xref: /openbmc/linux/net/sunrpc/cache.c (revision 23c2b932)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <asm/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	if (now <= detail->flush_time)
52 		/* ensure it isn't already expired */
53 		now = detail->flush_time + 1;
54 	h->last_refresh = now;
55 }
56 
57 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
58 				       struct cache_head *key, int hash)
59 {
60 	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
61 	struct hlist_head *head;
62 
63 	head = &detail->hash_table[hash];
64 
65 	read_lock(&detail->hash_lock);
66 
67 	hlist_for_each_entry(tmp, head, cache_list) {
68 		if (detail->match(tmp, key)) {
69 			if (cache_is_expired(detail, tmp))
70 				/* This entry is expired, we will discard it. */
71 				break;
72 			cache_get(tmp);
73 			read_unlock(&detail->hash_lock);
74 			return tmp;
75 		}
76 	}
77 	read_unlock(&detail->hash_lock);
78 	/* Didn't find anything, insert an empty entry */
79 
80 	new = detail->alloc();
81 	if (!new)
82 		return NULL;
83 	/* must fully initialise 'new', else
84 	 * we might get lose if we need to
85 	 * cache_put it soon.
86 	 */
87 	cache_init(new, detail);
88 	detail->init(new, key);
89 
90 	write_lock(&detail->hash_lock);
91 
92 	/* check if entry appeared while we slept */
93 	hlist_for_each_entry(tmp, head, cache_list) {
94 		if (detail->match(tmp, key)) {
95 			if (cache_is_expired(detail, tmp)) {
96 				hlist_del_init(&tmp->cache_list);
97 				detail->entries --;
98 				freeme = tmp;
99 				break;
100 			}
101 			cache_get(tmp);
102 			write_unlock(&detail->hash_lock);
103 			cache_put(new, detail);
104 			return tmp;
105 		}
106 	}
107 
108 	hlist_add_head(&new->cache_list, head);
109 	detail->entries++;
110 	cache_get(new);
111 	write_unlock(&detail->hash_lock);
112 
113 	if (freeme)
114 		cache_put(freeme, detail);
115 	return new;
116 }
117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
118 
119 
120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
121 
122 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
123 			       struct cache_detail *detail)
124 {
125 	time_t now = seconds_since_boot();
126 	if (now <= detail->flush_time)
127 		/* ensure it isn't immediately treated as expired */
128 		now = detail->flush_time + 1;
129 	head->expiry_time = expiry;
130 	head->last_refresh = now;
131 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 	set_bit(CACHE_VALID, &head->flags);
133 }
134 
135 static void cache_fresh_unlocked(struct cache_head *head,
136 				 struct cache_detail *detail)
137 {
138 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 		cache_revisit_request(head);
140 		cache_dequeue(detail, head);
141 	}
142 }
143 
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 				       struct cache_head *new, struct cache_head *old, int hash)
146 {
147 	/* The 'old' entry is to be replaced by 'new'.
148 	 * If 'old' is not VALID, we update it directly,
149 	 * otherwise we need to replace it
150 	 */
151 	struct cache_head *tmp;
152 
153 	if (!test_bit(CACHE_VALID, &old->flags)) {
154 		write_lock(&detail->hash_lock);
155 		if (!test_bit(CACHE_VALID, &old->flags)) {
156 			if (test_bit(CACHE_NEGATIVE, &new->flags))
157 				set_bit(CACHE_NEGATIVE, &old->flags);
158 			else
159 				detail->update(old, new);
160 			cache_fresh_locked(old, new->expiry_time, detail);
161 			write_unlock(&detail->hash_lock);
162 			cache_fresh_unlocked(old, detail);
163 			return old;
164 		}
165 		write_unlock(&detail->hash_lock);
166 	}
167 	/* We need to insert a new entry */
168 	tmp = detail->alloc();
169 	if (!tmp) {
170 		cache_put(old, detail);
171 		return NULL;
172 	}
173 	cache_init(tmp, detail);
174 	detail->init(tmp, old);
175 
176 	write_lock(&detail->hash_lock);
177 	if (test_bit(CACHE_NEGATIVE, &new->flags))
178 		set_bit(CACHE_NEGATIVE, &tmp->flags);
179 	else
180 		detail->update(tmp, new);
181 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
182 	detail->entries++;
183 	cache_get(tmp);
184 	cache_fresh_locked(tmp, new->expiry_time, detail);
185 	cache_fresh_locked(old, 0, detail);
186 	write_unlock(&detail->hash_lock);
187 	cache_fresh_unlocked(tmp, detail);
188 	cache_fresh_unlocked(old, detail);
189 	cache_put(old, detail);
190 	return tmp;
191 }
192 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
193 
194 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
195 {
196 	if (cd->cache_upcall)
197 		return cd->cache_upcall(cd, h);
198 	return sunrpc_cache_pipe_upcall(cd, h);
199 }
200 
201 static inline int cache_is_valid(struct cache_head *h)
202 {
203 	if (!test_bit(CACHE_VALID, &h->flags))
204 		return -EAGAIN;
205 	else {
206 		/* entry is valid */
207 		if (test_bit(CACHE_NEGATIVE, &h->flags))
208 			return -ENOENT;
209 		else {
210 			/*
211 			 * In combination with write barrier in
212 			 * sunrpc_cache_update, ensures that anyone
213 			 * using the cache entry after this sees the
214 			 * updated contents:
215 			 */
216 			smp_rmb();
217 			return 0;
218 		}
219 	}
220 }
221 
222 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
223 {
224 	int rv;
225 
226 	write_lock(&detail->hash_lock);
227 	rv = cache_is_valid(h);
228 	if (rv == -EAGAIN) {
229 		set_bit(CACHE_NEGATIVE, &h->flags);
230 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
231 				   detail);
232 		rv = -ENOENT;
233 	}
234 	write_unlock(&detail->hash_lock);
235 	cache_fresh_unlocked(h, detail);
236 	return rv;
237 }
238 
239 /*
240  * This is the generic cache management routine for all
241  * the authentication caches.
242  * It checks the currency of a cache item and will (later)
243  * initiate an upcall to fill it if needed.
244  *
245  *
246  * Returns 0 if the cache_head can be used, or cache_puts it and returns
247  * -EAGAIN if upcall is pending and request has been queued
248  * -ETIMEDOUT if upcall failed or request could not be queue or
249  *           upcall completed but item is still invalid (implying that
250  *           the cache item has been replaced with a newer one).
251  * -ENOENT if cache entry was negative
252  */
253 int cache_check(struct cache_detail *detail,
254 		    struct cache_head *h, struct cache_req *rqstp)
255 {
256 	int rv;
257 	long refresh_age, age;
258 
259 	/* First decide return status as best we can */
260 	rv = cache_is_valid(h);
261 
262 	/* now see if we want to start an upcall */
263 	refresh_age = (h->expiry_time - h->last_refresh);
264 	age = seconds_since_boot() - h->last_refresh;
265 
266 	if (rqstp == NULL) {
267 		if (rv == -EAGAIN)
268 			rv = -ENOENT;
269 	} else if (rv == -EAGAIN ||
270 		   (h->expiry_time != 0 && age > refresh_age/2)) {
271 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
272 				refresh_age, age);
273 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
274 			switch (cache_make_upcall(detail, h)) {
275 			case -EINVAL:
276 				rv = try_to_negate_entry(detail, h);
277 				break;
278 			case -EAGAIN:
279 				cache_fresh_unlocked(h, detail);
280 				break;
281 			}
282 		}
283 	}
284 
285 	if (rv == -EAGAIN) {
286 		if (!cache_defer_req(rqstp, h)) {
287 			/*
288 			 * Request was not deferred; handle it as best
289 			 * we can ourselves:
290 			 */
291 			rv = cache_is_valid(h);
292 			if (rv == -EAGAIN)
293 				rv = -ETIMEDOUT;
294 		}
295 	}
296 	if (rv)
297 		cache_put(h, detail);
298 	return rv;
299 }
300 EXPORT_SYMBOL_GPL(cache_check);
301 
302 /*
303  * caches need to be periodically cleaned.
304  * For this we maintain a list of cache_detail and
305  * a current pointer into that list and into the table
306  * for that entry.
307  *
308  * Each time cache_clean is called it finds the next non-empty entry
309  * in the current table and walks the list in that entry
310  * looking for entries that can be removed.
311  *
312  * An entry gets removed if:
313  * - The expiry is before current time
314  * - The last_refresh time is before the flush_time for that cache
315  *
316  * later we might drop old entries with non-NEVER expiry if that table
317  * is getting 'full' for some definition of 'full'
318  *
319  * The question of "how often to scan a table" is an interesting one
320  * and is answered in part by the use of the "nextcheck" field in the
321  * cache_detail.
322  * When a scan of a table begins, the nextcheck field is set to a time
323  * that is well into the future.
324  * While scanning, if an expiry time is found that is earlier than the
325  * current nextcheck time, nextcheck is set to that expiry time.
326  * If the flush_time is ever set to a time earlier than the nextcheck
327  * time, the nextcheck time is then set to that flush_time.
328  *
329  * A table is then only scanned if the current time is at least
330  * the nextcheck time.
331  *
332  */
333 
334 static LIST_HEAD(cache_list);
335 static DEFINE_SPINLOCK(cache_list_lock);
336 static struct cache_detail *current_detail;
337 static int current_index;
338 
339 static void do_cache_clean(struct work_struct *work);
340 static struct delayed_work cache_cleaner;
341 
342 void sunrpc_init_cache_detail(struct cache_detail *cd)
343 {
344 	rwlock_init(&cd->hash_lock);
345 	INIT_LIST_HEAD(&cd->queue);
346 	spin_lock(&cache_list_lock);
347 	cd->nextcheck = 0;
348 	cd->entries = 0;
349 	atomic_set(&cd->readers, 0);
350 	cd->last_close = 0;
351 	cd->last_warn = -1;
352 	list_add(&cd->others, &cache_list);
353 	spin_unlock(&cache_list_lock);
354 
355 	/* start the cleaning process */
356 	schedule_delayed_work(&cache_cleaner, 0);
357 }
358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
359 
360 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
361 {
362 	cache_purge(cd);
363 	spin_lock(&cache_list_lock);
364 	write_lock(&cd->hash_lock);
365 	if (cd->entries || atomic_read(&cd->inuse)) {
366 		write_unlock(&cd->hash_lock);
367 		spin_unlock(&cache_list_lock);
368 		goto out;
369 	}
370 	if (current_detail == cd)
371 		current_detail = NULL;
372 	list_del_init(&cd->others);
373 	write_unlock(&cd->hash_lock);
374 	spin_unlock(&cache_list_lock);
375 	if (list_empty(&cache_list)) {
376 		/* module must be being unloaded so its safe to kill the worker */
377 		cancel_delayed_work_sync(&cache_cleaner);
378 	}
379 	return;
380 out:
381 	printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
382 }
383 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
384 
385 /* clean cache tries to find something to clean
386  * and cleans it.
387  * It returns 1 if it cleaned something,
388  *            0 if it didn't find anything this time
389  *           -1 if it fell off the end of the list.
390  */
391 static int cache_clean(void)
392 {
393 	int rv = 0;
394 	struct list_head *next;
395 
396 	spin_lock(&cache_list_lock);
397 
398 	/* find a suitable table if we don't already have one */
399 	while (current_detail == NULL ||
400 	    current_index >= current_detail->hash_size) {
401 		if (current_detail)
402 			next = current_detail->others.next;
403 		else
404 			next = cache_list.next;
405 		if (next == &cache_list) {
406 			current_detail = NULL;
407 			spin_unlock(&cache_list_lock);
408 			return -1;
409 		}
410 		current_detail = list_entry(next, struct cache_detail, others);
411 		if (current_detail->nextcheck > seconds_since_boot())
412 			current_index = current_detail->hash_size;
413 		else {
414 			current_index = 0;
415 			current_detail->nextcheck = seconds_since_boot()+30*60;
416 		}
417 	}
418 
419 	/* find a non-empty bucket in the table */
420 	while (current_detail &&
421 	       current_index < current_detail->hash_size &&
422 	       hlist_empty(&current_detail->hash_table[current_index]))
423 		current_index++;
424 
425 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
426 
427 	if (current_detail && current_index < current_detail->hash_size) {
428 		struct cache_head *ch = NULL;
429 		struct cache_detail *d;
430 		struct hlist_head *head;
431 		struct hlist_node *tmp;
432 
433 		write_lock(&current_detail->hash_lock);
434 
435 		/* Ok, now to clean this strand */
436 
437 		head = &current_detail->hash_table[current_index];
438 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
439 			if (current_detail->nextcheck > ch->expiry_time)
440 				current_detail->nextcheck = ch->expiry_time+1;
441 			if (!cache_is_expired(current_detail, ch))
442 				continue;
443 
444 			hlist_del_init(&ch->cache_list);
445 			current_detail->entries--;
446 			rv = 1;
447 			break;
448 		}
449 
450 		write_unlock(&current_detail->hash_lock);
451 		d = current_detail;
452 		if (!ch)
453 			current_index ++;
454 		spin_unlock(&cache_list_lock);
455 		if (ch) {
456 			set_bit(CACHE_CLEANED, &ch->flags);
457 			cache_fresh_unlocked(ch, d);
458 			cache_put(ch, d);
459 		}
460 	} else
461 		spin_unlock(&cache_list_lock);
462 
463 	return rv;
464 }
465 
466 /*
467  * We want to regularly clean the cache, so we need to schedule some work ...
468  */
469 static void do_cache_clean(struct work_struct *work)
470 {
471 	int delay = 5;
472 	if (cache_clean() == -1)
473 		delay = round_jiffies_relative(30*HZ);
474 
475 	if (list_empty(&cache_list))
476 		delay = 0;
477 
478 	if (delay)
479 		schedule_delayed_work(&cache_cleaner, delay);
480 }
481 
482 
483 /*
484  * Clean all caches promptly.  This just calls cache_clean
485  * repeatedly until we are sure that every cache has had a chance to
486  * be fully cleaned
487  */
488 void cache_flush(void)
489 {
490 	while (cache_clean() != -1)
491 		cond_resched();
492 	while (cache_clean() != -1)
493 		cond_resched();
494 }
495 EXPORT_SYMBOL_GPL(cache_flush);
496 
497 void cache_purge(struct cache_detail *detail)
498 {
499 	time_t now = seconds_since_boot();
500 	if (detail->flush_time >= now)
501 		now = detail->flush_time + 1;
502 	/* 'now' is the maximum value any 'last_refresh' can have */
503 	detail->flush_time = now;
504 	detail->nextcheck = seconds_since_boot();
505 	cache_flush();
506 }
507 EXPORT_SYMBOL_GPL(cache_purge);
508 
509 
510 /*
511  * Deferral and Revisiting of Requests.
512  *
513  * If a cache lookup finds a pending entry, we
514  * need to defer the request and revisit it later.
515  * All deferred requests are stored in a hash table,
516  * indexed by "struct cache_head *".
517  * As it may be wasteful to store a whole request
518  * structure, we allow the request to provide a
519  * deferred form, which must contain a
520  * 'struct cache_deferred_req'
521  * This cache_deferred_req contains a method to allow
522  * it to be revisited when cache info is available
523  */
524 
525 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
526 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
527 
528 #define	DFR_MAX	300	/* ??? */
529 
530 static DEFINE_SPINLOCK(cache_defer_lock);
531 static LIST_HEAD(cache_defer_list);
532 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
533 static int cache_defer_cnt;
534 
535 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
536 {
537 	hlist_del_init(&dreq->hash);
538 	if (!list_empty(&dreq->recent)) {
539 		list_del_init(&dreq->recent);
540 		cache_defer_cnt--;
541 	}
542 }
543 
544 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
545 {
546 	int hash = DFR_HASH(item);
547 
548 	INIT_LIST_HEAD(&dreq->recent);
549 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
550 }
551 
552 static void setup_deferral(struct cache_deferred_req *dreq,
553 			   struct cache_head *item,
554 			   int count_me)
555 {
556 
557 	dreq->item = item;
558 
559 	spin_lock(&cache_defer_lock);
560 
561 	__hash_deferred_req(dreq, item);
562 
563 	if (count_me) {
564 		cache_defer_cnt++;
565 		list_add(&dreq->recent, &cache_defer_list);
566 	}
567 
568 	spin_unlock(&cache_defer_lock);
569 
570 }
571 
572 struct thread_deferred_req {
573 	struct cache_deferred_req handle;
574 	struct completion completion;
575 };
576 
577 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
578 {
579 	struct thread_deferred_req *dr =
580 		container_of(dreq, struct thread_deferred_req, handle);
581 	complete(&dr->completion);
582 }
583 
584 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
585 {
586 	struct thread_deferred_req sleeper;
587 	struct cache_deferred_req *dreq = &sleeper.handle;
588 
589 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
590 	dreq->revisit = cache_restart_thread;
591 
592 	setup_deferral(dreq, item, 0);
593 
594 	if (!test_bit(CACHE_PENDING, &item->flags) ||
595 	    wait_for_completion_interruptible_timeout(
596 		    &sleeper.completion, req->thread_wait) <= 0) {
597 		/* The completion wasn't completed, so we need
598 		 * to clean up
599 		 */
600 		spin_lock(&cache_defer_lock);
601 		if (!hlist_unhashed(&sleeper.handle.hash)) {
602 			__unhash_deferred_req(&sleeper.handle);
603 			spin_unlock(&cache_defer_lock);
604 		} else {
605 			/* cache_revisit_request already removed
606 			 * this from the hash table, but hasn't
607 			 * called ->revisit yet.  It will very soon
608 			 * and we need to wait for it.
609 			 */
610 			spin_unlock(&cache_defer_lock);
611 			wait_for_completion(&sleeper.completion);
612 		}
613 	}
614 }
615 
616 static void cache_limit_defers(void)
617 {
618 	/* Make sure we haven't exceed the limit of allowed deferred
619 	 * requests.
620 	 */
621 	struct cache_deferred_req *discard = NULL;
622 
623 	if (cache_defer_cnt <= DFR_MAX)
624 		return;
625 
626 	spin_lock(&cache_defer_lock);
627 
628 	/* Consider removing either the first or the last */
629 	if (cache_defer_cnt > DFR_MAX) {
630 		if (prandom_u32() & 1)
631 			discard = list_entry(cache_defer_list.next,
632 					     struct cache_deferred_req, recent);
633 		else
634 			discard = list_entry(cache_defer_list.prev,
635 					     struct cache_deferred_req, recent);
636 		__unhash_deferred_req(discard);
637 	}
638 	spin_unlock(&cache_defer_lock);
639 	if (discard)
640 		discard->revisit(discard, 1);
641 }
642 
643 /* Return true if and only if a deferred request is queued. */
644 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
645 {
646 	struct cache_deferred_req *dreq;
647 
648 	if (req->thread_wait) {
649 		cache_wait_req(req, item);
650 		if (!test_bit(CACHE_PENDING, &item->flags))
651 			return false;
652 	}
653 	dreq = req->defer(req);
654 	if (dreq == NULL)
655 		return false;
656 	setup_deferral(dreq, item, 1);
657 	if (!test_bit(CACHE_PENDING, &item->flags))
658 		/* Bit could have been cleared before we managed to
659 		 * set up the deferral, so need to revisit just in case
660 		 */
661 		cache_revisit_request(item);
662 
663 	cache_limit_defers();
664 	return true;
665 }
666 
667 static void cache_revisit_request(struct cache_head *item)
668 {
669 	struct cache_deferred_req *dreq;
670 	struct list_head pending;
671 	struct hlist_node *tmp;
672 	int hash = DFR_HASH(item);
673 
674 	INIT_LIST_HEAD(&pending);
675 	spin_lock(&cache_defer_lock);
676 
677 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
678 		if (dreq->item == item) {
679 			__unhash_deferred_req(dreq);
680 			list_add(&dreq->recent, &pending);
681 		}
682 
683 	spin_unlock(&cache_defer_lock);
684 
685 	while (!list_empty(&pending)) {
686 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
687 		list_del_init(&dreq->recent);
688 		dreq->revisit(dreq, 0);
689 	}
690 }
691 
692 void cache_clean_deferred(void *owner)
693 {
694 	struct cache_deferred_req *dreq, *tmp;
695 	struct list_head pending;
696 
697 
698 	INIT_LIST_HEAD(&pending);
699 	spin_lock(&cache_defer_lock);
700 
701 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
702 		if (dreq->owner == owner) {
703 			__unhash_deferred_req(dreq);
704 			list_add(&dreq->recent, &pending);
705 		}
706 	}
707 	spin_unlock(&cache_defer_lock);
708 
709 	while (!list_empty(&pending)) {
710 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
711 		list_del_init(&dreq->recent);
712 		dreq->revisit(dreq, 1);
713 	}
714 }
715 
716 /*
717  * communicate with user-space
718  *
719  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
720  * On read, you get a full request, or block.
721  * On write, an update request is processed.
722  * Poll works if anything to read, and always allows write.
723  *
724  * Implemented by linked list of requests.  Each open file has
725  * a ->private that also exists in this list.  New requests are added
726  * to the end and may wakeup and preceding readers.
727  * New readers are added to the head.  If, on read, an item is found with
728  * CACHE_UPCALLING clear, we free it from the list.
729  *
730  */
731 
732 static DEFINE_SPINLOCK(queue_lock);
733 static DEFINE_MUTEX(queue_io_mutex);
734 
735 struct cache_queue {
736 	struct list_head	list;
737 	int			reader;	/* if 0, then request */
738 };
739 struct cache_request {
740 	struct cache_queue	q;
741 	struct cache_head	*item;
742 	char			* buf;
743 	int			len;
744 	int			readers;
745 };
746 struct cache_reader {
747 	struct cache_queue	q;
748 	int			offset;	/* if non-0, we have a refcnt on next request */
749 };
750 
751 static int cache_request(struct cache_detail *detail,
752 			       struct cache_request *crq)
753 {
754 	char *bp = crq->buf;
755 	int len = PAGE_SIZE;
756 
757 	detail->cache_request(detail, crq->item, &bp, &len);
758 	if (len < 0)
759 		return -EAGAIN;
760 	return PAGE_SIZE - len;
761 }
762 
763 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
764 			  loff_t *ppos, struct cache_detail *cd)
765 {
766 	struct cache_reader *rp = filp->private_data;
767 	struct cache_request *rq;
768 	struct inode *inode = file_inode(filp);
769 	int err;
770 
771 	if (count == 0)
772 		return 0;
773 
774 	inode_lock(inode); /* protect against multiple concurrent
775 			      * readers on this file */
776  again:
777 	spin_lock(&queue_lock);
778 	/* need to find next request */
779 	while (rp->q.list.next != &cd->queue &&
780 	       list_entry(rp->q.list.next, struct cache_queue, list)
781 	       ->reader) {
782 		struct list_head *next = rp->q.list.next;
783 		list_move(&rp->q.list, next);
784 	}
785 	if (rp->q.list.next == &cd->queue) {
786 		spin_unlock(&queue_lock);
787 		inode_unlock(inode);
788 		WARN_ON_ONCE(rp->offset);
789 		return 0;
790 	}
791 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
792 	WARN_ON_ONCE(rq->q.reader);
793 	if (rp->offset == 0)
794 		rq->readers++;
795 	spin_unlock(&queue_lock);
796 
797 	if (rq->len == 0) {
798 		err = cache_request(cd, rq);
799 		if (err < 0)
800 			goto out;
801 		rq->len = err;
802 	}
803 
804 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
805 		err = -EAGAIN;
806 		spin_lock(&queue_lock);
807 		list_move(&rp->q.list, &rq->q.list);
808 		spin_unlock(&queue_lock);
809 	} else {
810 		if (rp->offset + count > rq->len)
811 			count = rq->len - rp->offset;
812 		err = -EFAULT;
813 		if (copy_to_user(buf, rq->buf + rp->offset, count))
814 			goto out;
815 		rp->offset += count;
816 		if (rp->offset >= rq->len) {
817 			rp->offset = 0;
818 			spin_lock(&queue_lock);
819 			list_move(&rp->q.list, &rq->q.list);
820 			spin_unlock(&queue_lock);
821 		}
822 		err = 0;
823 	}
824  out:
825 	if (rp->offset == 0) {
826 		/* need to release rq */
827 		spin_lock(&queue_lock);
828 		rq->readers--;
829 		if (rq->readers == 0 &&
830 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
831 			list_del(&rq->q.list);
832 			spin_unlock(&queue_lock);
833 			cache_put(rq->item, cd);
834 			kfree(rq->buf);
835 			kfree(rq);
836 		} else
837 			spin_unlock(&queue_lock);
838 	}
839 	if (err == -EAGAIN)
840 		goto again;
841 	inode_unlock(inode);
842 	return err ? err :  count;
843 }
844 
845 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
846 				 size_t count, struct cache_detail *cd)
847 {
848 	ssize_t ret;
849 
850 	if (count == 0)
851 		return -EINVAL;
852 	if (copy_from_user(kaddr, buf, count))
853 		return -EFAULT;
854 	kaddr[count] = '\0';
855 	ret = cd->cache_parse(cd, kaddr, count);
856 	if (!ret)
857 		ret = count;
858 	return ret;
859 }
860 
861 static ssize_t cache_slow_downcall(const char __user *buf,
862 				   size_t count, struct cache_detail *cd)
863 {
864 	static char write_buf[8192]; /* protected by queue_io_mutex */
865 	ssize_t ret = -EINVAL;
866 
867 	if (count >= sizeof(write_buf))
868 		goto out;
869 	mutex_lock(&queue_io_mutex);
870 	ret = cache_do_downcall(write_buf, buf, count, cd);
871 	mutex_unlock(&queue_io_mutex);
872 out:
873 	return ret;
874 }
875 
876 static ssize_t cache_downcall(struct address_space *mapping,
877 			      const char __user *buf,
878 			      size_t count, struct cache_detail *cd)
879 {
880 	struct page *page;
881 	char *kaddr;
882 	ssize_t ret = -ENOMEM;
883 
884 	if (count >= PAGE_SIZE)
885 		goto out_slow;
886 
887 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
888 	if (!page)
889 		goto out_slow;
890 
891 	kaddr = kmap(page);
892 	ret = cache_do_downcall(kaddr, buf, count, cd);
893 	kunmap(page);
894 	unlock_page(page);
895 	put_page(page);
896 	return ret;
897 out_slow:
898 	return cache_slow_downcall(buf, count, cd);
899 }
900 
901 static ssize_t cache_write(struct file *filp, const char __user *buf,
902 			   size_t count, loff_t *ppos,
903 			   struct cache_detail *cd)
904 {
905 	struct address_space *mapping = filp->f_mapping;
906 	struct inode *inode = file_inode(filp);
907 	ssize_t ret = -EINVAL;
908 
909 	if (!cd->cache_parse)
910 		goto out;
911 
912 	inode_lock(inode);
913 	ret = cache_downcall(mapping, buf, count, cd);
914 	inode_unlock(inode);
915 out:
916 	return ret;
917 }
918 
919 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
920 
921 static unsigned int cache_poll(struct file *filp, poll_table *wait,
922 			       struct cache_detail *cd)
923 {
924 	unsigned int mask;
925 	struct cache_reader *rp = filp->private_data;
926 	struct cache_queue *cq;
927 
928 	poll_wait(filp, &queue_wait, wait);
929 
930 	/* alway allow write */
931 	mask = POLLOUT | POLLWRNORM;
932 
933 	if (!rp)
934 		return mask;
935 
936 	spin_lock(&queue_lock);
937 
938 	for (cq= &rp->q; &cq->list != &cd->queue;
939 	     cq = list_entry(cq->list.next, struct cache_queue, list))
940 		if (!cq->reader) {
941 			mask |= POLLIN | POLLRDNORM;
942 			break;
943 		}
944 	spin_unlock(&queue_lock);
945 	return mask;
946 }
947 
948 static int cache_ioctl(struct inode *ino, struct file *filp,
949 		       unsigned int cmd, unsigned long arg,
950 		       struct cache_detail *cd)
951 {
952 	int len = 0;
953 	struct cache_reader *rp = filp->private_data;
954 	struct cache_queue *cq;
955 
956 	if (cmd != FIONREAD || !rp)
957 		return -EINVAL;
958 
959 	spin_lock(&queue_lock);
960 
961 	/* only find the length remaining in current request,
962 	 * or the length of the next request
963 	 */
964 	for (cq= &rp->q; &cq->list != &cd->queue;
965 	     cq = list_entry(cq->list.next, struct cache_queue, list))
966 		if (!cq->reader) {
967 			struct cache_request *cr =
968 				container_of(cq, struct cache_request, q);
969 			len = cr->len - rp->offset;
970 			break;
971 		}
972 	spin_unlock(&queue_lock);
973 
974 	return put_user(len, (int __user *)arg);
975 }
976 
977 static int cache_open(struct inode *inode, struct file *filp,
978 		      struct cache_detail *cd)
979 {
980 	struct cache_reader *rp = NULL;
981 
982 	if (!cd || !try_module_get(cd->owner))
983 		return -EACCES;
984 	nonseekable_open(inode, filp);
985 	if (filp->f_mode & FMODE_READ) {
986 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
987 		if (!rp) {
988 			module_put(cd->owner);
989 			return -ENOMEM;
990 		}
991 		rp->offset = 0;
992 		rp->q.reader = 1;
993 		atomic_inc(&cd->readers);
994 		spin_lock(&queue_lock);
995 		list_add(&rp->q.list, &cd->queue);
996 		spin_unlock(&queue_lock);
997 	}
998 	filp->private_data = rp;
999 	return 0;
1000 }
1001 
1002 static int cache_release(struct inode *inode, struct file *filp,
1003 			 struct cache_detail *cd)
1004 {
1005 	struct cache_reader *rp = filp->private_data;
1006 
1007 	if (rp) {
1008 		spin_lock(&queue_lock);
1009 		if (rp->offset) {
1010 			struct cache_queue *cq;
1011 			for (cq= &rp->q; &cq->list != &cd->queue;
1012 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1013 				if (!cq->reader) {
1014 					container_of(cq, struct cache_request, q)
1015 						->readers--;
1016 					break;
1017 				}
1018 			rp->offset = 0;
1019 		}
1020 		list_del(&rp->q.list);
1021 		spin_unlock(&queue_lock);
1022 
1023 		filp->private_data = NULL;
1024 		kfree(rp);
1025 
1026 		cd->last_close = seconds_since_boot();
1027 		atomic_dec(&cd->readers);
1028 	}
1029 	module_put(cd->owner);
1030 	return 0;
1031 }
1032 
1033 
1034 
1035 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1036 {
1037 	struct cache_queue *cq, *tmp;
1038 	struct cache_request *cr;
1039 	struct list_head dequeued;
1040 
1041 	INIT_LIST_HEAD(&dequeued);
1042 	spin_lock(&queue_lock);
1043 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1044 		if (!cq->reader) {
1045 			cr = container_of(cq, struct cache_request, q);
1046 			if (cr->item != ch)
1047 				continue;
1048 			if (test_bit(CACHE_PENDING, &ch->flags))
1049 				/* Lost a race and it is pending again */
1050 				break;
1051 			if (cr->readers != 0)
1052 				continue;
1053 			list_move(&cr->q.list, &dequeued);
1054 		}
1055 	spin_unlock(&queue_lock);
1056 	while (!list_empty(&dequeued)) {
1057 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1058 		list_del(&cr->q.list);
1059 		cache_put(cr->item, detail);
1060 		kfree(cr->buf);
1061 		kfree(cr);
1062 	}
1063 }
1064 
1065 /*
1066  * Support routines for text-based upcalls.
1067  * Fields are separated by spaces.
1068  * Fields are either mangled to quote space tab newline slosh with slosh
1069  * or a hexified with a leading \x
1070  * Record is terminated with newline.
1071  *
1072  */
1073 
1074 void qword_add(char **bpp, int *lp, char *str)
1075 {
1076 	char *bp = *bpp;
1077 	int len = *lp;
1078 	int ret;
1079 
1080 	if (len < 0) return;
1081 
1082 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1083 	if (ret >= len) {
1084 		bp += len;
1085 		len = -1;
1086 	} else {
1087 		bp += ret;
1088 		len -= ret;
1089 		*bp++ = ' ';
1090 		len--;
1091 	}
1092 	*bpp = bp;
1093 	*lp = len;
1094 }
1095 EXPORT_SYMBOL_GPL(qword_add);
1096 
1097 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1098 {
1099 	char *bp = *bpp;
1100 	int len = *lp;
1101 
1102 	if (len < 0) return;
1103 
1104 	if (len > 2) {
1105 		*bp++ = '\\';
1106 		*bp++ = 'x';
1107 		len -= 2;
1108 		while (blen && len >= 2) {
1109 			bp = hex_byte_pack(bp, *buf++);
1110 			len -= 2;
1111 			blen--;
1112 		}
1113 	}
1114 	if (blen || len<1) len = -1;
1115 	else {
1116 		*bp++ = ' ';
1117 		len--;
1118 	}
1119 	*bpp = bp;
1120 	*lp = len;
1121 }
1122 EXPORT_SYMBOL_GPL(qword_addhex);
1123 
1124 static void warn_no_listener(struct cache_detail *detail)
1125 {
1126 	if (detail->last_warn != detail->last_close) {
1127 		detail->last_warn = detail->last_close;
1128 		if (detail->warn_no_listener)
1129 			detail->warn_no_listener(detail, detail->last_close != 0);
1130 	}
1131 }
1132 
1133 static bool cache_listeners_exist(struct cache_detail *detail)
1134 {
1135 	if (atomic_read(&detail->readers))
1136 		return true;
1137 	if (detail->last_close == 0)
1138 		/* This cache was never opened */
1139 		return false;
1140 	if (detail->last_close < seconds_since_boot() - 30)
1141 		/*
1142 		 * We allow for the possibility that someone might
1143 		 * restart a userspace daemon without restarting the
1144 		 * server; but after 30 seconds, we give up.
1145 		 */
1146 		 return false;
1147 	return true;
1148 }
1149 
1150 /*
1151  * register an upcall request to user-space and queue it up for read() by the
1152  * upcall daemon.
1153  *
1154  * Each request is at most one page long.
1155  */
1156 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1157 {
1158 
1159 	char *buf;
1160 	struct cache_request *crq;
1161 	int ret = 0;
1162 
1163 	if (!detail->cache_request)
1164 		return -EINVAL;
1165 
1166 	if (!cache_listeners_exist(detail)) {
1167 		warn_no_listener(detail);
1168 		return -EINVAL;
1169 	}
1170 	if (test_bit(CACHE_CLEANED, &h->flags))
1171 		/* Too late to make an upcall */
1172 		return -EAGAIN;
1173 
1174 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1175 	if (!buf)
1176 		return -EAGAIN;
1177 
1178 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1179 	if (!crq) {
1180 		kfree(buf);
1181 		return -EAGAIN;
1182 	}
1183 
1184 	crq->q.reader = 0;
1185 	crq->buf = buf;
1186 	crq->len = 0;
1187 	crq->readers = 0;
1188 	spin_lock(&queue_lock);
1189 	if (test_bit(CACHE_PENDING, &h->flags)) {
1190 		crq->item = cache_get(h);
1191 		list_add_tail(&crq->q.list, &detail->queue);
1192 	} else
1193 		/* Lost a race, no longer PENDING, so don't enqueue */
1194 		ret = -EAGAIN;
1195 	spin_unlock(&queue_lock);
1196 	wake_up(&queue_wait);
1197 	if (ret == -EAGAIN) {
1198 		kfree(buf);
1199 		kfree(crq);
1200 	}
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1204 
1205 /*
1206  * parse a message from user-space and pass it
1207  * to an appropriate cache
1208  * Messages are, like requests, separated into fields by
1209  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1210  *
1211  * Message is
1212  *   reply cachename expiry key ... content....
1213  *
1214  * key and content are both parsed by cache
1215  */
1216 
1217 int qword_get(char **bpp, char *dest, int bufsize)
1218 {
1219 	/* return bytes copied, or -1 on error */
1220 	char *bp = *bpp;
1221 	int len = 0;
1222 
1223 	while (*bp == ' ') bp++;
1224 
1225 	if (bp[0] == '\\' && bp[1] == 'x') {
1226 		/* HEX STRING */
1227 		bp += 2;
1228 		while (len < bufsize - 1) {
1229 			int h, l;
1230 
1231 			h = hex_to_bin(bp[0]);
1232 			if (h < 0)
1233 				break;
1234 
1235 			l = hex_to_bin(bp[1]);
1236 			if (l < 0)
1237 				break;
1238 
1239 			*dest++ = (h << 4) | l;
1240 			bp += 2;
1241 			len++;
1242 		}
1243 	} else {
1244 		/* text with \nnn octal quoting */
1245 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1246 			if (*bp == '\\' &&
1247 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1248 			    isodigit(bp[2]) &&
1249 			    isodigit(bp[3])) {
1250 				int byte = (*++bp -'0');
1251 				bp++;
1252 				byte = (byte << 3) | (*bp++ - '0');
1253 				byte = (byte << 3) | (*bp++ - '0');
1254 				*dest++ = byte;
1255 				len++;
1256 			} else {
1257 				*dest++ = *bp++;
1258 				len++;
1259 			}
1260 		}
1261 	}
1262 
1263 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1264 		return -1;
1265 	while (*bp == ' ') bp++;
1266 	*bpp = bp;
1267 	*dest = '\0';
1268 	return len;
1269 }
1270 EXPORT_SYMBOL_GPL(qword_get);
1271 
1272 
1273 /*
1274  * support /proc/sunrpc/cache/$CACHENAME/content
1275  * as a seqfile.
1276  * We call ->cache_show passing NULL for the item to
1277  * get a header, then pass each real item in the cache
1278  */
1279 
1280 void *cache_seq_start(struct seq_file *m, loff_t *pos)
1281 	__acquires(cd->hash_lock)
1282 {
1283 	loff_t n = *pos;
1284 	unsigned int hash, entry;
1285 	struct cache_head *ch;
1286 	struct cache_detail *cd = m->private;
1287 
1288 	read_lock(&cd->hash_lock);
1289 	if (!n--)
1290 		return SEQ_START_TOKEN;
1291 	hash = n >> 32;
1292 	entry = n & ((1LL<<32) - 1);
1293 
1294 	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1295 		if (!entry--)
1296 			return ch;
1297 	n &= ~((1LL<<32) - 1);
1298 	do {
1299 		hash++;
1300 		n += 1LL<<32;
1301 	} while(hash < cd->hash_size &&
1302 		hlist_empty(&cd->hash_table[hash]));
1303 	if (hash >= cd->hash_size)
1304 		return NULL;
1305 	*pos = n+1;
1306 	return hlist_entry_safe(cd->hash_table[hash].first,
1307 				struct cache_head, cache_list);
1308 }
1309 EXPORT_SYMBOL_GPL(cache_seq_start);
1310 
1311 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1312 {
1313 	struct cache_head *ch = p;
1314 	int hash = (*pos >> 32);
1315 	struct cache_detail *cd = m->private;
1316 
1317 	if (p == SEQ_START_TOKEN)
1318 		hash = 0;
1319 	else if (ch->cache_list.next == NULL) {
1320 		hash++;
1321 		*pos += 1LL<<32;
1322 	} else {
1323 		++*pos;
1324 		return hlist_entry_safe(ch->cache_list.next,
1325 					struct cache_head, cache_list);
1326 	}
1327 	*pos &= ~((1LL<<32) - 1);
1328 	while (hash < cd->hash_size &&
1329 	       hlist_empty(&cd->hash_table[hash])) {
1330 		hash++;
1331 		*pos += 1LL<<32;
1332 	}
1333 	if (hash >= cd->hash_size)
1334 		return NULL;
1335 	++*pos;
1336 	return hlist_entry_safe(cd->hash_table[hash].first,
1337 				struct cache_head, cache_list);
1338 }
1339 EXPORT_SYMBOL_GPL(cache_seq_next);
1340 
1341 void cache_seq_stop(struct seq_file *m, void *p)
1342 	__releases(cd->hash_lock)
1343 {
1344 	struct cache_detail *cd = m->private;
1345 	read_unlock(&cd->hash_lock);
1346 }
1347 EXPORT_SYMBOL_GPL(cache_seq_stop);
1348 
1349 static int c_show(struct seq_file *m, void *p)
1350 {
1351 	struct cache_head *cp = p;
1352 	struct cache_detail *cd = m->private;
1353 
1354 	if (p == SEQ_START_TOKEN)
1355 		return cd->cache_show(m, cd, NULL);
1356 
1357 	ifdebug(CACHE)
1358 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1359 			   convert_to_wallclock(cp->expiry_time),
1360 			   atomic_read(&cp->ref.refcount), cp->flags);
1361 	cache_get(cp);
1362 	if (cache_check(cd, cp, NULL))
1363 		/* cache_check does a cache_put on failure */
1364 		seq_printf(m, "# ");
1365 	else {
1366 		if (cache_is_expired(cd, cp))
1367 			seq_printf(m, "# ");
1368 		cache_put(cp, cd);
1369 	}
1370 
1371 	return cd->cache_show(m, cd, cp);
1372 }
1373 
1374 static const struct seq_operations cache_content_op = {
1375 	.start	= cache_seq_start,
1376 	.next	= cache_seq_next,
1377 	.stop	= cache_seq_stop,
1378 	.show	= c_show,
1379 };
1380 
1381 static int content_open(struct inode *inode, struct file *file,
1382 			struct cache_detail *cd)
1383 {
1384 	struct seq_file *seq;
1385 	int err;
1386 
1387 	if (!cd || !try_module_get(cd->owner))
1388 		return -EACCES;
1389 
1390 	err = seq_open(file, &cache_content_op);
1391 	if (err) {
1392 		module_put(cd->owner);
1393 		return err;
1394 	}
1395 
1396 	seq = file->private_data;
1397 	seq->private = cd;
1398 	return 0;
1399 }
1400 
1401 static int content_release(struct inode *inode, struct file *file,
1402 		struct cache_detail *cd)
1403 {
1404 	int ret = seq_release(inode, file);
1405 	module_put(cd->owner);
1406 	return ret;
1407 }
1408 
1409 static int open_flush(struct inode *inode, struct file *file,
1410 			struct cache_detail *cd)
1411 {
1412 	if (!cd || !try_module_get(cd->owner))
1413 		return -EACCES;
1414 	return nonseekable_open(inode, file);
1415 }
1416 
1417 static int release_flush(struct inode *inode, struct file *file,
1418 			struct cache_detail *cd)
1419 {
1420 	module_put(cd->owner);
1421 	return 0;
1422 }
1423 
1424 static ssize_t read_flush(struct file *file, char __user *buf,
1425 			  size_t count, loff_t *ppos,
1426 			  struct cache_detail *cd)
1427 {
1428 	char tbuf[22];
1429 	unsigned long p = *ppos;
1430 	size_t len;
1431 
1432 	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1433 	len = strlen(tbuf);
1434 	if (p >= len)
1435 		return 0;
1436 	len -= p;
1437 	if (len > count)
1438 		len = count;
1439 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1440 		return -EFAULT;
1441 	*ppos += len;
1442 	return len;
1443 }
1444 
1445 static ssize_t write_flush(struct file *file, const char __user *buf,
1446 			   size_t count, loff_t *ppos,
1447 			   struct cache_detail *cd)
1448 {
1449 	char tbuf[20];
1450 	char *bp, *ep;
1451 	time_t then, now;
1452 
1453 	if (*ppos || count > sizeof(tbuf)-1)
1454 		return -EINVAL;
1455 	if (copy_from_user(tbuf, buf, count))
1456 		return -EFAULT;
1457 	tbuf[count] = 0;
1458 	simple_strtoul(tbuf, &ep, 0);
1459 	if (*ep && *ep != '\n')
1460 		return -EINVAL;
1461 
1462 	bp = tbuf;
1463 	then = get_expiry(&bp);
1464 	now = seconds_since_boot();
1465 	cd->nextcheck = now;
1466 	/* Can only set flush_time to 1 second beyond "now", or
1467 	 * possibly 1 second beyond flushtime.  This is because
1468 	 * flush_time never goes backwards so it mustn't get too far
1469 	 * ahead of time.
1470 	 */
1471 	if (then >= now) {
1472 		/* Want to flush everything, so behave like cache_purge() */
1473 		if (cd->flush_time >= now)
1474 			now = cd->flush_time + 1;
1475 		then = now;
1476 	}
1477 
1478 	cd->flush_time = then;
1479 	cache_flush();
1480 
1481 	*ppos += count;
1482 	return count;
1483 }
1484 
1485 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1486 				 size_t count, loff_t *ppos)
1487 {
1488 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1489 
1490 	return cache_read(filp, buf, count, ppos, cd);
1491 }
1492 
1493 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1494 				  size_t count, loff_t *ppos)
1495 {
1496 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1497 
1498 	return cache_write(filp, buf, count, ppos, cd);
1499 }
1500 
1501 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1502 {
1503 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1504 
1505 	return cache_poll(filp, wait, cd);
1506 }
1507 
1508 static long cache_ioctl_procfs(struct file *filp,
1509 			       unsigned int cmd, unsigned long arg)
1510 {
1511 	struct inode *inode = file_inode(filp);
1512 	struct cache_detail *cd = PDE_DATA(inode);
1513 
1514 	return cache_ioctl(inode, filp, cmd, arg, cd);
1515 }
1516 
1517 static int cache_open_procfs(struct inode *inode, struct file *filp)
1518 {
1519 	struct cache_detail *cd = PDE_DATA(inode);
1520 
1521 	return cache_open(inode, filp, cd);
1522 }
1523 
1524 static int cache_release_procfs(struct inode *inode, struct file *filp)
1525 {
1526 	struct cache_detail *cd = PDE_DATA(inode);
1527 
1528 	return cache_release(inode, filp, cd);
1529 }
1530 
1531 static const struct file_operations cache_file_operations_procfs = {
1532 	.owner		= THIS_MODULE,
1533 	.llseek		= no_llseek,
1534 	.read		= cache_read_procfs,
1535 	.write		= cache_write_procfs,
1536 	.poll		= cache_poll_procfs,
1537 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1538 	.open		= cache_open_procfs,
1539 	.release	= cache_release_procfs,
1540 };
1541 
1542 static int content_open_procfs(struct inode *inode, struct file *filp)
1543 {
1544 	struct cache_detail *cd = PDE_DATA(inode);
1545 
1546 	return content_open(inode, filp, cd);
1547 }
1548 
1549 static int content_release_procfs(struct inode *inode, struct file *filp)
1550 {
1551 	struct cache_detail *cd = PDE_DATA(inode);
1552 
1553 	return content_release(inode, filp, cd);
1554 }
1555 
1556 static const struct file_operations content_file_operations_procfs = {
1557 	.open		= content_open_procfs,
1558 	.read		= seq_read,
1559 	.llseek		= seq_lseek,
1560 	.release	= content_release_procfs,
1561 };
1562 
1563 static int open_flush_procfs(struct inode *inode, struct file *filp)
1564 {
1565 	struct cache_detail *cd = PDE_DATA(inode);
1566 
1567 	return open_flush(inode, filp, cd);
1568 }
1569 
1570 static int release_flush_procfs(struct inode *inode, struct file *filp)
1571 {
1572 	struct cache_detail *cd = PDE_DATA(inode);
1573 
1574 	return release_flush(inode, filp, cd);
1575 }
1576 
1577 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1578 			    size_t count, loff_t *ppos)
1579 {
1580 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1581 
1582 	return read_flush(filp, buf, count, ppos, cd);
1583 }
1584 
1585 static ssize_t write_flush_procfs(struct file *filp,
1586 				  const char __user *buf,
1587 				  size_t count, loff_t *ppos)
1588 {
1589 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1590 
1591 	return write_flush(filp, buf, count, ppos, cd);
1592 }
1593 
1594 static const struct file_operations cache_flush_operations_procfs = {
1595 	.open		= open_flush_procfs,
1596 	.read		= read_flush_procfs,
1597 	.write		= write_flush_procfs,
1598 	.release	= release_flush_procfs,
1599 	.llseek		= no_llseek,
1600 };
1601 
1602 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1603 {
1604 	struct sunrpc_net *sn;
1605 
1606 	if (cd->u.procfs.proc_ent == NULL)
1607 		return;
1608 	if (cd->u.procfs.flush_ent)
1609 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1610 	if (cd->u.procfs.channel_ent)
1611 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1612 	if (cd->u.procfs.content_ent)
1613 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1614 	cd->u.procfs.proc_ent = NULL;
1615 	sn = net_generic(net, sunrpc_net_id);
1616 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1617 }
1618 
1619 #ifdef CONFIG_PROC_FS
1620 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1621 {
1622 	struct proc_dir_entry *p;
1623 	struct sunrpc_net *sn;
1624 
1625 	sn = net_generic(net, sunrpc_net_id);
1626 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1627 	if (cd->u.procfs.proc_ent == NULL)
1628 		goto out_nomem;
1629 	cd->u.procfs.channel_ent = NULL;
1630 	cd->u.procfs.content_ent = NULL;
1631 
1632 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1633 			     cd->u.procfs.proc_ent,
1634 			     &cache_flush_operations_procfs, cd);
1635 	cd->u.procfs.flush_ent = p;
1636 	if (p == NULL)
1637 		goto out_nomem;
1638 
1639 	if (cd->cache_request || cd->cache_parse) {
1640 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1641 				     cd->u.procfs.proc_ent,
1642 				     &cache_file_operations_procfs, cd);
1643 		cd->u.procfs.channel_ent = p;
1644 		if (p == NULL)
1645 			goto out_nomem;
1646 	}
1647 	if (cd->cache_show) {
1648 		p = proc_create_data("content", S_IFREG|S_IRUSR,
1649 				cd->u.procfs.proc_ent,
1650 				&content_file_operations_procfs, cd);
1651 		cd->u.procfs.content_ent = p;
1652 		if (p == NULL)
1653 			goto out_nomem;
1654 	}
1655 	return 0;
1656 out_nomem:
1657 	remove_cache_proc_entries(cd, net);
1658 	return -ENOMEM;
1659 }
1660 #else /* CONFIG_PROC_FS */
1661 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662 {
1663 	return 0;
1664 }
1665 #endif
1666 
1667 void __init cache_initialize(void)
1668 {
1669 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1670 }
1671 
1672 int cache_register_net(struct cache_detail *cd, struct net *net)
1673 {
1674 	int ret;
1675 
1676 	sunrpc_init_cache_detail(cd);
1677 	ret = create_cache_proc_entries(cd, net);
1678 	if (ret)
1679 		sunrpc_destroy_cache_detail(cd);
1680 	return ret;
1681 }
1682 EXPORT_SYMBOL_GPL(cache_register_net);
1683 
1684 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1685 {
1686 	remove_cache_proc_entries(cd, net);
1687 	sunrpc_destroy_cache_detail(cd);
1688 }
1689 EXPORT_SYMBOL_GPL(cache_unregister_net);
1690 
1691 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1692 {
1693 	struct cache_detail *cd;
1694 	int i;
1695 
1696 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1697 	if (cd == NULL)
1698 		return ERR_PTR(-ENOMEM);
1699 
1700 	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1701 				 GFP_KERNEL);
1702 	if (cd->hash_table == NULL) {
1703 		kfree(cd);
1704 		return ERR_PTR(-ENOMEM);
1705 	}
1706 
1707 	for (i = 0; i < cd->hash_size; i++)
1708 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1709 	cd->net = net;
1710 	return cd;
1711 }
1712 EXPORT_SYMBOL_GPL(cache_create_net);
1713 
1714 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1715 {
1716 	kfree(cd->hash_table);
1717 	kfree(cd);
1718 }
1719 EXPORT_SYMBOL_GPL(cache_destroy_net);
1720 
1721 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1722 				 size_t count, loff_t *ppos)
1723 {
1724 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1725 
1726 	return cache_read(filp, buf, count, ppos, cd);
1727 }
1728 
1729 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1730 				  size_t count, loff_t *ppos)
1731 {
1732 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1733 
1734 	return cache_write(filp, buf, count, ppos, cd);
1735 }
1736 
1737 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1738 {
1739 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1740 
1741 	return cache_poll(filp, wait, cd);
1742 }
1743 
1744 static long cache_ioctl_pipefs(struct file *filp,
1745 			      unsigned int cmd, unsigned long arg)
1746 {
1747 	struct inode *inode = file_inode(filp);
1748 	struct cache_detail *cd = RPC_I(inode)->private;
1749 
1750 	return cache_ioctl(inode, filp, cmd, arg, cd);
1751 }
1752 
1753 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1754 {
1755 	struct cache_detail *cd = RPC_I(inode)->private;
1756 
1757 	return cache_open(inode, filp, cd);
1758 }
1759 
1760 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1761 {
1762 	struct cache_detail *cd = RPC_I(inode)->private;
1763 
1764 	return cache_release(inode, filp, cd);
1765 }
1766 
1767 const struct file_operations cache_file_operations_pipefs = {
1768 	.owner		= THIS_MODULE,
1769 	.llseek		= no_llseek,
1770 	.read		= cache_read_pipefs,
1771 	.write		= cache_write_pipefs,
1772 	.poll		= cache_poll_pipefs,
1773 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1774 	.open		= cache_open_pipefs,
1775 	.release	= cache_release_pipefs,
1776 };
1777 
1778 static int content_open_pipefs(struct inode *inode, struct file *filp)
1779 {
1780 	struct cache_detail *cd = RPC_I(inode)->private;
1781 
1782 	return content_open(inode, filp, cd);
1783 }
1784 
1785 static int content_release_pipefs(struct inode *inode, struct file *filp)
1786 {
1787 	struct cache_detail *cd = RPC_I(inode)->private;
1788 
1789 	return content_release(inode, filp, cd);
1790 }
1791 
1792 const struct file_operations content_file_operations_pipefs = {
1793 	.open		= content_open_pipefs,
1794 	.read		= seq_read,
1795 	.llseek		= seq_lseek,
1796 	.release	= content_release_pipefs,
1797 };
1798 
1799 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1800 {
1801 	struct cache_detail *cd = RPC_I(inode)->private;
1802 
1803 	return open_flush(inode, filp, cd);
1804 }
1805 
1806 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1807 {
1808 	struct cache_detail *cd = RPC_I(inode)->private;
1809 
1810 	return release_flush(inode, filp, cd);
1811 }
1812 
1813 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1814 			    size_t count, loff_t *ppos)
1815 {
1816 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817 
1818 	return read_flush(filp, buf, count, ppos, cd);
1819 }
1820 
1821 static ssize_t write_flush_pipefs(struct file *filp,
1822 				  const char __user *buf,
1823 				  size_t count, loff_t *ppos)
1824 {
1825 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1826 
1827 	return write_flush(filp, buf, count, ppos, cd);
1828 }
1829 
1830 const struct file_operations cache_flush_operations_pipefs = {
1831 	.open		= open_flush_pipefs,
1832 	.read		= read_flush_pipefs,
1833 	.write		= write_flush_pipefs,
1834 	.release	= release_flush_pipefs,
1835 	.llseek		= no_llseek,
1836 };
1837 
1838 int sunrpc_cache_register_pipefs(struct dentry *parent,
1839 				 const char *name, umode_t umode,
1840 				 struct cache_detail *cd)
1841 {
1842 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1843 	if (IS_ERR(dir))
1844 		return PTR_ERR(dir);
1845 	cd->u.pipefs.dir = dir;
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1849 
1850 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1851 {
1852 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1853 	cd->u.pipefs.dir = NULL;
1854 }
1855 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1856 
1857