1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h, struct cache_detail *detail) 44 { 45 time64_t now = seconds_since_boot(); 46 INIT_HLIST_NODE(&h->cache_list); 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 if (now <= detail->flush_time) 51 /* ensure it isn't already expired */ 52 now = detail->flush_time + 1; 53 h->last_refresh = now; 54 } 55 56 static void cache_fresh_unlocked(struct cache_head *head, 57 struct cache_detail *detail); 58 59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 60 struct cache_head *key, 61 int hash) 62 { 63 struct hlist_head *head = &detail->hash_table[hash]; 64 struct cache_head *tmp; 65 66 rcu_read_lock(); 67 hlist_for_each_entry_rcu(tmp, head, cache_list) { 68 if (!detail->match(tmp, key)) 69 continue; 70 if (test_bit(CACHE_VALID, &tmp->flags) && 71 cache_is_expired(detail, tmp)) 72 continue; 73 tmp = cache_get_rcu(tmp); 74 rcu_read_unlock(); 75 return tmp; 76 } 77 rcu_read_unlock(); 78 return NULL; 79 } 80 81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 82 struct cache_detail *cd) 83 { 84 /* Must be called under cd->hash_lock */ 85 hlist_del_init_rcu(&ch->cache_list); 86 set_bit(CACHE_CLEANED, &ch->flags); 87 cd->entries --; 88 } 89 90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 91 struct cache_detail *cd) 92 { 93 cache_fresh_unlocked(ch, cd); 94 cache_put(ch, cd); 95 } 96 97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 98 struct cache_head *key, 99 int hash) 100 { 101 struct cache_head *new, *tmp, *freeme = NULL; 102 struct hlist_head *head = &detail->hash_table[hash]; 103 104 new = detail->alloc(); 105 if (!new) 106 return NULL; 107 /* must fully initialise 'new', else 108 * we might get lose if we need to 109 * cache_put it soon. 110 */ 111 cache_init(new, detail); 112 detail->init(new, key); 113 114 spin_lock(&detail->hash_lock); 115 116 /* check if entry appeared while we slept */ 117 hlist_for_each_entry_rcu(tmp, head, cache_list, 118 lockdep_is_held(&detail->hash_lock)) { 119 if (!detail->match(tmp, key)) 120 continue; 121 if (test_bit(CACHE_VALID, &tmp->flags) && 122 cache_is_expired(detail, tmp)) { 123 sunrpc_begin_cache_remove_entry(tmp, detail); 124 trace_cache_entry_expired(detail, tmp); 125 freeme = tmp; 126 break; 127 } 128 cache_get(tmp); 129 spin_unlock(&detail->hash_lock); 130 cache_put(new, detail); 131 return tmp; 132 } 133 134 hlist_add_head_rcu(&new->cache_list, head); 135 detail->entries++; 136 cache_get(new); 137 spin_unlock(&detail->hash_lock); 138 139 if (freeme) 140 sunrpc_end_cache_remove_entry(freeme, detail); 141 return new; 142 } 143 144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 145 struct cache_head *key, int hash) 146 { 147 struct cache_head *ret; 148 149 ret = sunrpc_cache_find_rcu(detail, key, hash); 150 if (ret) 151 return ret; 152 /* Didn't find anything, insert an empty entry */ 153 return sunrpc_cache_add_entry(detail, key, hash); 154 } 155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 156 157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 158 159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 160 struct cache_detail *detail) 161 { 162 time64_t now = seconds_since_boot(); 163 if (now <= detail->flush_time) 164 /* ensure it isn't immediately treated as expired */ 165 now = detail->flush_time + 1; 166 head->expiry_time = expiry; 167 head->last_refresh = now; 168 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 169 set_bit(CACHE_VALID, &head->flags); 170 } 171 172 static void cache_fresh_unlocked(struct cache_head *head, 173 struct cache_detail *detail) 174 { 175 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 176 cache_revisit_request(head); 177 cache_dequeue(detail, head); 178 } 179 } 180 181 static void cache_make_negative(struct cache_detail *detail, 182 struct cache_head *h) 183 { 184 set_bit(CACHE_NEGATIVE, &h->flags); 185 trace_cache_entry_make_negative(detail, h); 186 } 187 188 static void cache_entry_update(struct cache_detail *detail, 189 struct cache_head *h, 190 struct cache_head *new) 191 { 192 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 193 detail->update(h, new); 194 trace_cache_entry_update(detail, h); 195 } else { 196 cache_make_negative(detail, h); 197 } 198 } 199 200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 201 struct cache_head *new, struct cache_head *old, int hash) 202 { 203 /* The 'old' entry is to be replaced by 'new'. 204 * If 'old' is not VALID, we update it directly, 205 * otherwise we need to replace it 206 */ 207 struct cache_head *tmp; 208 209 if (!test_bit(CACHE_VALID, &old->flags)) { 210 spin_lock(&detail->hash_lock); 211 if (!test_bit(CACHE_VALID, &old->flags)) { 212 cache_entry_update(detail, old, new); 213 cache_fresh_locked(old, new->expiry_time, detail); 214 spin_unlock(&detail->hash_lock); 215 cache_fresh_unlocked(old, detail); 216 return old; 217 } 218 spin_unlock(&detail->hash_lock); 219 } 220 /* We need to insert a new entry */ 221 tmp = detail->alloc(); 222 if (!tmp) { 223 cache_put(old, detail); 224 return NULL; 225 } 226 cache_init(tmp, detail); 227 detail->init(tmp, old); 228 229 spin_lock(&detail->hash_lock); 230 cache_entry_update(detail, tmp, new); 231 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 232 detail->entries++; 233 cache_get(tmp); 234 cache_fresh_locked(tmp, new->expiry_time, detail); 235 cache_fresh_locked(old, 0, detail); 236 spin_unlock(&detail->hash_lock); 237 cache_fresh_unlocked(tmp, detail); 238 cache_fresh_unlocked(old, detail); 239 cache_put(old, detail); 240 return tmp; 241 } 242 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 243 244 static inline int cache_is_valid(struct cache_head *h) 245 { 246 if (!test_bit(CACHE_VALID, &h->flags)) 247 return -EAGAIN; 248 else { 249 /* entry is valid */ 250 if (test_bit(CACHE_NEGATIVE, &h->flags)) 251 return -ENOENT; 252 else { 253 /* 254 * In combination with write barrier in 255 * sunrpc_cache_update, ensures that anyone 256 * using the cache entry after this sees the 257 * updated contents: 258 */ 259 smp_rmb(); 260 return 0; 261 } 262 } 263 } 264 265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 266 { 267 int rv; 268 269 spin_lock(&detail->hash_lock); 270 rv = cache_is_valid(h); 271 if (rv == -EAGAIN) { 272 cache_make_negative(detail, h); 273 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 274 detail); 275 rv = -ENOENT; 276 } 277 spin_unlock(&detail->hash_lock); 278 cache_fresh_unlocked(h, detail); 279 return rv; 280 } 281 282 /* 283 * This is the generic cache management routine for all 284 * the authentication caches. 285 * It checks the currency of a cache item and will (later) 286 * initiate an upcall to fill it if needed. 287 * 288 * 289 * Returns 0 if the cache_head can be used, or cache_puts it and returns 290 * -EAGAIN if upcall is pending and request has been queued 291 * -ETIMEDOUT if upcall failed or request could not be queue or 292 * upcall completed but item is still invalid (implying that 293 * the cache item has been replaced with a newer one). 294 * -ENOENT if cache entry was negative 295 */ 296 int cache_check(struct cache_detail *detail, 297 struct cache_head *h, struct cache_req *rqstp) 298 { 299 int rv; 300 time64_t refresh_age, age; 301 302 /* First decide return status as best we can */ 303 rv = cache_is_valid(h); 304 305 /* now see if we want to start an upcall */ 306 refresh_age = (h->expiry_time - h->last_refresh); 307 age = seconds_since_boot() - h->last_refresh; 308 309 if (rqstp == NULL) { 310 if (rv == -EAGAIN) 311 rv = -ENOENT; 312 } else if (rv == -EAGAIN || 313 (h->expiry_time != 0 && age > refresh_age/2)) { 314 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 315 refresh_age, age); 316 switch (detail->cache_upcall(detail, h)) { 317 case -EINVAL: 318 rv = try_to_negate_entry(detail, h); 319 break; 320 case -EAGAIN: 321 cache_fresh_unlocked(h, detail); 322 break; 323 } 324 } 325 326 if (rv == -EAGAIN) { 327 if (!cache_defer_req(rqstp, h)) { 328 /* 329 * Request was not deferred; handle it as best 330 * we can ourselves: 331 */ 332 rv = cache_is_valid(h); 333 if (rv == -EAGAIN) 334 rv = -ETIMEDOUT; 335 } 336 } 337 if (rv) 338 cache_put(h, detail); 339 return rv; 340 } 341 EXPORT_SYMBOL_GPL(cache_check); 342 343 /* 344 * caches need to be periodically cleaned. 345 * For this we maintain a list of cache_detail and 346 * a current pointer into that list and into the table 347 * for that entry. 348 * 349 * Each time cache_clean is called it finds the next non-empty entry 350 * in the current table and walks the list in that entry 351 * looking for entries that can be removed. 352 * 353 * An entry gets removed if: 354 * - The expiry is before current time 355 * - The last_refresh time is before the flush_time for that cache 356 * 357 * later we might drop old entries with non-NEVER expiry if that table 358 * is getting 'full' for some definition of 'full' 359 * 360 * The question of "how often to scan a table" is an interesting one 361 * and is answered in part by the use of the "nextcheck" field in the 362 * cache_detail. 363 * When a scan of a table begins, the nextcheck field is set to a time 364 * that is well into the future. 365 * While scanning, if an expiry time is found that is earlier than the 366 * current nextcheck time, nextcheck is set to that expiry time. 367 * If the flush_time is ever set to a time earlier than the nextcheck 368 * time, the nextcheck time is then set to that flush_time. 369 * 370 * A table is then only scanned if the current time is at least 371 * the nextcheck time. 372 * 373 */ 374 375 static LIST_HEAD(cache_list); 376 static DEFINE_SPINLOCK(cache_list_lock); 377 static struct cache_detail *current_detail; 378 static int current_index; 379 380 static void do_cache_clean(struct work_struct *work); 381 static struct delayed_work cache_cleaner; 382 383 void sunrpc_init_cache_detail(struct cache_detail *cd) 384 { 385 spin_lock_init(&cd->hash_lock); 386 INIT_LIST_HEAD(&cd->queue); 387 spin_lock(&cache_list_lock); 388 cd->nextcheck = 0; 389 cd->entries = 0; 390 atomic_set(&cd->writers, 0); 391 cd->last_close = 0; 392 cd->last_warn = -1; 393 list_add(&cd->others, &cache_list); 394 spin_unlock(&cache_list_lock); 395 396 /* start the cleaning process */ 397 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 398 } 399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 400 401 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 402 { 403 cache_purge(cd); 404 spin_lock(&cache_list_lock); 405 spin_lock(&cd->hash_lock); 406 if (current_detail == cd) 407 current_detail = NULL; 408 list_del_init(&cd->others); 409 spin_unlock(&cd->hash_lock); 410 spin_unlock(&cache_list_lock); 411 if (list_empty(&cache_list)) { 412 /* module must be being unloaded so its safe to kill the worker */ 413 cancel_delayed_work_sync(&cache_cleaner); 414 } 415 } 416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 417 418 /* clean cache tries to find something to clean 419 * and cleans it. 420 * It returns 1 if it cleaned something, 421 * 0 if it didn't find anything this time 422 * -1 if it fell off the end of the list. 423 */ 424 static int cache_clean(void) 425 { 426 int rv = 0; 427 struct list_head *next; 428 429 spin_lock(&cache_list_lock); 430 431 /* find a suitable table if we don't already have one */ 432 while (current_detail == NULL || 433 current_index >= current_detail->hash_size) { 434 if (current_detail) 435 next = current_detail->others.next; 436 else 437 next = cache_list.next; 438 if (next == &cache_list) { 439 current_detail = NULL; 440 spin_unlock(&cache_list_lock); 441 return -1; 442 } 443 current_detail = list_entry(next, struct cache_detail, others); 444 if (current_detail->nextcheck > seconds_since_boot()) 445 current_index = current_detail->hash_size; 446 else { 447 current_index = 0; 448 current_detail->nextcheck = seconds_since_boot()+30*60; 449 } 450 } 451 452 /* find a non-empty bucket in the table */ 453 while (current_detail && 454 current_index < current_detail->hash_size && 455 hlist_empty(¤t_detail->hash_table[current_index])) 456 current_index++; 457 458 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 459 460 if (current_detail && current_index < current_detail->hash_size) { 461 struct cache_head *ch = NULL; 462 struct cache_detail *d; 463 struct hlist_head *head; 464 struct hlist_node *tmp; 465 466 spin_lock(¤t_detail->hash_lock); 467 468 /* Ok, now to clean this strand */ 469 470 head = ¤t_detail->hash_table[current_index]; 471 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 472 if (current_detail->nextcheck > ch->expiry_time) 473 current_detail->nextcheck = ch->expiry_time+1; 474 if (!cache_is_expired(current_detail, ch)) 475 continue; 476 477 sunrpc_begin_cache_remove_entry(ch, current_detail); 478 trace_cache_entry_expired(current_detail, ch); 479 rv = 1; 480 break; 481 } 482 483 spin_unlock(¤t_detail->hash_lock); 484 d = current_detail; 485 if (!ch) 486 current_index ++; 487 spin_unlock(&cache_list_lock); 488 if (ch) 489 sunrpc_end_cache_remove_entry(ch, d); 490 } else 491 spin_unlock(&cache_list_lock); 492 493 return rv; 494 } 495 496 /* 497 * We want to regularly clean the cache, so we need to schedule some work ... 498 */ 499 static void do_cache_clean(struct work_struct *work) 500 { 501 int delay = 5; 502 if (cache_clean() == -1) 503 delay = round_jiffies_relative(30*HZ); 504 505 if (list_empty(&cache_list)) 506 delay = 0; 507 508 if (delay) 509 queue_delayed_work(system_power_efficient_wq, 510 &cache_cleaner, delay); 511 } 512 513 514 /* 515 * Clean all caches promptly. This just calls cache_clean 516 * repeatedly until we are sure that every cache has had a chance to 517 * be fully cleaned 518 */ 519 void cache_flush(void) 520 { 521 while (cache_clean() != -1) 522 cond_resched(); 523 while (cache_clean() != -1) 524 cond_resched(); 525 } 526 EXPORT_SYMBOL_GPL(cache_flush); 527 528 void cache_purge(struct cache_detail *detail) 529 { 530 struct cache_head *ch = NULL; 531 struct hlist_head *head = NULL; 532 struct hlist_node *tmp = NULL; 533 int i = 0; 534 535 spin_lock(&detail->hash_lock); 536 if (!detail->entries) { 537 spin_unlock(&detail->hash_lock); 538 return; 539 } 540 541 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 542 for (i = 0; i < detail->hash_size; i++) { 543 head = &detail->hash_table[i]; 544 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 545 sunrpc_begin_cache_remove_entry(ch, detail); 546 spin_unlock(&detail->hash_lock); 547 sunrpc_end_cache_remove_entry(ch, detail); 548 spin_lock(&detail->hash_lock); 549 } 550 } 551 spin_unlock(&detail->hash_lock); 552 } 553 EXPORT_SYMBOL_GPL(cache_purge); 554 555 556 /* 557 * Deferral and Revisiting of Requests. 558 * 559 * If a cache lookup finds a pending entry, we 560 * need to defer the request and revisit it later. 561 * All deferred requests are stored in a hash table, 562 * indexed by "struct cache_head *". 563 * As it may be wasteful to store a whole request 564 * structure, we allow the request to provide a 565 * deferred form, which must contain a 566 * 'struct cache_deferred_req' 567 * This cache_deferred_req contains a method to allow 568 * it to be revisited when cache info is available 569 */ 570 571 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 572 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 573 574 #define DFR_MAX 300 /* ??? */ 575 576 static DEFINE_SPINLOCK(cache_defer_lock); 577 static LIST_HEAD(cache_defer_list); 578 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 579 static int cache_defer_cnt; 580 581 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 582 { 583 hlist_del_init(&dreq->hash); 584 if (!list_empty(&dreq->recent)) { 585 list_del_init(&dreq->recent); 586 cache_defer_cnt--; 587 } 588 } 589 590 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 591 { 592 int hash = DFR_HASH(item); 593 594 INIT_LIST_HEAD(&dreq->recent); 595 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 596 } 597 598 static void setup_deferral(struct cache_deferred_req *dreq, 599 struct cache_head *item, 600 int count_me) 601 { 602 603 dreq->item = item; 604 605 spin_lock(&cache_defer_lock); 606 607 __hash_deferred_req(dreq, item); 608 609 if (count_me) { 610 cache_defer_cnt++; 611 list_add(&dreq->recent, &cache_defer_list); 612 } 613 614 spin_unlock(&cache_defer_lock); 615 616 } 617 618 struct thread_deferred_req { 619 struct cache_deferred_req handle; 620 struct completion completion; 621 }; 622 623 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 624 { 625 struct thread_deferred_req *dr = 626 container_of(dreq, struct thread_deferred_req, handle); 627 complete(&dr->completion); 628 } 629 630 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 631 { 632 struct thread_deferred_req sleeper; 633 struct cache_deferred_req *dreq = &sleeper.handle; 634 635 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 636 dreq->revisit = cache_restart_thread; 637 638 setup_deferral(dreq, item, 0); 639 640 if (!test_bit(CACHE_PENDING, &item->flags) || 641 wait_for_completion_interruptible_timeout( 642 &sleeper.completion, req->thread_wait) <= 0) { 643 /* The completion wasn't completed, so we need 644 * to clean up 645 */ 646 spin_lock(&cache_defer_lock); 647 if (!hlist_unhashed(&sleeper.handle.hash)) { 648 __unhash_deferred_req(&sleeper.handle); 649 spin_unlock(&cache_defer_lock); 650 } else { 651 /* cache_revisit_request already removed 652 * this from the hash table, but hasn't 653 * called ->revisit yet. It will very soon 654 * and we need to wait for it. 655 */ 656 spin_unlock(&cache_defer_lock); 657 wait_for_completion(&sleeper.completion); 658 } 659 } 660 } 661 662 static void cache_limit_defers(void) 663 { 664 /* Make sure we haven't exceed the limit of allowed deferred 665 * requests. 666 */ 667 struct cache_deferred_req *discard = NULL; 668 669 if (cache_defer_cnt <= DFR_MAX) 670 return; 671 672 spin_lock(&cache_defer_lock); 673 674 /* Consider removing either the first or the last */ 675 if (cache_defer_cnt > DFR_MAX) { 676 if (prandom_u32() & 1) 677 discard = list_entry(cache_defer_list.next, 678 struct cache_deferred_req, recent); 679 else 680 discard = list_entry(cache_defer_list.prev, 681 struct cache_deferred_req, recent); 682 __unhash_deferred_req(discard); 683 } 684 spin_unlock(&cache_defer_lock); 685 if (discard) 686 discard->revisit(discard, 1); 687 } 688 689 /* Return true if and only if a deferred request is queued. */ 690 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 691 { 692 struct cache_deferred_req *dreq; 693 694 if (req->thread_wait) { 695 cache_wait_req(req, item); 696 if (!test_bit(CACHE_PENDING, &item->flags)) 697 return false; 698 } 699 dreq = req->defer(req); 700 if (dreq == NULL) 701 return false; 702 setup_deferral(dreq, item, 1); 703 if (!test_bit(CACHE_PENDING, &item->flags)) 704 /* Bit could have been cleared before we managed to 705 * set up the deferral, so need to revisit just in case 706 */ 707 cache_revisit_request(item); 708 709 cache_limit_defers(); 710 return true; 711 } 712 713 static void cache_revisit_request(struct cache_head *item) 714 { 715 struct cache_deferred_req *dreq; 716 struct list_head pending; 717 struct hlist_node *tmp; 718 int hash = DFR_HASH(item); 719 720 INIT_LIST_HEAD(&pending); 721 spin_lock(&cache_defer_lock); 722 723 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 724 if (dreq->item == item) { 725 __unhash_deferred_req(dreq); 726 list_add(&dreq->recent, &pending); 727 } 728 729 spin_unlock(&cache_defer_lock); 730 731 while (!list_empty(&pending)) { 732 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 733 list_del_init(&dreq->recent); 734 dreq->revisit(dreq, 0); 735 } 736 } 737 738 void cache_clean_deferred(void *owner) 739 { 740 struct cache_deferred_req *dreq, *tmp; 741 struct list_head pending; 742 743 744 INIT_LIST_HEAD(&pending); 745 spin_lock(&cache_defer_lock); 746 747 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 748 if (dreq->owner == owner) { 749 __unhash_deferred_req(dreq); 750 list_add(&dreq->recent, &pending); 751 } 752 } 753 spin_unlock(&cache_defer_lock); 754 755 while (!list_empty(&pending)) { 756 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 757 list_del_init(&dreq->recent); 758 dreq->revisit(dreq, 1); 759 } 760 } 761 762 /* 763 * communicate with user-space 764 * 765 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 766 * On read, you get a full request, or block. 767 * On write, an update request is processed. 768 * Poll works if anything to read, and always allows write. 769 * 770 * Implemented by linked list of requests. Each open file has 771 * a ->private that also exists in this list. New requests are added 772 * to the end and may wakeup and preceding readers. 773 * New readers are added to the head. If, on read, an item is found with 774 * CACHE_UPCALLING clear, we free it from the list. 775 * 776 */ 777 778 static DEFINE_SPINLOCK(queue_lock); 779 static DEFINE_MUTEX(queue_io_mutex); 780 781 struct cache_queue { 782 struct list_head list; 783 int reader; /* if 0, then request */ 784 }; 785 struct cache_request { 786 struct cache_queue q; 787 struct cache_head *item; 788 char * buf; 789 int len; 790 int readers; 791 }; 792 struct cache_reader { 793 struct cache_queue q; 794 int offset; /* if non-0, we have a refcnt on next request */ 795 }; 796 797 static int cache_request(struct cache_detail *detail, 798 struct cache_request *crq) 799 { 800 char *bp = crq->buf; 801 int len = PAGE_SIZE; 802 803 detail->cache_request(detail, crq->item, &bp, &len); 804 if (len < 0) 805 return -EAGAIN; 806 return PAGE_SIZE - len; 807 } 808 809 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 810 loff_t *ppos, struct cache_detail *cd) 811 { 812 struct cache_reader *rp = filp->private_data; 813 struct cache_request *rq; 814 struct inode *inode = file_inode(filp); 815 int err; 816 817 if (count == 0) 818 return 0; 819 820 inode_lock(inode); /* protect against multiple concurrent 821 * readers on this file */ 822 again: 823 spin_lock(&queue_lock); 824 /* need to find next request */ 825 while (rp->q.list.next != &cd->queue && 826 list_entry(rp->q.list.next, struct cache_queue, list) 827 ->reader) { 828 struct list_head *next = rp->q.list.next; 829 list_move(&rp->q.list, next); 830 } 831 if (rp->q.list.next == &cd->queue) { 832 spin_unlock(&queue_lock); 833 inode_unlock(inode); 834 WARN_ON_ONCE(rp->offset); 835 return 0; 836 } 837 rq = container_of(rp->q.list.next, struct cache_request, q.list); 838 WARN_ON_ONCE(rq->q.reader); 839 if (rp->offset == 0) 840 rq->readers++; 841 spin_unlock(&queue_lock); 842 843 if (rq->len == 0) { 844 err = cache_request(cd, rq); 845 if (err < 0) 846 goto out; 847 rq->len = err; 848 } 849 850 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 851 err = -EAGAIN; 852 spin_lock(&queue_lock); 853 list_move(&rp->q.list, &rq->q.list); 854 spin_unlock(&queue_lock); 855 } else { 856 if (rp->offset + count > rq->len) 857 count = rq->len - rp->offset; 858 err = -EFAULT; 859 if (copy_to_user(buf, rq->buf + rp->offset, count)) 860 goto out; 861 rp->offset += count; 862 if (rp->offset >= rq->len) { 863 rp->offset = 0; 864 spin_lock(&queue_lock); 865 list_move(&rp->q.list, &rq->q.list); 866 spin_unlock(&queue_lock); 867 } 868 err = 0; 869 } 870 out: 871 if (rp->offset == 0) { 872 /* need to release rq */ 873 spin_lock(&queue_lock); 874 rq->readers--; 875 if (rq->readers == 0 && 876 !test_bit(CACHE_PENDING, &rq->item->flags)) { 877 list_del(&rq->q.list); 878 spin_unlock(&queue_lock); 879 cache_put(rq->item, cd); 880 kfree(rq->buf); 881 kfree(rq); 882 } else 883 spin_unlock(&queue_lock); 884 } 885 if (err == -EAGAIN) 886 goto again; 887 inode_unlock(inode); 888 return err ? err : count; 889 } 890 891 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 892 size_t count, struct cache_detail *cd) 893 { 894 ssize_t ret; 895 896 if (count == 0) 897 return -EINVAL; 898 if (copy_from_user(kaddr, buf, count)) 899 return -EFAULT; 900 kaddr[count] = '\0'; 901 ret = cd->cache_parse(cd, kaddr, count); 902 if (!ret) 903 ret = count; 904 return ret; 905 } 906 907 static ssize_t cache_slow_downcall(const char __user *buf, 908 size_t count, struct cache_detail *cd) 909 { 910 static char write_buf[8192]; /* protected by queue_io_mutex */ 911 ssize_t ret = -EINVAL; 912 913 if (count >= sizeof(write_buf)) 914 goto out; 915 mutex_lock(&queue_io_mutex); 916 ret = cache_do_downcall(write_buf, buf, count, cd); 917 mutex_unlock(&queue_io_mutex); 918 out: 919 return ret; 920 } 921 922 static ssize_t cache_downcall(struct address_space *mapping, 923 const char __user *buf, 924 size_t count, struct cache_detail *cd) 925 { 926 struct page *page; 927 char *kaddr; 928 ssize_t ret = -ENOMEM; 929 930 if (count >= PAGE_SIZE) 931 goto out_slow; 932 933 page = find_or_create_page(mapping, 0, GFP_KERNEL); 934 if (!page) 935 goto out_slow; 936 937 kaddr = kmap(page); 938 ret = cache_do_downcall(kaddr, buf, count, cd); 939 kunmap(page); 940 unlock_page(page); 941 put_page(page); 942 return ret; 943 out_slow: 944 return cache_slow_downcall(buf, count, cd); 945 } 946 947 static ssize_t cache_write(struct file *filp, const char __user *buf, 948 size_t count, loff_t *ppos, 949 struct cache_detail *cd) 950 { 951 struct address_space *mapping = filp->f_mapping; 952 struct inode *inode = file_inode(filp); 953 ssize_t ret = -EINVAL; 954 955 if (!cd->cache_parse) 956 goto out; 957 958 inode_lock(inode); 959 ret = cache_downcall(mapping, buf, count, cd); 960 inode_unlock(inode); 961 out: 962 return ret; 963 } 964 965 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 966 967 static __poll_t cache_poll(struct file *filp, poll_table *wait, 968 struct cache_detail *cd) 969 { 970 __poll_t mask; 971 struct cache_reader *rp = filp->private_data; 972 struct cache_queue *cq; 973 974 poll_wait(filp, &queue_wait, wait); 975 976 /* alway allow write */ 977 mask = EPOLLOUT | EPOLLWRNORM; 978 979 if (!rp) 980 return mask; 981 982 spin_lock(&queue_lock); 983 984 for (cq= &rp->q; &cq->list != &cd->queue; 985 cq = list_entry(cq->list.next, struct cache_queue, list)) 986 if (!cq->reader) { 987 mask |= EPOLLIN | EPOLLRDNORM; 988 break; 989 } 990 spin_unlock(&queue_lock); 991 return mask; 992 } 993 994 static int cache_ioctl(struct inode *ino, struct file *filp, 995 unsigned int cmd, unsigned long arg, 996 struct cache_detail *cd) 997 { 998 int len = 0; 999 struct cache_reader *rp = filp->private_data; 1000 struct cache_queue *cq; 1001 1002 if (cmd != FIONREAD || !rp) 1003 return -EINVAL; 1004 1005 spin_lock(&queue_lock); 1006 1007 /* only find the length remaining in current request, 1008 * or the length of the next request 1009 */ 1010 for (cq= &rp->q; &cq->list != &cd->queue; 1011 cq = list_entry(cq->list.next, struct cache_queue, list)) 1012 if (!cq->reader) { 1013 struct cache_request *cr = 1014 container_of(cq, struct cache_request, q); 1015 len = cr->len - rp->offset; 1016 break; 1017 } 1018 spin_unlock(&queue_lock); 1019 1020 return put_user(len, (int __user *)arg); 1021 } 1022 1023 static int cache_open(struct inode *inode, struct file *filp, 1024 struct cache_detail *cd) 1025 { 1026 struct cache_reader *rp = NULL; 1027 1028 if (!cd || !try_module_get(cd->owner)) 1029 return -EACCES; 1030 nonseekable_open(inode, filp); 1031 if (filp->f_mode & FMODE_READ) { 1032 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1033 if (!rp) { 1034 module_put(cd->owner); 1035 return -ENOMEM; 1036 } 1037 rp->offset = 0; 1038 rp->q.reader = 1; 1039 1040 spin_lock(&queue_lock); 1041 list_add(&rp->q.list, &cd->queue); 1042 spin_unlock(&queue_lock); 1043 } 1044 if (filp->f_mode & FMODE_WRITE) 1045 atomic_inc(&cd->writers); 1046 filp->private_data = rp; 1047 return 0; 1048 } 1049 1050 static int cache_release(struct inode *inode, struct file *filp, 1051 struct cache_detail *cd) 1052 { 1053 struct cache_reader *rp = filp->private_data; 1054 1055 if (rp) { 1056 spin_lock(&queue_lock); 1057 if (rp->offset) { 1058 struct cache_queue *cq; 1059 for (cq= &rp->q; &cq->list != &cd->queue; 1060 cq = list_entry(cq->list.next, struct cache_queue, list)) 1061 if (!cq->reader) { 1062 container_of(cq, struct cache_request, q) 1063 ->readers--; 1064 break; 1065 } 1066 rp->offset = 0; 1067 } 1068 list_del(&rp->q.list); 1069 spin_unlock(&queue_lock); 1070 1071 filp->private_data = NULL; 1072 kfree(rp); 1073 1074 } 1075 if (filp->f_mode & FMODE_WRITE) { 1076 atomic_dec(&cd->writers); 1077 cd->last_close = seconds_since_boot(); 1078 } 1079 module_put(cd->owner); 1080 return 0; 1081 } 1082 1083 1084 1085 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1086 { 1087 struct cache_queue *cq, *tmp; 1088 struct cache_request *cr; 1089 struct list_head dequeued; 1090 1091 INIT_LIST_HEAD(&dequeued); 1092 spin_lock(&queue_lock); 1093 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1094 if (!cq->reader) { 1095 cr = container_of(cq, struct cache_request, q); 1096 if (cr->item != ch) 1097 continue; 1098 if (test_bit(CACHE_PENDING, &ch->flags)) 1099 /* Lost a race and it is pending again */ 1100 break; 1101 if (cr->readers != 0) 1102 continue; 1103 list_move(&cr->q.list, &dequeued); 1104 } 1105 spin_unlock(&queue_lock); 1106 while (!list_empty(&dequeued)) { 1107 cr = list_entry(dequeued.next, struct cache_request, q.list); 1108 list_del(&cr->q.list); 1109 cache_put(cr->item, detail); 1110 kfree(cr->buf); 1111 kfree(cr); 1112 } 1113 } 1114 1115 /* 1116 * Support routines for text-based upcalls. 1117 * Fields are separated by spaces. 1118 * Fields are either mangled to quote space tab newline slosh with slosh 1119 * or a hexified with a leading \x 1120 * Record is terminated with newline. 1121 * 1122 */ 1123 1124 void qword_add(char **bpp, int *lp, char *str) 1125 { 1126 char *bp = *bpp; 1127 int len = *lp; 1128 int ret; 1129 1130 if (len < 0) return; 1131 1132 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1133 if (ret >= len) { 1134 bp += len; 1135 len = -1; 1136 } else { 1137 bp += ret; 1138 len -= ret; 1139 *bp++ = ' '; 1140 len--; 1141 } 1142 *bpp = bp; 1143 *lp = len; 1144 } 1145 EXPORT_SYMBOL_GPL(qword_add); 1146 1147 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1148 { 1149 char *bp = *bpp; 1150 int len = *lp; 1151 1152 if (len < 0) return; 1153 1154 if (len > 2) { 1155 *bp++ = '\\'; 1156 *bp++ = 'x'; 1157 len -= 2; 1158 while (blen && len >= 2) { 1159 bp = hex_byte_pack(bp, *buf++); 1160 len -= 2; 1161 blen--; 1162 } 1163 } 1164 if (blen || len<1) len = -1; 1165 else { 1166 *bp++ = ' '; 1167 len--; 1168 } 1169 *bpp = bp; 1170 *lp = len; 1171 } 1172 EXPORT_SYMBOL_GPL(qword_addhex); 1173 1174 static void warn_no_listener(struct cache_detail *detail) 1175 { 1176 if (detail->last_warn != detail->last_close) { 1177 detail->last_warn = detail->last_close; 1178 if (detail->warn_no_listener) 1179 detail->warn_no_listener(detail, detail->last_close != 0); 1180 } 1181 } 1182 1183 static bool cache_listeners_exist(struct cache_detail *detail) 1184 { 1185 if (atomic_read(&detail->writers)) 1186 return true; 1187 if (detail->last_close == 0) 1188 /* This cache was never opened */ 1189 return false; 1190 if (detail->last_close < seconds_since_boot() - 30) 1191 /* 1192 * We allow for the possibility that someone might 1193 * restart a userspace daemon without restarting the 1194 * server; but after 30 seconds, we give up. 1195 */ 1196 return false; 1197 return true; 1198 } 1199 1200 /* 1201 * register an upcall request to user-space and queue it up for read() by the 1202 * upcall daemon. 1203 * 1204 * Each request is at most one page long. 1205 */ 1206 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1207 { 1208 char *buf; 1209 struct cache_request *crq; 1210 int ret = 0; 1211 1212 if (test_bit(CACHE_CLEANED, &h->flags)) 1213 /* Too late to make an upcall */ 1214 return -EAGAIN; 1215 1216 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1217 if (!buf) 1218 return -EAGAIN; 1219 1220 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1221 if (!crq) { 1222 kfree(buf); 1223 return -EAGAIN; 1224 } 1225 1226 crq->q.reader = 0; 1227 crq->buf = buf; 1228 crq->len = 0; 1229 crq->readers = 0; 1230 spin_lock(&queue_lock); 1231 if (test_bit(CACHE_PENDING, &h->flags)) { 1232 crq->item = cache_get(h); 1233 list_add_tail(&crq->q.list, &detail->queue); 1234 trace_cache_entry_upcall(detail, h); 1235 } else 1236 /* Lost a race, no longer PENDING, so don't enqueue */ 1237 ret = -EAGAIN; 1238 spin_unlock(&queue_lock); 1239 wake_up(&queue_wait); 1240 if (ret == -EAGAIN) { 1241 kfree(buf); 1242 kfree(crq); 1243 } 1244 return ret; 1245 } 1246 1247 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1248 { 1249 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1250 return 0; 1251 return cache_pipe_upcall(detail, h); 1252 } 1253 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1254 1255 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1256 struct cache_head *h) 1257 { 1258 if (!cache_listeners_exist(detail)) { 1259 warn_no_listener(detail); 1260 trace_cache_entry_no_listener(detail, h); 1261 return -EINVAL; 1262 } 1263 return sunrpc_cache_pipe_upcall(detail, h); 1264 } 1265 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1266 1267 /* 1268 * parse a message from user-space and pass it 1269 * to an appropriate cache 1270 * Messages are, like requests, separated into fields by 1271 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1272 * 1273 * Message is 1274 * reply cachename expiry key ... content.... 1275 * 1276 * key and content are both parsed by cache 1277 */ 1278 1279 int qword_get(char **bpp, char *dest, int bufsize) 1280 { 1281 /* return bytes copied, or -1 on error */ 1282 char *bp = *bpp; 1283 int len = 0; 1284 1285 while (*bp == ' ') bp++; 1286 1287 if (bp[0] == '\\' && bp[1] == 'x') { 1288 /* HEX STRING */ 1289 bp += 2; 1290 while (len < bufsize - 1) { 1291 int h, l; 1292 1293 h = hex_to_bin(bp[0]); 1294 if (h < 0) 1295 break; 1296 1297 l = hex_to_bin(bp[1]); 1298 if (l < 0) 1299 break; 1300 1301 *dest++ = (h << 4) | l; 1302 bp += 2; 1303 len++; 1304 } 1305 } else { 1306 /* text with \nnn octal quoting */ 1307 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1308 if (*bp == '\\' && 1309 isodigit(bp[1]) && (bp[1] <= '3') && 1310 isodigit(bp[2]) && 1311 isodigit(bp[3])) { 1312 int byte = (*++bp -'0'); 1313 bp++; 1314 byte = (byte << 3) | (*bp++ - '0'); 1315 byte = (byte << 3) | (*bp++ - '0'); 1316 *dest++ = byte; 1317 len++; 1318 } else { 1319 *dest++ = *bp++; 1320 len++; 1321 } 1322 } 1323 } 1324 1325 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1326 return -1; 1327 while (*bp == ' ') bp++; 1328 *bpp = bp; 1329 *dest = '\0'; 1330 return len; 1331 } 1332 EXPORT_SYMBOL_GPL(qword_get); 1333 1334 1335 /* 1336 * support /proc/net/rpc/$CACHENAME/content 1337 * as a seqfile. 1338 * We call ->cache_show passing NULL for the item to 1339 * get a header, then pass each real item in the cache 1340 */ 1341 1342 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1343 { 1344 loff_t n = *pos; 1345 unsigned int hash, entry; 1346 struct cache_head *ch; 1347 struct cache_detail *cd = m->private; 1348 1349 if (!n--) 1350 return SEQ_START_TOKEN; 1351 hash = n >> 32; 1352 entry = n & ((1LL<<32) - 1); 1353 1354 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1355 if (!entry--) 1356 return ch; 1357 n &= ~((1LL<<32) - 1); 1358 do { 1359 hash++; 1360 n += 1LL<<32; 1361 } while(hash < cd->hash_size && 1362 hlist_empty(&cd->hash_table[hash])); 1363 if (hash >= cd->hash_size) 1364 return NULL; 1365 *pos = n+1; 1366 return hlist_entry_safe(rcu_dereference_raw( 1367 hlist_first_rcu(&cd->hash_table[hash])), 1368 struct cache_head, cache_list); 1369 } 1370 1371 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1372 { 1373 struct cache_head *ch = p; 1374 int hash = (*pos >> 32); 1375 struct cache_detail *cd = m->private; 1376 1377 if (p == SEQ_START_TOKEN) 1378 hash = 0; 1379 else if (ch->cache_list.next == NULL) { 1380 hash++; 1381 *pos += 1LL<<32; 1382 } else { 1383 ++*pos; 1384 return hlist_entry_safe(rcu_dereference_raw( 1385 hlist_next_rcu(&ch->cache_list)), 1386 struct cache_head, cache_list); 1387 } 1388 *pos &= ~((1LL<<32) - 1); 1389 while (hash < cd->hash_size && 1390 hlist_empty(&cd->hash_table[hash])) { 1391 hash++; 1392 *pos += 1LL<<32; 1393 } 1394 if (hash >= cd->hash_size) 1395 return NULL; 1396 ++*pos; 1397 return hlist_entry_safe(rcu_dereference_raw( 1398 hlist_first_rcu(&cd->hash_table[hash])), 1399 struct cache_head, cache_list); 1400 } 1401 1402 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1403 __acquires(RCU) 1404 { 1405 rcu_read_lock(); 1406 return __cache_seq_start(m, pos); 1407 } 1408 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1409 1410 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1411 { 1412 return cache_seq_next(file, p, pos); 1413 } 1414 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1415 1416 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1417 __releases(RCU) 1418 { 1419 rcu_read_unlock(); 1420 } 1421 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1422 1423 static int c_show(struct seq_file *m, void *p) 1424 { 1425 struct cache_head *cp = p; 1426 struct cache_detail *cd = m->private; 1427 1428 if (p == SEQ_START_TOKEN) 1429 return cd->cache_show(m, cd, NULL); 1430 1431 ifdebug(CACHE) 1432 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1433 convert_to_wallclock(cp->expiry_time), 1434 kref_read(&cp->ref), cp->flags); 1435 cache_get(cp); 1436 if (cache_check(cd, cp, NULL)) 1437 /* cache_check does a cache_put on failure */ 1438 seq_printf(m, "# "); 1439 else { 1440 if (cache_is_expired(cd, cp)) 1441 seq_printf(m, "# "); 1442 cache_put(cp, cd); 1443 } 1444 1445 return cd->cache_show(m, cd, cp); 1446 } 1447 1448 static const struct seq_operations cache_content_op = { 1449 .start = cache_seq_start_rcu, 1450 .next = cache_seq_next_rcu, 1451 .stop = cache_seq_stop_rcu, 1452 .show = c_show, 1453 }; 1454 1455 static int content_open(struct inode *inode, struct file *file, 1456 struct cache_detail *cd) 1457 { 1458 struct seq_file *seq; 1459 int err; 1460 1461 if (!cd || !try_module_get(cd->owner)) 1462 return -EACCES; 1463 1464 err = seq_open(file, &cache_content_op); 1465 if (err) { 1466 module_put(cd->owner); 1467 return err; 1468 } 1469 1470 seq = file->private_data; 1471 seq->private = cd; 1472 return 0; 1473 } 1474 1475 static int content_release(struct inode *inode, struct file *file, 1476 struct cache_detail *cd) 1477 { 1478 int ret = seq_release(inode, file); 1479 module_put(cd->owner); 1480 return ret; 1481 } 1482 1483 static int open_flush(struct inode *inode, struct file *file, 1484 struct cache_detail *cd) 1485 { 1486 if (!cd || !try_module_get(cd->owner)) 1487 return -EACCES; 1488 return nonseekable_open(inode, file); 1489 } 1490 1491 static int release_flush(struct inode *inode, struct file *file, 1492 struct cache_detail *cd) 1493 { 1494 module_put(cd->owner); 1495 return 0; 1496 } 1497 1498 static ssize_t read_flush(struct file *file, char __user *buf, 1499 size_t count, loff_t *ppos, 1500 struct cache_detail *cd) 1501 { 1502 char tbuf[22]; 1503 size_t len; 1504 1505 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1506 convert_to_wallclock(cd->flush_time)); 1507 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1508 } 1509 1510 static ssize_t write_flush(struct file *file, const char __user *buf, 1511 size_t count, loff_t *ppos, 1512 struct cache_detail *cd) 1513 { 1514 char tbuf[20]; 1515 char *ep; 1516 time64_t now; 1517 1518 if (*ppos || count > sizeof(tbuf)-1) 1519 return -EINVAL; 1520 if (copy_from_user(tbuf, buf, count)) 1521 return -EFAULT; 1522 tbuf[count] = 0; 1523 simple_strtoul(tbuf, &ep, 0); 1524 if (*ep && *ep != '\n') 1525 return -EINVAL; 1526 /* Note that while we check that 'buf' holds a valid number, 1527 * we always ignore the value and just flush everything. 1528 * Making use of the number leads to races. 1529 */ 1530 1531 now = seconds_since_boot(); 1532 /* Always flush everything, so behave like cache_purge() 1533 * Do this by advancing flush_time to the current time, 1534 * or by one second if it has already reached the current time. 1535 * Newly added cache entries will always have ->last_refresh greater 1536 * that ->flush_time, so they don't get flushed prematurely. 1537 */ 1538 1539 if (cd->flush_time >= now) 1540 now = cd->flush_time + 1; 1541 1542 cd->flush_time = now; 1543 cd->nextcheck = now; 1544 cache_flush(); 1545 1546 if (cd->flush) 1547 cd->flush(); 1548 1549 *ppos += count; 1550 return count; 1551 } 1552 1553 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1554 size_t count, loff_t *ppos) 1555 { 1556 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1557 1558 return cache_read(filp, buf, count, ppos, cd); 1559 } 1560 1561 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1562 size_t count, loff_t *ppos) 1563 { 1564 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1565 1566 return cache_write(filp, buf, count, ppos, cd); 1567 } 1568 1569 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1570 { 1571 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1572 1573 return cache_poll(filp, wait, cd); 1574 } 1575 1576 static long cache_ioctl_procfs(struct file *filp, 1577 unsigned int cmd, unsigned long arg) 1578 { 1579 struct inode *inode = file_inode(filp); 1580 struct cache_detail *cd = PDE_DATA(inode); 1581 1582 return cache_ioctl(inode, filp, cmd, arg, cd); 1583 } 1584 1585 static int cache_open_procfs(struct inode *inode, struct file *filp) 1586 { 1587 struct cache_detail *cd = PDE_DATA(inode); 1588 1589 return cache_open(inode, filp, cd); 1590 } 1591 1592 static int cache_release_procfs(struct inode *inode, struct file *filp) 1593 { 1594 struct cache_detail *cd = PDE_DATA(inode); 1595 1596 return cache_release(inode, filp, cd); 1597 } 1598 1599 static const struct proc_ops cache_channel_proc_ops = { 1600 .proc_lseek = no_llseek, 1601 .proc_read = cache_read_procfs, 1602 .proc_write = cache_write_procfs, 1603 .proc_poll = cache_poll_procfs, 1604 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1605 .proc_open = cache_open_procfs, 1606 .proc_release = cache_release_procfs, 1607 }; 1608 1609 static int content_open_procfs(struct inode *inode, struct file *filp) 1610 { 1611 struct cache_detail *cd = PDE_DATA(inode); 1612 1613 return content_open(inode, filp, cd); 1614 } 1615 1616 static int content_release_procfs(struct inode *inode, struct file *filp) 1617 { 1618 struct cache_detail *cd = PDE_DATA(inode); 1619 1620 return content_release(inode, filp, cd); 1621 } 1622 1623 static const struct proc_ops content_proc_ops = { 1624 .proc_open = content_open_procfs, 1625 .proc_read = seq_read, 1626 .proc_lseek = seq_lseek, 1627 .proc_release = content_release_procfs, 1628 }; 1629 1630 static int open_flush_procfs(struct inode *inode, struct file *filp) 1631 { 1632 struct cache_detail *cd = PDE_DATA(inode); 1633 1634 return open_flush(inode, filp, cd); 1635 } 1636 1637 static int release_flush_procfs(struct inode *inode, struct file *filp) 1638 { 1639 struct cache_detail *cd = PDE_DATA(inode); 1640 1641 return release_flush(inode, filp, cd); 1642 } 1643 1644 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1645 size_t count, loff_t *ppos) 1646 { 1647 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1648 1649 return read_flush(filp, buf, count, ppos, cd); 1650 } 1651 1652 static ssize_t write_flush_procfs(struct file *filp, 1653 const char __user *buf, 1654 size_t count, loff_t *ppos) 1655 { 1656 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1657 1658 return write_flush(filp, buf, count, ppos, cd); 1659 } 1660 1661 static const struct proc_ops cache_flush_proc_ops = { 1662 .proc_open = open_flush_procfs, 1663 .proc_read = read_flush_procfs, 1664 .proc_write = write_flush_procfs, 1665 .proc_release = release_flush_procfs, 1666 .proc_lseek = no_llseek, 1667 }; 1668 1669 static void remove_cache_proc_entries(struct cache_detail *cd) 1670 { 1671 if (cd->procfs) { 1672 proc_remove(cd->procfs); 1673 cd->procfs = NULL; 1674 } 1675 } 1676 1677 #ifdef CONFIG_PROC_FS 1678 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1679 { 1680 struct proc_dir_entry *p; 1681 struct sunrpc_net *sn; 1682 1683 sn = net_generic(net, sunrpc_net_id); 1684 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1685 if (cd->procfs == NULL) 1686 goto out_nomem; 1687 1688 p = proc_create_data("flush", S_IFREG | 0600, 1689 cd->procfs, &cache_flush_proc_ops, cd); 1690 if (p == NULL) 1691 goto out_nomem; 1692 1693 if (cd->cache_request || cd->cache_parse) { 1694 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1695 &cache_channel_proc_ops, cd); 1696 if (p == NULL) 1697 goto out_nomem; 1698 } 1699 if (cd->cache_show) { 1700 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1701 &content_proc_ops, cd); 1702 if (p == NULL) 1703 goto out_nomem; 1704 } 1705 return 0; 1706 out_nomem: 1707 remove_cache_proc_entries(cd); 1708 return -ENOMEM; 1709 } 1710 #else /* CONFIG_PROC_FS */ 1711 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1712 { 1713 return 0; 1714 } 1715 #endif 1716 1717 void __init cache_initialize(void) 1718 { 1719 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1720 } 1721 1722 int cache_register_net(struct cache_detail *cd, struct net *net) 1723 { 1724 int ret; 1725 1726 sunrpc_init_cache_detail(cd); 1727 ret = create_cache_proc_entries(cd, net); 1728 if (ret) 1729 sunrpc_destroy_cache_detail(cd); 1730 return ret; 1731 } 1732 EXPORT_SYMBOL_GPL(cache_register_net); 1733 1734 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1735 { 1736 remove_cache_proc_entries(cd); 1737 sunrpc_destroy_cache_detail(cd); 1738 } 1739 EXPORT_SYMBOL_GPL(cache_unregister_net); 1740 1741 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1742 { 1743 struct cache_detail *cd; 1744 int i; 1745 1746 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1747 if (cd == NULL) 1748 return ERR_PTR(-ENOMEM); 1749 1750 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1751 GFP_KERNEL); 1752 if (cd->hash_table == NULL) { 1753 kfree(cd); 1754 return ERR_PTR(-ENOMEM); 1755 } 1756 1757 for (i = 0; i < cd->hash_size; i++) 1758 INIT_HLIST_HEAD(&cd->hash_table[i]); 1759 cd->net = net; 1760 return cd; 1761 } 1762 EXPORT_SYMBOL_GPL(cache_create_net); 1763 1764 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1765 { 1766 kfree(cd->hash_table); 1767 kfree(cd); 1768 } 1769 EXPORT_SYMBOL_GPL(cache_destroy_net); 1770 1771 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1772 size_t count, loff_t *ppos) 1773 { 1774 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1775 1776 return cache_read(filp, buf, count, ppos, cd); 1777 } 1778 1779 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1780 size_t count, loff_t *ppos) 1781 { 1782 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1783 1784 return cache_write(filp, buf, count, ppos, cd); 1785 } 1786 1787 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1788 { 1789 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1790 1791 return cache_poll(filp, wait, cd); 1792 } 1793 1794 static long cache_ioctl_pipefs(struct file *filp, 1795 unsigned int cmd, unsigned long arg) 1796 { 1797 struct inode *inode = file_inode(filp); 1798 struct cache_detail *cd = RPC_I(inode)->private; 1799 1800 return cache_ioctl(inode, filp, cmd, arg, cd); 1801 } 1802 1803 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1804 { 1805 struct cache_detail *cd = RPC_I(inode)->private; 1806 1807 return cache_open(inode, filp, cd); 1808 } 1809 1810 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1811 { 1812 struct cache_detail *cd = RPC_I(inode)->private; 1813 1814 return cache_release(inode, filp, cd); 1815 } 1816 1817 const struct file_operations cache_file_operations_pipefs = { 1818 .owner = THIS_MODULE, 1819 .llseek = no_llseek, 1820 .read = cache_read_pipefs, 1821 .write = cache_write_pipefs, 1822 .poll = cache_poll_pipefs, 1823 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1824 .open = cache_open_pipefs, 1825 .release = cache_release_pipefs, 1826 }; 1827 1828 static int content_open_pipefs(struct inode *inode, struct file *filp) 1829 { 1830 struct cache_detail *cd = RPC_I(inode)->private; 1831 1832 return content_open(inode, filp, cd); 1833 } 1834 1835 static int content_release_pipefs(struct inode *inode, struct file *filp) 1836 { 1837 struct cache_detail *cd = RPC_I(inode)->private; 1838 1839 return content_release(inode, filp, cd); 1840 } 1841 1842 const struct file_operations content_file_operations_pipefs = { 1843 .open = content_open_pipefs, 1844 .read = seq_read, 1845 .llseek = seq_lseek, 1846 .release = content_release_pipefs, 1847 }; 1848 1849 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1850 { 1851 struct cache_detail *cd = RPC_I(inode)->private; 1852 1853 return open_flush(inode, filp, cd); 1854 } 1855 1856 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1857 { 1858 struct cache_detail *cd = RPC_I(inode)->private; 1859 1860 return release_flush(inode, filp, cd); 1861 } 1862 1863 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1864 size_t count, loff_t *ppos) 1865 { 1866 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1867 1868 return read_flush(filp, buf, count, ppos, cd); 1869 } 1870 1871 static ssize_t write_flush_pipefs(struct file *filp, 1872 const char __user *buf, 1873 size_t count, loff_t *ppos) 1874 { 1875 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1876 1877 return write_flush(filp, buf, count, ppos, cd); 1878 } 1879 1880 const struct file_operations cache_flush_operations_pipefs = { 1881 .open = open_flush_pipefs, 1882 .read = read_flush_pipefs, 1883 .write = write_flush_pipefs, 1884 .release = release_flush_pipefs, 1885 .llseek = no_llseek, 1886 }; 1887 1888 int sunrpc_cache_register_pipefs(struct dentry *parent, 1889 const char *name, umode_t umode, 1890 struct cache_detail *cd) 1891 { 1892 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1893 if (IS_ERR(dir)) 1894 return PTR_ERR(dir); 1895 cd->pipefs = dir; 1896 return 0; 1897 } 1898 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1899 1900 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1901 { 1902 if (cd->pipefs) { 1903 rpc_remove_cache_dir(cd->pipefs); 1904 cd->pipefs = NULL; 1905 } 1906 } 1907 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1908 1909 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1910 { 1911 spin_lock(&cd->hash_lock); 1912 if (!hlist_unhashed(&h->cache_list)){ 1913 sunrpc_begin_cache_remove_entry(h, cd); 1914 spin_unlock(&cd->hash_lock); 1915 sunrpc_end_cache_remove_entry(h, cd); 1916 } else 1917 spin_unlock(&cd->hash_lock); 1918 } 1919 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1920