xref: /openbmc/linux/net/sunrpc/cache.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <asm/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	h->last_refresh = now;
52 }
53 
54 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
55 				       struct cache_head *key, int hash)
56 {
57 	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
58 	struct hlist_head *head;
59 
60 	head = &detail->hash_table[hash];
61 
62 	read_lock(&detail->hash_lock);
63 
64 	hlist_for_each_entry(tmp, head, cache_list) {
65 		if (detail->match(tmp, key)) {
66 			if (cache_is_expired(detail, tmp))
67 				/* This entry is expired, we will discard it. */
68 				break;
69 			cache_get(tmp);
70 			read_unlock(&detail->hash_lock);
71 			return tmp;
72 		}
73 	}
74 	read_unlock(&detail->hash_lock);
75 	/* Didn't find anything, insert an empty entry */
76 
77 	new = detail->alloc();
78 	if (!new)
79 		return NULL;
80 	/* must fully initialise 'new', else
81 	 * we might get lose if we need to
82 	 * cache_put it soon.
83 	 */
84 	cache_init(new);
85 	detail->init(new, key);
86 
87 	write_lock(&detail->hash_lock);
88 
89 	/* check if entry appeared while we slept */
90 	hlist_for_each_entry(tmp, head, cache_list) {
91 		if (detail->match(tmp, key)) {
92 			if (cache_is_expired(detail, tmp)) {
93 				hlist_del_init(&tmp->cache_list);
94 				detail->entries --;
95 				freeme = tmp;
96 				break;
97 			}
98 			cache_get(tmp);
99 			write_unlock(&detail->hash_lock);
100 			cache_put(new, detail);
101 			return tmp;
102 		}
103 	}
104 
105 	hlist_add_head(&new->cache_list, head);
106 	detail->entries++;
107 	cache_get(new);
108 	write_unlock(&detail->hash_lock);
109 
110 	if (freeme)
111 		cache_put(freeme, detail);
112 	return new;
113 }
114 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
115 
116 
117 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
118 
119 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
120 {
121 	head->expiry_time = expiry;
122 	head->last_refresh = seconds_since_boot();
123 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
124 	set_bit(CACHE_VALID, &head->flags);
125 }
126 
127 static void cache_fresh_unlocked(struct cache_head *head,
128 				 struct cache_detail *detail)
129 {
130 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
131 		cache_revisit_request(head);
132 		cache_dequeue(detail, head);
133 	}
134 }
135 
136 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
137 				       struct cache_head *new, struct cache_head *old, int hash)
138 {
139 	/* The 'old' entry is to be replaced by 'new'.
140 	 * If 'old' is not VALID, we update it directly,
141 	 * otherwise we need to replace it
142 	 */
143 	struct cache_head *tmp;
144 
145 	if (!test_bit(CACHE_VALID, &old->flags)) {
146 		write_lock(&detail->hash_lock);
147 		if (!test_bit(CACHE_VALID, &old->flags)) {
148 			if (test_bit(CACHE_NEGATIVE, &new->flags))
149 				set_bit(CACHE_NEGATIVE, &old->flags);
150 			else
151 				detail->update(old, new);
152 			cache_fresh_locked(old, new->expiry_time);
153 			write_unlock(&detail->hash_lock);
154 			cache_fresh_unlocked(old, detail);
155 			return old;
156 		}
157 		write_unlock(&detail->hash_lock);
158 	}
159 	/* We need to insert a new entry */
160 	tmp = detail->alloc();
161 	if (!tmp) {
162 		cache_put(old, detail);
163 		return NULL;
164 	}
165 	cache_init(tmp);
166 	detail->init(tmp, old);
167 
168 	write_lock(&detail->hash_lock);
169 	if (test_bit(CACHE_NEGATIVE, &new->flags))
170 		set_bit(CACHE_NEGATIVE, &tmp->flags);
171 	else
172 		detail->update(tmp, new);
173 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
174 	detail->entries++;
175 	cache_get(tmp);
176 	cache_fresh_locked(tmp, new->expiry_time);
177 	cache_fresh_locked(old, 0);
178 	write_unlock(&detail->hash_lock);
179 	cache_fresh_unlocked(tmp, detail);
180 	cache_fresh_unlocked(old, detail);
181 	cache_put(old, detail);
182 	return tmp;
183 }
184 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
185 
186 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
187 {
188 	if (cd->cache_upcall)
189 		return cd->cache_upcall(cd, h);
190 	return sunrpc_cache_pipe_upcall(cd, h);
191 }
192 
193 static inline int cache_is_valid(struct cache_head *h)
194 {
195 	if (!test_bit(CACHE_VALID, &h->flags))
196 		return -EAGAIN;
197 	else {
198 		/* entry is valid */
199 		if (test_bit(CACHE_NEGATIVE, &h->flags))
200 			return -ENOENT;
201 		else {
202 			/*
203 			 * In combination with write barrier in
204 			 * sunrpc_cache_update, ensures that anyone
205 			 * using the cache entry after this sees the
206 			 * updated contents:
207 			 */
208 			smp_rmb();
209 			return 0;
210 		}
211 	}
212 }
213 
214 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
215 {
216 	int rv;
217 
218 	write_lock(&detail->hash_lock);
219 	rv = cache_is_valid(h);
220 	if (rv == -EAGAIN) {
221 		set_bit(CACHE_NEGATIVE, &h->flags);
222 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
223 		rv = -ENOENT;
224 	}
225 	write_unlock(&detail->hash_lock);
226 	cache_fresh_unlocked(h, detail);
227 	return rv;
228 }
229 
230 /*
231  * This is the generic cache management routine for all
232  * the authentication caches.
233  * It checks the currency of a cache item and will (later)
234  * initiate an upcall to fill it if needed.
235  *
236  *
237  * Returns 0 if the cache_head can be used, or cache_puts it and returns
238  * -EAGAIN if upcall is pending and request has been queued
239  * -ETIMEDOUT if upcall failed or request could not be queue or
240  *           upcall completed but item is still invalid (implying that
241  *           the cache item has been replaced with a newer one).
242  * -ENOENT if cache entry was negative
243  */
244 int cache_check(struct cache_detail *detail,
245 		    struct cache_head *h, struct cache_req *rqstp)
246 {
247 	int rv;
248 	long refresh_age, age;
249 
250 	/* First decide return status as best we can */
251 	rv = cache_is_valid(h);
252 
253 	/* now see if we want to start an upcall */
254 	refresh_age = (h->expiry_time - h->last_refresh);
255 	age = seconds_since_boot() - h->last_refresh;
256 
257 	if (rqstp == NULL) {
258 		if (rv == -EAGAIN)
259 			rv = -ENOENT;
260 	} else if (rv == -EAGAIN ||
261 		   (h->expiry_time != 0 && age > refresh_age/2)) {
262 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
263 				refresh_age, age);
264 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
265 			switch (cache_make_upcall(detail, h)) {
266 			case -EINVAL:
267 				rv = try_to_negate_entry(detail, h);
268 				break;
269 			case -EAGAIN:
270 				cache_fresh_unlocked(h, detail);
271 				break;
272 			}
273 		}
274 	}
275 
276 	if (rv == -EAGAIN) {
277 		if (!cache_defer_req(rqstp, h)) {
278 			/*
279 			 * Request was not deferred; handle it as best
280 			 * we can ourselves:
281 			 */
282 			rv = cache_is_valid(h);
283 			if (rv == -EAGAIN)
284 				rv = -ETIMEDOUT;
285 		}
286 	}
287 	if (rv)
288 		cache_put(h, detail);
289 	return rv;
290 }
291 EXPORT_SYMBOL_GPL(cache_check);
292 
293 /*
294  * caches need to be periodically cleaned.
295  * For this we maintain a list of cache_detail and
296  * a current pointer into that list and into the table
297  * for that entry.
298  *
299  * Each time cache_clean is called it finds the next non-empty entry
300  * in the current table and walks the list in that entry
301  * looking for entries that can be removed.
302  *
303  * An entry gets removed if:
304  * - The expiry is before current time
305  * - The last_refresh time is before the flush_time for that cache
306  *
307  * later we might drop old entries with non-NEVER expiry if that table
308  * is getting 'full' for some definition of 'full'
309  *
310  * The question of "how often to scan a table" is an interesting one
311  * and is answered in part by the use of the "nextcheck" field in the
312  * cache_detail.
313  * When a scan of a table begins, the nextcheck field is set to a time
314  * that is well into the future.
315  * While scanning, if an expiry time is found that is earlier than the
316  * current nextcheck time, nextcheck is set to that expiry time.
317  * If the flush_time is ever set to a time earlier than the nextcheck
318  * time, the nextcheck time is then set to that flush_time.
319  *
320  * A table is then only scanned if the current time is at least
321  * the nextcheck time.
322  *
323  */
324 
325 static LIST_HEAD(cache_list);
326 static DEFINE_SPINLOCK(cache_list_lock);
327 static struct cache_detail *current_detail;
328 static int current_index;
329 
330 static void do_cache_clean(struct work_struct *work);
331 static struct delayed_work cache_cleaner;
332 
333 void sunrpc_init_cache_detail(struct cache_detail *cd)
334 {
335 	rwlock_init(&cd->hash_lock);
336 	INIT_LIST_HEAD(&cd->queue);
337 	spin_lock(&cache_list_lock);
338 	cd->nextcheck = 0;
339 	cd->entries = 0;
340 	atomic_set(&cd->readers, 0);
341 	cd->last_close = 0;
342 	cd->last_warn = -1;
343 	list_add(&cd->others, &cache_list);
344 	spin_unlock(&cache_list_lock);
345 
346 	/* start the cleaning process */
347 	schedule_delayed_work(&cache_cleaner, 0);
348 }
349 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
350 
351 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
352 {
353 	cache_purge(cd);
354 	spin_lock(&cache_list_lock);
355 	write_lock(&cd->hash_lock);
356 	if (cd->entries || atomic_read(&cd->inuse)) {
357 		write_unlock(&cd->hash_lock);
358 		spin_unlock(&cache_list_lock);
359 		goto out;
360 	}
361 	if (current_detail == cd)
362 		current_detail = NULL;
363 	list_del_init(&cd->others);
364 	write_unlock(&cd->hash_lock);
365 	spin_unlock(&cache_list_lock);
366 	if (list_empty(&cache_list)) {
367 		/* module must be being unloaded so its safe to kill the worker */
368 		cancel_delayed_work_sync(&cache_cleaner);
369 	}
370 	return;
371 out:
372 	printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
373 }
374 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
375 
376 /* clean cache tries to find something to clean
377  * and cleans it.
378  * It returns 1 if it cleaned something,
379  *            0 if it didn't find anything this time
380  *           -1 if it fell off the end of the list.
381  */
382 static int cache_clean(void)
383 {
384 	int rv = 0;
385 	struct list_head *next;
386 
387 	spin_lock(&cache_list_lock);
388 
389 	/* find a suitable table if we don't already have one */
390 	while (current_detail == NULL ||
391 	    current_index >= current_detail->hash_size) {
392 		if (current_detail)
393 			next = current_detail->others.next;
394 		else
395 			next = cache_list.next;
396 		if (next == &cache_list) {
397 			current_detail = NULL;
398 			spin_unlock(&cache_list_lock);
399 			return -1;
400 		}
401 		current_detail = list_entry(next, struct cache_detail, others);
402 		if (current_detail->nextcheck > seconds_since_boot())
403 			current_index = current_detail->hash_size;
404 		else {
405 			current_index = 0;
406 			current_detail->nextcheck = seconds_since_boot()+30*60;
407 		}
408 	}
409 
410 	/* find a non-empty bucket in the table */
411 	while (current_detail &&
412 	       current_index < current_detail->hash_size &&
413 	       hlist_empty(&current_detail->hash_table[current_index]))
414 		current_index++;
415 
416 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
417 
418 	if (current_detail && current_index < current_detail->hash_size) {
419 		struct cache_head *ch = NULL;
420 		struct cache_detail *d;
421 		struct hlist_head *head;
422 		struct hlist_node *tmp;
423 
424 		write_lock(&current_detail->hash_lock);
425 
426 		/* Ok, now to clean this strand */
427 
428 		head = &current_detail->hash_table[current_index];
429 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
430 			if (current_detail->nextcheck > ch->expiry_time)
431 				current_detail->nextcheck = ch->expiry_time+1;
432 			if (!cache_is_expired(current_detail, ch))
433 				continue;
434 
435 			hlist_del_init(&ch->cache_list);
436 			current_detail->entries--;
437 			rv = 1;
438 			break;
439 		}
440 
441 		write_unlock(&current_detail->hash_lock);
442 		d = current_detail;
443 		if (!ch)
444 			current_index ++;
445 		spin_unlock(&cache_list_lock);
446 		if (ch) {
447 			set_bit(CACHE_CLEANED, &ch->flags);
448 			cache_fresh_unlocked(ch, d);
449 			cache_put(ch, d);
450 		}
451 	} else
452 		spin_unlock(&cache_list_lock);
453 
454 	return rv;
455 }
456 
457 /*
458  * We want to regularly clean the cache, so we need to schedule some work ...
459  */
460 static void do_cache_clean(struct work_struct *work)
461 {
462 	int delay = 5;
463 	if (cache_clean() == -1)
464 		delay = round_jiffies_relative(30*HZ);
465 
466 	if (list_empty(&cache_list))
467 		delay = 0;
468 
469 	if (delay)
470 		schedule_delayed_work(&cache_cleaner, delay);
471 }
472 
473 
474 /*
475  * Clean all caches promptly.  This just calls cache_clean
476  * repeatedly until we are sure that every cache has had a chance to
477  * be fully cleaned
478  */
479 void cache_flush(void)
480 {
481 	while (cache_clean() != -1)
482 		cond_resched();
483 	while (cache_clean() != -1)
484 		cond_resched();
485 }
486 EXPORT_SYMBOL_GPL(cache_flush);
487 
488 void cache_purge(struct cache_detail *detail)
489 {
490 	detail->flush_time = LONG_MAX;
491 	detail->nextcheck = seconds_since_boot();
492 	cache_flush();
493 	detail->flush_time = 1;
494 }
495 EXPORT_SYMBOL_GPL(cache_purge);
496 
497 
498 /*
499  * Deferral and Revisiting of Requests.
500  *
501  * If a cache lookup finds a pending entry, we
502  * need to defer the request and revisit it later.
503  * All deferred requests are stored in a hash table,
504  * indexed by "struct cache_head *".
505  * As it may be wasteful to store a whole request
506  * structure, we allow the request to provide a
507  * deferred form, which must contain a
508  * 'struct cache_deferred_req'
509  * This cache_deferred_req contains a method to allow
510  * it to be revisited when cache info is available
511  */
512 
513 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
514 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
515 
516 #define	DFR_MAX	300	/* ??? */
517 
518 static DEFINE_SPINLOCK(cache_defer_lock);
519 static LIST_HEAD(cache_defer_list);
520 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
521 static int cache_defer_cnt;
522 
523 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
524 {
525 	hlist_del_init(&dreq->hash);
526 	if (!list_empty(&dreq->recent)) {
527 		list_del_init(&dreq->recent);
528 		cache_defer_cnt--;
529 	}
530 }
531 
532 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
533 {
534 	int hash = DFR_HASH(item);
535 
536 	INIT_LIST_HEAD(&dreq->recent);
537 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
538 }
539 
540 static void setup_deferral(struct cache_deferred_req *dreq,
541 			   struct cache_head *item,
542 			   int count_me)
543 {
544 
545 	dreq->item = item;
546 
547 	spin_lock(&cache_defer_lock);
548 
549 	__hash_deferred_req(dreq, item);
550 
551 	if (count_me) {
552 		cache_defer_cnt++;
553 		list_add(&dreq->recent, &cache_defer_list);
554 	}
555 
556 	spin_unlock(&cache_defer_lock);
557 
558 }
559 
560 struct thread_deferred_req {
561 	struct cache_deferred_req handle;
562 	struct completion completion;
563 };
564 
565 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
566 {
567 	struct thread_deferred_req *dr =
568 		container_of(dreq, struct thread_deferred_req, handle);
569 	complete(&dr->completion);
570 }
571 
572 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
573 {
574 	struct thread_deferred_req sleeper;
575 	struct cache_deferred_req *dreq = &sleeper.handle;
576 
577 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
578 	dreq->revisit = cache_restart_thread;
579 
580 	setup_deferral(dreq, item, 0);
581 
582 	if (!test_bit(CACHE_PENDING, &item->flags) ||
583 	    wait_for_completion_interruptible_timeout(
584 		    &sleeper.completion, req->thread_wait) <= 0) {
585 		/* The completion wasn't completed, so we need
586 		 * to clean up
587 		 */
588 		spin_lock(&cache_defer_lock);
589 		if (!hlist_unhashed(&sleeper.handle.hash)) {
590 			__unhash_deferred_req(&sleeper.handle);
591 			spin_unlock(&cache_defer_lock);
592 		} else {
593 			/* cache_revisit_request already removed
594 			 * this from the hash table, but hasn't
595 			 * called ->revisit yet.  It will very soon
596 			 * and we need to wait for it.
597 			 */
598 			spin_unlock(&cache_defer_lock);
599 			wait_for_completion(&sleeper.completion);
600 		}
601 	}
602 }
603 
604 static void cache_limit_defers(void)
605 {
606 	/* Make sure we haven't exceed the limit of allowed deferred
607 	 * requests.
608 	 */
609 	struct cache_deferred_req *discard = NULL;
610 
611 	if (cache_defer_cnt <= DFR_MAX)
612 		return;
613 
614 	spin_lock(&cache_defer_lock);
615 
616 	/* Consider removing either the first or the last */
617 	if (cache_defer_cnt > DFR_MAX) {
618 		if (prandom_u32() & 1)
619 			discard = list_entry(cache_defer_list.next,
620 					     struct cache_deferred_req, recent);
621 		else
622 			discard = list_entry(cache_defer_list.prev,
623 					     struct cache_deferred_req, recent);
624 		__unhash_deferred_req(discard);
625 	}
626 	spin_unlock(&cache_defer_lock);
627 	if (discard)
628 		discard->revisit(discard, 1);
629 }
630 
631 /* Return true if and only if a deferred request is queued. */
632 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
633 {
634 	struct cache_deferred_req *dreq;
635 
636 	if (req->thread_wait) {
637 		cache_wait_req(req, item);
638 		if (!test_bit(CACHE_PENDING, &item->flags))
639 			return false;
640 	}
641 	dreq = req->defer(req);
642 	if (dreq == NULL)
643 		return false;
644 	setup_deferral(dreq, item, 1);
645 	if (!test_bit(CACHE_PENDING, &item->flags))
646 		/* Bit could have been cleared before we managed to
647 		 * set up the deferral, so need to revisit just in case
648 		 */
649 		cache_revisit_request(item);
650 
651 	cache_limit_defers();
652 	return true;
653 }
654 
655 static void cache_revisit_request(struct cache_head *item)
656 {
657 	struct cache_deferred_req *dreq;
658 	struct list_head pending;
659 	struct hlist_node *tmp;
660 	int hash = DFR_HASH(item);
661 
662 	INIT_LIST_HEAD(&pending);
663 	spin_lock(&cache_defer_lock);
664 
665 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
666 		if (dreq->item == item) {
667 			__unhash_deferred_req(dreq);
668 			list_add(&dreq->recent, &pending);
669 		}
670 
671 	spin_unlock(&cache_defer_lock);
672 
673 	while (!list_empty(&pending)) {
674 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
675 		list_del_init(&dreq->recent);
676 		dreq->revisit(dreq, 0);
677 	}
678 }
679 
680 void cache_clean_deferred(void *owner)
681 {
682 	struct cache_deferred_req *dreq, *tmp;
683 	struct list_head pending;
684 
685 
686 	INIT_LIST_HEAD(&pending);
687 	spin_lock(&cache_defer_lock);
688 
689 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
690 		if (dreq->owner == owner) {
691 			__unhash_deferred_req(dreq);
692 			list_add(&dreq->recent, &pending);
693 		}
694 	}
695 	spin_unlock(&cache_defer_lock);
696 
697 	while (!list_empty(&pending)) {
698 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
699 		list_del_init(&dreq->recent);
700 		dreq->revisit(dreq, 1);
701 	}
702 }
703 
704 /*
705  * communicate with user-space
706  *
707  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
708  * On read, you get a full request, or block.
709  * On write, an update request is processed.
710  * Poll works if anything to read, and always allows write.
711  *
712  * Implemented by linked list of requests.  Each open file has
713  * a ->private that also exists in this list.  New requests are added
714  * to the end and may wakeup and preceding readers.
715  * New readers are added to the head.  If, on read, an item is found with
716  * CACHE_UPCALLING clear, we free it from the list.
717  *
718  */
719 
720 static DEFINE_SPINLOCK(queue_lock);
721 static DEFINE_MUTEX(queue_io_mutex);
722 
723 struct cache_queue {
724 	struct list_head	list;
725 	int			reader;	/* if 0, then request */
726 };
727 struct cache_request {
728 	struct cache_queue	q;
729 	struct cache_head	*item;
730 	char			* buf;
731 	int			len;
732 	int			readers;
733 };
734 struct cache_reader {
735 	struct cache_queue	q;
736 	int			offset;	/* if non-0, we have a refcnt on next request */
737 };
738 
739 static int cache_request(struct cache_detail *detail,
740 			       struct cache_request *crq)
741 {
742 	char *bp = crq->buf;
743 	int len = PAGE_SIZE;
744 
745 	detail->cache_request(detail, crq->item, &bp, &len);
746 	if (len < 0)
747 		return -EAGAIN;
748 	return PAGE_SIZE - len;
749 }
750 
751 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
752 			  loff_t *ppos, struct cache_detail *cd)
753 {
754 	struct cache_reader *rp = filp->private_data;
755 	struct cache_request *rq;
756 	struct inode *inode = file_inode(filp);
757 	int err;
758 
759 	if (count == 0)
760 		return 0;
761 
762 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
763 			      * readers on this file */
764  again:
765 	spin_lock(&queue_lock);
766 	/* need to find next request */
767 	while (rp->q.list.next != &cd->queue &&
768 	       list_entry(rp->q.list.next, struct cache_queue, list)
769 	       ->reader) {
770 		struct list_head *next = rp->q.list.next;
771 		list_move(&rp->q.list, next);
772 	}
773 	if (rp->q.list.next == &cd->queue) {
774 		spin_unlock(&queue_lock);
775 		mutex_unlock(&inode->i_mutex);
776 		WARN_ON_ONCE(rp->offset);
777 		return 0;
778 	}
779 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
780 	WARN_ON_ONCE(rq->q.reader);
781 	if (rp->offset == 0)
782 		rq->readers++;
783 	spin_unlock(&queue_lock);
784 
785 	if (rq->len == 0) {
786 		err = cache_request(cd, rq);
787 		if (err < 0)
788 			goto out;
789 		rq->len = err;
790 	}
791 
792 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
793 		err = -EAGAIN;
794 		spin_lock(&queue_lock);
795 		list_move(&rp->q.list, &rq->q.list);
796 		spin_unlock(&queue_lock);
797 	} else {
798 		if (rp->offset + count > rq->len)
799 			count = rq->len - rp->offset;
800 		err = -EFAULT;
801 		if (copy_to_user(buf, rq->buf + rp->offset, count))
802 			goto out;
803 		rp->offset += count;
804 		if (rp->offset >= rq->len) {
805 			rp->offset = 0;
806 			spin_lock(&queue_lock);
807 			list_move(&rp->q.list, &rq->q.list);
808 			spin_unlock(&queue_lock);
809 		}
810 		err = 0;
811 	}
812  out:
813 	if (rp->offset == 0) {
814 		/* need to release rq */
815 		spin_lock(&queue_lock);
816 		rq->readers--;
817 		if (rq->readers == 0 &&
818 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
819 			list_del(&rq->q.list);
820 			spin_unlock(&queue_lock);
821 			cache_put(rq->item, cd);
822 			kfree(rq->buf);
823 			kfree(rq);
824 		} else
825 			spin_unlock(&queue_lock);
826 	}
827 	if (err == -EAGAIN)
828 		goto again;
829 	mutex_unlock(&inode->i_mutex);
830 	return err ? err :  count;
831 }
832 
833 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
834 				 size_t count, struct cache_detail *cd)
835 {
836 	ssize_t ret;
837 
838 	if (count == 0)
839 		return -EINVAL;
840 	if (copy_from_user(kaddr, buf, count))
841 		return -EFAULT;
842 	kaddr[count] = '\0';
843 	ret = cd->cache_parse(cd, kaddr, count);
844 	if (!ret)
845 		ret = count;
846 	return ret;
847 }
848 
849 static ssize_t cache_slow_downcall(const char __user *buf,
850 				   size_t count, struct cache_detail *cd)
851 {
852 	static char write_buf[8192]; /* protected by queue_io_mutex */
853 	ssize_t ret = -EINVAL;
854 
855 	if (count >= sizeof(write_buf))
856 		goto out;
857 	mutex_lock(&queue_io_mutex);
858 	ret = cache_do_downcall(write_buf, buf, count, cd);
859 	mutex_unlock(&queue_io_mutex);
860 out:
861 	return ret;
862 }
863 
864 static ssize_t cache_downcall(struct address_space *mapping,
865 			      const char __user *buf,
866 			      size_t count, struct cache_detail *cd)
867 {
868 	struct page *page;
869 	char *kaddr;
870 	ssize_t ret = -ENOMEM;
871 
872 	if (count >= PAGE_CACHE_SIZE)
873 		goto out_slow;
874 
875 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
876 	if (!page)
877 		goto out_slow;
878 
879 	kaddr = kmap(page);
880 	ret = cache_do_downcall(kaddr, buf, count, cd);
881 	kunmap(page);
882 	unlock_page(page);
883 	page_cache_release(page);
884 	return ret;
885 out_slow:
886 	return cache_slow_downcall(buf, count, cd);
887 }
888 
889 static ssize_t cache_write(struct file *filp, const char __user *buf,
890 			   size_t count, loff_t *ppos,
891 			   struct cache_detail *cd)
892 {
893 	struct address_space *mapping = filp->f_mapping;
894 	struct inode *inode = file_inode(filp);
895 	ssize_t ret = -EINVAL;
896 
897 	if (!cd->cache_parse)
898 		goto out;
899 
900 	mutex_lock(&inode->i_mutex);
901 	ret = cache_downcall(mapping, buf, count, cd);
902 	mutex_unlock(&inode->i_mutex);
903 out:
904 	return ret;
905 }
906 
907 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
908 
909 static unsigned int cache_poll(struct file *filp, poll_table *wait,
910 			       struct cache_detail *cd)
911 {
912 	unsigned int mask;
913 	struct cache_reader *rp = filp->private_data;
914 	struct cache_queue *cq;
915 
916 	poll_wait(filp, &queue_wait, wait);
917 
918 	/* alway allow write */
919 	mask = POLLOUT | POLLWRNORM;
920 
921 	if (!rp)
922 		return mask;
923 
924 	spin_lock(&queue_lock);
925 
926 	for (cq= &rp->q; &cq->list != &cd->queue;
927 	     cq = list_entry(cq->list.next, struct cache_queue, list))
928 		if (!cq->reader) {
929 			mask |= POLLIN | POLLRDNORM;
930 			break;
931 		}
932 	spin_unlock(&queue_lock);
933 	return mask;
934 }
935 
936 static int cache_ioctl(struct inode *ino, struct file *filp,
937 		       unsigned int cmd, unsigned long arg,
938 		       struct cache_detail *cd)
939 {
940 	int len = 0;
941 	struct cache_reader *rp = filp->private_data;
942 	struct cache_queue *cq;
943 
944 	if (cmd != FIONREAD || !rp)
945 		return -EINVAL;
946 
947 	spin_lock(&queue_lock);
948 
949 	/* only find the length remaining in current request,
950 	 * or the length of the next request
951 	 */
952 	for (cq= &rp->q; &cq->list != &cd->queue;
953 	     cq = list_entry(cq->list.next, struct cache_queue, list))
954 		if (!cq->reader) {
955 			struct cache_request *cr =
956 				container_of(cq, struct cache_request, q);
957 			len = cr->len - rp->offset;
958 			break;
959 		}
960 	spin_unlock(&queue_lock);
961 
962 	return put_user(len, (int __user *)arg);
963 }
964 
965 static int cache_open(struct inode *inode, struct file *filp,
966 		      struct cache_detail *cd)
967 {
968 	struct cache_reader *rp = NULL;
969 
970 	if (!cd || !try_module_get(cd->owner))
971 		return -EACCES;
972 	nonseekable_open(inode, filp);
973 	if (filp->f_mode & FMODE_READ) {
974 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
975 		if (!rp) {
976 			module_put(cd->owner);
977 			return -ENOMEM;
978 		}
979 		rp->offset = 0;
980 		rp->q.reader = 1;
981 		atomic_inc(&cd->readers);
982 		spin_lock(&queue_lock);
983 		list_add(&rp->q.list, &cd->queue);
984 		spin_unlock(&queue_lock);
985 	}
986 	filp->private_data = rp;
987 	return 0;
988 }
989 
990 static int cache_release(struct inode *inode, struct file *filp,
991 			 struct cache_detail *cd)
992 {
993 	struct cache_reader *rp = filp->private_data;
994 
995 	if (rp) {
996 		spin_lock(&queue_lock);
997 		if (rp->offset) {
998 			struct cache_queue *cq;
999 			for (cq= &rp->q; &cq->list != &cd->queue;
1000 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1001 				if (!cq->reader) {
1002 					container_of(cq, struct cache_request, q)
1003 						->readers--;
1004 					break;
1005 				}
1006 			rp->offset = 0;
1007 		}
1008 		list_del(&rp->q.list);
1009 		spin_unlock(&queue_lock);
1010 
1011 		filp->private_data = NULL;
1012 		kfree(rp);
1013 
1014 		cd->last_close = seconds_since_boot();
1015 		atomic_dec(&cd->readers);
1016 	}
1017 	module_put(cd->owner);
1018 	return 0;
1019 }
1020 
1021 
1022 
1023 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1024 {
1025 	struct cache_queue *cq, *tmp;
1026 	struct cache_request *cr;
1027 	struct list_head dequeued;
1028 
1029 	INIT_LIST_HEAD(&dequeued);
1030 	spin_lock(&queue_lock);
1031 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1032 		if (!cq->reader) {
1033 			cr = container_of(cq, struct cache_request, q);
1034 			if (cr->item != ch)
1035 				continue;
1036 			if (test_bit(CACHE_PENDING, &ch->flags))
1037 				/* Lost a race and it is pending again */
1038 				break;
1039 			if (cr->readers != 0)
1040 				continue;
1041 			list_move(&cr->q.list, &dequeued);
1042 		}
1043 	spin_unlock(&queue_lock);
1044 	while (!list_empty(&dequeued)) {
1045 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1046 		list_del(&cr->q.list);
1047 		cache_put(cr->item, detail);
1048 		kfree(cr->buf);
1049 		kfree(cr);
1050 	}
1051 }
1052 
1053 /*
1054  * Support routines for text-based upcalls.
1055  * Fields are separated by spaces.
1056  * Fields are either mangled to quote space tab newline slosh with slosh
1057  * or a hexified with a leading \x
1058  * Record is terminated with newline.
1059  *
1060  */
1061 
1062 void qword_add(char **bpp, int *lp, char *str)
1063 {
1064 	char *bp = *bpp;
1065 	int len = *lp;
1066 	int ret;
1067 
1068 	if (len < 0) return;
1069 
1070 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1071 	if (ret >= len) {
1072 		bp += len;
1073 		len = -1;
1074 	} else {
1075 		bp += ret;
1076 		len -= ret;
1077 		*bp++ = ' ';
1078 		len--;
1079 	}
1080 	*bpp = bp;
1081 	*lp = len;
1082 }
1083 EXPORT_SYMBOL_GPL(qword_add);
1084 
1085 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1086 {
1087 	char *bp = *bpp;
1088 	int len = *lp;
1089 
1090 	if (len < 0) return;
1091 
1092 	if (len > 2) {
1093 		*bp++ = '\\';
1094 		*bp++ = 'x';
1095 		len -= 2;
1096 		while (blen && len >= 2) {
1097 			bp = hex_byte_pack(bp, *buf++);
1098 			len -= 2;
1099 			blen--;
1100 		}
1101 	}
1102 	if (blen || len<1) len = -1;
1103 	else {
1104 		*bp++ = ' ';
1105 		len--;
1106 	}
1107 	*bpp = bp;
1108 	*lp = len;
1109 }
1110 EXPORT_SYMBOL_GPL(qword_addhex);
1111 
1112 static void warn_no_listener(struct cache_detail *detail)
1113 {
1114 	if (detail->last_warn != detail->last_close) {
1115 		detail->last_warn = detail->last_close;
1116 		if (detail->warn_no_listener)
1117 			detail->warn_no_listener(detail, detail->last_close != 0);
1118 	}
1119 }
1120 
1121 static bool cache_listeners_exist(struct cache_detail *detail)
1122 {
1123 	if (atomic_read(&detail->readers))
1124 		return true;
1125 	if (detail->last_close == 0)
1126 		/* This cache was never opened */
1127 		return false;
1128 	if (detail->last_close < seconds_since_boot() - 30)
1129 		/*
1130 		 * We allow for the possibility that someone might
1131 		 * restart a userspace daemon without restarting the
1132 		 * server; but after 30 seconds, we give up.
1133 		 */
1134 		 return false;
1135 	return true;
1136 }
1137 
1138 /*
1139  * register an upcall request to user-space and queue it up for read() by the
1140  * upcall daemon.
1141  *
1142  * Each request is at most one page long.
1143  */
1144 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1145 {
1146 
1147 	char *buf;
1148 	struct cache_request *crq;
1149 	int ret = 0;
1150 
1151 	if (!detail->cache_request)
1152 		return -EINVAL;
1153 
1154 	if (!cache_listeners_exist(detail)) {
1155 		warn_no_listener(detail);
1156 		return -EINVAL;
1157 	}
1158 	if (test_bit(CACHE_CLEANED, &h->flags))
1159 		/* Too late to make an upcall */
1160 		return -EAGAIN;
1161 
1162 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1163 	if (!buf)
1164 		return -EAGAIN;
1165 
1166 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1167 	if (!crq) {
1168 		kfree(buf);
1169 		return -EAGAIN;
1170 	}
1171 
1172 	crq->q.reader = 0;
1173 	crq->item = cache_get(h);
1174 	crq->buf = buf;
1175 	crq->len = 0;
1176 	crq->readers = 0;
1177 	spin_lock(&queue_lock);
1178 	if (test_bit(CACHE_PENDING, &h->flags))
1179 		list_add_tail(&crq->q.list, &detail->queue);
1180 	else
1181 		/* Lost a race, no longer PENDING, so don't enqueue */
1182 		ret = -EAGAIN;
1183 	spin_unlock(&queue_lock);
1184 	wake_up(&queue_wait);
1185 	if (ret == -EAGAIN) {
1186 		kfree(buf);
1187 		kfree(crq);
1188 	}
1189 	return ret;
1190 }
1191 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1192 
1193 /*
1194  * parse a message from user-space and pass it
1195  * to an appropriate cache
1196  * Messages are, like requests, separated into fields by
1197  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1198  *
1199  * Message is
1200  *   reply cachename expiry key ... content....
1201  *
1202  * key and content are both parsed by cache
1203  */
1204 
1205 int qword_get(char **bpp, char *dest, int bufsize)
1206 {
1207 	/* return bytes copied, or -1 on error */
1208 	char *bp = *bpp;
1209 	int len = 0;
1210 
1211 	while (*bp == ' ') bp++;
1212 
1213 	if (bp[0] == '\\' && bp[1] == 'x') {
1214 		/* HEX STRING */
1215 		bp += 2;
1216 		while (len < bufsize) {
1217 			int h, l;
1218 
1219 			h = hex_to_bin(bp[0]);
1220 			if (h < 0)
1221 				break;
1222 
1223 			l = hex_to_bin(bp[1]);
1224 			if (l < 0)
1225 				break;
1226 
1227 			*dest++ = (h << 4) | l;
1228 			bp += 2;
1229 			len++;
1230 		}
1231 	} else {
1232 		/* text with \nnn octal quoting */
1233 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1234 			if (*bp == '\\' &&
1235 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1236 			    isodigit(bp[2]) &&
1237 			    isodigit(bp[3])) {
1238 				int byte = (*++bp -'0');
1239 				bp++;
1240 				byte = (byte << 3) | (*bp++ - '0');
1241 				byte = (byte << 3) | (*bp++ - '0');
1242 				*dest++ = byte;
1243 				len++;
1244 			} else {
1245 				*dest++ = *bp++;
1246 				len++;
1247 			}
1248 		}
1249 	}
1250 
1251 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1252 		return -1;
1253 	while (*bp == ' ') bp++;
1254 	*bpp = bp;
1255 	*dest = '\0';
1256 	return len;
1257 }
1258 EXPORT_SYMBOL_GPL(qword_get);
1259 
1260 
1261 /*
1262  * support /proc/sunrpc/cache/$CACHENAME/content
1263  * as a seqfile.
1264  * We call ->cache_show passing NULL for the item to
1265  * get a header, then pass each real item in the cache
1266  */
1267 
1268 void *cache_seq_start(struct seq_file *m, loff_t *pos)
1269 	__acquires(cd->hash_lock)
1270 {
1271 	loff_t n = *pos;
1272 	unsigned int hash, entry;
1273 	struct cache_head *ch;
1274 	struct cache_detail *cd = m->private;
1275 
1276 	read_lock(&cd->hash_lock);
1277 	if (!n--)
1278 		return SEQ_START_TOKEN;
1279 	hash = n >> 32;
1280 	entry = n & ((1LL<<32) - 1);
1281 
1282 	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1283 		if (!entry--)
1284 			return ch;
1285 	n &= ~((1LL<<32) - 1);
1286 	do {
1287 		hash++;
1288 		n += 1LL<<32;
1289 	} while(hash < cd->hash_size &&
1290 		hlist_empty(&cd->hash_table[hash]));
1291 	if (hash >= cd->hash_size)
1292 		return NULL;
1293 	*pos = n+1;
1294 	return hlist_entry_safe(cd->hash_table[hash].first,
1295 				struct cache_head, cache_list);
1296 }
1297 EXPORT_SYMBOL_GPL(cache_seq_start);
1298 
1299 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1300 {
1301 	struct cache_head *ch = p;
1302 	int hash = (*pos >> 32);
1303 	struct cache_detail *cd = m->private;
1304 
1305 	if (p == SEQ_START_TOKEN)
1306 		hash = 0;
1307 	else if (ch->cache_list.next == NULL) {
1308 		hash++;
1309 		*pos += 1LL<<32;
1310 	} else {
1311 		++*pos;
1312 		return hlist_entry_safe(ch->cache_list.next,
1313 					struct cache_head, cache_list);
1314 	}
1315 	*pos &= ~((1LL<<32) - 1);
1316 	while (hash < cd->hash_size &&
1317 	       hlist_empty(&cd->hash_table[hash])) {
1318 		hash++;
1319 		*pos += 1LL<<32;
1320 	}
1321 	if (hash >= cd->hash_size)
1322 		return NULL;
1323 	++*pos;
1324 	return hlist_entry_safe(cd->hash_table[hash].first,
1325 				struct cache_head, cache_list);
1326 }
1327 EXPORT_SYMBOL_GPL(cache_seq_next);
1328 
1329 void cache_seq_stop(struct seq_file *m, void *p)
1330 	__releases(cd->hash_lock)
1331 {
1332 	struct cache_detail *cd = m->private;
1333 	read_unlock(&cd->hash_lock);
1334 }
1335 EXPORT_SYMBOL_GPL(cache_seq_stop);
1336 
1337 static int c_show(struct seq_file *m, void *p)
1338 {
1339 	struct cache_head *cp = p;
1340 	struct cache_detail *cd = m->private;
1341 
1342 	if (p == SEQ_START_TOKEN)
1343 		return cd->cache_show(m, cd, NULL);
1344 
1345 	ifdebug(CACHE)
1346 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1347 			   convert_to_wallclock(cp->expiry_time),
1348 			   atomic_read(&cp->ref.refcount), cp->flags);
1349 	cache_get(cp);
1350 	if (cache_check(cd, cp, NULL))
1351 		/* cache_check does a cache_put on failure */
1352 		seq_printf(m, "# ");
1353 	else {
1354 		if (cache_is_expired(cd, cp))
1355 			seq_printf(m, "# ");
1356 		cache_put(cp, cd);
1357 	}
1358 
1359 	return cd->cache_show(m, cd, cp);
1360 }
1361 
1362 static const struct seq_operations cache_content_op = {
1363 	.start	= cache_seq_start,
1364 	.next	= cache_seq_next,
1365 	.stop	= cache_seq_stop,
1366 	.show	= c_show,
1367 };
1368 
1369 static int content_open(struct inode *inode, struct file *file,
1370 			struct cache_detail *cd)
1371 {
1372 	struct seq_file *seq;
1373 	int err;
1374 
1375 	if (!cd || !try_module_get(cd->owner))
1376 		return -EACCES;
1377 
1378 	err = seq_open(file, &cache_content_op);
1379 	if (err) {
1380 		module_put(cd->owner);
1381 		return err;
1382 	}
1383 
1384 	seq = file->private_data;
1385 	seq->private = cd;
1386 	return 0;
1387 }
1388 
1389 static int content_release(struct inode *inode, struct file *file,
1390 		struct cache_detail *cd)
1391 {
1392 	int ret = seq_release(inode, file);
1393 	module_put(cd->owner);
1394 	return ret;
1395 }
1396 
1397 static int open_flush(struct inode *inode, struct file *file,
1398 			struct cache_detail *cd)
1399 {
1400 	if (!cd || !try_module_get(cd->owner))
1401 		return -EACCES;
1402 	return nonseekable_open(inode, file);
1403 }
1404 
1405 static int release_flush(struct inode *inode, struct file *file,
1406 			struct cache_detail *cd)
1407 {
1408 	module_put(cd->owner);
1409 	return 0;
1410 }
1411 
1412 static ssize_t read_flush(struct file *file, char __user *buf,
1413 			  size_t count, loff_t *ppos,
1414 			  struct cache_detail *cd)
1415 {
1416 	char tbuf[22];
1417 	unsigned long p = *ppos;
1418 	size_t len;
1419 
1420 	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1421 	len = strlen(tbuf);
1422 	if (p >= len)
1423 		return 0;
1424 	len -= p;
1425 	if (len > count)
1426 		len = count;
1427 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1428 		return -EFAULT;
1429 	*ppos += len;
1430 	return len;
1431 }
1432 
1433 static ssize_t write_flush(struct file *file, const char __user *buf,
1434 			   size_t count, loff_t *ppos,
1435 			   struct cache_detail *cd)
1436 {
1437 	char tbuf[20];
1438 	char *bp, *ep;
1439 
1440 	if (*ppos || count > sizeof(tbuf)-1)
1441 		return -EINVAL;
1442 	if (copy_from_user(tbuf, buf, count))
1443 		return -EFAULT;
1444 	tbuf[count] = 0;
1445 	simple_strtoul(tbuf, &ep, 0);
1446 	if (*ep && *ep != '\n')
1447 		return -EINVAL;
1448 
1449 	bp = tbuf;
1450 	cd->flush_time = get_expiry(&bp);
1451 	cd->nextcheck = seconds_since_boot();
1452 	cache_flush();
1453 
1454 	*ppos += count;
1455 	return count;
1456 }
1457 
1458 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1459 				 size_t count, loff_t *ppos)
1460 {
1461 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1462 
1463 	return cache_read(filp, buf, count, ppos, cd);
1464 }
1465 
1466 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1467 				  size_t count, loff_t *ppos)
1468 {
1469 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1470 
1471 	return cache_write(filp, buf, count, ppos, cd);
1472 }
1473 
1474 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1475 {
1476 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1477 
1478 	return cache_poll(filp, wait, cd);
1479 }
1480 
1481 static long cache_ioctl_procfs(struct file *filp,
1482 			       unsigned int cmd, unsigned long arg)
1483 {
1484 	struct inode *inode = file_inode(filp);
1485 	struct cache_detail *cd = PDE_DATA(inode);
1486 
1487 	return cache_ioctl(inode, filp, cmd, arg, cd);
1488 }
1489 
1490 static int cache_open_procfs(struct inode *inode, struct file *filp)
1491 {
1492 	struct cache_detail *cd = PDE_DATA(inode);
1493 
1494 	return cache_open(inode, filp, cd);
1495 }
1496 
1497 static int cache_release_procfs(struct inode *inode, struct file *filp)
1498 {
1499 	struct cache_detail *cd = PDE_DATA(inode);
1500 
1501 	return cache_release(inode, filp, cd);
1502 }
1503 
1504 static const struct file_operations cache_file_operations_procfs = {
1505 	.owner		= THIS_MODULE,
1506 	.llseek		= no_llseek,
1507 	.read		= cache_read_procfs,
1508 	.write		= cache_write_procfs,
1509 	.poll		= cache_poll_procfs,
1510 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1511 	.open		= cache_open_procfs,
1512 	.release	= cache_release_procfs,
1513 };
1514 
1515 static int content_open_procfs(struct inode *inode, struct file *filp)
1516 {
1517 	struct cache_detail *cd = PDE_DATA(inode);
1518 
1519 	return content_open(inode, filp, cd);
1520 }
1521 
1522 static int content_release_procfs(struct inode *inode, struct file *filp)
1523 {
1524 	struct cache_detail *cd = PDE_DATA(inode);
1525 
1526 	return content_release(inode, filp, cd);
1527 }
1528 
1529 static const struct file_operations content_file_operations_procfs = {
1530 	.open		= content_open_procfs,
1531 	.read		= seq_read,
1532 	.llseek		= seq_lseek,
1533 	.release	= content_release_procfs,
1534 };
1535 
1536 static int open_flush_procfs(struct inode *inode, struct file *filp)
1537 {
1538 	struct cache_detail *cd = PDE_DATA(inode);
1539 
1540 	return open_flush(inode, filp, cd);
1541 }
1542 
1543 static int release_flush_procfs(struct inode *inode, struct file *filp)
1544 {
1545 	struct cache_detail *cd = PDE_DATA(inode);
1546 
1547 	return release_flush(inode, filp, cd);
1548 }
1549 
1550 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1551 			    size_t count, loff_t *ppos)
1552 {
1553 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1554 
1555 	return read_flush(filp, buf, count, ppos, cd);
1556 }
1557 
1558 static ssize_t write_flush_procfs(struct file *filp,
1559 				  const char __user *buf,
1560 				  size_t count, loff_t *ppos)
1561 {
1562 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1563 
1564 	return write_flush(filp, buf, count, ppos, cd);
1565 }
1566 
1567 static const struct file_operations cache_flush_operations_procfs = {
1568 	.open		= open_flush_procfs,
1569 	.read		= read_flush_procfs,
1570 	.write		= write_flush_procfs,
1571 	.release	= release_flush_procfs,
1572 	.llseek		= no_llseek,
1573 };
1574 
1575 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1576 {
1577 	struct sunrpc_net *sn;
1578 
1579 	if (cd->u.procfs.proc_ent == NULL)
1580 		return;
1581 	if (cd->u.procfs.flush_ent)
1582 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1583 	if (cd->u.procfs.channel_ent)
1584 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1585 	if (cd->u.procfs.content_ent)
1586 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1587 	cd->u.procfs.proc_ent = NULL;
1588 	sn = net_generic(net, sunrpc_net_id);
1589 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1590 }
1591 
1592 #ifdef CONFIG_PROC_FS
1593 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1594 {
1595 	struct proc_dir_entry *p;
1596 	struct sunrpc_net *sn;
1597 
1598 	sn = net_generic(net, sunrpc_net_id);
1599 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1600 	if (cd->u.procfs.proc_ent == NULL)
1601 		goto out_nomem;
1602 	cd->u.procfs.channel_ent = NULL;
1603 	cd->u.procfs.content_ent = NULL;
1604 
1605 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1606 			     cd->u.procfs.proc_ent,
1607 			     &cache_flush_operations_procfs, cd);
1608 	cd->u.procfs.flush_ent = p;
1609 	if (p == NULL)
1610 		goto out_nomem;
1611 
1612 	if (cd->cache_request || cd->cache_parse) {
1613 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1614 				     cd->u.procfs.proc_ent,
1615 				     &cache_file_operations_procfs, cd);
1616 		cd->u.procfs.channel_ent = p;
1617 		if (p == NULL)
1618 			goto out_nomem;
1619 	}
1620 	if (cd->cache_show) {
1621 		p = proc_create_data("content", S_IFREG|S_IRUSR,
1622 				cd->u.procfs.proc_ent,
1623 				&content_file_operations_procfs, cd);
1624 		cd->u.procfs.content_ent = p;
1625 		if (p == NULL)
1626 			goto out_nomem;
1627 	}
1628 	return 0;
1629 out_nomem:
1630 	remove_cache_proc_entries(cd, net);
1631 	return -ENOMEM;
1632 }
1633 #else /* CONFIG_PROC_FS */
1634 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1635 {
1636 	return 0;
1637 }
1638 #endif
1639 
1640 void __init cache_initialize(void)
1641 {
1642 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1643 }
1644 
1645 int cache_register_net(struct cache_detail *cd, struct net *net)
1646 {
1647 	int ret;
1648 
1649 	sunrpc_init_cache_detail(cd);
1650 	ret = create_cache_proc_entries(cd, net);
1651 	if (ret)
1652 		sunrpc_destroy_cache_detail(cd);
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(cache_register_net);
1656 
1657 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1658 {
1659 	remove_cache_proc_entries(cd, net);
1660 	sunrpc_destroy_cache_detail(cd);
1661 }
1662 EXPORT_SYMBOL_GPL(cache_unregister_net);
1663 
1664 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1665 {
1666 	struct cache_detail *cd;
1667 	int i;
1668 
1669 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1670 	if (cd == NULL)
1671 		return ERR_PTR(-ENOMEM);
1672 
1673 	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1674 				 GFP_KERNEL);
1675 	if (cd->hash_table == NULL) {
1676 		kfree(cd);
1677 		return ERR_PTR(-ENOMEM);
1678 	}
1679 
1680 	for (i = 0; i < cd->hash_size; i++)
1681 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1682 	cd->net = net;
1683 	return cd;
1684 }
1685 EXPORT_SYMBOL_GPL(cache_create_net);
1686 
1687 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1688 {
1689 	kfree(cd->hash_table);
1690 	kfree(cd);
1691 }
1692 EXPORT_SYMBOL_GPL(cache_destroy_net);
1693 
1694 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1695 				 size_t count, loff_t *ppos)
1696 {
1697 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1698 
1699 	return cache_read(filp, buf, count, ppos, cd);
1700 }
1701 
1702 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1703 				  size_t count, loff_t *ppos)
1704 {
1705 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1706 
1707 	return cache_write(filp, buf, count, ppos, cd);
1708 }
1709 
1710 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1711 {
1712 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1713 
1714 	return cache_poll(filp, wait, cd);
1715 }
1716 
1717 static long cache_ioctl_pipefs(struct file *filp,
1718 			      unsigned int cmd, unsigned long arg)
1719 {
1720 	struct inode *inode = file_inode(filp);
1721 	struct cache_detail *cd = RPC_I(inode)->private;
1722 
1723 	return cache_ioctl(inode, filp, cmd, arg, cd);
1724 }
1725 
1726 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1727 {
1728 	struct cache_detail *cd = RPC_I(inode)->private;
1729 
1730 	return cache_open(inode, filp, cd);
1731 }
1732 
1733 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1734 {
1735 	struct cache_detail *cd = RPC_I(inode)->private;
1736 
1737 	return cache_release(inode, filp, cd);
1738 }
1739 
1740 const struct file_operations cache_file_operations_pipefs = {
1741 	.owner		= THIS_MODULE,
1742 	.llseek		= no_llseek,
1743 	.read		= cache_read_pipefs,
1744 	.write		= cache_write_pipefs,
1745 	.poll		= cache_poll_pipefs,
1746 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1747 	.open		= cache_open_pipefs,
1748 	.release	= cache_release_pipefs,
1749 };
1750 
1751 static int content_open_pipefs(struct inode *inode, struct file *filp)
1752 {
1753 	struct cache_detail *cd = RPC_I(inode)->private;
1754 
1755 	return content_open(inode, filp, cd);
1756 }
1757 
1758 static int content_release_pipefs(struct inode *inode, struct file *filp)
1759 {
1760 	struct cache_detail *cd = RPC_I(inode)->private;
1761 
1762 	return content_release(inode, filp, cd);
1763 }
1764 
1765 const struct file_operations content_file_operations_pipefs = {
1766 	.open		= content_open_pipefs,
1767 	.read		= seq_read,
1768 	.llseek		= seq_lseek,
1769 	.release	= content_release_pipefs,
1770 };
1771 
1772 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1773 {
1774 	struct cache_detail *cd = RPC_I(inode)->private;
1775 
1776 	return open_flush(inode, filp, cd);
1777 }
1778 
1779 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1780 {
1781 	struct cache_detail *cd = RPC_I(inode)->private;
1782 
1783 	return release_flush(inode, filp, cd);
1784 }
1785 
1786 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1787 			    size_t count, loff_t *ppos)
1788 {
1789 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1790 
1791 	return read_flush(filp, buf, count, ppos, cd);
1792 }
1793 
1794 static ssize_t write_flush_pipefs(struct file *filp,
1795 				  const char __user *buf,
1796 				  size_t count, loff_t *ppos)
1797 {
1798 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799 
1800 	return write_flush(filp, buf, count, ppos, cd);
1801 }
1802 
1803 const struct file_operations cache_flush_operations_pipefs = {
1804 	.open		= open_flush_pipefs,
1805 	.read		= read_flush_pipefs,
1806 	.write		= write_flush_pipefs,
1807 	.release	= release_flush_pipefs,
1808 	.llseek		= no_llseek,
1809 };
1810 
1811 int sunrpc_cache_register_pipefs(struct dentry *parent,
1812 				 const char *name, umode_t umode,
1813 				 struct cache_detail *cd)
1814 {
1815 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1816 	if (IS_ERR(dir))
1817 		return PTR_ERR(dir);
1818 	cd->u.pipefs.dir = dir;
1819 	return 0;
1820 }
1821 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1822 
1823 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1824 {
1825 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1826 	cd->u.pipefs.dir = NULL;
1827 }
1828 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1829 
1830