1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/string_helpers.h> 24 #include <linux/uaccess.h> 25 #include <linux/poll.h> 26 #include <linux/seq_file.h> 27 #include <linux/proc_fs.h> 28 #include <linux/net.h> 29 #include <linux/workqueue.h> 30 #include <linux/mutex.h> 31 #include <linux/pagemap.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include "netns.h" 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h, struct cache_detail *detail) 45 { 46 time_t now = seconds_since_boot(); 47 INIT_HLIST_NODE(&h->cache_list); 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 if (now <= detail->flush_time) 52 /* ensure it isn't already expired */ 53 now = detail->flush_time + 1; 54 h->last_refresh = now; 55 } 56 57 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 58 struct cache_head *key, int hash) 59 { 60 struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL; 61 struct hlist_head *head; 62 63 head = &detail->hash_table[hash]; 64 65 read_lock(&detail->hash_lock); 66 67 hlist_for_each_entry(tmp, head, cache_list) { 68 if (detail->match(tmp, key)) { 69 if (cache_is_expired(detail, tmp)) 70 /* This entry is expired, we will discard it. */ 71 break; 72 cache_get(tmp); 73 read_unlock(&detail->hash_lock); 74 return tmp; 75 } 76 } 77 read_unlock(&detail->hash_lock); 78 /* Didn't find anything, insert an empty entry */ 79 80 new = detail->alloc(); 81 if (!new) 82 return NULL; 83 /* must fully initialise 'new', else 84 * we might get lose if we need to 85 * cache_put it soon. 86 */ 87 cache_init(new, detail); 88 detail->init(new, key); 89 90 write_lock(&detail->hash_lock); 91 92 /* check if entry appeared while we slept */ 93 hlist_for_each_entry(tmp, head, cache_list) { 94 if (detail->match(tmp, key)) { 95 if (cache_is_expired(detail, tmp)) { 96 hlist_del_init(&tmp->cache_list); 97 detail->entries --; 98 freeme = tmp; 99 break; 100 } 101 cache_get(tmp); 102 write_unlock(&detail->hash_lock); 103 cache_put(new, detail); 104 return tmp; 105 } 106 } 107 108 hlist_add_head(&new->cache_list, head); 109 detail->entries++; 110 cache_get(new); 111 write_unlock(&detail->hash_lock); 112 113 if (freeme) 114 cache_put(freeme, detail); 115 return new; 116 } 117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 118 119 120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 121 122 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 123 struct cache_detail *detail) 124 { 125 time_t now = seconds_since_boot(); 126 if (now <= detail->flush_time) 127 /* ensure it isn't immediately treated as expired */ 128 now = detail->flush_time + 1; 129 head->expiry_time = expiry; 130 head->last_refresh = now; 131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 132 set_bit(CACHE_VALID, &head->flags); 133 } 134 135 static void cache_fresh_unlocked(struct cache_head *head, 136 struct cache_detail *detail) 137 { 138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 139 cache_revisit_request(head); 140 cache_dequeue(detail, head); 141 } 142 } 143 144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 145 struct cache_head *new, struct cache_head *old, int hash) 146 { 147 /* The 'old' entry is to be replaced by 'new'. 148 * If 'old' is not VALID, we update it directly, 149 * otherwise we need to replace it 150 */ 151 struct cache_head *tmp; 152 153 if (!test_bit(CACHE_VALID, &old->flags)) { 154 write_lock(&detail->hash_lock); 155 if (!test_bit(CACHE_VALID, &old->flags)) { 156 if (test_bit(CACHE_NEGATIVE, &new->flags)) 157 set_bit(CACHE_NEGATIVE, &old->flags); 158 else 159 detail->update(old, new); 160 cache_fresh_locked(old, new->expiry_time, detail); 161 write_unlock(&detail->hash_lock); 162 cache_fresh_unlocked(old, detail); 163 return old; 164 } 165 write_unlock(&detail->hash_lock); 166 } 167 /* We need to insert a new entry */ 168 tmp = detail->alloc(); 169 if (!tmp) { 170 cache_put(old, detail); 171 return NULL; 172 } 173 cache_init(tmp, detail); 174 detail->init(tmp, old); 175 176 write_lock(&detail->hash_lock); 177 if (test_bit(CACHE_NEGATIVE, &new->flags)) 178 set_bit(CACHE_NEGATIVE, &tmp->flags); 179 else 180 detail->update(tmp, new); 181 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 182 detail->entries++; 183 cache_get(tmp); 184 cache_fresh_locked(tmp, new->expiry_time, detail); 185 cache_fresh_locked(old, 0, detail); 186 write_unlock(&detail->hash_lock); 187 cache_fresh_unlocked(tmp, detail); 188 cache_fresh_unlocked(old, detail); 189 cache_put(old, detail); 190 return tmp; 191 } 192 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 193 194 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 195 { 196 if (cd->cache_upcall) 197 return cd->cache_upcall(cd, h); 198 return sunrpc_cache_pipe_upcall(cd, h); 199 } 200 201 static inline int cache_is_valid(struct cache_head *h) 202 { 203 if (!test_bit(CACHE_VALID, &h->flags)) 204 return -EAGAIN; 205 else { 206 /* entry is valid */ 207 if (test_bit(CACHE_NEGATIVE, &h->flags)) 208 return -ENOENT; 209 else { 210 /* 211 * In combination with write barrier in 212 * sunrpc_cache_update, ensures that anyone 213 * using the cache entry after this sees the 214 * updated contents: 215 */ 216 smp_rmb(); 217 return 0; 218 } 219 } 220 } 221 222 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 223 { 224 int rv; 225 226 write_lock(&detail->hash_lock); 227 rv = cache_is_valid(h); 228 if (rv == -EAGAIN) { 229 set_bit(CACHE_NEGATIVE, &h->flags); 230 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 231 detail); 232 rv = -ENOENT; 233 } 234 write_unlock(&detail->hash_lock); 235 cache_fresh_unlocked(h, detail); 236 return rv; 237 } 238 239 /* 240 * This is the generic cache management routine for all 241 * the authentication caches. 242 * It checks the currency of a cache item and will (later) 243 * initiate an upcall to fill it if needed. 244 * 245 * 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns 247 * -EAGAIN if upcall is pending and request has been queued 248 * -ETIMEDOUT if upcall failed or request could not be queue or 249 * upcall completed but item is still invalid (implying that 250 * the cache item has been replaced with a newer one). 251 * -ENOENT if cache entry was negative 252 */ 253 int cache_check(struct cache_detail *detail, 254 struct cache_head *h, struct cache_req *rqstp) 255 { 256 int rv; 257 long refresh_age, age; 258 259 /* First decide return status as best we can */ 260 rv = cache_is_valid(h); 261 262 /* now see if we want to start an upcall */ 263 refresh_age = (h->expiry_time - h->last_refresh); 264 age = seconds_since_boot() - h->last_refresh; 265 266 if (rqstp == NULL) { 267 if (rv == -EAGAIN) 268 rv = -ENOENT; 269 } else if (rv == -EAGAIN || 270 (h->expiry_time != 0 && age > refresh_age/2)) { 271 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 272 refresh_age, age); 273 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 274 switch (cache_make_upcall(detail, h)) { 275 case -EINVAL: 276 rv = try_to_negate_entry(detail, h); 277 break; 278 case -EAGAIN: 279 cache_fresh_unlocked(h, detail); 280 break; 281 } 282 } 283 } 284 285 if (rv == -EAGAIN) { 286 if (!cache_defer_req(rqstp, h)) { 287 /* 288 * Request was not deferred; handle it as best 289 * we can ourselves: 290 */ 291 rv = cache_is_valid(h); 292 if (rv == -EAGAIN) 293 rv = -ETIMEDOUT; 294 } 295 } 296 if (rv) 297 cache_put(h, detail); 298 return rv; 299 } 300 EXPORT_SYMBOL_GPL(cache_check); 301 302 /* 303 * caches need to be periodically cleaned. 304 * For this we maintain a list of cache_detail and 305 * a current pointer into that list and into the table 306 * for that entry. 307 * 308 * Each time cache_clean is called it finds the next non-empty entry 309 * in the current table and walks the list in that entry 310 * looking for entries that can be removed. 311 * 312 * An entry gets removed if: 313 * - The expiry is before current time 314 * - The last_refresh time is before the flush_time for that cache 315 * 316 * later we might drop old entries with non-NEVER expiry if that table 317 * is getting 'full' for some definition of 'full' 318 * 319 * The question of "how often to scan a table" is an interesting one 320 * and is answered in part by the use of the "nextcheck" field in the 321 * cache_detail. 322 * When a scan of a table begins, the nextcheck field is set to a time 323 * that is well into the future. 324 * While scanning, if an expiry time is found that is earlier than the 325 * current nextcheck time, nextcheck is set to that expiry time. 326 * If the flush_time is ever set to a time earlier than the nextcheck 327 * time, the nextcheck time is then set to that flush_time. 328 * 329 * A table is then only scanned if the current time is at least 330 * the nextcheck time. 331 * 332 */ 333 334 static LIST_HEAD(cache_list); 335 static DEFINE_SPINLOCK(cache_list_lock); 336 static struct cache_detail *current_detail; 337 static int current_index; 338 339 static void do_cache_clean(struct work_struct *work); 340 static struct delayed_work cache_cleaner; 341 342 void sunrpc_init_cache_detail(struct cache_detail *cd) 343 { 344 rwlock_init(&cd->hash_lock); 345 INIT_LIST_HEAD(&cd->queue); 346 spin_lock(&cache_list_lock); 347 cd->nextcheck = 0; 348 cd->entries = 0; 349 atomic_set(&cd->readers, 0); 350 cd->last_close = 0; 351 cd->last_warn = -1; 352 list_add(&cd->others, &cache_list); 353 spin_unlock(&cache_list_lock); 354 355 /* start the cleaning process */ 356 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 357 } 358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 359 360 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 361 { 362 cache_purge(cd); 363 spin_lock(&cache_list_lock); 364 write_lock(&cd->hash_lock); 365 if (current_detail == cd) 366 current_detail = NULL; 367 list_del_init(&cd->others); 368 write_unlock(&cd->hash_lock); 369 spin_unlock(&cache_list_lock); 370 if (list_empty(&cache_list)) { 371 /* module must be being unloaded so its safe to kill the worker */ 372 cancel_delayed_work_sync(&cache_cleaner); 373 } 374 } 375 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 376 377 /* clean cache tries to find something to clean 378 * and cleans it. 379 * It returns 1 if it cleaned something, 380 * 0 if it didn't find anything this time 381 * -1 if it fell off the end of the list. 382 */ 383 static int cache_clean(void) 384 { 385 int rv = 0; 386 struct list_head *next; 387 388 spin_lock(&cache_list_lock); 389 390 /* find a suitable table if we don't already have one */ 391 while (current_detail == NULL || 392 current_index >= current_detail->hash_size) { 393 if (current_detail) 394 next = current_detail->others.next; 395 else 396 next = cache_list.next; 397 if (next == &cache_list) { 398 current_detail = NULL; 399 spin_unlock(&cache_list_lock); 400 return -1; 401 } 402 current_detail = list_entry(next, struct cache_detail, others); 403 if (current_detail->nextcheck > seconds_since_boot()) 404 current_index = current_detail->hash_size; 405 else { 406 current_index = 0; 407 current_detail->nextcheck = seconds_since_boot()+30*60; 408 } 409 } 410 411 /* find a non-empty bucket in the table */ 412 while (current_detail && 413 current_index < current_detail->hash_size && 414 hlist_empty(¤t_detail->hash_table[current_index])) 415 current_index++; 416 417 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 418 419 if (current_detail && current_index < current_detail->hash_size) { 420 struct cache_head *ch = NULL; 421 struct cache_detail *d; 422 struct hlist_head *head; 423 struct hlist_node *tmp; 424 425 write_lock(¤t_detail->hash_lock); 426 427 /* Ok, now to clean this strand */ 428 429 head = ¤t_detail->hash_table[current_index]; 430 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 431 if (current_detail->nextcheck > ch->expiry_time) 432 current_detail->nextcheck = ch->expiry_time+1; 433 if (!cache_is_expired(current_detail, ch)) 434 continue; 435 436 hlist_del_init(&ch->cache_list); 437 current_detail->entries--; 438 rv = 1; 439 break; 440 } 441 442 write_unlock(¤t_detail->hash_lock); 443 d = current_detail; 444 if (!ch) 445 current_index ++; 446 spin_unlock(&cache_list_lock); 447 if (ch) { 448 set_bit(CACHE_CLEANED, &ch->flags); 449 cache_fresh_unlocked(ch, d); 450 cache_put(ch, d); 451 } 452 } else 453 spin_unlock(&cache_list_lock); 454 455 return rv; 456 } 457 458 /* 459 * We want to regularly clean the cache, so we need to schedule some work ... 460 */ 461 static void do_cache_clean(struct work_struct *work) 462 { 463 int delay = 5; 464 if (cache_clean() == -1) 465 delay = round_jiffies_relative(30*HZ); 466 467 if (list_empty(&cache_list)) 468 delay = 0; 469 470 if (delay) 471 queue_delayed_work(system_power_efficient_wq, 472 &cache_cleaner, delay); 473 } 474 475 476 /* 477 * Clean all caches promptly. This just calls cache_clean 478 * repeatedly until we are sure that every cache has had a chance to 479 * be fully cleaned 480 */ 481 void cache_flush(void) 482 { 483 while (cache_clean() != -1) 484 cond_resched(); 485 while (cache_clean() != -1) 486 cond_resched(); 487 } 488 EXPORT_SYMBOL_GPL(cache_flush); 489 490 void cache_purge(struct cache_detail *detail) 491 { 492 struct cache_head *ch = NULL; 493 struct hlist_head *head = NULL; 494 struct hlist_node *tmp = NULL; 495 int i = 0; 496 497 write_lock(&detail->hash_lock); 498 if (!detail->entries) { 499 write_unlock(&detail->hash_lock); 500 return; 501 } 502 503 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 504 for (i = 0; i < detail->hash_size; i++) { 505 head = &detail->hash_table[i]; 506 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 507 hlist_del_init(&ch->cache_list); 508 detail->entries--; 509 510 set_bit(CACHE_CLEANED, &ch->flags); 511 write_unlock(&detail->hash_lock); 512 cache_fresh_unlocked(ch, detail); 513 cache_put(ch, detail); 514 write_lock(&detail->hash_lock); 515 } 516 } 517 write_unlock(&detail->hash_lock); 518 } 519 EXPORT_SYMBOL_GPL(cache_purge); 520 521 522 /* 523 * Deferral and Revisiting of Requests. 524 * 525 * If a cache lookup finds a pending entry, we 526 * need to defer the request and revisit it later. 527 * All deferred requests are stored in a hash table, 528 * indexed by "struct cache_head *". 529 * As it may be wasteful to store a whole request 530 * structure, we allow the request to provide a 531 * deferred form, which must contain a 532 * 'struct cache_deferred_req' 533 * This cache_deferred_req contains a method to allow 534 * it to be revisited when cache info is available 535 */ 536 537 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 538 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 539 540 #define DFR_MAX 300 /* ??? */ 541 542 static DEFINE_SPINLOCK(cache_defer_lock); 543 static LIST_HEAD(cache_defer_list); 544 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 545 static int cache_defer_cnt; 546 547 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 548 { 549 hlist_del_init(&dreq->hash); 550 if (!list_empty(&dreq->recent)) { 551 list_del_init(&dreq->recent); 552 cache_defer_cnt--; 553 } 554 } 555 556 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 557 { 558 int hash = DFR_HASH(item); 559 560 INIT_LIST_HEAD(&dreq->recent); 561 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 562 } 563 564 static void setup_deferral(struct cache_deferred_req *dreq, 565 struct cache_head *item, 566 int count_me) 567 { 568 569 dreq->item = item; 570 571 spin_lock(&cache_defer_lock); 572 573 __hash_deferred_req(dreq, item); 574 575 if (count_me) { 576 cache_defer_cnt++; 577 list_add(&dreq->recent, &cache_defer_list); 578 } 579 580 spin_unlock(&cache_defer_lock); 581 582 } 583 584 struct thread_deferred_req { 585 struct cache_deferred_req handle; 586 struct completion completion; 587 }; 588 589 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 590 { 591 struct thread_deferred_req *dr = 592 container_of(dreq, struct thread_deferred_req, handle); 593 complete(&dr->completion); 594 } 595 596 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 597 { 598 struct thread_deferred_req sleeper; 599 struct cache_deferred_req *dreq = &sleeper.handle; 600 601 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 602 dreq->revisit = cache_restart_thread; 603 604 setup_deferral(dreq, item, 0); 605 606 if (!test_bit(CACHE_PENDING, &item->flags) || 607 wait_for_completion_interruptible_timeout( 608 &sleeper.completion, req->thread_wait) <= 0) { 609 /* The completion wasn't completed, so we need 610 * to clean up 611 */ 612 spin_lock(&cache_defer_lock); 613 if (!hlist_unhashed(&sleeper.handle.hash)) { 614 __unhash_deferred_req(&sleeper.handle); 615 spin_unlock(&cache_defer_lock); 616 } else { 617 /* cache_revisit_request already removed 618 * this from the hash table, but hasn't 619 * called ->revisit yet. It will very soon 620 * and we need to wait for it. 621 */ 622 spin_unlock(&cache_defer_lock); 623 wait_for_completion(&sleeper.completion); 624 } 625 } 626 } 627 628 static void cache_limit_defers(void) 629 { 630 /* Make sure we haven't exceed the limit of allowed deferred 631 * requests. 632 */ 633 struct cache_deferred_req *discard = NULL; 634 635 if (cache_defer_cnt <= DFR_MAX) 636 return; 637 638 spin_lock(&cache_defer_lock); 639 640 /* Consider removing either the first or the last */ 641 if (cache_defer_cnt > DFR_MAX) { 642 if (prandom_u32() & 1) 643 discard = list_entry(cache_defer_list.next, 644 struct cache_deferred_req, recent); 645 else 646 discard = list_entry(cache_defer_list.prev, 647 struct cache_deferred_req, recent); 648 __unhash_deferred_req(discard); 649 } 650 spin_unlock(&cache_defer_lock); 651 if (discard) 652 discard->revisit(discard, 1); 653 } 654 655 /* Return true if and only if a deferred request is queued. */ 656 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 657 { 658 struct cache_deferred_req *dreq; 659 660 if (req->thread_wait) { 661 cache_wait_req(req, item); 662 if (!test_bit(CACHE_PENDING, &item->flags)) 663 return false; 664 } 665 dreq = req->defer(req); 666 if (dreq == NULL) 667 return false; 668 setup_deferral(dreq, item, 1); 669 if (!test_bit(CACHE_PENDING, &item->flags)) 670 /* Bit could have been cleared before we managed to 671 * set up the deferral, so need to revisit just in case 672 */ 673 cache_revisit_request(item); 674 675 cache_limit_defers(); 676 return true; 677 } 678 679 static void cache_revisit_request(struct cache_head *item) 680 { 681 struct cache_deferred_req *dreq; 682 struct list_head pending; 683 struct hlist_node *tmp; 684 int hash = DFR_HASH(item); 685 686 INIT_LIST_HEAD(&pending); 687 spin_lock(&cache_defer_lock); 688 689 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 690 if (dreq->item == item) { 691 __unhash_deferred_req(dreq); 692 list_add(&dreq->recent, &pending); 693 } 694 695 spin_unlock(&cache_defer_lock); 696 697 while (!list_empty(&pending)) { 698 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 699 list_del_init(&dreq->recent); 700 dreq->revisit(dreq, 0); 701 } 702 } 703 704 void cache_clean_deferred(void *owner) 705 { 706 struct cache_deferred_req *dreq, *tmp; 707 struct list_head pending; 708 709 710 INIT_LIST_HEAD(&pending); 711 spin_lock(&cache_defer_lock); 712 713 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 714 if (dreq->owner == owner) { 715 __unhash_deferred_req(dreq); 716 list_add(&dreq->recent, &pending); 717 } 718 } 719 spin_unlock(&cache_defer_lock); 720 721 while (!list_empty(&pending)) { 722 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 723 list_del_init(&dreq->recent); 724 dreq->revisit(dreq, 1); 725 } 726 } 727 728 /* 729 * communicate with user-space 730 * 731 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 732 * On read, you get a full request, or block. 733 * On write, an update request is processed. 734 * Poll works if anything to read, and always allows write. 735 * 736 * Implemented by linked list of requests. Each open file has 737 * a ->private that also exists in this list. New requests are added 738 * to the end and may wakeup and preceding readers. 739 * New readers are added to the head. If, on read, an item is found with 740 * CACHE_UPCALLING clear, we free it from the list. 741 * 742 */ 743 744 static DEFINE_SPINLOCK(queue_lock); 745 static DEFINE_MUTEX(queue_io_mutex); 746 747 struct cache_queue { 748 struct list_head list; 749 int reader; /* if 0, then request */ 750 }; 751 struct cache_request { 752 struct cache_queue q; 753 struct cache_head *item; 754 char * buf; 755 int len; 756 int readers; 757 }; 758 struct cache_reader { 759 struct cache_queue q; 760 int offset; /* if non-0, we have a refcnt on next request */ 761 }; 762 763 static int cache_request(struct cache_detail *detail, 764 struct cache_request *crq) 765 { 766 char *bp = crq->buf; 767 int len = PAGE_SIZE; 768 769 detail->cache_request(detail, crq->item, &bp, &len); 770 if (len < 0) 771 return -EAGAIN; 772 return PAGE_SIZE - len; 773 } 774 775 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 776 loff_t *ppos, struct cache_detail *cd) 777 { 778 struct cache_reader *rp = filp->private_data; 779 struct cache_request *rq; 780 struct inode *inode = file_inode(filp); 781 int err; 782 783 if (count == 0) 784 return 0; 785 786 inode_lock(inode); /* protect against multiple concurrent 787 * readers on this file */ 788 again: 789 spin_lock(&queue_lock); 790 /* need to find next request */ 791 while (rp->q.list.next != &cd->queue && 792 list_entry(rp->q.list.next, struct cache_queue, list) 793 ->reader) { 794 struct list_head *next = rp->q.list.next; 795 list_move(&rp->q.list, next); 796 } 797 if (rp->q.list.next == &cd->queue) { 798 spin_unlock(&queue_lock); 799 inode_unlock(inode); 800 WARN_ON_ONCE(rp->offset); 801 return 0; 802 } 803 rq = container_of(rp->q.list.next, struct cache_request, q.list); 804 WARN_ON_ONCE(rq->q.reader); 805 if (rp->offset == 0) 806 rq->readers++; 807 spin_unlock(&queue_lock); 808 809 if (rq->len == 0) { 810 err = cache_request(cd, rq); 811 if (err < 0) 812 goto out; 813 rq->len = err; 814 } 815 816 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 817 err = -EAGAIN; 818 spin_lock(&queue_lock); 819 list_move(&rp->q.list, &rq->q.list); 820 spin_unlock(&queue_lock); 821 } else { 822 if (rp->offset + count > rq->len) 823 count = rq->len - rp->offset; 824 err = -EFAULT; 825 if (copy_to_user(buf, rq->buf + rp->offset, count)) 826 goto out; 827 rp->offset += count; 828 if (rp->offset >= rq->len) { 829 rp->offset = 0; 830 spin_lock(&queue_lock); 831 list_move(&rp->q.list, &rq->q.list); 832 spin_unlock(&queue_lock); 833 } 834 err = 0; 835 } 836 out: 837 if (rp->offset == 0) { 838 /* need to release rq */ 839 spin_lock(&queue_lock); 840 rq->readers--; 841 if (rq->readers == 0 && 842 !test_bit(CACHE_PENDING, &rq->item->flags)) { 843 list_del(&rq->q.list); 844 spin_unlock(&queue_lock); 845 cache_put(rq->item, cd); 846 kfree(rq->buf); 847 kfree(rq); 848 } else 849 spin_unlock(&queue_lock); 850 } 851 if (err == -EAGAIN) 852 goto again; 853 inode_unlock(inode); 854 return err ? err : count; 855 } 856 857 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 858 size_t count, struct cache_detail *cd) 859 { 860 ssize_t ret; 861 862 if (count == 0) 863 return -EINVAL; 864 if (copy_from_user(kaddr, buf, count)) 865 return -EFAULT; 866 kaddr[count] = '\0'; 867 ret = cd->cache_parse(cd, kaddr, count); 868 if (!ret) 869 ret = count; 870 return ret; 871 } 872 873 static ssize_t cache_slow_downcall(const char __user *buf, 874 size_t count, struct cache_detail *cd) 875 { 876 static char write_buf[8192]; /* protected by queue_io_mutex */ 877 ssize_t ret = -EINVAL; 878 879 if (count >= sizeof(write_buf)) 880 goto out; 881 mutex_lock(&queue_io_mutex); 882 ret = cache_do_downcall(write_buf, buf, count, cd); 883 mutex_unlock(&queue_io_mutex); 884 out: 885 return ret; 886 } 887 888 static ssize_t cache_downcall(struct address_space *mapping, 889 const char __user *buf, 890 size_t count, struct cache_detail *cd) 891 { 892 struct page *page; 893 char *kaddr; 894 ssize_t ret = -ENOMEM; 895 896 if (count >= PAGE_SIZE) 897 goto out_slow; 898 899 page = find_or_create_page(mapping, 0, GFP_KERNEL); 900 if (!page) 901 goto out_slow; 902 903 kaddr = kmap(page); 904 ret = cache_do_downcall(kaddr, buf, count, cd); 905 kunmap(page); 906 unlock_page(page); 907 put_page(page); 908 return ret; 909 out_slow: 910 return cache_slow_downcall(buf, count, cd); 911 } 912 913 static ssize_t cache_write(struct file *filp, const char __user *buf, 914 size_t count, loff_t *ppos, 915 struct cache_detail *cd) 916 { 917 struct address_space *mapping = filp->f_mapping; 918 struct inode *inode = file_inode(filp); 919 ssize_t ret = -EINVAL; 920 921 if (!cd->cache_parse) 922 goto out; 923 924 inode_lock(inode); 925 ret = cache_downcall(mapping, buf, count, cd); 926 inode_unlock(inode); 927 out: 928 return ret; 929 } 930 931 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 932 933 static unsigned int cache_poll(struct file *filp, poll_table *wait, 934 struct cache_detail *cd) 935 { 936 unsigned int mask; 937 struct cache_reader *rp = filp->private_data; 938 struct cache_queue *cq; 939 940 poll_wait(filp, &queue_wait, wait); 941 942 /* alway allow write */ 943 mask = POLLOUT | POLLWRNORM; 944 945 if (!rp) 946 return mask; 947 948 spin_lock(&queue_lock); 949 950 for (cq= &rp->q; &cq->list != &cd->queue; 951 cq = list_entry(cq->list.next, struct cache_queue, list)) 952 if (!cq->reader) { 953 mask |= POLLIN | POLLRDNORM; 954 break; 955 } 956 spin_unlock(&queue_lock); 957 return mask; 958 } 959 960 static int cache_ioctl(struct inode *ino, struct file *filp, 961 unsigned int cmd, unsigned long arg, 962 struct cache_detail *cd) 963 { 964 int len = 0; 965 struct cache_reader *rp = filp->private_data; 966 struct cache_queue *cq; 967 968 if (cmd != FIONREAD || !rp) 969 return -EINVAL; 970 971 spin_lock(&queue_lock); 972 973 /* only find the length remaining in current request, 974 * or the length of the next request 975 */ 976 for (cq= &rp->q; &cq->list != &cd->queue; 977 cq = list_entry(cq->list.next, struct cache_queue, list)) 978 if (!cq->reader) { 979 struct cache_request *cr = 980 container_of(cq, struct cache_request, q); 981 len = cr->len - rp->offset; 982 break; 983 } 984 spin_unlock(&queue_lock); 985 986 return put_user(len, (int __user *)arg); 987 } 988 989 static int cache_open(struct inode *inode, struct file *filp, 990 struct cache_detail *cd) 991 { 992 struct cache_reader *rp = NULL; 993 994 if (!cd || !try_module_get(cd->owner)) 995 return -EACCES; 996 nonseekable_open(inode, filp); 997 if (filp->f_mode & FMODE_READ) { 998 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 999 if (!rp) { 1000 module_put(cd->owner); 1001 return -ENOMEM; 1002 } 1003 rp->offset = 0; 1004 rp->q.reader = 1; 1005 atomic_inc(&cd->readers); 1006 spin_lock(&queue_lock); 1007 list_add(&rp->q.list, &cd->queue); 1008 spin_unlock(&queue_lock); 1009 } 1010 filp->private_data = rp; 1011 return 0; 1012 } 1013 1014 static int cache_release(struct inode *inode, struct file *filp, 1015 struct cache_detail *cd) 1016 { 1017 struct cache_reader *rp = filp->private_data; 1018 1019 if (rp) { 1020 spin_lock(&queue_lock); 1021 if (rp->offset) { 1022 struct cache_queue *cq; 1023 for (cq= &rp->q; &cq->list != &cd->queue; 1024 cq = list_entry(cq->list.next, struct cache_queue, list)) 1025 if (!cq->reader) { 1026 container_of(cq, struct cache_request, q) 1027 ->readers--; 1028 break; 1029 } 1030 rp->offset = 0; 1031 } 1032 list_del(&rp->q.list); 1033 spin_unlock(&queue_lock); 1034 1035 filp->private_data = NULL; 1036 kfree(rp); 1037 1038 cd->last_close = seconds_since_boot(); 1039 atomic_dec(&cd->readers); 1040 } 1041 module_put(cd->owner); 1042 return 0; 1043 } 1044 1045 1046 1047 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1048 { 1049 struct cache_queue *cq, *tmp; 1050 struct cache_request *cr; 1051 struct list_head dequeued; 1052 1053 INIT_LIST_HEAD(&dequeued); 1054 spin_lock(&queue_lock); 1055 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1056 if (!cq->reader) { 1057 cr = container_of(cq, struct cache_request, q); 1058 if (cr->item != ch) 1059 continue; 1060 if (test_bit(CACHE_PENDING, &ch->flags)) 1061 /* Lost a race and it is pending again */ 1062 break; 1063 if (cr->readers != 0) 1064 continue; 1065 list_move(&cr->q.list, &dequeued); 1066 } 1067 spin_unlock(&queue_lock); 1068 while (!list_empty(&dequeued)) { 1069 cr = list_entry(dequeued.next, struct cache_request, q.list); 1070 list_del(&cr->q.list); 1071 cache_put(cr->item, detail); 1072 kfree(cr->buf); 1073 kfree(cr); 1074 } 1075 } 1076 1077 /* 1078 * Support routines for text-based upcalls. 1079 * Fields are separated by spaces. 1080 * Fields are either mangled to quote space tab newline slosh with slosh 1081 * or a hexified with a leading \x 1082 * Record is terminated with newline. 1083 * 1084 */ 1085 1086 void qword_add(char **bpp, int *lp, char *str) 1087 { 1088 char *bp = *bpp; 1089 int len = *lp; 1090 int ret; 1091 1092 if (len < 0) return; 1093 1094 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1095 if (ret >= len) { 1096 bp += len; 1097 len = -1; 1098 } else { 1099 bp += ret; 1100 len -= ret; 1101 *bp++ = ' '; 1102 len--; 1103 } 1104 *bpp = bp; 1105 *lp = len; 1106 } 1107 EXPORT_SYMBOL_GPL(qword_add); 1108 1109 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1110 { 1111 char *bp = *bpp; 1112 int len = *lp; 1113 1114 if (len < 0) return; 1115 1116 if (len > 2) { 1117 *bp++ = '\\'; 1118 *bp++ = 'x'; 1119 len -= 2; 1120 while (blen && len >= 2) { 1121 bp = hex_byte_pack(bp, *buf++); 1122 len -= 2; 1123 blen--; 1124 } 1125 } 1126 if (blen || len<1) len = -1; 1127 else { 1128 *bp++ = ' '; 1129 len--; 1130 } 1131 *bpp = bp; 1132 *lp = len; 1133 } 1134 EXPORT_SYMBOL_GPL(qword_addhex); 1135 1136 static void warn_no_listener(struct cache_detail *detail) 1137 { 1138 if (detail->last_warn != detail->last_close) { 1139 detail->last_warn = detail->last_close; 1140 if (detail->warn_no_listener) 1141 detail->warn_no_listener(detail, detail->last_close != 0); 1142 } 1143 } 1144 1145 static bool cache_listeners_exist(struct cache_detail *detail) 1146 { 1147 if (atomic_read(&detail->readers)) 1148 return true; 1149 if (detail->last_close == 0) 1150 /* This cache was never opened */ 1151 return false; 1152 if (detail->last_close < seconds_since_boot() - 30) 1153 /* 1154 * We allow for the possibility that someone might 1155 * restart a userspace daemon without restarting the 1156 * server; but after 30 seconds, we give up. 1157 */ 1158 return false; 1159 return true; 1160 } 1161 1162 /* 1163 * register an upcall request to user-space and queue it up for read() by the 1164 * upcall daemon. 1165 * 1166 * Each request is at most one page long. 1167 */ 1168 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1169 { 1170 1171 char *buf; 1172 struct cache_request *crq; 1173 int ret = 0; 1174 1175 if (!detail->cache_request) 1176 return -EINVAL; 1177 1178 if (!cache_listeners_exist(detail)) { 1179 warn_no_listener(detail); 1180 return -EINVAL; 1181 } 1182 if (test_bit(CACHE_CLEANED, &h->flags)) 1183 /* Too late to make an upcall */ 1184 return -EAGAIN; 1185 1186 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1187 if (!buf) 1188 return -EAGAIN; 1189 1190 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1191 if (!crq) { 1192 kfree(buf); 1193 return -EAGAIN; 1194 } 1195 1196 crq->q.reader = 0; 1197 crq->buf = buf; 1198 crq->len = 0; 1199 crq->readers = 0; 1200 spin_lock(&queue_lock); 1201 if (test_bit(CACHE_PENDING, &h->flags)) { 1202 crq->item = cache_get(h); 1203 list_add_tail(&crq->q.list, &detail->queue); 1204 } else 1205 /* Lost a race, no longer PENDING, so don't enqueue */ 1206 ret = -EAGAIN; 1207 spin_unlock(&queue_lock); 1208 wake_up(&queue_wait); 1209 if (ret == -EAGAIN) { 1210 kfree(buf); 1211 kfree(crq); 1212 } 1213 return ret; 1214 } 1215 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1216 1217 /* 1218 * parse a message from user-space and pass it 1219 * to an appropriate cache 1220 * Messages are, like requests, separated into fields by 1221 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1222 * 1223 * Message is 1224 * reply cachename expiry key ... content.... 1225 * 1226 * key and content are both parsed by cache 1227 */ 1228 1229 int qword_get(char **bpp, char *dest, int bufsize) 1230 { 1231 /* return bytes copied, or -1 on error */ 1232 char *bp = *bpp; 1233 int len = 0; 1234 1235 while (*bp == ' ') bp++; 1236 1237 if (bp[0] == '\\' && bp[1] == 'x') { 1238 /* HEX STRING */ 1239 bp += 2; 1240 while (len < bufsize - 1) { 1241 int h, l; 1242 1243 h = hex_to_bin(bp[0]); 1244 if (h < 0) 1245 break; 1246 1247 l = hex_to_bin(bp[1]); 1248 if (l < 0) 1249 break; 1250 1251 *dest++ = (h << 4) | l; 1252 bp += 2; 1253 len++; 1254 } 1255 } else { 1256 /* text with \nnn octal quoting */ 1257 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1258 if (*bp == '\\' && 1259 isodigit(bp[1]) && (bp[1] <= '3') && 1260 isodigit(bp[2]) && 1261 isodigit(bp[3])) { 1262 int byte = (*++bp -'0'); 1263 bp++; 1264 byte = (byte << 3) | (*bp++ - '0'); 1265 byte = (byte << 3) | (*bp++ - '0'); 1266 *dest++ = byte; 1267 len++; 1268 } else { 1269 *dest++ = *bp++; 1270 len++; 1271 } 1272 } 1273 } 1274 1275 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1276 return -1; 1277 while (*bp == ' ') bp++; 1278 *bpp = bp; 1279 *dest = '\0'; 1280 return len; 1281 } 1282 EXPORT_SYMBOL_GPL(qword_get); 1283 1284 1285 /* 1286 * support /proc/net/rpc/$CACHENAME/content 1287 * as a seqfile. 1288 * We call ->cache_show passing NULL for the item to 1289 * get a header, then pass each real item in the cache 1290 */ 1291 1292 void *cache_seq_start(struct seq_file *m, loff_t *pos) 1293 __acquires(cd->hash_lock) 1294 { 1295 loff_t n = *pos; 1296 unsigned int hash, entry; 1297 struct cache_head *ch; 1298 struct cache_detail *cd = m->private; 1299 1300 read_lock(&cd->hash_lock); 1301 if (!n--) 1302 return SEQ_START_TOKEN; 1303 hash = n >> 32; 1304 entry = n & ((1LL<<32) - 1); 1305 1306 hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list) 1307 if (!entry--) 1308 return ch; 1309 n &= ~((1LL<<32) - 1); 1310 do { 1311 hash++; 1312 n += 1LL<<32; 1313 } while(hash < cd->hash_size && 1314 hlist_empty(&cd->hash_table[hash])); 1315 if (hash >= cd->hash_size) 1316 return NULL; 1317 *pos = n+1; 1318 return hlist_entry_safe(cd->hash_table[hash].first, 1319 struct cache_head, cache_list); 1320 } 1321 EXPORT_SYMBOL_GPL(cache_seq_start); 1322 1323 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1324 { 1325 struct cache_head *ch = p; 1326 int hash = (*pos >> 32); 1327 struct cache_detail *cd = m->private; 1328 1329 if (p == SEQ_START_TOKEN) 1330 hash = 0; 1331 else if (ch->cache_list.next == NULL) { 1332 hash++; 1333 *pos += 1LL<<32; 1334 } else { 1335 ++*pos; 1336 return hlist_entry_safe(ch->cache_list.next, 1337 struct cache_head, cache_list); 1338 } 1339 *pos &= ~((1LL<<32) - 1); 1340 while (hash < cd->hash_size && 1341 hlist_empty(&cd->hash_table[hash])) { 1342 hash++; 1343 *pos += 1LL<<32; 1344 } 1345 if (hash >= cd->hash_size) 1346 return NULL; 1347 ++*pos; 1348 return hlist_entry_safe(cd->hash_table[hash].first, 1349 struct cache_head, cache_list); 1350 } 1351 EXPORT_SYMBOL_GPL(cache_seq_next); 1352 1353 void cache_seq_stop(struct seq_file *m, void *p) 1354 __releases(cd->hash_lock) 1355 { 1356 struct cache_detail *cd = m->private; 1357 read_unlock(&cd->hash_lock); 1358 } 1359 EXPORT_SYMBOL_GPL(cache_seq_stop); 1360 1361 static int c_show(struct seq_file *m, void *p) 1362 { 1363 struct cache_head *cp = p; 1364 struct cache_detail *cd = m->private; 1365 1366 if (p == SEQ_START_TOKEN) 1367 return cd->cache_show(m, cd, NULL); 1368 1369 ifdebug(CACHE) 1370 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1371 convert_to_wallclock(cp->expiry_time), 1372 kref_read(&cp->ref), cp->flags); 1373 cache_get(cp); 1374 if (cache_check(cd, cp, NULL)) 1375 /* cache_check does a cache_put on failure */ 1376 seq_printf(m, "# "); 1377 else { 1378 if (cache_is_expired(cd, cp)) 1379 seq_printf(m, "# "); 1380 cache_put(cp, cd); 1381 } 1382 1383 return cd->cache_show(m, cd, cp); 1384 } 1385 1386 static const struct seq_operations cache_content_op = { 1387 .start = cache_seq_start, 1388 .next = cache_seq_next, 1389 .stop = cache_seq_stop, 1390 .show = c_show, 1391 }; 1392 1393 static int content_open(struct inode *inode, struct file *file, 1394 struct cache_detail *cd) 1395 { 1396 struct seq_file *seq; 1397 int err; 1398 1399 if (!cd || !try_module_get(cd->owner)) 1400 return -EACCES; 1401 1402 err = seq_open(file, &cache_content_op); 1403 if (err) { 1404 module_put(cd->owner); 1405 return err; 1406 } 1407 1408 seq = file->private_data; 1409 seq->private = cd; 1410 return 0; 1411 } 1412 1413 static int content_release(struct inode *inode, struct file *file, 1414 struct cache_detail *cd) 1415 { 1416 int ret = seq_release(inode, file); 1417 module_put(cd->owner); 1418 return ret; 1419 } 1420 1421 static int open_flush(struct inode *inode, struct file *file, 1422 struct cache_detail *cd) 1423 { 1424 if (!cd || !try_module_get(cd->owner)) 1425 return -EACCES; 1426 return nonseekable_open(inode, file); 1427 } 1428 1429 static int release_flush(struct inode *inode, struct file *file, 1430 struct cache_detail *cd) 1431 { 1432 module_put(cd->owner); 1433 return 0; 1434 } 1435 1436 static ssize_t read_flush(struct file *file, char __user *buf, 1437 size_t count, loff_t *ppos, 1438 struct cache_detail *cd) 1439 { 1440 char tbuf[22]; 1441 size_t len; 1442 1443 len = snprintf(tbuf, sizeof(tbuf), "%lu\n", 1444 convert_to_wallclock(cd->flush_time)); 1445 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1446 } 1447 1448 static ssize_t write_flush(struct file *file, const char __user *buf, 1449 size_t count, loff_t *ppos, 1450 struct cache_detail *cd) 1451 { 1452 char tbuf[20]; 1453 char *bp, *ep; 1454 time_t then, now; 1455 1456 if (*ppos || count > sizeof(tbuf)-1) 1457 return -EINVAL; 1458 if (copy_from_user(tbuf, buf, count)) 1459 return -EFAULT; 1460 tbuf[count] = 0; 1461 simple_strtoul(tbuf, &ep, 0); 1462 if (*ep && *ep != '\n') 1463 return -EINVAL; 1464 1465 bp = tbuf; 1466 then = get_expiry(&bp); 1467 now = seconds_since_boot(); 1468 cd->nextcheck = now; 1469 /* Can only set flush_time to 1 second beyond "now", or 1470 * possibly 1 second beyond flushtime. This is because 1471 * flush_time never goes backwards so it mustn't get too far 1472 * ahead of time. 1473 */ 1474 if (then >= now) { 1475 /* Want to flush everything, so behave like cache_purge() */ 1476 if (cd->flush_time >= now) 1477 now = cd->flush_time + 1; 1478 then = now; 1479 } 1480 1481 cd->flush_time = then; 1482 cache_flush(); 1483 1484 *ppos += count; 1485 return count; 1486 } 1487 1488 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1489 size_t count, loff_t *ppos) 1490 { 1491 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1492 1493 return cache_read(filp, buf, count, ppos, cd); 1494 } 1495 1496 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1497 size_t count, loff_t *ppos) 1498 { 1499 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1500 1501 return cache_write(filp, buf, count, ppos, cd); 1502 } 1503 1504 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1505 { 1506 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1507 1508 return cache_poll(filp, wait, cd); 1509 } 1510 1511 static long cache_ioctl_procfs(struct file *filp, 1512 unsigned int cmd, unsigned long arg) 1513 { 1514 struct inode *inode = file_inode(filp); 1515 struct cache_detail *cd = PDE_DATA(inode); 1516 1517 return cache_ioctl(inode, filp, cmd, arg, cd); 1518 } 1519 1520 static int cache_open_procfs(struct inode *inode, struct file *filp) 1521 { 1522 struct cache_detail *cd = PDE_DATA(inode); 1523 1524 return cache_open(inode, filp, cd); 1525 } 1526 1527 static int cache_release_procfs(struct inode *inode, struct file *filp) 1528 { 1529 struct cache_detail *cd = PDE_DATA(inode); 1530 1531 return cache_release(inode, filp, cd); 1532 } 1533 1534 static const struct file_operations cache_file_operations_procfs = { 1535 .owner = THIS_MODULE, 1536 .llseek = no_llseek, 1537 .read = cache_read_procfs, 1538 .write = cache_write_procfs, 1539 .poll = cache_poll_procfs, 1540 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1541 .open = cache_open_procfs, 1542 .release = cache_release_procfs, 1543 }; 1544 1545 static int content_open_procfs(struct inode *inode, struct file *filp) 1546 { 1547 struct cache_detail *cd = PDE_DATA(inode); 1548 1549 return content_open(inode, filp, cd); 1550 } 1551 1552 static int content_release_procfs(struct inode *inode, struct file *filp) 1553 { 1554 struct cache_detail *cd = PDE_DATA(inode); 1555 1556 return content_release(inode, filp, cd); 1557 } 1558 1559 static const struct file_operations content_file_operations_procfs = { 1560 .open = content_open_procfs, 1561 .read = seq_read, 1562 .llseek = seq_lseek, 1563 .release = content_release_procfs, 1564 }; 1565 1566 static int open_flush_procfs(struct inode *inode, struct file *filp) 1567 { 1568 struct cache_detail *cd = PDE_DATA(inode); 1569 1570 return open_flush(inode, filp, cd); 1571 } 1572 1573 static int release_flush_procfs(struct inode *inode, struct file *filp) 1574 { 1575 struct cache_detail *cd = PDE_DATA(inode); 1576 1577 return release_flush(inode, filp, cd); 1578 } 1579 1580 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1581 size_t count, loff_t *ppos) 1582 { 1583 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1584 1585 return read_flush(filp, buf, count, ppos, cd); 1586 } 1587 1588 static ssize_t write_flush_procfs(struct file *filp, 1589 const char __user *buf, 1590 size_t count, loff_t *ppos) 1591 { 1592 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1593 1594 return write_flush(filp, buf, count, ppos, cd); 1595 } 1596 1597 static const struct file_operations cache_flush_operations_procfs = { 1598 .open = open_flush_procfs, 1599 .read = read_flush_procfs, 1600 .write = write_flush_procfs, 1601 .release = release_flush_procfs, 1602 .llseek = no_llseek, 1603 }; 1604 1605 static void remove_cache_proc_entries(struct cache_detail *cd) 1606 { 1607 if (cd->procfs) { 1608 proc_remove(cd->procfs); 1609 cd->procfs = NULL; 1610 } 1611 } 1612 1613 #ifdef CONFIG_PROC_FS 1614 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1615 { 1616 struct proc_dir_entry *p; 1617 struct sunrpc_net *sn; 1618 1619 sn = net_generic(net, sunrpc_net_id); 1620 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1621 if (cd->procfs == NULL) 1622 goto out_nomem; 1623 1624 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1625 cd->procfs, &cache_flush_operations_procfs, cd); 1626 if (p == NULL) 1627 goto out_nomem; 1628 1629 if (cd->cache_request || cd->cache_parse) { 1630 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1631 cd->procfs, &cache_file_operations_procfs, cd); 1632 if (p == NULL) 1633 goto out_nomem; 1634 } 1635 if (cd->cache_show) { 1636 p = proc_create_data("content", S_IFREG|S_IRUSR, 1637 cd->procfs, &content_file_operations_procfs, cd); 1638 if (p == NULL) 1639 goto out_nomem; 1640 } 1641 return 0; 1642 out_nomem: 1643 remove_cache_proc_entries(cd); 1644 return -ENOMEM; 1645 } 1646 #else /* CONFIG_PROC_FS */ 1647 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1648 { 1649 return 0; 1650 } 1651 #endif 1652 1653 void __init cache_initialize(void) 1654 { 1655 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1656 } 1657 1658 int cache_register_net(struct cache_detail *cd, struct net *net) 1659 { 1660 int ret; 1661 1662 sunrpc_init_cache_detail(cd); 1663 ret = create_cache_proc_entries(cd, net); 1664 if (ret) 1665 sunrpc_destroy_cache_detail(cd); 1666 return ret; 1667 } 1668 EXPORT_SYMBOL_GPL(cache_register_net); 1669 1670 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1671 { 1672 remove_cache_proc_entries(cd); 1673 sunrpc_destroy_cache_detail(cd); 1674 } 1675 EXPORT_SYMBOL_GPL(cache_unregister_net); 1676 1677 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1678 { 1679 struct cache_detail *cd; 1680 int i; 1681 1682 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1683 if (cd == NULL) 1684 return ERR_PTR(-ENOMEM); 1685 1686 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head), 1687 GFP_KERNEL); 1688 if (cd->hash_table == NULL) { 1689 kfree(cd); 1690 return ERR_PTR(-ENOMEM); 1691 } 1692 1693 for (i = 0; i < cd->hash_size; i++) 1694 INIT_HLIST_HEAD(&cd->hash_table[i]); 1695 cd->net = net; 1696 return cd; 1697 } 1698 EXPORT_SYMBOL_GPL(cache_create_net); 1699 1700 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1701 { 1702 kfree(cd->hash_table); 1703 kfree(cd); 1704 } 1705 EXPORT_SYMBOL_GPL(cache_destroy_net); 1706 1707 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1708 size_t count, loff_t *ppos) 1709 { 1710 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1711 1712 return cache_read(filp, buf, count, ppos, cd); 1713 } 1714 1715 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1716 size_t count, loff_t *ppos) 1717 { 1718 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1719 1720 return cache_write(filp, buf, count, ppos, cd); 1721 } 1722 1723 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1724 { 1725 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1726 1727 return cache_poll(filp, wait, cd); 1728 } 1729 1730 static long cache_ioctl_pipefs(struct file *filp, 1731 unsigned int cmd, unsigned long arg) 1732 { 1733 struct inode *inode = file_inode(filp); 1734 struct cache_detail *cd = RPC_I(inode)->private; 1735 1736 return cache_ioctl(inode, filp, cmd, arg, cd); 1737 } 1738 1739 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1740 { 1741 struct cache_detail *cd = RPC_I(inode)->private; 1742 1743 return cache_open(inode, filp, cd); 1744 } 1745 1746 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1747 { 1748 struct cache_detail *cd = RPC_I(inode)->private; 1749 1750 return cache_release(inode, filp, cd); 1751 } 1752 1753 const struct file_operations cache_file_operations_pipefs = { 1754 .owner = THIS_MODULE, 1755 .llseek = no_llseek, 1756 .read = cache_read_pipefs, 1757 .write = cache_write_pipefs, 1758 .poll = cache_poll_pipefs, 1759 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1760 .open = cache_open_pipefs, 1761 .release = cache_release_pipefs, 1762 }; 1763 1764 static int content_open_pipefs(struct inode *inode, struct file *filp) 1765 { 1766 struct cache_detail *cd = RPC_I(inode)->private; 1767 1768 return content_open(inode, filp, cd); 1769 } 1770 1771 static int content_release_pipefs(struct inode *inode, struct file *filp) 1772 { 1773 struct cache_detail *cd = RPC_I(inode)->private; 1774 1775 return content_release(inode, filp, cd); 1776 } 1777 1778 const struct file_operations content_file_operations_pipefs = { 1779 .open = content_open_pipefs, 1780 .read = seq_read, 1781 .llseek = seq_lseek, 1782 .release = content_release_pipefs, 1783 }; 1784 1785 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1786 { 1787 struct cache_detail *cd = RPC_I(inode)->private; 1788 1789 return open_flush(inode, filp, cd); 1790 } 1791 1792 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1793 { 1794 struct cache_detail *cd = RPC_I(inode)->private; 1795 1796 return release_flush(inode, filp, cd); 1797 } 1798 1799 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1800 size_t count, loff_t *ppos) 1801 { 1802 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1803 1804 return read_flush(filp, buf, count, ppos, cd); 1805 } 1806 1807 static ssize_t write_flush_pipefs(struct file *filp, 1808 const char __user *buf, 1809 size_t count, loff_t *ppos) 1810 { 1811 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1812 1813 return write_flush(filp, buf, count, ppos, cd); 1814 } 1815 1816 const struct file_operations cache_flush_operations_pipefs = { 1817 .open = open_flush_pipefs, 1818 .read = read_flush_pipefs, 1819 .write = write_flush_pipefs, 1820 .release = release_flush_pipefs, 1821 .llseek = no_llseek, 1822 }; 1823 1824 int sunrpc_cache_register_pipefs(struct dentry *parent, 1825 const char *name, umode_t umode, 1826 struct cache_detail *cd) 1827 { 1828 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1829 if (IS_ERR(dir)) 1830 return PTR_ERR(dir); 1831 cd->pipefs = dir; 1832 return 0; 1833 } 1834 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1835 1836 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1837 { 1838 if (cd->pipefs) { 1839 rpc_remove_cache_dir(cd->pipefs); 1840 cd->pipefs = NULL; 1841 } 1842 } 1843 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1844 1845 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1846 { 1847 write_lock(&cd->hash_lock); 1848 if (!hlist_unhashed(&h->cache_list)){ 1849 hlist_del_init(&h->cache_list); 1850 cd->entries--; 1851 write_unlock(&cd->hash_lock); 1852 cache_put(h, cd); 1853 } else 1854 write_unlock(&cd->hash_lock); 1855 } 1856 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1857