 	}
815 
816 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
817 		err = -EAGAIN;
818 		spin_lock(&queue_lock);
819 		list_move(&rp->q.list, &rq->q.list);
820 		spin_unlock(&queue_lock);
821 	} else {
822 		if (rp->offset + count > rq->len)
823 			count = rq->len - rp->offset;
824 		err = -EFAULT;
825 		if (copy_to_user(buf, rq->buf + rp->offset, count))
826 			goto out;
827 		rp->offset += count;
828 		if (rp->offset >= rq->len) {
829 			rp->offset = 0;
830 			spin_lock(&queue_lock);
831 			list_move(&rp->q.list, &rq->q.list);
832 			spin_unlock(&queue_lock);
833 		}
834 		err = 0;
835 	}
836  out:
837 	if (rp->offset == 0) {
838 		/* need to release rq */
839 		spin_lock(&queue_lock);
840 		rq->readers--;
841 		if (rq->readers == 0 &&
842 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
843 			list_del(&rq->q.list);
844 			spin_unlock(&queue_lock);
845 			cache_put(rq->item, cd);
846 			kfree(rq->buf);
847 			kfree(rq);
848 		} else
849 			spin_unlock(&queue_lock);
850 	}
851 	if (err == -EAGAIN)
852 		goto again;
853 	inode_unlock(inode);
854 	return err ? err :  count;
855 }
856 
857 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
858 				 size_t count, struct cache_detail *cd)
859 {
860 	ssize_t ret;
861 
862 	if (count == 0)
863 		return -EINVAL;
864 	if (copy_from_user(kaddr, buf, count))
865 		return -EFAULT;
866 	kaddr[count] = '\0';
867 	ret = cd->cache_parse(cd, kaddr, count);
868 	if (!ret)
869 		ret = count;
870 	return ret;
871 }
872 
873 static ssize_t cache_slow_downcall(const char __user *buf,
874 				   size_t count, struct cache_detail *cd)
875 {
876 	static char write_buf[8192]; /* protected by queue_io_mutex */
877 	ssize_t ret = -EINVAL;
878 
879 	if (count >= sizeof(write_buf))
880 		goto out;
881 	mutex_lock(&queue_io_mutex);
882 	ret = cache_do_downcall(write_buf, buf, count, cd);
883 	mutex_unlock(&queue_io_mutex);
884 out:
885 	return ret;
886 }
887 
888 static ssize_t cache_downcall(struct address_space *mapping,
889 			      const char __user *buf,
890 			      size_t count, struct cache_detail *cd)
891 {
892 	struct page *page;
893 	char *kaddr;
894 	ssize_t ret = -ENOMEM;
895 
896 	if (count >= PAGE_SIZE)
897 		goto out_slow;
898 
899 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
900 	if (!page)
901 		goto out_slow;
902 
903 	kaddr = kmap(page);
904 	ret = cache_do_downcall(kaddr, buf, count, cd);
905 	kunmap(page);
906 	unlock_page(page);
907 	put_page(page);
908 	return ret;
909 out_slow:
910 	return cache_slow_downcall(buf, count, cd);
911 }
912 
913 static ssize_t cache_write(struct file *filp, const char __user *buf,
914 			   size_t count, loff_t *ppos,
915 			   struct cache_detail *cd)
916 {
917 	struct address_space *mapping = filp->f_mapping;
918 	struct inode *inode = file_inode(filp);
919 	ssize_t ret = -EINVAL;
920 
921 	if (!cd->cache_parse)
922 		goto out;
923 
924 	inode_lock(inode);
925 	ret = cache_downcall(mapping, buf, count, cd);
926 	inode_unlock(inode);
927 out:
928 	return ret;
929 }
930 
931 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
932 
933 static __poll_t cache_poll(struct file *filp, poll_table *wait,
934 			       struct cache_detail *cd)
935 {
936 	__poll_t mask;
937 	struct cache_reader *rp = filp->private_data;
938 	struct cache_queue *cq;
939 
940 	poll_wait(filp, &queue_wait, wait);
941 
942 	/* alway allow write */
943 	mask = EPOLLOUT | EPOLLWRNORM;
944 
945 	if (!rp)
946 		return mask;
947 
948 	spin_lock(&queue_lock);
949 
950 	for (cq= &rp->q; &cq->list != &cd->queue;
951 	     cq = list_entry(cq->list.next, struct cache_queue, list))
952 		if (!cq->reader) {
953 			mask |= EPOLLIN | EPOLLRDNORM;
954 			break;
955 		}
956 	spin_unlock(&queue_lock);
957 	return mask;
958 }
959 
960 static int cache_ioctl(struct inode *ino, struct file *filp,
961 		       unsigned int cmd, unsigned long arg,
962 		       struct cache_detail *cd)
963 {
964 	int len = 0;
965 	struct cache_reader *rp = filp->private_data;
966 	struct cache_queue *cq;
967 
968 	if (cmd != FIONREAD || !rp)
969 		return -EINVAL;
970 
971 	spin_lock(&queue_lock);
972 
973 	/* only find the length remaining in current request,
974 	 * or the length of the next request
975 	 */
976 	for (cq= &rp->q; &cq->list != &cd->queue;
977 	     cq = list_entry(cq->list.next, struct cache_queue, list))
978 		if (!cq->reader) {
979 			struct cache_request *cr =
980 				container_of(cq, struct cache_request, q);
981 			len = cr->len - rp->offset;
982 			break;
983 		}
984 	spin_unlock(&queue_lock);
985 
986 	return put_user(len, (int __user *)arg);
987 }
988 
989 static int cache_open(struct inode *inode, struct file *filp,
990 		      struct cache_detail *cd)
991 {
992 	struct cache_reader *rp = NULL;
993 
994 	if (!cd || !try_module_get(cd->owner))
995 		return -EACCES;
996 	nonseekable_open(inode, filp);
997 	if (filp->f_mode & FMODE_READ) {
998 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
999 		if (!rp) {
1000 			module_put(cd->owner);
1001 			return -ENOMEM;
1002 		}
1003 		rp->offset = 0;
1004 		rp->q.reader = 1;
1005 		atomic_inc(&cd->readers);
1006 		spin_lock(&queue_lock);
1007 		list_add(&rp->q.list, &cd->queue);
1008 		spin_unlock(&queue_lock);
1009 	}
1010 	filp->private_data = rp;
1011 	return 0;
1012 }
1013 
1014 static int cache_release(struct inode *inode, struct file *filp,
1015 			 struct cache_detail *cd)
1016 {
1017 	struct cache_reader *rp = filp->private_data;
1018 
1019 	if (rp) {
1020 		spin_lock(&queue_lock);
1021 		if (rp->offset) {
1022 			struct cache_queue *cq;
1023 			for (cq= &rp->q; &cq->list != &cd->queue;
1024 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1025 				if (!cq->reader) {
1026 					container_of(cq, struct cache_request, q)
1027 						->readers--;
1028 					break;
1029 				}
1030 			rp->offset = 0;
1031 		}
1032 		list_del(&rp->q.list);
1033 		spin_unlock(&queue_lock);
1034 
1035 		filp->private_data = NULL;
1036 		kfree(rp);
1037 
1038 		cd->last_close = seconds_since_boot();
1039 		atomic_dec(&cd->readers);
1040 	}
1041 	module_put(cd->owner);
1042 	return 0;
1043 }
1044 
1045 
1046 
1047 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1048 {
1049 	struct cache_queue *cq, *tmp;
1050 	struct cache_request *cr;
1051 	struct list_head dequeued;
1052 
1053 	INIT_LIST_HEAD(&dequeued);
1054 	spin_lock(&queue_lock);
1055 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1056 		if (!cq->reader) {
1057 			cr = container_of(cq, struct cache_request, q);
1058 			if (cr->item != ch)
1059 				continue;
1060 			if (test_bit(CACHE_PENDING, &ch->flags))
1061 				/* Lost a race and it is pending again */
1062 				break;
1063 			if (cr->readers != 0)
1064 				continue;
1065 			list_move(&cr->q.list, &dequeued);
1066 		}
1067 	spin_unlock(&queue_lock);
1068 	while (!list_empty(&dequeued)) {
1069 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1070 		list_del(&cr->q.list);
1071 		cache_put(cr->item, detail);
1072 		kfree(cr->buf);
1073 		kfree(cr);
1074 	}
1075 }
1076 
1077 /*
1078  * Support routines for text-based upcalls.
1079  * Fields are separated by spaces.
1080  * Fields are either mangled to quote space tab newline slosh with slosh
1081  * or a hexified with a leading \x
1082  * Record is terminated with newline.
1083  *
1084  */
1085 
1086 void qword_add(char **bpp, int *lp, char *str)
1087 {
1088 	char *bp = *bpp;
1089 	int len = *lp;
1090 	int ret;
1091 
1092 	if (len < 0) return;
1093 
1094 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1095 	if (ret >= len) {
1096 		bp += len;
1097 		len = -1;
1098 	} else {
1099 		bp += ret;
1100 		len -= ret;
1101 		*bp++ = ' ';
1102 		len--;
1103 	}
1104 	*bpp = bp;
1105 	*lp = len;
1106 }
1107 EXPORT_SYMBOL_GPL(qword_add);
1108 
1109 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1110 {
1111 	char *bp = *bpp;
1112 	int len = *lp;
1113 
1114 	if (len < 0) return;
1115 
1116 	if (len > 2) {
1117 		*bp++ = '\\';
1118 		*bp++ = 'x';
1119 		len -= 2;
1120 		while (blen && len >= 2) {
1121 			bp = hex_byte_pack(bp, *buf++);
1122 			len -= 2;
1123 			blen--;
1124 		}
1125 	}
1126 	if (blen || len<1) len = -1;
1127 	else {
1128 		*bp++ = ' ';
1129 		len--;
1130 	}
1131 	*bpp = bp;
1132 	*lp = len;
1133 }
1134 EXPORT_SYMBOL_GPL(qword_addhex);
1135 
1136 static void warn_no_listener(struct cache_detail *detail)
1137 {
1138 	if (detail->last_warn != detail->last_close) {
1139 		detail->last_warn = detail->last_close;
1140 		if (detail->warn_no_listener)
1141 			detail->warn_no_listener(detail, detail->last_close != 0);
1142 	}
1143 }
1144 
1145 static bool cache_listeners_exist(struct cache_detail *detail)
1146 {
1147 	if (atomic_read(&detail->readers))
1148 		return true;
1149 	if (detail->last_close == 0)
1150 		/* This cache was never opened */
1151 		return false;
1152 	if (detail->last_close < seconds_since_boot() - 30)
1153 		/*
1154 		 * We allow for the possibility that someone might
1155 		 * restart a userspace daemon without restarting the
1156 		 * server; but after 30 seconds, we give up.
1157 		 */
1158 		 return false;
1159 	return true;
1160 }
1161 
1162 /*
1163  * register an upcall request to user-space and queue it up for read() by the
1164  * upcall daemon.
1165  *
1166  * Each request is at most one page long.
1167  */
1168 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1169 {
1170 
1171 	char *buf;
1172 	struct cache_request *crq;
1173 	int ret = 0;
1174 
1175 	if (!detail->cache_request)
1176 		return -EINVAL;
1177 
1178 	if (!cache_listeners_exist(detail)) {
1179 		warn_no_listener(detail);
1180 		return -EINVAL;
1181 	}
1182 	if (test_bit(CACHE_CLEANED, &h->flags))
1183 		/* Too late to make an upcall */
1184 		return -EAGAIN;
1185 
1186 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1187 	if (!buf)
1188 		return -EAGAIN;
1189 
1190 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1191 	if (!crq) {
1192 		kfree(buf);
1193 		return -EAGAIN;
1194 	}
1195 
1196 	crq->q.reader = 0;
1197 	crq->buf = buf;
1198 	crq->len = 0;
1199 	crq->readers = 0;
1200 	spin_lock(&queue_lock);
1201 	if (test_bit(CACHE_PENDING, &h->flags)) {
1202 		crq->item = cache_get(h);
1203 		list_add_tail(&crq->q.list, &detail->queue);
1204 	} else
1205 		/* Lost a race, no longer PENDING, so don't enqueue */
1206 		ret = -EAGAIN;
1207 	spin_unlock(&queue_lock);
1208 	wake_up(&queue_wait);
1209 	if (ret == -EAGAIN) {
1210 		kfree(buf);
1211 		kfree(crq);
1212 	}
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1216 
1217 /*
1218  * parse a message from user-space and pass it
1219  * to an appropriate cache
1220  * Messages are, like requests, separated into fields by
1221  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1222  *
1223  * Message is
1224  *   reply cachename expiry key ... content....
1225  *
1226  * key and content are both parsed by cache
1227  */
1228 
1229 int qword_get(char **bpp, char *dest, int bufsize)
1230 {
1231 	/* return bytes copied, or -1 on error */
1232 	char *bp = *bpp;
1233 	int len = 0;
1234 
1235 	while (*bp == ' ') bp++;
1236 
1237 	if (bp[0] == '\\' && bp[1] == 'x') {
1238 		/* HEX STRING */
1239 		bp += 2;
1240 		while (len < bufsize - 1) {
1241 			int h, l;
1242 
1243 			h = hex_to_bin(bp[0]);
1244 			if (h < 0)
1245 				break;
1246 
1247 			l = hex_to_bin(bp[1]);
1248 			if (l < 0)
1249 				break;
1250 
1251 			*dest++ = (h << 4) | l;
1252 			bp += 2;
1253 			len++;
1254 		}
1255 	} else {
1256 		/* text with \nnn octal quoting */
1257 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1258 			if (*bp == '\\' &&
1259 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1260 			    isodigit(bp[2]) &&
1261 			    isodigit(bp[3])) {
1262 				int byte = (*++bp -'0');
1263 				bp++;
1264 				byte = (byte << 3) | (*bp++ - '0');
1265 				byte = (byte << 3) | (*bp++ - '0');
1266 				*dest++ = byte;
1267 				len++;
1268 			} else {
1269 				*dest++ = *bp++;
1270 				len++;
1271 			}
1272 		}
1273 	}
1274 
1275 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1276 		return -1;
1277 	while (*bp == ' ') bp++;
1278 	*bpp = bp;
1279 	*dest = '\0';
1280 	return len;
1281 }
1282 EXPORT_SYMBOL_GPL(qword_get);
1283 
1284 
1285 /*
1286  * support /proc/net/rpc/$CACHENAME/content
1287  * as a seqfile.
1288  * We call ->cache_show passing NULL for the item to
1289  * get a header, then pass each real item in the cache
1290  */
1291 
1292 void *cache_seq_start(struct seq_file *m, loff_t *pos)
1293 	__acquires(cd->hash_lock)
1294 {
1295 	loff_t n = *pos;
1296 	unsigned int hash, entry;
1297 	struct cache_head *ch;
1298 	struct cache_detail *cd = m->private;
1299 
1300 	read_lock(&cd->hash_lock);
1301 	if (!n--)
1302 		return SEQ_START_TOKEN;
1303 	hash = n >> 32;
1304 	entry = n & ((1LL<<32) - 1);
1305 
1306 	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1307 		if (!entry--)
1308 			return ch;
1309 	n &= ~((1LL<<32) - 1);
1310 	do {
1311 		hash++;
1312 		n += 1LL<<32;
1313 	} while(hash < cd->hash_size &&
1314 		hlist_empty(&cd->hash_table[hash]));
1315 	if (hash >= cd->hash_size)
1316 		return NULL;
1317 	*pos = n+1;
1318 	return hlist_entry_safe(cd->hash_table[hash].first,
1319 				struct cache_head, cache_list);
1320 }
1321 EXPORT_SYMBOL_GPL(cache_seq_start);
1322 
1323 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1324 {
1325 	struct cache_head *ch = p;
1326 	int hash = (*pos >> 32);
1327 	struct cache_detail *cd = m->private;
1328 
1329 	if (p == SEQ_START_TOKEN)
1330 		hash = 0;
1331 	else if (ch->cache_list.next == NULL) {
1332 		hash++;
1333 		*pos += 1LL<<32;
1334 	} else {
1335 		++*pos;
1336 		return hlist_entry_safe(ch->cache_list.next,
1337 					struct cache_head, cache_list);
1338 	}
1339 	*pos &= ~((1LL<<32) - 1);
1340 	while (hash < cd->hash_size &&
1341 	       hlist_empty(&cd->hash_table[hash])) {
1342 		hash++;
1343 		*pos += 1LL<<32;
1344 	}
1345 	if (hash >= cd->hash_size)
1346 		return NULL;
1347 	++*pos;
1348 	return hlist_entry_safe(cd->hash_table[hash].first,
1349 				struct cache_head, cache_list);
1350 }
1351 EXPORT_SYMBOL_GPL(cache_seq_next);
1352 
1353 void cache_seq_stop(struct seq_file *m, void *p)
1354 	__releases(cd->hash_lock)
1355 {
1356 	struct cache_detail *cd = m->private;
1357 	read_unlock(&cd->hash_lock);
1358 }
1359 EXPORT_SYMBOL_GPL(cache_seq_stop);
1360 
1361 static int c_show(struct seq_file *m, void *p)
1362 {
1363 	struct cache_head *cp = p;
1364 	struct cache_detail *cd = m->private;
1365 
1366 	if (p == SEQ_START_TOKEN)
1367 		return cd->cache_show(m, cd, NULL);
1368 
1369 	ifdebug(CACHE)
1370 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1371 			   convert_to_wallclock(cp->expiry_time),
1372 			   kref_read(&cp->ref), cp->flags);
1373 	cache_get(cp);
1374 	if (cache_check(cd, cp, NULL))
1375 		/* cache_check does a cache_put on failure */
1376 		seq_printf(m, "# ");
1377 	else {
1378 		if (cache_is_expired(cd, cp))
1379 			seq_printf(m, "# ");
1380 		cache_put(cp, cd);
1381 	}
1382 
1383 	return cd->cache_show(m, cd, cp);
1384 }
1385 
1386 static const struct seq_operations cache_content_op = {
1387 	.start	= cache_seq_start,
1388 	.next	= cache_seq_next,
1389 	.stop	= cache_seq_stop,
1390 	.show	= c_show,
1391 };
1392 
1393 static int content_open(struct inode *inode, struct file *file,
1394 			struct cache_detail *cd)
1395 {
1396 	struct seq_file *seq;
1397 	int err;
1398 
1399 	if (!cd || !try_module_get(cd->owner))
1400 		return -EACCES;
1401 
1402 	err = seq_open(file, &cache_content_op);
1403 	if (err) {
1404 		module_put(cd->owner);
1405 		return err;
1406 	}
1407 
1408 	seq = file->private_data;
1409 	seq->private = cd;
1410 	return 0;
1411 }
1412 
1413 static int content_release(struct inode *inode, struct file *file,
1414 		struct cache_detail *cd)
1415 {
1416 	int ret = seq_release(inode, file);
1417 	module_put(cd->owner);
1418 	return ret;
1419 }
1420 
1421 static int open_flush(struct inode *inode, struct file *file,
1422 			struct cache_detail *cd)
1423 {
1424 	if (!cd || !try_module_get(cd->owner))
1425 		return -EACCES;
1426 	return nonseekable_open(inode, file);
1427 }
1428 
1429 static int release_flush(struct inode *inode, struct file *file,
1430 			struct cache_detail *cd)
1431 {
1432 	module_put(cd->owner);
1433 	return 0;
1434 }
1435 
1436 static ssize_t read_flush(struct file *file, char __user *buf,
1437 			  size_t count, loff_t *ppos,
1438 			  struct cache_detail *cd)
1439 {
1440 	char tbuf[22];
1441 	size_t len;
1442 
1443 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1444 			convert_to_wallclock(cd->flush_time));
1445 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1446 }
1447 
1448 static ssize_t write_flush(struct file *file, const char __user *buf,
1449 			   size_t count, loff_t *ppos,
1450 			   struct cache_detail *cd)
1451 {
1452 	char tbuf[20];
1453 	char *ep;
1454 	time_t now;
1455 
1456 	if (*ppos || count > sizeof(tbuf)-1)
1457 		return -EINVAL;
1458 	if (copy_from_user(tbuf, buf, count))
1459 		return -EFAULT;
1460 	tbuf[count] = 0;
1461 	simple_strtoul(tbuf, &ep, 0);
1462 	if (*ep && *ep != '\n')
1463 		return -EINVAL;
1464 	/* Note that while we check that 'buf' holds a valid number,
1465 	 * we always ignore the value and just flush everything.
1466 	 * Making use of the number leads to races.
1467 	 */
1468 
1469 	now = seconds_since_boot();
1470 	/* Always flush everything, so behave like cache_purge()
1471 	 * Do this by advancing flush_time to the current time,
1472 	 * or by one second if it has already reached the current time.
1473 	 * Newly added cache entries will always have ->last_refresh greater
1474 	 * that ->flush_time, so they don't get flushed prematurely.
1475 	 */
1476 
1477 	if (cd->flush_time >= now)
1478 		now = cd->flush_time + 1;
1479 
1480 	cd->flush_time = now;
1481 	cd->nextcheck = now;
1482 	cache_flush();
1483 
1484 	*ppos += count;
1485 	return count;
1486 }
1487 
1488 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1489 				 size_t count, loff_t *ppos)
1490 {
1491 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1492 
1493 	return cache_read(filp, buf, count, ppos, cd);
1494 }
1495 
1496 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1497 				  size_t count, loff_t *ppos)
1498 {
1499 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1500 
1501 	return cache_write(filp, buf, count, ppos, cd);
1502 }
1503 
1504 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1505 {
1506 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1507 
1508 	return cache_poll(filp, wait, cd);
1509 }
1510 
1511 static long cache_ioctl_procfs(struct file *filp,
1512 			       unsigned int cmd, unsigned long arg)
1513 {
1514 	struct inode *inode = file_inode(filp);
1515 	struct cache_detail *cd = PDE_DATA(inode);
1516 
1517 	return cache_ioctl(inode, filp, cmd, arg, cd);
1518 }
1519 
1520 static int cache_open_procfs(struct inode *inode, struct file *filp)
1521 {
1522 	struct cache_detail *cd = PDE_DATA(inode);
1523 
1524 	return cache_open(inode, filp, cd);
1525 }
1526 
1527 static int cache_release_procfs(struct inode *inode, struct file *filp)
1528 {
1529 	struct cache_detail *cd = PDE_DATA(inode);
1530 
1531 	return cache_release(inode, filp, cd);
1532 }
1533 
1534 static const struct file_operations cache_file_operations_procfs = {
1535 	.owner		= THIS_MODULE,
1536 	.llseek		= no_llseek,
1537 	.read		= cache_read_procfs,
1538 	.write		= cache_write_procfs,
1539 	.poll		= cache_poll_procfs,
1540 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1541 	.open		= cache_open_procfs,
1542 	.release	= cache_release_procfs,
1543 };
1544 
1545 static int content_open_procfs(struct inode *inode, struct file *filp)
1546 {
1547 	struct cache_detail *cd = PDE_DATA(inode);
1548 
1549 	return content_open(inode, filp, cd);
1550 }
1551 
1552 static int content_release_procfs(struct inode *inode, struct file *filp)
1553 {
1554 	struct cache_detail *cd = PDE_DATA(inode);
1555 
1556 	return content_release(inode, filp, cd);
1557 }
1558 
1559 static const struct file_operations content_file_operations_procfs = {
1560 	.open		= content_open_procfs,
1561 	.read		= seq_read,
1562 	.llseek		= seq_lseek,
1563 	.release	= content_release_procfs,
1564 };
1565 
1566 static int open_flush_procfs(struct inode *inode, struct file *filp)
1567 {
1568 	struct cache_detail *cd = PDE_DATA(inode);
1569 
1570 	return open_flush(inode, filp, cd);
1571 }
1572 
1573 static int release_flush_procfs(struct inode *inode, struct file *filp)
1574 {
1575 	struct cache_detail *cd = PDE_DATA(inode);
1576 
1577 	return release_flush(inode, filp, cd);
1578 }
1579 
1580 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1581 			    size_t count, loff_t *ppos)
1582 {
1583 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1584 
1585 	return read_flush(filp, buf, count, ppos, cd);
1586 }
1587 
1588 static ssize_t write_flush_procfs(struct file *filp,
1589 				  const char __user *buf,
1590 				  size_t count, loff_t *ppos)
1591 {
1592 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1593 
1594 	return write_flush(filp, buf, count, ppos, cd);
1595 }
1596 
1597 static const struct file_operations cache_flush_operations_procfs = {
1598 	.open		= open_flush_procfs,
1599 	.read		= read_flush_procfs,
1600 	.write		= write_flush_procfs,
1601 	.release	= release_flush_procfs,
1602 	.llseek		= no_llseek,
1603 };
1604 
1605 static void remove_cache_proc_entries(struct cache_detail *cd)
1606 {
1607 	if (cd->procfs) {
1608 		proc_remove(cd->procfs);
1609 		cd->procfs = NULL;
1610 	}
1611 }
1612 
1613 #ifdef CONFIG_PROC_FS
1614 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1615 {
1616 	struct proc_dir_entry *p;
1617 	struct sunrpc_net *sn;
1618 
1619 	sn = net_generic(net, sunrpc_net_id);
1620 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1621 	if (cd->procfs == NULL)
1622 		goto out_nomem;
1623 
1624 	p = proc_create_data("flush", S_IFREG | 0600,
1625 			     cd->procfs, &cache_flush_operations_procfs, cd);
1626 	if (p == NULL)
1627 		goto out_nomem;
1628 
1629 	if (cd->cache_request || cd->cache_parse) {
1630 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1631 				     &cache_file_operations_procfs, cd);
1632 		if (p == NULL)
1633 			goto out_nomem;
1634 	}
1635 	if (cd->cache_show) {
1636 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1637 				     &content_file_operations_procfs, cd);
1638 		if (p == NULL)
1639 			goto out_nomem;
1640 	}
1641 	return 0;
1642 out_nomem:
1643 	remove_cache_proc_entries(cd);
1644 	return -ENOMEM;
1645 }
1646 #else /* CONFIG_PROC_FS */
1647 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1648 {
1649 	return 0;
1650 }
1651 #endif
1652 
1653 void __init cache_initialize(void)
1654 {
1655 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1656 }
1657 
1658 int cache_register_net(struct cache_detail *cd, struct net *net)
1659 {
1660 	int ret;
1661 
1662 	sunrpc_init_cache_detail(cd);
1663 	ret = create_cache_proc_entries(cd, net);
1664 	if (ret)
1665 		sunrpc_destroy_cache_detail(cd);
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(cache_register_net);
1669 
1670 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1671 {
1672 	remove_cache_proc_entries(cd);
1673 	sunrpc_destroy_cache_detail(cd);
1674 }
1675 EXPORT_SYMBOL_GPL(cache_unregister_net);
1676 
1677 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1678 {
1679 	struct cache_detail *cd;
1680 	int i;
1681 
1682 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1683 	if (cd == NULL)
1684 		return ERR_PTR(-ENOMEM);
1685 
1686 	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1687 				 GFP_KERNEL);
1688 	if (cd->hash_table == NULL) {
1689 		kfree(cd);
1690 		return ERR_PTR(-ENOMEM);
1691 	}
1692 
1693 	for (i = 0; i < cd->hash_size; i++)
1694 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1695 	cd->net = net;
1696 	return cd;
1697 }
1698 EXPORT_SYMBOL_GPL(cache_create_net);
1699 
1700 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1701 {
1702 	kfree(cd->hash_table);
1703 	kfree(cd);
1704 }
1705 EXPORT_SYMBOL_GPL(cache_destroy_net);
1706 
1707 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1708 				 size_t count, loff_t *ppos)
1709 {
1710 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1711 
1712 	return cache_read(filp, buf, count, ppos, cd);
1713 }
1714 
1715 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1716 				  size_t count, loff_t *ppos)
1717 {
1718 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1719 
1720 	return cache_write(filp, buf, count, ppos, cd);
1721 }
1722 
1723 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1724 {
1725 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1726 
1727 	return cache_poll(filp, wait, cd);
1728 }
1729 
1730 static long cache_ioctl_pipefs(struct file *filp,
1731 			      unsigned int cmd, unsigned long arg)
1732 {
1733 	struct inode *inode = file_inode(filp);
1734 	struct cache_detail *cd = RPC_I(inode)->private;
1735 
1736 	return cache_ioctl(inode, filp, cmd, arg, cd);
1737 }
1738 
1739 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1740 {
1741 	struct cache_detail *cd = RPC_I(inode)->private;
1742 
1743 	return cache_open(inode, filp, cd);
1744 }
1745 
1746 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1747 {
1748 	struct cache_detail *cd = RPC_I(inode)->private;
1749 
1750 	return cache_release(inode, filp, cd);
1751 }
1752 
1753 const struct file_operations cache_file_operations_pipefs = {
1754 	.owner		= THIS_MODULE,
1755 	.llseek		= no_llseek,
1756 	.read		= cache_read_pipefs,
1757 	.write		= cache_write_pipefs,
1758 	.poll		= cache_poll_pipefs,
1759 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1760 	.open		= cache_open_pipefs,
1761 	.release	= cache_release_pipefs,
1762 };
1763 
1764 static int content_open_pipefs(struct inode *inode, struct file *filp)
1765 {
1766 	struct cache_detail *cd = RPC_I(inode)->private;
1767 
1768 	return content_open(inode, filp, cd);
1769 }
1770 
1771 static int content_release_pipefs(struct inode *inode, struct file *filp)
1772 {
1773 	struct cache_detail *cd = RPC_I(inode)->private;
1774 
1775 	return content_release(inode, filp, cd);
1776 }
1777 
1778 const struct file_operations content_file_operations_pipefs = {
1779 	.open		= content_open_pipefs,
1780 	.read		= seq_read,
1781 	.llseek		= seq_lseek,
1782 	.release	= content_release_pipefs,
1783 };
1784 
1785 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1786 {
1787 	struct cache_detail *cd = RPC_I(inode)->private;
1788 
1789 	return open_flush(inode, filp, cd);
1790 }
1791 
1792 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1793 {
1794 	struct cache_detail *cd = RPC_I(inode)->private;
1795 
1796 	return release_flush(inode, filp, cd);
1797 }
1798 
1799 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1800 			    size_t count, loff_t *ppos)
1801 {
1802 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1803 
1804 	return read_flush(filp, buf, count, ppos, cd);
1805 }
1806 
1807 static ssize_t write_flush_pipefs(struct file *filp,
1808 				  const char __user *buf,
1809 				  size_t count, loff_t *ppos)
1810 {
1811 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1812 
1813 	return write_flush(filp, buf, count, ppos, cd);
1814 }
1815 
1816 const struct file_operations cache_flush_operations_pipefs = {
1817 	.open		= open_flush_pipefs,
1818 	.read		= read_flush_pipefs,
1819 	.write		= write_flush_pipefs,
1820 	.release	= release_flush_pipefs,
1821 	.llseek		= no_llseek,
1822 };
1823 
1824 int sunrpc_cache_register_pipefs(struct dentry *parent,
1825 				 const char *name, umode_t umode,
1826 				 struct cache_detail *cd)
1827 {
1828 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1829 	if (IS_ERR(dir))
1830 		return PTR_ERR(dir);
1831 	cd->pipefs = dir;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1835 
1836 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1837 {
1838 	if (cd->pipefs) {
1839 		rpc_remove_cache_dir(cd->pipefs);
1840 		cd->pipefs = NULL;
1841 	}
1842 }
1843 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1844 
1845 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1846 {
1847 	write_lock(&cd->hash_lock);
1848 	if (!hlist_unhashed(&h->cache_list)){
1849 		hlist_del_init(&h->cache_list);
1850 		cd->entries--;
1851 		write_unlock(&cd->hash_lock);
1852 		cache_put(h, cd);
1853 	} else
1854 		write_unlock(&cd->hash_lock);
1855 }
1856 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1857